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ABSTRACT Indoor location localization using the time of arrival (TOA) of ultra-wideband (UWB) radio
waves faces a challenge in obtaining accurate TOA values in a non-line-of-sight (NLOS) environment owing
to obstacles and multipath reception. The accuracy of localization using such sensor data in an NLOS
environment is significantly degraded. To address this problem in NLOS environment, we proposed a new
localization method that utilizes different sensor combinations for estimation and sensor placement topology.
Based on the conventional localization method using various combinations of sensors, the estimation results
containing an NLOS ranging value were first removed. Subsequently, we introduced a new parameter called
the topological expectancy of localization accuracy (TELA), which represents the effect of sensor placement
on the accuracy of localization. The final estimation result was then obtained using the weighted average of
the remaining localization results obtained by TELA. Computer simulations and experimental results showed
that the performance of the proposed method is superior by 4 to 37% compared with that of conventional
methods, even in the presence of many NLOS environment sensors.

INDEX TERMS Indoor localization, NLOS, TOA, cramer-rao lower bound, topological expectancy of

localization accuracy (TELA).

I. INTRODUCTION

With the recent development of automated factories and dis-
tribution warehouses, accurate indoor position information is
becoming increasingly important [1]. Because global navi-
gation satellite systems (GNSS) cannot be used for indoor
positioning, suitable indoor positioning methods that use radio
waves have been investigated [2]. Localization with Wi-Fi
[3] and Bluetooth [4] are among the most representative ex-
amples. Various signal processing methods, such as time of
arrival (TOA) [5], which estimates the distance based on the
propagation time of radio waves; time difference of arrival
(TDOA) [6], which uses the arrival time difference of ra-
dio waves from the same transmitter; and angle of arrival
(AOA) [7], which uses the arrival angle of radio waves, are
widely used. In addition, the received signal strength indi-
cation (RSSI) method [8], [9], [10], which obtains distance
information from the amount of power attenuation for location
estimation, and the fingerprint method [11], which utilizes

the location dependency of channel state information (CSI)
and RSSI from multiple base stations, have also been investi-
gated. In particular, the TOA method that uses ultra-wideband
(UWB) has attracted attention because of its superior ranging
accuracy and low power consumption [12], [13]. Although
these methods are highly accurate in line-of-sight (LOS) envi-
ronments, which exhibit good visibility, it generally degrades
in non-line-of-sight (NLOS) environments [14], [15], where
visibility between sensor nodes and targets is blocked. This is
because the ranging value in the NLOS environment is larger
than the true value owing to the reception of reflected waves.
In general, localization in NLOS environments can be
approached in two ways. One is identification and removal of
the ranging values of the sensors in an NLOS environment.
The second is inclusion of these sensors for localization.
The latter is generally called multipath-assisted indoor
navigation and tracking (MINT) [16], [17], [18], which
enables accurate localization even in NLOS environments by
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modeling multipath components. However, in principle, these
systems require a priori information called floor plans, which
may be difficult to implement in cases where estimation of
many areas, such as large factories or shopping malls with
moving objects, is required. In comparison, the elimination
methods of sensors in the NLOS environment for localization
do not require prior knowledge and are relatively easy to
implement. Considering this advantage, this study focuses
on methods that identify and remove the ranging values of
NLOS environment sensors. Hereafter, we refer to a sensor
in an LOS environment as an “LOS node” and a sensor in an
NLOS environment as an “NLOS node.”

Many methods of reducing the impact of NLOS nodes have
been studied using either CSI of the received radio wave or
distance data only. Recently, regulations for UWB wireless
systems have been revised for facilitating UWB usage [19],
and the cost of UWB devices is expected to reduce and the
use of UWB terminals is expected to increase. Therefore,
this study examines a location estimation algorithm that can
be applied to UWB localization systems containing a large
number of UWB devices.

In conventional methods [20], [21], [22], [14], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [29], [32], [33], [34],
localization is performed by combining distance information
obtained from a large number of sensors in various ways. Fur-
thermore, the accuracy is improved by employing localization
results based on sensor combinations that do not include the
distance measured by NLOS nodes. However, the accuracy
of localization tends to be poor owing to the low removal
accuracy of NLOS nodes [14], [15]. In this paper, we proposed
a new method that improves the accuracies of NLOS node
removal and localization by weighted averaging of the esti-
mation results from sensor combinations. The contributions
of this study are as follows:

The sensor combination method uses both the difference
between the measured and the estimated distance (defined as
residual), which is a conventional metric, and confidence level
based on the residuals for increasing the reliability of NLOS
node removal.

IN line with AOA systems, we introduced a new pa-
rameter, the topological expectancy of localization accuracy
(TELA), which evaluates the accuracy of the estimated loca-
tion based on the positional relationship between the sensor
and estimated position and proposed an algorithm for more ac-
curately estimating the position using the weighted average by
TELA.

The remainder of this paper is organized as follows. In
Section II, related studies on NLOS countermeasures for con-
ventional UWB localization are presented. In Section III,
the proposed method is extensively described, and in Sec-
tion IV, the performance of the proposed method is compared
with that of the conventional methods using numerical sim-
ulations. In Section V, the computational complexity and
Cramer-Rao lower bound (CRLB) are derived. In Section VI,
the experimental results of the proposed method using UWB
sensors are evaluates, and in Section VII, conclusions are

summarized.
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Il. RELATED WORKS

Existing methods of reducing the impact of NLOS on local-
ization accuracy can be classified into two main categories:
with and without prior knowledge [20], [21].

