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ABSTRACT We study the performance of Machine Learning (ML) classification techniques. Leveraging
the theory of large deviations, we provide the mathematical conditions for a ML classifier to exhibit error
probabilities that vanish exponentially, say exp(−n I ), where n is the number of informative observations
available for testing (or another relevant parameter, such as the size of the target in an image) and I is the
error rate. Such conditions depend on the Fenchel-Legendre transform of the cumulant-generating function of
the Data-Driven Decision Function (D3F, i.e., what is thresholded before the final binary decision is made)
learned in the training phase. As such, the D3F and the related error rate I depend on the given training
set. The conditions for the exponential convergence can be verified and tested numerically exploiting the
available dataset or a synthetic dataset generated according to the underlying statistical model. Coherently
with the large deviations theory, we can also establish the convergence of the normalized D3F statistic
to a Gaussian distribution. Furthermore, approximate error probability curves ζn exp(−n I ) are provided,
thanks to the refined asymptotic derivation, where ζn represents the most representative sub-exponential
terms of the error probabilities. Leveraging the refined asymptotic, we are able to compute an accurate
analytical approximation of the classification performance for both the regimes of small and large values
of n. Theoretical findings are corroborated by extensive numerical simulations and by the use of real-world
data, acquired by an X-band maritime radar system for surveillance.

INDEX TERMS Machine learning, deep learning, large deviations principle, exact asymptotics, statistical
hypothesis testing, Fenchel-Legendre transform, extended target detection, radar/sonar detection, X-band
maritime radar.

I. INTRODUCTION
A. RECENT ADVANCES IN AI
As we enter the Artificial Intelligence (AI) technological age,
the ambition is to offer the augmentation and the potential
replacement of tedious human tasks and activities within a
wide range of industrial, intellectual and social applications,
with an impact similar to that produced by the industrial
revolution [1]. The impact of AI can be significant in many
fields: finance, healthcare, manufacturing, retail, supply chain,

logistics and utilities, all potentially disrupted by the onset of
AI technologies [1].

New breakthroughs in algorithmic Machine Learning (ML)
and autonomous decision-making are offering countless op-
portunities for innovation. ML methods have been providing
breakthroughs in important research problems, which in some
cases have been open for more than 50 years. This is the case,
for instance, of the neural network-based model, AlphaFold,
that predicts with high accuracy the three-dimensional
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structure of a protein from its amino acid sequence [2]. No-
tably, AlphaFold is the first computational method that can
predict protein structures even in cases in which no similar
structure is known [2]. Another example is the success of Alp-
haZero, based on Reinforcement Learning (RL) principles [3],
[4]. AlphaZero not only outperforms all chess programs, but it
discovers new ways to play chess [5], [6]. In [7], ML methods
are applied to predict human physical traits (e.g., face and
voice) and other relevant information (e.g., height and weight)
from genomic data. More recently, ML-based techniques pro-
vided critical support to combat the COVID-19 pandemic [8];
examples are the use of ML to analyze the epidemiological
curve evolution [9], [10], [11] and medical images [12], [13].

A fundamental problem addressed by ML, which spans
several research and application fields, is to discover intri-
cate structures in large data sets, and in this context many
applications make use of a class of techniques known as
“deep learning” (DL) [14]. Conventional ML techniques were
limited in their ability to process data in their raw form.
For decades, constructing an ML system required careful
engineering and considerable domain expertise to design a
feature extractor that transformed the raw data into suitable
representations which the learning subsystem could infer pat-
terns from [14]. Conversely, DL methods are representation-
learning1 methods with multiple levels of representation,
obtained by composing simple non-linear modules, each of
which transforms the representation at one level (starting with
the raw input) into a representation at a higher, slightly more
abstract, level. By the composition of enough such transfor-
mations, very complex functions can be learned, and in quite
a few contexts DL methods represent nowadays the state of
the art in terms of performance [14].

DL architectures based on Convolutional Neural Networks
(CNNs) achieve unprecedented performance in skin cancer
classification, with an accuracy comparable to that of derma-
tologists [15]. DL architectures based on Recurrent Neural
Networks (RNN) are able to decode the electrocorticogram
with high accuracy and at natural-speech rates [16]. These
neural networks can be trained to encode sequences of neural
activity into an abstract representation, and then decode this
representation, word by word, into an English sentence with a
3% average word error rate [16]. DL and deep RL are also key
components of new-generation autonomous driving systems,
see, e.g., [17], [18], and nowadays are also widely exploited
in surveillance systems, such as Synthetic Aperture Radar
(SAR) imaging, see, e.g., [19], [20], [21], [22]. In space-based
surveillance, DL offers the capability to accurately classify
vessels from satellite sensor imaging (see, e.g., [23], [24]). In
the context of maritime situational awareness and autonomous
navigation (see, e.g., [25]) RNNs are able to accurately pre-
dict vessel positions several hours ahead [26], [27], [28],
[29]. In video analysis and image understanding, DL methods

1Representation learning is a set of methods that allows a machine to be
fed with raw data and to automatically discover the representations needed
for detection or classification.

represent the state of the art for object detection [30] and
multi-object tracking [31]. DL is also used in Multiple Input
Multiple Output (MIMO) communications [32], active sens-
ing for communications [33], radar and sonar processing [34],
[35], [36], [37], [38], [39].

Given the tremendous success of AI, the opportunities and
challenges of merging AI and sensor data fusion are under
investigation by several research groups with special focus on
computational efficiency, improved decision making, security,
multi-domain operations, and human-machine teaming [40].
Ethical aspects concerning the AI are also of paramount im-
portance; in this regard, digital ethics for AI and information
fusion in the context of the defense domain is discussed
in [41].

B. RECENT ATTEMPTS TO MATHEMATICALLY FRAME DEEP
LEARNING
Compared to the great success of DL techniques, little is
known about their mathematical properties. There is still a
lack of methodological and systematic approaches to analyze
DL techniques [42], and no comprehensive understanding
of the optimization process and internal organization of DL
architectures is available; indeed, DL methods are usually
regarded as “black boxes,” see, e.g., [43].

In recent years, several attempts to fill this gap have been in
progress, including those based on statistical and information
theoretical interpretations [42], [44], [45], [46], [47]. In [44],
[46], an interpretation of CNNs in terms of a cascade of filters
implementing wavelet transforms and pointwise nonlineari-
ties is provided. More recently, an asymptotic equivalence
between infinitely wide deep neural networks and Gaussian
processes is established exploiting the Central Limit Theorem
(CLT) [48], [49]. In [48], as well as in the seminal work [50],
the diverging parameter is the width of the hidden layers of
the network.

The lack of methodological and systematic approaches to
investigate the optimization process and internal organization
of DL techniques also exists for the derivation of their ultimate
performance limit. The authors of the present paper are not
aware of any results—or even ongoing efforts—to fill this
gap. In particular, it is currently unknown if DL techniques
can or cannot achieve classification error probabilities close
to optimal, i.e., vanishing exponentially with the data size.
Classic statistical literature where the detection performance
is studied in terms of large deviations include [51], [52], [53],
[54], [55], [56], [57], [58].