Those with prior knowledge are either range-[22], [23] or
channel-based. A range-based method uses a known range
error model and tendency. Furthermore, probability density
functions (PDFs) are used for probabilistically discriminating
LOS/NLOS or a predefined threshold of a metric such as
the variance of the ranging value is used for discriminating
LOS/NLOS. However, accurately determining the ranging er-
rors in advance is generally difficult. Channel-based methods
use channel impulse response (CIR) to determine whether
the environment is NLOS and can be further divided into
two categories: one uses the cumulative distribution function
(CDF) of the received power distribution [23] and the other
uses the signal-to-noise ratio (SNR), kurtosis, or the mean
excess delay (MED) of the CIR [24], [25]. However, these
methods require coupling probabilities and thresholds. How-
ever, obtaining accurate CIRs a priori and determining the
appropriate thresholds by computing joint distribution func-
tions are usually difficult.

Estimation methods that do not use prior knowledge in-
clude robust statistics [26], [27], [28], [29], mathematical
programming [30], [31], [29], identification and discarding
[32], [33], and location-based methods [34], [35]. Robust
statistics, such as M-estimation [26], [27], which considers
NLOS as an outlier and uses a robust function to minimize
the effects of NLOS, and the least median square (LMedS)
method [28], [29], which obtains the median of the small-
est squared residuals of candidate estimates, directly mitigate
the effects of NLOS without explicit NLOS discrimination.
Mathematical programming includes quadratic programming,
linear programming, and interior point optimization. The
effect of NLOS is reduced by solving mathematical program-
ming with constraints on the ranging values of NLOS sensors.
In the identification and discard method, NLOS sensors are
identified and discarded; thus, they are not used for localiza-
tion. Although these methods do not require prior knowledge,
they generally require many measurements and incur high
computational costs.

Identification and discarding of NLOS sensors is based
on feedback obtained from the localization results. On one
hand, location-based methods often have lower estimation
accuracy than quasi-maximum likelihood methods. The lat-
ter requires prior knowledge, whereas the former does not
require prior knowledge and can improve performance with
only the given measurements. Therefore, this study focuses
on location-based methods, and the proposed method be-
longs to the NLOS identification and discard category and
location-based method. A location-based method discrimi-
nates NLOS in following two ways: using residuals and
reliability of ranging values. The residual is the difference
between the estimated distance calculated by the estimated
position and sensor nodes, and the measured distance is
obtained by ranging the same location and sensors. The it-

erative minimum residual (IMR) method [34] typically uses
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the residuals. In the IMR method, the sum of squares of
the residuals is calculated for each localization, and any
sensor combination with a large sum is considered to con-
tain an NLOS sensor and is eliminated. In general, these
methods use the property of fact that the residuals from
sensor combinations that include NLOS sensors become
large. However, this principle has some exceptions; in par-
ticular, when multiple NLOS sensors are included, the dis-
crimination accuracy based on the residual sums significantly
decreases.

On the other hand, no error model information and reduced
complexity (NEMIRC) method [35], which uses the reliabil-
ity of ranging values, has been proposed as a location-based
method. In the NEMIRC, all sensor combinations are used
for localization, and the average of the estimated positions
where the reliability exceeds a threshold is used as the final
estimated position. Here, reliability is defined as the minimum
value of the measured distance subtracted by the estimated
distance of the sensor that was not used for localization.
In principle, the measurement error is positively biased and
the reliability value becomes positive. Then, by eliminating
the estimated positions that violate this principle, that is, a
sensor node with a negative reliability value, highly accurate
NLOS discrimination is achieved. In addition, NEMIRC does
not uniquely determine the final localization result but rather
averages multiple localization results from multiple sensor
combinations, which makes it robust and less sensitive to the
inclusion of some incorrectly estimated positions. However,
because of the NEMIRC principle, the effect of NLOS sensor
errors cannot be completely eliminated and the estimation
accuracy of NLOS sensors inevitably degrades. Therefore,
further improvements in the estimation accuracy of location-
based methods are expected.

The proposed method is based on NEMIRC, in which a
simple average of the estimated positions selected by the
threshold is used as the final localization result. However,
in this study, a weighted average of the estimated positions
weighted according to the confidence level was applied for
improving the accuracy of the localization. Several indices
have been proposed in conventional studies for evaluating the
confidence level of the estimated location [36], [37], [38],
[39], and evaluating it based on the relationship between
the placement of sensors and estimated location is common.
Among these, the geometric dilution of precision (GDOP)
[36] uses prior knowledge of the ranging error model and can
be applied to the optimal combination of satellites for GNSS
[37] and optimization of sensor placement for indoor posi-
tioning [38]. However, these methods cannot be used without
prior knowledge of the channel model, as in that proposed in
the present study. Another method that uses topology with-
out prior knowledge was proposed using distance vector hop
(DV-Hop) [39]. Although this method is effective in range-
free schemes that do not require distance measurements, it
is ineffective in methods that use ranging values. Therefore,
this paper proposes a new TELA that does not require a
channel model and can evaluate the reliability of the estimated
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1. In N sensor fields, position estimation is performed with
(IZ) (k = 3,4, ...,N) different sensor combinations.
v
2. Remove estimated positions that are likely to contain NLOS
ranging values by evaluating the residual errors 7; and range
reliabilities R;.

v
3. Evaluate TELA for the remaining estimated positions, and
calculate the weighted average of them with the weight of
TELA for the final estimated position.

FIGURE 1. Algorithm overview of proposed method.

position based only on the positional relationship between the
sensor and estimated position. We used the proposed TELA
as a weighted average of the estimated positions in the final
localization result for improving performance.