C. CONTRIBUTIONS
The derivation of ultimate performance limits for ML classi-
fiers is addressed here using a formulation that departs from
the setting adopted in the classical statistical learning the-
ory [59]. In particular, the parameters characterizing the ML
procedure such as the NN weights, the network width, and
the size of the training set are fixed; the diverging parame-
ter n quantifies the information available for the classification
problem (i.e., the number of measurements in a sequence of
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data). For example, if one is trying to detect a target of extent
20 pixels in a 400 by 400 image, n = 20. And likewise if
the image is 1000 by 1000 then n remains 20—that is, the
background, at least to first order, does not matter. Continuing,
if the target’s extent is 30 samples and it is observed in 10
consecutive frames, then n = 300. Note also that the notional
detectability (say, the Signal-to-Noise Ratio, SNR) of the tar-
get in the image does not impact n, as it will be seen to be
subsumed within the convergence rate I .2

Data-centric approaches exploit large amounts of data. Part
of the data, the so-called training set, is used to train the
network. The trained network is then fed the observation set
to perform the desired classification. Additional datasets, here
referred to as characterization sets,3 may also be available
and are usually exploited to infer numerically the classifi-
cation error probability of the trained network. Our vision
is that these characterization sets can be exploited to derive
analytical expressions for the classification error probability,
which in turn allow inferring the performance in the limit
of diverging n. Under mild assumptions that can be directly
checked by inspection of the characterization sets, it is shown
that the classification error probability converges to zero expo-
nentially fast with n, at a predictable rate. Thus, performance
prediction beyond standard numerical estimation of the classi-
fication error probability is possible and ultimate classification
limits can be established.

The main contributions of this article can be summarized as
follows.
� A mathematical framework based on the Large De-

viations Principle (LDP) [62], [63] is presented for
performance prediction of ML techniques when n di-
verges; the application domain of such a performance
prediction tool includes, but it is not limited to, neural
network-based architectures for classification.

� It is shown that the asymptotic classification error prob-
ability depends on a suitable transformation of the Log
Moment-Generating Function (LMGF) of the decision
statistic; in the case of DL, this decision statistic is deter-
mined by the output layer of the network.

� The mathematical conditions for a ML classifier
to exhibit exponential classification error probability
exp(−n I + o(n)), where I is the error rate, are provided;
such conditions depend on the Fenchel-Legendre trans-
form of the LMGF of the data-driven decision statistic
learned in the training phase.

� It is shown that the error rate I approaches the optimal
classification rate as the size of the training set grows;
such an optimal rate describes the classification error
probability of the log-likelihood ratio test and admits
information-theoretical interpretations.

� Based on saddlepoint techniques, refined asymptotic ex-
pressions (often referred to as exact asymptotics) are

2In setting different from that presented in this work, the parameter n could
also represent the step size in adaptive learning algorithms over decentralized
networks [55], [56].

3Validation set is a more common terminology in a machine learning
context [60], [61].

derived in the form ζn exp(−n I ), where ζn accounts for
the most representative sub-exponential term of the clas-
sification error probability.

The paper is organized as follows. In Section II, we provide
a summary of the main theoretical results. In Section III,
we formulate the problem in terms of statistical hypothesis
testing, with simple hypotheses and assuming independent
samples. In Section IV, we provide the convergence rate and
the exact asymptotic formula to approximate the error prob-
abilities. In Section V, we extend the problem to composite
hypotheses and dependent data. In Section VI, we provide de-
tails on the computation of the relevant parameters, related to
the asymptotic approximations of the error probabilities, and
in particular the rate function. In Section VII, we discuss ex-
tensive numerical simulations and experimental results using
real-world data acquired by an X-band marine radar. Finally,
the conclusion is given in Section VIII, and mathematical
details are provided in appendices.

II. PREVIEW OF THE MAIN RESULTS
In this section, we briefly describe the main findings of this
work. Consider a family of real-valued decision statistics T (n),
n ≥ 1, based on the observations X (n). The parameter n has
been exemplified earlier and will be defined later with more
precision, but can be thought of as quantifying the number of
informative elements per test datum. The goal is to decide be-
tween two hypotheses, i.e., H0 and H1. Since the distribution
of the observations under H0 and H1 is often unknown, or
too complex to derive, we focus on the case that the decision
statistic is provided by a learning mechanism operating on a
sufficiently large training set Y of finite size my available un-
der each hypothesis, independent of X (n). Then, the decision
statistic T (n) = T (n)

ω is referred to as the Data-Driven Decision
Function (D3F), where the parameters ω are learned at the
training phase. When doable, the ideal case that T (n) is the
Log-Likelihood Ratio (LLR), see, e.g., [64], is considered and
this serves as a term of comparison with the D3F. Consider the
statistical test {

T (n) ≥ γn decide H1

T (n) < γn decide H0,
(1)

where γn is the threshold, and the error probabilities are4

αn = P
[
T (n) ≥ γn |H0

]
, βn = P

[
T (n) < γn |H1

]
. (2)

We study the detection performance of T (n) when n di-
verges, and propose suitable approximations for the finite
sample-size regime of n. The detection performance is eval-
uated/characterized exploiting a distinct set of data of finite
size mz, independent of Y and X (n), that we indicate with
Z and refer to as the characterization set. The use of the
characterization set can be seen as similar to the usage of
the validation set (usually involved in the learning stage see,
e.g. [60], [61]) to assess the ML performance. For our scope,

4The equality in the error events is immaterial, given that the decision
statistic is assumed continuous if not otherwise stated.
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an overlap between the characterization and training sets is
acceptable as long as the estimators, introduced in Section VI,
properly converge to their expected values, which are the
quantities of interest to characterize the test performance.5 In
general, both sets Y and Z can depend on the parameter n, but
this will be clarified case by case.

Let us define the LMGF of T (n) as

ϕn,k (t ) = log E
[
exp(t T (n) ) |Hk

]
, (3)

where E[X |Hk] is the expected value of X under Hk , k = 0, 1.
The mean and the variance of the decision statistic are given
by the derivatives of the LMGF at zero, as follows

ϕ′
n,k (0) = E

[
T (n) |Hk

] = μn,k, (4)

ϕ′′
n,k (0) = S

[
T (n) |Hk

]2 = σ 2
n,k, (5)

where S[X |Hk] denotes the standard deviation of X under
Hk . Under mild regularity conditions, see, e.g., [65], [66], the
asymptotic performance characterization depends on the limit
of the scaled LMGF6 [63]

ϕk (t ) = lim
n→∞

1

n
ϕn,k (n t ). (6)

Specifically, if the above limit exists under Hk , usually two
important properties hold. The former, referred to as small
deviations, implies that T (n) converges (in some sense) for
n → ∞ to an asymptotic value μk under Hk . The latter, re-
ferred to as large deviations, characterizes the convergence
to zero of the probability that T (n) is “far away” from μk .
The small deviations property is related to the convergence
in distribution of the normalized statistic

√
n(T (n) − μk ) to a

Gaussian random variable, which in our setting is N (0, σ 2
k ),

under Hk . Then, we have
√

n(T (n) − μk )
d−→ N (0, σ 2

k ), (7)

where
d−→ indicates the convergence in distribution, whereas

μk and σk are respectively the asymptotic mean and the
asymptotic standard deviation of the decision statistic. Such
asymptotic values are related to (4), (5), and (6) as fol-
lows [65]

ϕ′
k (0) = lim

n→∞ μn,k = μk,

ϕ′′
k (0) = lim

n→∞ n σ 2
n,k = σ 2

k . (8)

The convergence in (7) is clearly related to the CLT, and this
will be discussed in detail in the next sections, but a pictorial
representation of this convergence is illustrated in Fig. 1. Now,
let us focus on the latter property, i.e., the LDP. In view of

5More details are given in Section VI, and the mathematical conditions for
the weak convergence are provided in Appendix B.

6The LMGF is also referred to as the cumulant generating function.
Moreover, the dependence in (6) on the parameter n can be generalized.
In particular n can be replaced by a generic deterministic sequence an (see
details in [65]). The sequence an is referred to as the “convergence speed,”
and the speed is linear when an = n.

FIGURE 1. Pictorial representation of the distribution of T (n) for different
values of n under Hk , k = 0, 1. As expressed in (7), the behaviour is the
same as the CLT. The distribution of T (n) is approximately Gaussian with

mean converging to the asymptotic mean μk and variance
σ2
k
n that

decreases linearly with n. In this example we have μ0 = 0, μ1 = 1, and
σk = 1 for k = 0, 1. The distribution of T (n) amasses around μk as n
increases. We have represented the threshold, γ , of the test (1) in the mid
point 0.5 between μ0 and μ1. It is easily seen that the error
probabilities (2) converge to zero as n increases. However, it is worthwhile
stressing that the rates of convergence of the error probabilities are not
ruled by the convergence in distribution reported in this figure; instead,
they are ruled by the LDP (9)-(10), involving the asymptotic behaviour of
the tail probabilities.

the asymptotic convergence (7), T (n) gets closer and closer to
μk under Hk as n increases, with a variance that vanishes, as
illustrated in Fig. 1. Intuitively, in this framework, for a large
enough n, we should set the threshold γn between μ0 and μ1

(otherwise we incur in the trivial situation that one of the error
probabilities converges to unity). In other words, assuming
that γn → γ and μ0 < μ1, it is required that μ0 ≤ γ ≤ μ1.
Then, if ϕk (t ) is twice differentiable, the following large devi-
ations results hold for γn → γ and n sufficiently large:

αn ≈ ζn,0(γ ) exp(−n I0(γ )), (9)

βn ≈ ζn,1(γ ) exp(−n I1(γ )), (10)

where Ik (γ ) is referred to as the rate function and is given
by the Fenchel-Legendre transform of the limit of the scaled
LMGF7 in (6). The terms ζn,k (γ ) in (9)–(10) model sub-
exponential behaviours and can be computed with the so-
called “exact asymptotics,” (see, e.g., [62]) related to the
saddlepoint approximation (see, e.g., [67]). The Fenchel-
Legendre transform rules the convergence of the tails of the

7In general, the rate function is given by the infimum value of the Fenchel-
Legendre transform in the decision region �k of Hk ; more details on this are
provided in Section V.
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TABLE 1 Error Probability Approximations

distribution of T (n), as formalized in (9)–(10). More details
about the derivation of ζn,k are provided in Section IV-D;
specifically, see (32) for the approximation of the error prob-
abilities, as in (9)–(10).

Both the small deviations and the large deviations princi-
ples can be seen as two sides of the same medal; indeed,
under mild regularity conditions (see, e.g., [68] and the dis-
cussion in [65]), the CLT can be obtained as a consequence of
the LDP. In other words, the considerations that lead to the
LDP are strictly related to those of the CLT.8 For a quick
consultation and comparison, we have collected in Table 1
the expressions of the approximate error probabilities based
on the small deviations (7)–(8), and large deviations (9)–(10)
principles.

Finally, it is worth mentioning that the small deviations
approximation is useful to fix one of the error probabilities
to a desired value, with the other one converging to zero at the
maximum achievable rate given the convexity of the rate func-
tions; more details on this aspect will be given in Section III-B
and V-D. To give an idea, let us select γn → μ0, obtaining
I0(μ0) = 0 and I1(μ0) ≥ I1(γ ) for all μ0 ≤ γ ≤ μ1. This
operational situation corresponds to the point on the y-axis
(abscissa null) of Fig. 8.

Our goal is to derive the LDP for ML-based statistical
hypothesis testing. We show that it is possible to compute
numerically the error rate Ik , as well as the sub-exponential
terms ζn,k , from the characterization set Z without assuming
knowledge of the original distributions.

We consider the following important scenarios, which are
relevant in a number of applications, see, e.g., [38], [54], [55],
[69], [70], [71], [72], [73], [74]. The first is perhaps simplistic,
but it is convenient to motivate our development.

1) We begin by assuming, under Hk , k = 0, 1, Independent
and Identically Distributed (IID) observations X (n) =
(xi )n

i=1, with simple hypotheses xi ∼ fk (x). We derive
a decision statistic T (n)

ω , which is the sample mean

8In the most general settings, the mathematical conditions required by the
CLT and those required by LDP are different, being also mathematically
different the two convergences. However, as already pointed out, in many
relevant situations LDP and CLT are both verified.

of the data in X (n) processed according to the el-
ementwise D3F, tω(·), as in the conceptual diagram
illustrated in Fig. 3; this scenario is described in Sec-
tion III and IV. In [75], we analyze the classification
performance of a D3F using the popular MNIST (Mod-
ified National Institute of Standards and Technology)
database.

2) We generalize the previous scenario to the case of com-
posite hypotheses, with conditionally independent data
given a parameter θ ∈ 
. We have xi ∼ f (x|θ0) with
θ0 /∈ 
 under H0 and xi ∼ f (x|θ ) under H1, with θ

distributed according to a prior discrete distribution wθ ,
which can be inferred from the training data. In this
case, we train a different elementwise D3F for each
possible value of θ . Then, the complete decision statis-
tic has a structure that involves the elementwise D3F
applied to each sample in X (n) for each possible value
of θ , as illustrated by the conceptual diagram in Fig. 5;
this scenario is described in Section V-B.

3) We further generalize to the case of dependent data
under H0 and H1. This setting is particularly appealing
also in the case of conditionally independent data and
too large size of the space of θ , making the scheme in
2) intractable. Specifically, we focus on a scenario in
which the input data X (n) are binary images that may or
may not contain a target, which occupies more than one
pixel (“extended target”). The hypothesis H0 represents
the absence of the target, and H1 represents its presence.
The position, shape and orientation of the target are
unknown in advance. In this scenario, the parameter n
represents the number of pixels occupied by the target
in the image. Some examples of the images used in this
scenario are reported in Fig. 2, whereas the conceptual
diagram of the D3F is illustrated in Fig. 6. Further de-
tails are available in Section V-C. In this scenario, using
real-world data acquired by a high-resolution marine
radar, we prove the effectiveness of the proposed archi-
tecture as well as the capability to predict its decision
performance via the developed theoretical tools.

In the first two scenarios, we compare the performance
of the D3F, implemented as a suitable fully-connected Neu-
ral Network (NN), with the ideal test based on the LLR.
In the third scenario, the D3F is implemented as a Deep
CNN (DCNN), and the D3F performance cannot be com-
pared with the ideal LLR test because such a test is not
available.

It is worth mentioning that the first two architectures im-
plicitly exploit the statistical dependency structure of the input
data. Our design approach, inspired by the LLR functional
form, can be be framed within the model-based ML context,
similar to, e.g., [76], [77], where ML methods take advantage
of the statistical modeling of the considered problem, enhanc-
ing their data-driven vocation.9

9The nomenclature “model-based ML” was originally introduced by
Bishop in [61] to define an approach to ML where all the assumptions about
the problem domain are made explicit in the form of a model. Indeed, it takes
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FIGURE 2. Notional examples of binary images that represent the input data: (a) under H0 (absence of target); and (b)–(f) under H1, with the target
present in different locations with different orientations and shapes.

An important remark is related to the computation of the
error rate functions and the sub-exponential terms, which are
seldom available in closed form, even when the analytical
distribution of the data is available. In our framework, given
that the distribution of the data may not be available, we
propose to estimate the scaled LMGF (6), the error rates, and
the sub-exponential terms exploiting the characterization set.
This is a distinct feature of the present paper.

Moreover, we will show that the numerical stability of
such estimation can be improved with Monte Carlo Methods
(MCMs), as discussed in depth in [65], [66]. Specifically,
the use of MCMs requires principled generation of syn-
thetic data from the so-called tilted distribution via the
Metropolis–Hastings (MH) algorithm [65], [66]. It is worth-
while noting that the generation of synthetic data is a
well-explored topic in the ML literature, see, e.g., varia-
tional autoencoders (VAEs) [78] and generative adversarial
networks (GANs) [79], [80]. In the framework of model-based
ML, instead, the generation of synthetic data is straightfor-
ward, given that the statistical model is assumed to be (at least

the wider meaning of a bespoke method, formulated for new applications,
where the solution is expressed through a compact modelling language, and
the corresponding custom ML code is then generated automatically.

partially) known. In this regard, it is also possible to train
the D3F with real-world data, and then characterize the test
with synthetic data assuming, for instance, different statistical
models, or relevant parameters. The opposite option is also
workable, with the training performed by synthetic data and
the testing carried out by real data. Indeed, this is the approach
taken for the third scenario in the above list: the D3F is
trained on synthetic data, an example of which is reported
in Fig. 2, but the performance is tested on real-world radar
data.