1il. PROPOSED LOCALIZATION METHOD

The proposed method can be divided into two procedures:
repeating the localization using various sensor combinations
and classifying them; and calculating TELA and performing
weighted average. Fig. 1 shows a flowchart of the proposed
algorithm when the number of sensors in a target field is
N. Steps 1-2 and 3 in Fig. 1 are described in III-A and -B,
respectively.

A. LOCALIZATION WITH VARIOUS SENSOR COMBINATIONS
AND SORTING OF THE RESULTS

In Step 1, as shown in Fig. 1, we first estimated the target
position using all combinations of sensors. For estimating the
positions for all combinations using k = (34, ..., N) sensors
by multilateration, the total number of combinations M can be
calculated as

N
w=3(}) (1)
k=3

In this study, the TOA [40] measurement method for UWB
was assumed and time synchronization among sensors was
assumed to have been obtained. In addition, the minimum
value of k was set to three because multilateration requires at
least three sensors. When the ranging values of k sensors are
d; (i =12, ..., k), the optimal estimated position is obtained
by the following least-squares (LS) problem [41]:

k 2
(%), ) = argmin ) (d — o=+ i — y‘/>2> :
X1,/ =1
)

where (X}, ; )is the j-th (j = 12, ..., M) estimated position,
(X;, y; ) are the coordinates of the i -th sensor in the j-th sensor
combination. Eq. (2) is a nonlinear optimization problem that
is generally solved using optimization methods such as
the Newton-Raphson method [42]. However, in this study,
the linear least squares (LLS) [43] method with a lower
calculation complexity was used. Although LLS is less
accurate than other nonlinear methods, it is suitable for the

VOLUME 3, 2022



IEEE (7 IEEE Open Journal of
Signal == . .
ssing  Signal Processing

Proce:

@) Sensor 4 (NLOS)
7/,; Estimated position
by Sensor!.” and 3
AN /
Estimated distance > measured distance
contradiction

Estimated position
by Sensor!.” and 4

FIGURE 2. Reliability of ranging value.

proposed method because an iterative calculation of (2) for
many combinations of M is required in the proposed method.

In Step 2, we evaluated the residuals and reliability of the
ranging values and removed the estimated positions that were
likely to include NLOS ranging values. The residual value r;
for j-th estimated position is given by the averaged squared
value using the measured distance value d; as

2

I
=1 (d-Ve—s e-n)?) o
i=1

Then, an empirical threshold of 8 = 0.3 m? was adopted for
r; for discriminating NLOS environments, and the estimated
positions with r; > § were removed as they were likely to
contain NLOS ranging values. The optimization of § is pre-
sented in Appendix A.

The reliability of the ranging value of j-th estimated posi-
tion is defined in NEMIRC [35] as

RjZTIIlEiE{dl—dl}, (4)

where L={k+1,k+2,...,N} is the set of sensors that
are not used for localization of j-th estimation, and d; is the
estimated distance between j-th estimated position and /-th
(I € L) sensor and is given by

&=/ (-5 + (01— 5))° 5)

Similar to the residuals, a threshold value T = 0 m was set
for R;. The estimated positions satisfying R; < T were con-
sidered to contain NLOS ranging values and were eliminated.
Note that the residuals calculated in (3) and the reliability
calculated in (4) are similar but different. An example of the
principle that the reliability defined in (4) contributes to NLOS
determination is shown in Fig. 2. The localization result from
sensors 1, 2, and 3 in the LOS environment is inside the rang-
ing distance circles of the three nodes and also inside that of
the fourth sensor, which is complementary. This implies that
the estimated distance is generally smaller than the ranging
value. If the estimated position is assumed to be near the actual
position, the estimated distance is approximately equal to the
true distance and the fact that the ranging value is larger than
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the estimated distance value reasonably holds. However, the
result of localization using sensors 1, 2, and 4 indicates that
the estimated distance is larger than the ranging distance for
sensor 3, which is complementary. If this estimation result is
correct, the estimated distance, which corresponds to the true
distance, is larger than the ranging value for sensor 3, and the
ranging difference defined by (4) becomes negative for [ = 3.
This contradicts the fact that the ranging error is principally
positive and is therefore an erroneous result. Therefore, the
reliability of the ranging values calculated by (4) is shown
to be a useful metric for determining the incorrect estimated
location because of NLOS ranging values [37].

To reduce the calculation complexity, the proposed method
does not consider the sensor combinations, the subsets of
which are judged to contain NLOS ranging values for the
rest k-process. For example, in a field with four sensors, if
the combination of sensors 1, 2, and 3 is judged to be in the
NLOS environment, the combination of sensors 1, 2, 3, and 4
was also considered to contain NLOS ranging values. There-
fore, they were excluded from the search process. Thus, the
amount of calculation was reduced, and the accuracy of NLOS
discrimination was improved by reducing the possibility of
misjudgment. The number of remaining estimated positions
is denoted as Mj ps.

In real environments, partial LOS or NLOS sensors that fre-
quently switch between LOS and NLOS environments owing
to mobility objects, etc. may exist. In these environments, the
proposed method measures instantaneous range values, and
the localization algorithm does not take much time. Therefore,
the proposed method can treat these sensors as instantaneous
LOS or NLOS sensors and does not have a significant negative
impact on the estimation accuracy.

B. TOPOLOGICAL EXPECTANCY OF LOCALIZATION
ACCURACY

Finally, in Step 3, TELA was calculated for the remaining
estimated positions j € Mrps, and the weighted average of
these positions was used as the final localization result. TELA
is defined as a scalar value, and the higher the value, the
higher the localization accuracy. TELA is composed of three
elements: an aspect ratio a of the polygon, the vertices of
which are the sensors to be used, a distance bias b; from the
estimated position to the sensors to be used, and an angle bias
by formed by the straight line drawn from the estimated posi-
tion of each sensor. These elements were adopted as a result
of heuristic considerations. Note that because this position
estimation method is a nonlinear optimization problem, we
believe applying empirical factors to some extent, such as hy-
perparameters in machine learning, was necessary to compose
TELA. The details of this process are described below.

1) ASPECT RATIO

One of the conditions for trilateration is that the sensors
should not be placed on the same line for uniquely
determining the solution. Hence, a correlation exists between
the sensor topology and localization accuracy. As shown
in Fig. 3, we selected any three of the sensors used for the
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i — th sensor k — th sensor
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FIGURE 3. Aspect ratio of sensors.
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FIGURE 4. Relationship between aspect ratio and localization error.

estimation and labeled them as i-th, j-th, and k-th sensors.
The ratio of the line length between j-th and k-th sensors and
the length between i-th sensor and j — k line was calculated
as the aspect ratio, and this ratio was calculated for all
combinations. The maximum value was defined as the aspect
ratio of the sensor subset. The resulting value a is given as

min (dh,', djk)
max _—
i), j#k k#2.G j0)=(1.2,...N) | max (dp, dji)

)

where dj; is the distance from the i-th sensor to intersection
point & of the j — k vertical line and dj; is the line length of
j-th and k-th sensors. The maximum value of a is one, and
when it is approximately one, the localization accuracy is
recognized as high.

We confirmed the correlation between aspect ratio a and
localization accuracy by numerical simulation, as shown in
Fig. 4, where the correlation between the localization error
and 1/a, which is the reciprocal of the aspect ratio, is drawn
after 100000 localization trials with sensors and targets placed
in random positions on a 10 m square plane. The number of
sensors was randomly determined to be 3-8, and the chan-
nels between the target and sensors were assumed to be in
LOS environments. In the legend of Fig. 4, the average and
std are the mean and standard deviation of the error results
for each 1/a grid, respectively. The results show that the
mean value is approximately proportional to the value of 1/a,
that is, when a is large, the estimation accuracy tends to be
high, but the standard deviation increases. This is because the
smaller the aspect ratio, the more biased the sensor positions.
Subsequently, the localization results tend to be classified as
highly or not highly accurate. However, this study focused on
improving the average performance rather than the variance
because improving the average was the most effective way of
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FIGURE 6. Relationship between localization error and bias of distances
between estimated position and sensors.

improving the accuracy performance in terms of the root mean
square error (RMSE) as defined in (11).

2) DISTANCE BIAS

Localization accuracy is also related to the bias of the distance
from the estimated position to each sensor. In general, when
the sensors are equidistant from the estimated position, as
shown in Fig. 5(a), the localization accuracy becomes high,
and when the distance is biased, as shown in (b), the accuracy
decreases. This is due to the use of a triangulation algorithm.
Based on this, parameter b;, which predicts the localization
accuracy, is defined as

by = d;} — i d;}, 7
= max {di} oo {di} (7
where d; is the distance between the i € {12, ..., N}-th sensor

and estimated position. b, is defined not as the variance of d;
but as a difference range [46] of their maximum and minimum
values because the number of samples for d; is insufficient for
calculating the variance for small N, such as three or four. We
confirmed the b; by numerical simulations with the same con-
ditions of Fig. 4. The results in Fig. 6 show that although the
graphs vary, as shown in Fig. 4, the average of b; is roughly
and inversely proportional to the localization accuracy. Thus,
b, can be used as an indicator of the localization accuracy.

VOLUME 3, 2022



IEEE Open Journal of
Signal Processing

-~
? ./ \
/
| 91/ \
| // \\
|
0, | ,/ \\
C:.\ // \
- N / \
e ~ - Y \
@ ® ¢ ®
a (b)

FIGURE 7. Bias of the interior angle formed by the straight line extended
from the estimated position to the sensors.

4 I I I
35 —| avg std I
8 3
—
g I
52s
g 2
B
Sis /
<
e 1
3
0.5 e
—
/. I
0
0 1 2 3 4 5 6
b O rad

FIGURE 8. Relationship between interior angle bias and localization
accuracy.

3) ANGLE BIAS

A relationship exists between the localization accuracy and
bias of the angle formed by the straight lines from the es-
timated position to each sensor. As shown in Fig. 7, the
localization accuracy is expected to be high in the case of
(a) by balanced topology, whereas it is expected to be low
in the case of (b) owing to the biased topology. From this
perspective, the parameter by, which is inversely proportional
to the localization accuracy, is defined as

{01}, ®)

bg = max

= 6;} — min
le{1,2,.4.,N}{ l} le

{1.2,...N}

where 6; is the [-th angle among N internal angles from the
estimated position to the two adjacent sensors. The correla-
tion between by and localization accuracy was examined in
the same manner as for a and b;. The results are shown in
Fig. 8. The localization accuracy can be observed to be greatly
degraded in region of by > 6.0 rad along the horizontal axis.
However, this indicates an existence of an angular bias of ap-
proximately 360°, which is considered an extremely rare case
in the practical sensor field. Therefore, by was confirmed to
be approximately proportional to the localization error in the
region of by < 6.0 rad. Hence, by is concluded to be inversely
proportional to the localization accuracy.

Because each of these variables a, b;, and by can take
an independent value, we define the overall reliability index
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TELA using all variables as
_a
~ baby’

where ¢; denotes the TELA value at j-th estimated position.
The correlation between TELA and localization accuracy was
also confirmed by numerical simulations, as shown in Fig. 9.
This indicates that the localization error increased as the value
of I/TELA increased, that is, the higher the value of TELA,
the higher the localization accuracy.