III. SMALL DEVIATIONS OF THE D3F WITH IID
OBSERVATIONS
A. PROBLEM FORMULATION AND LEARNING MECHANISM
Let us consider the observations X (n) = (xi )n

i=1, where the
xi’s are IID according to f0(x) under hypothesis H0 and
f1(x) under hypothesis H1. The i-th observation xi ∈ X is
representative of a generic random variable, such as a real-
valued random variable (X = R) as well as a binary pixel
(X = {0, 1}), or an optical image (X = Rd ). The goal is to
decide between H0 and H1 based on the observed dataset
X (n). It is well known that the optimal decision statistic L(n)

is the LLR [64], which takes the form of a summation in the

VOLUME 3, 2022 469



BRACA ET AL.: STATISTICAL HYPOTHESIS TESTING BASED ON MACHINE LEARNING: LARGE DEVIATIONS ANALYSIS

FIGURE 3. Conceptual diagram of the D3F T (n)
ω (12) with IID observations.

The elementwise D3F tω (xi ), i = 1, 2, . . . , n, is pictorially represented as
the output of a NN whose parameters are ω for each i (the NN is depicted
in Fig. 4).

case of independent observations:

L(n) = 1

n

n∑
i=1

l (xi ) = 1

n

n∑
i=1

log
f1(xi )

f0(xi )
. (11)

As already discussed, in many practical applications, both
distributions fk , k = 0, 1, are unknown, and therefore the LLR
test cannot be applied directly (in the present work, the LLR
will be used as a term of comparison). However, given the
independence assumption among the entries of X (n), and in-
spired by the functional form of the optimal detector (11),
in the following we construct the D3F exploiting a similar
structure10 as in (11). Precisely, the D3F for IID observations
is as follows

T (n)
ω = 1

n

n∑
i=1

tω(xi ), (12)

where tω(xi ) represents a statistic of the datum xi, param-
eterized by ω, and is denoted as the elementwise D3F. A
pictorial block-diagram of the D3F (12) is provided in Fig. 3,
therein the orange blocks are representative of the processing
performed by the elementwise D3F tω(xi ).

Evidently, if tω(xi ) = l (xi ), the D3F boils down to the op-
timal detector (11); however, it demands the knowledge of
the distributions fk , k = 0, 1. Such distributions are often
not available, and the idea is to appropriately learn tω(x)
from a labeled training set Y = {Y0 ∪ Y1}. Specifically, Yk =
{y1,k, y2,k, . . . , ymy,k}, k = 0, 1, whose entries are IID with
y j,k distributed according to fk (·), and my is the number of
samples available for training under each hypothesis. The
training set Y is assumed independent of the observed dataset
X (n) [81].

10For the case of dependent observations with an unknown dependency
structure the additive functional form is in general too restrictive. In such
situations the overall D3F architecture needs to be learned during the training
stage, see details in Section V-C.

An example of elementwise D3F can be made starting
from a NN. In our context, the NN processes the datum xi

and returns as output the pair h0(xi ) and h1(xi ). The NN is
characterized by the parameters ω = {ω(p)

j� }, where ω
(p)
j� is the

weight of the j-th entry of the input to the p-th NN layer,
contributing to the �-th entry of the layer output. This output
is indicated with h(p)

�
, while ω

(p)
0�

represents the bias term. A
NN with a single hidden layer, scalar input xi and two outputs
is described by the following equations [81]

h(1)
�

= g1

(
ω

(1)
1�

xi + ω
(1)
0�

)
h(2)

k =
M∑

j=1

ω
(2)
jk h(1)

j + ω
(2)
0k

hk = gσ,k

(
h(2)

0 , h(2)
1

)
, (13)

where M is the network width, and g1(·) and gσ,k (·) are suit-
able nonlinearities [81]. The equations above are valid for a
scalar input, i.e., xi ∈ R. More in general, for a d-dimensional
input xi ∈ Rd , whose j-th entry is denoted by xi, j , a NN with
N hidden layers is described by the following equations [81]

h(1)
�1

= g1

(∑d

j=1
ω

(1)
j�1

xi, j

)
h(2)

�2
= g2

(∑M1

j=1
ω

(2)
j�2

h(1)
j

)
...

h(p)
�p

= gp

(∑Mp−1

j=1
ω

(p)
j�p

h(p−1)
j

)
...

h(N+1)
k =

∑MN

j=1
ω

(N+1)
jk h(N )

j

hk = gσ,k

(
h(N+1)

0 , h(N+1)
1

)
, (14)

where p = 1, . . . , N is the hidden layer index, �p =
1, . . . , Mp identifies the neurons of the p-th hidden layer, and
hk , with k = 0, 1, indicates the network output (binary classi-
fication); the bias terms are omitted for notational simplicity.
An example of such a network with two hidden layers is
illustrated in Fig. 4.

A typical choice for the pair gσ,0(·) and gσ,1(·) is the soft-
max function; in this case, the network outputs hk (xi ) can be
interpreted as the posterior class probabilities, i.e., the prob-
abilities that xi originated from Hk . For this reason, hk (xi ) is
indicated as p(Hk )

ω (xi ), where we make explicit the dependency
from the NN parameters ω. Assuming a uniform prior (such
as in a balanced training set), the elementwise D3F statistic
can be defined as the log ratio of the two network outputs, i.e.,

tω(xi ) = log
h1(xi )

h0(xi )
= log

p(H1)
ω (xi )

p(H0 )
ω (xi )

, (15)
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1st hidden layer 2nd hidden layer

FIGURE 4. Illustration of the elementwise D3F, given by a generic fully-connected neural network with multidimensional input xi ∈ R
d and two hidden

layers. The bias terms in each hidden layer are omitted for simplicity. The final output tω (xi ) is the elementwise D3F, which processes the i-th observation
xi .

and can be interpreted as an approximated version of the
elementwise LLR l (xi ) in (11).11

The elementwise decision statistic tω(x) is parameterized
in ω, which can be learned (or estimated) by minimizing a
suitable empirical loss function E [81]

ω = arg min
ω′

∑
j,k

Ek
(
tω′ (y j,k )

)
, (16)

where the summation is justified by the independence as-
sumption among the observations of the training set. In binary
decision problems, a suitable loss function is the binary cross-
entropy loss, defined as [81]

Ek
(
tω(y j,k )

) = − k log
(

p(H1)
ω (y j,k )

)
− (1 − k) log

(
p(H0 )

ω (y j,k )
)

. (17)

Alternative strategies to learn suitable elementwise D3F for
binary detection are available in the recent literature; see,
e.g., [82], [83]. The choice of the loss function and the re-
sulting D3F depend heavily on the specific problem. For
generality, the following analysis is not restricted to par-
ticular choices. From now on, the elementwise D3F tω(x)
will be considered a generic decision statistic function de-
pendent on the parameter vector ω, learned from the dataset
Y .

As mentioned in Section II, we are going to exploit two
asymptotic frameworks to study the classification perfor-
mance of the D3F test; the first is based on the CLT [64],
[84] for setting an asymptotic level of false alarm or missed
detection; the second is based on the LDP [62], [63].

11When gσ,k is the softmax function, it can be easily verified that the com-
putation of the data-driven decision statistic (15) amounts at computing the
difference between the so-called logit values of class H1 versus H0, namely
h(N+1)

0 and h(N+1)
1 in (14). The logit values are the raw (non-normalized)

predictions that a classification model generates, which are ordinarily then
passed to the softmax.

B. ASYMPTOTIC PROPERTIES BASED ON THE CLT
Let us define μk and σk , respectively, as the mean and the
standard deviation, under hypothesis Hk , of the elementwise
statistic, which is l (xi ) in the case of the LLR and tω(xi ) in the
case of the D3F. The aforementioned expectations are taken
with respect to the observations X (n), and with reference to
the D3F, the parameters ω are fixed, being learned during the
training phase. Because of the additive nature of the decision
statistics (11) and (12), referred to as T (n), we can invoke the
CLT after a suitable normalization [64], [84]

T̃ (n)
k = √

n (T (n) − μn,k ),

μn,k = E
[
T (n) |Hk

] = μk,

σn,k = S
[
T (n) |Hk

] = σk√
n
, (18)

under the hypothesis Hk , k = 0, 1. Assuming that mean and
variance are finite, then the CLT holds, and the normalized
statistic T̃ (n)

k converges in distribution to a Gaussian random
variable [64], [84]

T̃ (n)
k

d−→ N (0, σ 2
k ), under Hk, k = 0, 1. (19)

In the case of the LLR, T (n) = L(n), μ1 = D( f1|| f0) and μ0 =
−D( f0|| f1), where D(p||q) is the Kullback-Leibler (KL) di-
vergence between p and q [64]. For the D3F, T (n) = T (n)

ω , and
the moments μk and σ 2

k do not exhibit closed form expres-
sions; thus they need to be computed numerically exploiting
the characterization set.

Remark: Under the summation form in (12) and given
the independence assumption, the convergence shown in (19)
stems from the well known CLT. However, as discussed in
Section II, under mild regularity conditions the CLT can be
derived as a consequence of the LDP [68] without the additive
structure and the statistical independence among the data. In
this respect we will show (exploiting a numerical analysis)
that such convergence seems to hold even if the data are not
statistical independent and the D3F statistic does not exhibit

VOLUME 3, 2022 471



BRACA ET AL.: STATISTICAL HYPOTHESIS TESTING BASED ON MACHINE LEARNING: LARGE DEVIATIONS ANALYSIS

a summation structure but a more complicated function pro-
vided by a DCNN.

C. THRESHOLD SETTING
Let us consider the test (1) and the error probabilities (2),
where T (n) = L(n) for the LLR and T (n) = T (n)

ω for the D3F.
The threshold γn is usually chosen to operate at a desired false
alarm probability level. Exploiting the CLT convergence (19),
we can set the asymptotic false alarm probability to a given
value 0 < α < 1, when n is large enough, as follows:

γn = μn,0 + σn,0Q−1(α), (20)

where μn,0 and σn,0 are defined in (18) and Q−1(·) is the in-

verse of the Q-function, i.e., Q(x) = 1√
2π

∫∞
x exp

(
− u2

2

)
du.

In fact, according to the CLT convergence in (19) and the
threshold in (20), we have that12

lim
n→∞ αn = α. (21)

The aforementioned convergence (21) is clearly in agreement
with the small deviations approximation in Table 1, being both
of them derived from the CLT. Indeed, from Table 1 (small
deviations column), with γn defined as in (20), we get that
αn ≈ α.

In (20) we have implicitly assumed known μn,0 = μ0 and
σn,0 = σ0/

√
n; clearly, in our setting both μ0 and σ0 are un-

known and have to be estimated from the characterization set.
The expression of the threshold (20) is the summation of

two terms: μn,0 = μ0 = O(1) and σn,0Q−1(α) = O(1/
√

n).
As it will be clear in the following section, the second term
is negligible in terms of error rate under H1, but it is instru-
mental to ensure that the asymptotic false alarm level is α.13

An alternative choice for setting the threshold is γn = γ ,
with μ0 < γ < μ1. For the LLR test, based on the theory of
large deviations [62], [63] this choice would cause both the
error probabilities to vanish exponentially. Our goal is to study
the conditions for the D3F to exhibit exponentially vanishing
error probabilities in n, and compute the convergence rate of
the test. To this end, in the next section we will still assume
independence of the observations, but we will then remove
this assumption in Section V.

IV. LARGE DEVIATIONS OF THE D3F WITH IID
OBSERVATIONS
Large deviations analysis of statistical hypothesis testing is
well established in the statistics literature (see, e.g., [62],
[63]), and employed in several applications [85]; for in-
stance, in sensor networks based on the running consensus
paradigm [71], [86]. The assumption of IID observations is

12If the threshold is set with (20), the miss detection probability of the
LLR test vanishes exponentially fast with the best possible exponent, which
is given by the KL divergence, see Stein’s Lemma [62]. This behaviour is
represented in Fig. 8 that will be discussed later.

13See the numerical simulations in Section VII-A, where the false alarm
level is converging to a desired value for the case of IID observations; to this
end, we use (20) to set the threshold in the uppermost plots of Fig. 9 for both
the LLR and D3F tests.

quite common in the sensor network literature and useful
to establish theoretical results, with large deviations con-
vergences assessed in [54], [87], [88], whereas in adaptive
networks [89] large deviations are demonstrated for the
steady-state distribution (slow adaptation regime) [55], [56].
In the following, the fundamental theorems are reviewed and
then applied to the test error probabilities (2).

A. LARGE DEVIATIONS PRINCIPLE
Consider a sequence of real-valued IID random variables
z1, z2, . . . , and their sample mean S(n) = 1

n

∑n
i=1 zi. Cramér’s

theorem establishes the conditions for the sample mean to
“rarely” deviate from its expected mean μ = E[z1]. In the
case that P [S(n) ≥ γ ], with γ > μ > 0, vanishes exponen-
tially with n, we say that S(n) obeys the LDP. The exponential
rate of convergence depends on the threshold γ , and is often
referred to as the rate function, which is provided by Cramér’s
theorem.

Theorem IV.1 (Cramér’s theorem [63]): consider a se-
quence of IID random variables z1, z2, . . . , with a LMGF

ϕ(t ) = log E
[
exp(t z1)

]
< ∞ ∀t ∈ R. (22)

Let S(n) = 1
n

∑n
i=1 zi. Then, for all γ > μ,

lim
n→∞

1

n
log P

[
S(n) ≥ γ

] = −I (γ ), (23)

where I (x) is the rate function, given by the Fenchel-Legendre
transform of the LMGF, i.e.,

I (x) = sup
t∈R

[x t − ϕ(t )] . (24)

We will not report here the proof of Cramér’s theorem, for
which we refer the reader to [63], but it is worth mentioning
that it is based on the squeeze theorem, where the tightest
Chernoff bound represents the upper bound. Such an upper
bound is easily derived. Let us assume that γ > μ and con-
sider the Chernoff bound on S(n), i.e.,

P
[
S(n) ≥ γ

] = P

[
n∑

i=1

zi ≥ nγ

]
≤ E

[
exp (tz1)

]n
exp (ntγ )

, (25)

for t ≥ 0. By applying the logarithm to both sides of the
previous equation, we obtain

log P

[
n∑

i=1

zi ≥ nγ

]
≤ n log E

[
exp (tz1)

]− ntγ . (26)

Since the bound holds for every t ≥ 0, we can rewrite the
previous equation as

1

n
log P

[
S(n) ≥ γ

] ≤ − sup
t≥0

⎛⎜⎝γ t −
ϕ(t )︷ ︸︸ ︷

log E
[
exp (tz1)

]⎞⎟⎠
= − sup

t∈R
(γ t − ϕ(t ))︸ ︷︷ ︸

I (γ )

,
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where the last inequality stems from the fact that γ t − ϕ(t ) is
a concave function whose derivative at t = 0 is γ − μ > 0.