Considering the characteristics of ¢;, the final estimated
position z = (X, ) can be obtained by the weighted average
of the estimated positions using TELA, as follows:

S D jeMios fjlj’
ZjEMLOS L

€))

lj

(10)
where z; denotes the j-th estimated position.

IV. NUMERICAL RESULTS

The performance of the proposed method was evaluated using
numerical simulations. Fig. 10 shows the sensor field in which
eight sensors were deployed. NLOS sensors were assumed
to exist randomly from zero to four of the eight sensors in
every trial. The position of the target sensor was also random
in each trial. The simulation conditions are listed in Table 1. In
conventional methods, the performances of location-based LS
[41], LMedS [28], IMR [34], and NEMIRC [35] methods are
plotted. The LS method is the basic multilateration estimation
method, and the LLS is used to minimize the squared sum
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TABLE 1 Simulation Conditions

L LS, IMR, LMedS, NEMIRC,
Localization method
proposed method
Sensor field 10mXx10m
Number of sensor nodes N 8
Target node position random
Distribution of NLOS sensors random
Ranging method Average of 30 measurements
Number of simulation trials 7,0, 10,000
Threshold of residual § 0.3 m?
Reliability threshold of distance
0.0 m
measurement value 7
UWB bandwidth 500 MHz
- Hios = 0.21m
Parameters of TOA-LOS error 0ios = 0.2692 m?
- Hyros = 1.62 m
Parameters of TOA-NLOS error 67105 = 0.809% m?

mLS

. Iulhlhm

Number of NLOS sensors

= IMR LMedS mNEMIRC proposed method

FIGURE 11. RMSE performance comparison when all eight sensors are
used.

of the residual error. Similarly, LS is used in the localization
of IMR, LMedS, NEMIRC, and the proposed methods. The
performance was evaluated by the RMSE, which is given by

Noop (xtag _ X\n)Z + (y[ag . yn)Z
RMSE = | ) . (11)
n—1 oop

Here, (Xtag, Ytag) and (£, $,) are the true position of the
target and estimated position at the n-th trial, respectively, and
Nygop 1S the number of trials. Note that TELA only measures
the topological heterogeneity of the sensor nodes, which only
indirectly contributes to the final required performance, that
is, the mean squared error improvement. The final accuracy
evaluation was performed using RMSE. The distance and
TOA propagation model were assumed to be given by the
following equation and as listed in Table 1 [45]:

d =d + nLos + {nNLos
2
mos ~ N (wos log (10 + d) . ofos[log (1.0 + d)T’)
nxLos ~ N (14NLoS: ORLos)- (12)

where d is the true distance between the target and sensor,
and ¢ is a switching parameter equal to zero in the LOS
environment and one in the NLOS environment.

Fig. 11 shows the RMSE performance versus the number
of NLOS environmental sensors when using all eight sensors.
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FIGURE 12. RMSE performance when the number of sensors is varied.

The proposed method can be observed to exhibit the small-
est RMSE in all cases, indicating accurate localization. The
conventional method uses either the residuals or reliability of
ranging values for NLOS discrimination for improving local-
ization accuracy. In contrast, the proposed method uses both
of these and improves the accuracy of NLOS discrimination.
The TELA weighted average of estimated locations employed
more weights for reliable estimated locations and improved
the RMSE in both LOS and NLOS environments. This is
the novelty of the proposed method. However, we found that
when half of the sensors (e.g., four out of eight sensors) were
NLOS sensors, the RMSE of the proposed method increased,
similar to the NEMIRC method. This can be regarded as a
limitation of our proposed method.

Fig. 12 shows the RMSE performance when the numbers
of total sensors N and NLOS sensors are varied from four to
eight and from one to two, respectively, as shown in Fig. 10.
For each N, sensors labeled from 1 to N were used and the
NLOS sensors were randomly placed. On the horizontal axis
of Fig. 12, for example, 6(1) indicates one sensor in an NLOS
environment among N = 6 sensors. The results confirm the
superiority of the proposed method in all the cases. In par-
ticular, when the number of sensors was four, the proposed
method exhibited a significant improvement compared with
the other methods. This is because the weight of TELA works
effectively in an environment with less number of sensors,
where the performance degradation by an NLOS sensor is
relatively large.

Next, we examined the impact of each TELA factor on the
localization accuracy. The simulation was performed 100000
times with the number of NLOS sensors set to 1 in the sensor
field, as shown in Fig. 10. Fig. 13 shows the results, which
indicate that each element of TELA contributed to improved
localization accuracy. Each of these elements is individually
effective and they are even more effective when combined and
used as TELA.

Table 2 shows the improvement percentage of the proposed
method compared to the state-of-the-art NEMIRC method.
An improvement of 37% can be observed at maximum in the
proposed method over the conventional method.

Finally, we evaluated the method for specific scenarios.
We considered two scenarios in the sensor field, as shown in
Fig. 14. Scenario (1) assumed the target position set to (37)
and sensor No. 6 in an NLOS environment. In scenario (2),
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TABLE 2 Improvement Percentage of Proposed Method Over NEMIRC
Method

No. of NLOS sensors (Fig. 11) 0 1 2 3 4

Improvement % 4.13 34.76 33.33 2732 17.66
No. of sensors (NLOS) (Fig. 12) 4(1) 5(1) 6(1) 7(2) 8(2)
Improvement % 36.84 | 36.76 | 28.89 | 24.14 | 28.89

Y-axis m

6 7 8 9 10 o Target
-axis m

FIGURE 14. Specific simulation scenarios. Sensor field is the same as in
Fig. 10 with fixed target location and NLOS environmental sensors.

TABLE 3 Performance Comparison at Specific Location

Scenario 2
(2,3)
(0.879,1.368)
(1.878,2.943)

Scenario 1
(EX))
(2.690,7.579)
(2.813,7.046)

Target true location

Estimated location with LS
Estimated location with NEMIRC

Estimated location with TELA (2.918,7.047) (1.920,3.036)
RMSE with LS 0.657 m 1.98 m
RMSE with NEMIRC 0.193 m 0.135m
RMSE with TELA 0.094 m 0.088 m

the target position was set to (23) and sensors 3 and 8 were
in the NLOS environment. The simulation results using the
same ranging noise model as in Figs. 11 and 12 are shown in
Table 3. The proposed method can be observed to exhibit the
highest localization accuracy.

V. CALCULATION COMPLEXITY ANALYSIS AND
THEORETICAL LOWER BOUND OF LOCALIZATION
ACCURACY

Because the proposed method, like the conventional methods
of IMR and LMedS, does not require any prior information,
such as channel state information, it is categorized as
low-complexity localization and is suitable for real-time
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TABLE 4 Comparison of Required Calculation Complexity

Algorithm Numerical cost

LS O(N)

IMR 0(N®
LMedS 0(N5)
NEMIRC O(N2V 1)

Proposed method O(N2V~H

tracking. Therefore, the low-complexity property is important
in the proposed method. This section investigates the calcu-
lation complexity and performance bounds for the proposed
and conventional methods, and evaluates their practicality.

A. CALCULATION COMPLEXITY

We used the widely used Landau symbol O [46] as the
complexity indicator. Table 4 lists the order of complexity
of each method, where N is the number of sensor nodes.
The proposed method can be observed to exhibit the highest
complexity. However, if the number of sensors is 10, the order
becomes O(10 x 27), which can be easily calculated using a
current-model desktop computer. The derivations in Table 4
are as follows:

First, the LS method is equivalent to solving N simulta-
neous equations in which the unknown parameters are the
coordinates (x, y) and the order becomes O(N).

Second, in the IMR method, the sequential elimination of
NLOS sensors contributes to dominant complexity. This oper-
ation is conducted one by one for each sensor until the number
of residual sensors is at a maximum, and then the complexity
becomes

N
O(Zn(n—l)) =0 (N%) (13)
n=4
The LMedS method iteratively estimated the position with
all subsets of the three sensors and selected the best subset
with the lowest center value of residual error. The number of
subsets is

(1;[) =N(N_16)(N_2) =é(N3—3N2+2N) (14)

In each subset, localization and sorting were performed for
selecting the central value. Then, the complexity becomes

0 (é (N* — 3N + 2N)) xo(N)=0(N)  as)

Finally, the calculation complexity of the NEMIRC and
proposed method was considered. Calculation complexity
becomes the largest when all the sensor combinations are
explored in an LOS environment. The number of combina-
tions of all sensors is M can be calculated from (1). For
each combination of k sensors, the distance cfl for local-
ization was measured, and the LLS localization of (2) and
reliability evaluation of (4) were conducted. In addition, the
TELA calculation given by (9) was performed only in the
proposed method. Because all these calculation complexities
were O(k), the maximum calculation complexity converged
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TABLE 5 Comparison of Calculation Complexity at N = 10

Algorithm Normalized complexity at N =
10 when LS method is 1
LS 1
IMR 52
LMedS 120
NEMIRC 968
Proposed method 968

to O(k). Therefore, the calculation complexity of the entire
algorithm becomes

0 (ﬁ: (2’) k) =0 (N2

k=3

(16)

After all sensor combinations were explored in the LOS
environment, the calculation complexity of NEMIRC and pro-
posed method attained a maximum value. However, as the
number of NLOS sensors increased, the number of sensor
combinations not considered after (4) increased and the cal-
culation complexity decreased.

In addition, specific numerical calculations were performed
for better understanding. Assuming N = 10, we compared the
number of times the LS position estimation was performed
between the conventional and proposed algorithms. Table 5
summarizes the normalized calculation complexities using the
LS method. The results show that the LS method was iterated
968 times using the proposed method. Because the compu-
tational complexity exponentially increases as N increases,
devising a distributed implementation algorithm, such as sep-
arating sensor fields for large N, may be necessary.

B. PERFORMANCE OF CRAMER-RAO LOWER BOUND

An unbiased estimator that estimates the unknown parameters
of a certain probability distribution has a lower bound on
variance. This is called the CRLB [47], [48], [49], [50] and
is widely used to evaluate the effectiveness of estimations,
such as localization. We assumed d;(¢, ) to be the true distance
between the i-th sensor node of i = 12,..., N and target of
the coordinate @, = (x;, y;) and is given using the sensor
coordinate (x;, y;) as

0) = /(v — 5P + (v — 9 a7)

When the measurement error of the measured distance cf,
is stochastically independent and subject to the same distri-

bution, the likelihood function /(¢) of coordinate ¢ = (x, y)
with the measured distance d; is given by
N
L@)=p(di.....di....dvle) =] r(dle) (18
i=1

Then, localization was performed by obtaining ¢ that max-
imizes (18). By taking logarithm of (18),

N
L(p)= ) logpDilg),

i=1

458

Zlogp duld; (),

logp d |d; (‘P) (19)