Remark: In the general formulation of the LDP [55],
[62], [63], the convergence rate associated to P [S(n) ∈ A] is
given by the infimum point of the Fenchel-Legendre trans-
form within the region A, namely infx∈A I (x). In the case of
Cramér’s theorem, we have A = [γ ,∞). Let us observe that
the unconstrained minimum of I (x) is attained at x = μ (with
I (μ) = 0). As a consequence, being I (x) strictly convex (see
the discussion in [63]), if γ ≥ μ, then infx≥γ I (x) = I (γ ).

The application of Cramér’s theorem will provide for the
error rate functions of the error probabilities in (2).

B. LDP OF THE LLR TEST
We report the error rate function of the LLR test in the
following theorem [62], [63] for continuous probability dis-
tributions. For discrete probability distributions, the interested
reader is referred to Blahut [51] for binary hypothesis test-
ing, and to Gutman [52] for M-ary hypothesis testing with
unknown distributions.

Theorem IV.2 (Optimal error rate function): Let γ ∈
(μ0, μ1), with μ0 = −D( f0|| f1) and μ1 = D( f1|| f0) being
the KL divergences introduced in the previous section, then
the error probabilities of the LLR test in (1) with T (n) given
by (11) and γn = γ exhibit the following error rate functions

lim
n→∞

1

n
log αn = −I0(γ ), lim

n→∞
1

n
log βn = −I1(γ ), (27)

where Ik (γ ) is the Fenchel-Legendre transform of the LMGF
of the elementwise LLR l (x) under Hk .

The proof of the theorem can be easily derived from Theo-
rem 4.1. It can be shown that the Fenchel-Legendre transform
I1(γ ) is related to I0(γ ) via I1(γ ) = I0(γ ) − γ (see details
in [62], [63]). Besides, according to Stein’s Lemma (see de-
tails in [62]), forcing αn < ε the best exponent for βn is
given by the KL divergence D( f1|| f0); this exponent can be
achieved by setting γn as in (20).

C. LDP OF THE D3F TEST
In this subsection, we provide the mathematical conditions
that the D3F should satisfy in order to exhibit non-zero er-
ror rate functions. Specifically, let us observe that the D3F
produces a transformation of the observed samples as follows

τi = tω(xi ), ∀i = 1, 2, . . . , n. (28)

The LDP of the D3F test can be established applying Cramér’s
theorem to the sequence of IID random variables τi.

Theorem IV.3 (Error rate function of the D3F test): Let
γ ∈ (μ0, μ1), with μk = E[τi|Hk], with k = 0, 1, where the
expectation is taken with respect to the measurements xi.
Then, the error probabilities of the D3F test defined in (1),
with T (n) given in (12) and γn = γ , exhibit the following error

rate functions14

lim
n→∞

1

n
log αn = −I0(γ ), lim

n→∞
1

n
log βn = −I1(γ ), (29)

where Ik (γ ) is given by the Fenchel-Legendre transform of
the LMGF of τi = tω(xi ) under Hk , with k = 0, 1.

Proof: The result can be established resorting to Theo-
rem 4.1. For the case of αn we only need to substitute S(n)

in Theorem 4.1 with the decision statistic (12), and the ran-
dom variables τi = tω(xi ) in place of zi in Theorem 4.1.
For the case of βn, this error probability can be written as
follows

βn = P
[−T (n)

ω > −γ |Hk
]
. (30)

Consequently, it is sufficient to invoke Theorem 4.1 with
zi = −τi, and consider the Fenchel-Legendre transform Ĩ1(x)
of the LMGF of −τi (under H1) evaluated at x = −γ . Finally,
it is straightforward to verify that Ĩ1(−γ ) is equivalent to the
Fenchel-Legendre transform of the LMGF of τi at γ . �

The interpretation of Theorem 4.3 is that, neglecting the
sub-exponential terms, the performance of the test based on
the D3F depends only on Ik (γ ), which is non-zero for μ0 <

γ < μ1. Even if the LMGF is not available, we can esti-
mate it from the characterization set and thus compute the
Fenchel-Legendre transform (see Section VI), which eventu-
ally leads to Ik (γ ). Moreover, resorting to the generalization
of Cramér’s theorem, namely the Gärtner-Ellis theorem [62],
[63], which will be enunciated in the next section, it is not
difficult to show that (23) holds true even if γ is replaced
by γn, provided that γn → γ . Otherwise stated, if γn → γ ,
then limn→∞ 1

n log P [S(n) ≥ γn] = −I (γ ). As a consequence,
considering γn defined as in (20), we have that γn → μ0

and 1
n log αn → I0(μ0) = 0, which complies with the fact that

αn → α > 0 by construction. We expect then that βn vanishes
exponentially, i.e., I1(μ0) > 0.15

The rate functions describe the error probabilities’ scaling
laws to zero; however, in practical applications it is important
to have a good approximation of the entire error probability
curves with respect to n. This happens, for instance, when the
asymptotic false alarm probability is controlled and fixed to
a level α while we want to approximate βn; in this case, the
error rate of βn is exactly the same for all non-null values of α,
even if the curves themselves would be quite different. In the
next subsection we will introduce a method to approximate
the entire error probability curve thanks to the so-called “ex-
act asymptotics,” which is closely related to the saddlepoint
approximation.

14Note that there is a slight abuse of notation given that the D3F error
rates (29) are formally different from the LLR error rate (27).

15Numerical simulations in the case of IID observations are provided in
Fig. 8, and the details are provided in Section VII-A.
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D. EXACT ASYMPTOTICS AND SADDLEPOINT
APPROXIMATION
Theorem 4.4, provided in [62], is important to approximate
the error probability curves for finite sample-size regime of n.

Theorem IV.4 (Bahadur and Rao): Let S(n) = 1
n

∑n
i=1 zi,

where zi are IID real valued random variables with LMGF
ϕ(t ) = log E[exp(t z1)]. If the law of z1 is non-lattice,16 then

lim
n→∞ JnP

[
S(n) ≥ γ

] = 1, (31)

where Jn = tγ
√

2πnϕ′′(tγ ) exp(n I (γ )), tγ is the solution of
the equation γ = ϕ′(tγ ), and I (x) is the Fenchel-Legendre
transform of the LMGF (24).

We shall assume that γ > μ, where μ is the expected mean
of zi; if this is not the case, as already discussed, the rate is
zero. Then, the following approximation for the probability of
a rare event, i.e., P [S(n) ≥ γ ], referred to as “exact asymp-
totics” or “saddlepoint approximation,” can be derived from
Theorem 4.4

P [S(n) ≥ γ ] ≈ ζn︸︷︷︸
sub-exponential

terms

exp (−n I (γ ))︸ ︷︷ ︸
exponential term

ζn =
(

tγ
√

2πnϕ′′(tγ )
)−1

, tγ : ϕ′(tγ ) = γ ,

(32)

where tγ is the solution of the equation γ = ϕ′(tγ ), repre-
senting the solution to the optimization problem involved
in the definition of the Fenchel-Legendre transform of the
LMGF (24). The approximation (32) takes into account both
the sub-exponential contribution and the exponential term
provided by the LDP.17 The term ζn in (32) can be replaced
by an asyptotically equivalent term cn, with cn/ζn → 1 (see
details in the proof of [62, Theorem 3.7.4]). The term cn is
defined as follows [62]

cn =
∫ ∞

0
e−t
[

Q(0) − Q

(
ζn√
2π

t

)]
dt, (33)

where Q(·) is the Q-function.18

An alternative derivation of (32) can be obtained by the sad-
dlepoint approximation (see Daniels’ pioneering work in [92]
and Reid’s overview in [67]), where the value tγ is often
referred to as the saddlepoint [67]. It is worthwhile noting
that in both Theorem 4.4 and the saddlepoint approximation

16The random variable z1 has a lattice law if for some z0 and d , the random
variable d−1(z1 − z0 ) is (a.s.) an integer number, and d is the largest number
with this property. The formulation of the theorem for lattice law is available
in [62], but not reported here for brevity.