L
2
N N
Z Y L),
i=1 i=1

where D; = {dil, diz, R diL} is the vector of the measured
distance values of the i-th sensor; L is the number of dis-
tance measurements at each sensor; L;(¢) = log p(D;|@),
[(=1,...,L)is the index of the measurement data; cfﬂ is the
measured distance of the i-th sensor at the /-th measurement;
and the measurement errors are assumed to obey the same
distribution. The CRLB can be calculated from the Fisher
information matrix (FIM) [48], and the FIM of (19) is given

by
axdyL((o) :[Jll le] 20)
yzL((p) Joi I’

where E[] denotes the stochastic average. Each element of

(20) is given by
82
~E [—2L (w)} ,

I (@)= —E [ ZL(p)

axayL (@)

J =
11 ax

N 2
ad; (9)
= —L i , 21
l;s, (@) ( o Q1)
where
0L, (@)
§i(p)=E [ (22)
’ dd;(p)?
In the same way, J22, J12, and J1 are obtained by
N 2
ad; (@)
o= —LZ&(@( "”), (23)
i=1 dy
ad; (<p) 9d; (9)
Jio=Jy =—L , 24
n=Jy = Za( ) o 8y (24)
where the inverse matrix of FIM can be defined by
Ir (9) = J; " (@)
_ | I
by In
1 Jn 112}
= 25
Iidns — Il [—le n (25)

Then, the lower bound of the estimation error variance in
the maximum likelihood estimation can be calculated as

UgRLB (@)
Jn +J1
JitdJ — Ji2Jo1

2) s (52) ]
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where var() denotes the variance. For calculating (26), the
measurement noise model is required. In conventional studies,
a channel model that does not consider wireless distance [49]
and other models that consider path loss [48], [50] have been
proposed. However, the CRLB of the channel model [45] as-
sumed in this study was not studied, and has thus been derived
as follows; The noise model in the LOS environment in [45]
is given by

pros (dild; ()

(26)

. 2
B 1 exp | — (di — di (¢) — prosSLos)
v/2mo10sSL0s 2(01.0sSL0s)? ’
27
where
SLos = log (1 +d; (@) (28)

Here, pros and opps are the LOS environmental pa-
rameters mean and variance, respectively. In this case, the
parameter &;(¢) in (27) is calculated as

(U +di(e) + uros)’
S20s(1 +di (@)

1 1
i(p)=
SO = T g @r oo {
3+ Stos ) )
. 2TILos Stos)? — (d;
S+ d, (@) ((oLosSLos)” — (di (9))%)
(29)

as shown in Appendix B. The CRLB of the LOS environment
can then be obtained by substituting (29) into (26):

Similarly, in the NLOS case, the noise model [47] is given
by

N 1
p dild; (¢)) = ————
NLOS( i ) /27 Sni08
(di—di(@) — nros log(1 + di(9) ) — nros) 2
X exp|— ,
2SNLOoS
(30)
here
(dild; (@) = ——
p ildi (@) =
NLOS 114 m
< exp| - (di—di(9) — pos log(1 + di(@) ) — pnvos) °
2SNLos
31)
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FIGURE 15. Comparison of RMSE performance to Cramer-Rao lower
bound.
Subsequently, &;(¢) can be obtained as

£ (o )_oLoslog<1+d () — (1 +d; (9) + pros)’
‘ SnLos(1+ d; (9))*

ot0s [2(o10Tog (1 +di (1))’ — di (9]
521 0s(1+ di (9))?

log(1+d; ((P)){4ULOS log(14d;(9)+S% s }

2
. %Los
+{SnLos—di (@)} Sos(1+di @)

(32)

as shown in Appendix C. The CRLB of the NLOS envi-
ronment was obtained by substituting (32) into (26). Using
these results, the RMSE performances of the conventional and
proposed methods were compared to those of the CRLB, in
which the simulation conditions were the same as those in
Section IV and Table 1. The results in Fig. 15 show that the
CRLB was much lower than the other methods because the
conventional and proposed methods are location-based algo-
rithms that do not use any prior information, whereas CRLB
assumes that the noise model is known. Fig. 15 also shows that
the proposed method exhibits the best performance compared
with the CRLB. In conclusion, the proposed method is the
closest to CRLB, is a practical method that does not require
prior information, and is suitable for real-time applications.

VI. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method
through experiments performed at the National Institute of In-
formation and Communications Technology in the Yokosuka
Research Park. A real-time location system (RTLS) based on
the UWB RTLS Starter Kit from GIT Inc. [51] was used
in our experiment (Fig. 16). Fig. 17 shows the experimental
room layout, where five sensors were deployed in a 15.5 m
x 9.0 m room with the origin at the lower left side. The
rooms were constructed for office use and had plaster ceilings
and carpeting, concrete walls, and steel room partitions. Glass
windows also existed. The NLOS environment was simulated
by shielding direct waves between the sensors and target with
metal plates, and verification was carried out using one and
two NLOS environmental sensors, called Scenarios 1 and 2,
respectively.
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FIGURE 16. UWB RTLS Starter Kit from GIT used in the experiment.

(1.62, 6.10)

(5.99,6.57)

9.0 m
7/ (-0.22,3.80)
y (-0.04,1.25)
origin 8 (6.47,0.41)
- 10 o
155 m
X
FIGURE 17. Room layout and experimental settings.
TABLE 6 Specifications of Experiments
Scenario Scenario 1 I Scenario 2
Sensor numbers #6, #7, #8, #9, #10
NLOS node(s) #6 #6, #7
True position of the target in m (5.20, 3.07) (5.29,2.82)
Ranging method Average of the 30 measurements
Residual threshold 0.5 m?
Means of NLOS environment Blockage by metal plates
Number of experiments 10
Model number of UWB sensor UWB RTLS Starter Kit
Bandwidth 3 GHz (7.25-10.25 GHz)
Average PSD (p_ower spectrum —41.3 dBm/MHz
density)
Peak PSD (power spectrum 0 dBm/50 MHz
density)
Pulse rate 50 Mpps

[ ®IMR = LMedS mNEMIRC # proposed method|

12
g 0.9
B 0.6
2 03

0.0

Scenario 2

Scenario 1

FIGURE 18. Experimental result of RMSE.

The experimental conditions and main specifications of the
UWB RTLS are listed in Table 6. Notably, the UWB RTLS
system is certified for license-exempt operations.

Fig. 18 shows the performance of RMSE. The experimental
results verified the effectiveness of the proposed method. As
shown in the numerical results, the weighted summation of
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FIGURE 19. Determination of optimal thresholds é and = for proposed
method.

the estimated positions by TELA were observed to achieve a
higher localization accuracy than conventional methods.

VII. CONCLUSION

In this paper, we proposed a new location-based method
for accurate localization using NLOS environmental sensor
elimination, which does not require any prior information. In
conventional methods, either residual errors or reliability of
the ranging value are used for NLOS sensor detection, and de-
tection errors often occur in many NLOS sensor cases. In the
proposed method, we improved the accuracy of NLOS detec-
tion using both the methods. Furthermore, the newly proposed
TELA was adopted for the estimated positions of various sen-
sor combinations as a weighted summation to realize accurate
localization in both LOS and NLOS environments. Numerical
results revealed its superior performance, and by analyzing the
calculation complexity and CRLB, the proposed method was
shown to exhibit high practicability in terms of performance
and calculation complexity. Furthermore, the effectiveness of
the proposed method was experimentally confirmed.

APPENDIX

A. DETERMINATION OF OPTIMAL THRESHOLDS 5 AND t
FOR PROPOSED METHOD

The proposed method requires thresholds § for the residuals
and 7 for the reliability of the ranging values to extract the
estimated positions determined only in the LOS environment.
Here, we numerically derive the optimal values. The numer-
ical simulation was performed under the same conditions
using eight sensors, as described in Section III. The number
of NLOS sensors was changed randomly from zero to four
in 10000 simulation trials. The RMSE performance of the
proposed method, when the thresholds § and t were varied,
is shown in Fig. 19, where the horizontal and vertical axes
are § and 7, respectively, and the color indicates the RMSE.
The closer the color to blue, the lower the RMSE. The results
showed that the performance of the proposed method was
stable in the range of —0.75 m <7 < 0.0 m and did not
depend much on the threshold of residuals §. We can eliminate
many NLOS environmental estimated positions by setting a
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strict threshold, which results in a reduction in the calculation
complexity. Therefore, we set § = 0.3 m? and 7 = 0.0 m in
this paper.

B. DERIVATION OF &i(¢) IN LOS ENVIRONMENTS

In LOS environments, the measurement noise obeys the prob-
ability of (27), and thus

& (@)

92 1 R?
=E lo exp | — LOS
[3di(<ﬂ)2 g{\/EGLOSSLOS P |: 2{0LosSLos}2]”
{_ (1+di(p)* + ,uLos)2

Stos(1+ di(q’)z)z
4 (14 di(@)* + 1ros) }
2 o2 (Ruos
Stos(1+di(e))

1 1
=E |: T3
(1+di(@)?*)”  Oios
3 { ILOS
Stos (1 +ditoP)’

345
- LOS — fos” (33)
SLOS(I + di(9) )
is obtained, where
Rios = di — d; () — proslog (1 +di (9))  (34)

Here, using the stochastic nature, the following equations
hold:

E[di] = d; (¢) + nrLos log (1 + d; (9))

E[(d — nroslog (1 +di (9))’] = (010 log (1 + di (9)))’

(35)

(36)

E[d; — pros log (1 +d; (9))] = d; () (37)
Therefore,

E[RLos] =0 (33)

E[R2os] = (oros log (1 +d; ()" — (d; (9))*  (39)

are given and (33) becomes

SO = T a o)
1| (+di(e)+ pros)
olos S205(1 +d; (9))?

3+ Stos

St (@) ((oLosSLos)” — (di(@)) )}

(40)
C. DERIVATION OF &;(¢) IN LOS ENVIRONMENTS

As in Appendix B, in NLOS environments, the measurement
noise obeys the probability of (30).

2

E() =E | —— log ] ——L—exp ~Ruwos
' Adi(p)> V27 SnLos 2SNL0s
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Snros—log(1+d;(9)){207 o log(1+d;(9)+SnLos |
521 o5 (1+di(@))?

P
=E |:_ULOS

_ (L+di(9) + pros)’
Snros(1 + di(@))?

 (14di(@)+1105)(207 g 10g(1+d;(9)) +Snr05)
SEos(1+di(@))?

1
NLOS { SxLos (1+di(9))

2
+R? %Los
NLOS | 8% s (1+di(@))

+

oo log(1+d;(@){402 s og(1+di(@)+5%; o5 )
S310s (1+di(@))?
(41)

is obtained, where

Rnros = di — di (¢) — pros log (1 +di (9)) — 1inLos

(42)

Here,
E[RNLos] =0 (43)
E [Riros] = ot0sS” + oxos — di(9)’ (44)

and (41) becomes

(@) =

0205 10g (1 +d; () — (1 +d; () + pros)*
Snros(1 + di (9))?

025 {2(010s log (1 +d; (0)))° - di(9)?

521 0s(1+ di (@)

2 2 2
21 9Fos log(1+di (@) {407 og log(14+di(@)+5%; g ]
+{Snros —di(9)*} S¥Los(1+4di(9)*

(45)
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