17An alternative is the Lugannani-Rice formula (omitted for brevity); see,
e.g., [90]. We have observed that, in the scenarios studied in this work,
the Lugannani-Rice formula is numerically equivalent to (32). In the case
of discrete distributions a similar expression for the non-asymptotic regime
analysis is provided in [91].

18The numerical simulation in which we test the error probability approxi-
mation given by the exact asymptotics (32), in the case of IID observations, is
provided in the lowermost plots of Fig. 9 for both the LLR and the D3F tests.

the higher order terms are neglected as not asymptotically
relevant.

The approximation (32), either referred to as the saddle-
point approximation or exact asymptotics, does not need the
IID assumption to provide a faithful description [90]. Indeed,
we exploit their general formulation to handle the case of
dependent observations, as detailed in the next section.

Equation (32) lays the ground for the approximation of
αn and βn in (9)–(10) in the finite sample-size regime of n.
Indeed, αn in (9) refers to P [S(n) ≥ γ ] by definition, with
S(n) given by T (n) (12). Moreover, similar to the proof of
Theorem 4.3, the error probability βn can be studied analyzing
P [−T (n) > −γ |H1], as in (30). In this case, while the rate
function is still given by the Fenchel-Legendre transform of
the LMGF of τi in γ , the other parameters involved in the
exact asymptotics demand the LMGF of −τi in −γ . The
obtained approximations of the error probabilities αn and βn

are reported in Table 1 (large deviations column).
When the threshold is set as in (20), the approximate error

probability (32) can be further refined to take into account the
decaying term 1/

√
n in the threshold (20) embedded in σn,0.

A possible way to compute this refinement is to exploit the
saddlepoint approximation at each value of n, which is valid
in view of the “non-asymptotic” regime of the saddlepoint
approximation [90]. Basically, in (32) we replace I (γ ) with
In(γn), which clearly converges to I (γ ) for n large enough; we
proceed similarly with all the other related parameters in ζn.
This refinement is especially relevant in the case of dependent
data considered in the next section and further discussed in
Section VI.

V. LARGE DEVIATIONS OF THE D3F STATISTICAL
HYPOTHESIS TESTING IN THE GENERAL CASE
A. THE GÄRTNER-ELLIS THEOREM AND THE DUALITY
PROPERTY
Consider a generic sequence of random quantities X (n)

and the resulting sequence of decision statistics T (n) =
T (n)(X (n) ). The generalization of Cramér’s theorem is given
by the Gärtner-Ellis theorem [62], [63], where ϕ(t ) is the limit
of the scaled LMGF (6).

Theorem V.1 (Gärtner-Ellis theorem): Consider a sequence
of random variables z1, z2, . . . , with an asymptotic scaled
LMGF

ϕ(t ) = lim
n→∞

1

n
log E

[
exp(n t zn)

]
< ∞ ∀t ∈ R. (34)

If ϕ(t ) is differentiable in R, then zn obeys the LDP

lim
n→∞ log P [zn ∈ A] = − inf

x∈A
I (x), (35)

where A is a closed subset of R and the rate function I (x) is
given by the Fenchel-Legendre transform of ϕ(t ).19

19We adopt a simplified version of the Gärtner-Ellis theorem compared
to [62], [63]. The main difference is that in this paper the “limit inferior”
and the “limit superior” of the general theorem are assumed equal, and hence
the definition of the large deviation principle involves a simple limit. This
simplification is tailored with the engineering scope of our paper and is
aligned with more application oriented literature; see, e.g., [55], [65].
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L(n) = 1

n
log wθ∗

n∏
i=1

f (xi|θ∗)

f (xi|θ0)
+ 1

n
log

⎛⎝1 +
∑

θ∈
,θ �=θ∗
wθ

∏n

i=1
f (xi|θ )

wθ∗
∏n

i=1 f (xi|θ∗)

⎞⎠

= 1

n
log wθ∗︸ ︷︷ ︸
→0

+ 1

n
log
∏n

i=1

f (xi|θ∗)

f (xi|θ0)︸ ︷︷ ︸
L(n)

θ∗

+1

n
log

⎛⎜⎜⎜⎝1 +
∑

θ∈
,θ �=θ∗

wθ

wθ∗
exp

[
−n

(
1

n

∑n

i=1
log

f (xi|θ∗)

f (xi|θ )

)]
︸ ︷︷ ︸

Rn

⎞⎟⎟⎟⎠ , (37)

An important property of the Fenchel-Legendre transform
holds when ϕ(t ) is differentiable, strictly convex, and diverg-
ing at ±∞ (see the discussion in [65] and references therein).
In this case, the Fenchel-Legendre transform reduces to the
Legendre transform, see [65], and there exists a unique root
of ϕ′(t ) = x, which is denoted by tx , leading to

I (x) = txx − ϕ(tx ). (36)

Therefore, in this case the slopes of ϕ(t ) are one-to-one re-
lated to the slopes of I (x). This property is referred to as the
duality property of the Legendre transform (see more details
in [65]) and is automatically verified for IID observations in
Section IV. In the case that ϕ(t ) is twice differentiable and
is strictly convex (ϕ′′(t ) > 0), then I (x) must also be strictly
convex, given that differentiating (36) we have I ′′(x) = 1

ϕ′′(tx ) ,
and the curvature of I (x) is the inverse curvature of ϕ(t ) [65].
Given that I (x) is strictly convex and attains a global minimum
in the asymptotic mean of zn, then the infimum in (35) can
be easily handled as in Cramér’s theorem. If A = [γ ,∞),
then the LDP in (35) is given by I (γ ) for γ larger than the
asymptotic mean of the sequence zn.

In the following, we will exploit the Gärtner-Ellis theorem
under both hypotheses for a D3F, which can take a generic
structure, not necessarily a summation. In the first case study,
we consider data that are conditionally independent eqaution
(37) shown at the top of this page.

B. CONDITIONALLY INDEPENDENT OBSERVATIONS:
COMPOSITE HYPOTHESIS TESTING
Let us consider the case of a composite hypothesis under H1.
Precisely, we assume that the observations X (n) = (xi )n

i=1 are
conditionally independent given a parameter θ ∈ 
 under H1.
The hypothesis under H0 is simple (the generalization to the
composite case is similar). Then, we have xi ∼ f (·|θ ) under
H1 and xi ∼ f (·|θ0) under H0 with θ0 /∈ 
.

The general framework of composite hypothesis testing is
available in [62], where an universal hypothesis testing proce-
dure is proposed, and studied in terms of large deviations. The
asymptotic optimality of the popular Generalized Likelihood
Ratio Test (GLRT) is investigated in [53], and its conditions in
the Neyman-Pearson sense are studied and discussed. In our
framework, where the distributions are unknown, we cannot
rely on the GLRT approach or the universal detector. Besides,
for the practical needs of the machine learning procedure it is
convenient to assume a prior on the parameter θ , according

to a Bayesian formulation of the hypothesis testing problem.
Specifically, we adopt an embedded learning architecture to
mimic the LLR with the aforementioned prior. In this setting
the LLR is given by:

L(n) = 1

n
log

f (X (n)|H1)

f (X (n)|H0)
= 1

n
log

∑
θ∈
 wθ

∏n
i=1 f (xi|θ )∏n

i=1 f (xi|θ0)
,

(38)
where we have assumed a finite support of θ , namely |
| <

∞, and a non trivial prior wθ > 0. Clearly, the case of an
infinite support of θ can also be handled making further regu-
larity assumptions on the prior. In the case that the parameter
is continuous, the summation is replaced by an integral.

For n sufficiently large, under H1 and given the true value of
θ , indicated with θ∗, the mixture distribution in the numerator
of (38) is “close,” in terms of KL divergence, to the actual
conditional distribution of the observations (see also the dis-
cussion in [93], [94]).

At this point, to handle the LDP, we need to compute the
limit of the scaled LMGF (34) associated with the LLR, under
both the hypotheses. Specifically, we assume that under H1

all the data are drawn from f (·|θ∗), where θ∗ indicates the
true value of θ , while under H0 all the data are drawn from
f (·|θ0). As shown in Appendix A, assuming some regularity
conditions, the limit of the scaled LMGF of the LLR (38) is
then given by:

ϕk (t ) = lim
n→∞

1

n
log E

[
exp(n t L(n) ) |Hk

]
=

⎧⎪⎨⎪⎩
log E

[
exp
(

t log f (x1|θ∗ )
f (x1|θ0 )

)]
under H1,

log E
[
exp
(

t log f (x1|θm )
f (x1|θ0 )

)]
under H0,

(39)

where the expectation in ϕk (t ) is taken assuming that the data
are generated according to f (·|θ ) with θ = θ∗ ∈ 
 under H1

and θ = θ0 under H0; moreover, θm is the closest value of
θ to θ0 in terms of the KL divergence. (39) reveals that the
prior distribution wθ does not affect the asymptotic LMGF,
which is in agreement with classic Bayesian formulations
(see, e.g., [95]).

Let us introduce the D3F for conditionally independent
observations. Assume that the elementwise D3F tωθ

(x, θ ),
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FIGURE 5. Conceptual diagram of the D3F T (n)
ω with conditionally independent observations, see (40). The elementwise D3F tωθ

(x, θ), conditioned to a
specific value of θ, is pictorially represented as a NN.

which approximates the elementwise LLR log f (x|θ )
f (x|θ0 ) for a

given value of the parameter θ , is available from the training
stage (e.g., see Fig. 7 for an illustration of the elementwise
D3F in the case of a shift-in-mean problem with Laplace
and Gaussian observations). For instance, the elementwise
D3F tωθ

(x, θ ) can be derived as for the simple hypotheses,
introduced in Section III, assuming that a specific value of θ

is in force under H1. This means that the training stage will be
repeated a number of times equal to the cardinality of 
, and
there are as many training sets, one for each specific value of
the parameter θ ∈ 
.

Assuming a structure like that in (38), the D3F counterpart
is the following:20

T (n)
ω = 1

n
log
∑
θ∈


wθ

n∏
i=1

exp
(
tωθ

(xi, θ )
)
, (40)

20From an implementation perspective, both the decision statistics (38)
and (40) need to be computed with the well-known log-sum-exp trick [96,
Sec. 3.5.3] to avoid numerical underflow.

where ω = (ωθ )θ∈
; the D3F structure is illustrated in
Fig. 5. In (40), the prior wθ has to be estimated from
the training set, or assumed uniform; in both the cases,
the prior wθ is not relevant from an asymptotic point of
view.

Given that the D3F is constructed to have the same structure
as the LLR, we can interrogate whether the scaled LMGF con-
vergence holds similar to (39). In this respect, let us consider
that the LLR can be written as in (37), where the true parame-
ter is θ∗ and the data are generated according to f (·|θ∗) under
H1. The key aspect to consider is that Rn, defined in (37), van-
ishes for n large enough (see the derivation in Appendix A).
Under H1 the terms at the exponent in Rn converge to the KL
divergence between θ∗ and θ when θ∗ is the true parameter;
then, Rn vanishes exponentially fast with n. With a similar
argument we can compute the term Rn for the D3F, that is the
following

∑
θ∈
,θ �=θ∗

wθ

wθ∗
exp

[
−n

(
1

n

n∑
i=1

tωθ∗ (xi, θ∗) − tωθ
(xi, θ )

)]
.

(41)
Given that the observations xi are IID we have that both the
sample means at the exponent in (41) converge a.s. to their

476 VOLUME 3, 2022



expected values:

1

n

n∑
i=1

tωθ
(xi, θ )

a.s.−−→ E
[
tωθ

(x, θ )|θ∗
] = μ(θ |θ∗). (42)

If the expected value of the D3F under θ∗ is larger than the ex-
pected values in θ �= θ∗, namely μ(θ∗|θ∗) > μ(θ |θ∗), then Rn

vanishes to zero and the convergence is similar to that in (39).
It is worthwhile to note that such a condition is not necessary
to have a large deviations result for the D3F, but it is useful to
evaluate the asymptotic scaled LMGF, and consequently the
test performance.21

Remark: Another valid learning strategy could be to train
the D3F to distinguish not only any given parameter θ from
θ0, but also to distinguish θ ∈ 
 from any other value θ̃ ∈ 
,
with θ �= θ̃ . A possible training strategy would be resorting
to the multi-class cross-entropy cost function; see, e.g., [81].
This approach leads to the M-ary statistical hypothesis testing
counterpart. In this context, the error exponent analysis of the
LLR is available in [97].

C. DEPENDENT OBSERVATIONS: TARGET DETECTION IN
BINARY IMAGES
In this subsection we describe a statistical decision problem,
where the observations X (n) = (x j )

Nc
j=1 are dependent, and

such dependence cannot be easily modeled. We consider the
problem of deciding if a target is present or absent in the image
X (n), where n ≤ Nc represents the size of the target when
present, and Nc is the size of the image. It is worthwhile to
note that, different from the previous scenarios, the size of the
data X (n) is Nc and not n.22 The data xi, i = 1, . . . , Nc, are
represented by the pixels of the image (or, in the radar/sonar
context, resolution cells), where the index i represents the i-th
pixel. We indicate with H1 the target-present hypothesis and
with H0 the target-absent one. The target can be extended (i.e,
n > 1), in the sense that it can occupy multiple cells; see,
e.g., [73], [98] in the context of Extended Target Tracking
(ETT), and [99], [100], [101] in the context of underwater
object classification.

To fix ideas, we provide here a statistical model for the
problem of deciding the presence/absence of an extended tar-
get, and we stress that this is an example and not intended to
delimit a general use case. Let us assume that, if the target
is present in the i-th pixel of the image, θi = 1, otherwise
θi = 0. We assume that each pixel represents a binary obser-
vation, xi ∈ {0, 1} according to a Bernoulli distribution with
success probability p1 if the target occupies the i-th pixel,
i.e., θi = 1, or with success probability p0 if θi = 0. We have
basically assumed that the image is the output of a prelim-
inary detection stage performed at the pixel level, which is

21Numerical simulations in the case of conditionally independent observa-
tions are reported in Section VII-B, Figs. 10 and 12.

22The parameter n is not anymore the size of the data, but it has the same
role as before; it is just quantified in a different way. The key idea is that n
still rules the detection performance, but the rate function changes to take into
account the redundancy introduced by the dependence.

typical in radar/sonar processing. The probabilities p1 and p0

are respectively the pixel-wise detection probability and false
alarm probability. The classic notion of SNR would be in-
volved in the relationship between p1 and p0. Clearly, another
option would be to formalize the pixel observation with a
continuous distribution, assuming a suitable clutter and target
modelling.

Let us indicate 
(n) = (θi )
Nc
i=1, where n is given by the size

of the target, namely n =∑Nc
i=1 θi. Obviously, under the H1

hypothesis we have n ≥ 1. Let us also assume for simplicity
that under H1 the data are conditionally independent given the
target position and shape 
(n). Otherwise stated, the distribu-
tion of the data is given by

f1
(
X (n)

∣∣
(n) ) =
∏

i,θi=1

pxi
1 (1 − p1)1−xi

×
∏

i,θi=0

pxi
0 (1 − p0)1−xi . (43)

Analogously, the distribution of the data under H0 is given by

f0
(
X (n)) =

∏
i

pxi
0 (1 − p0)1−xi . (44)

Note that the H0 hypothesis is simple, i.e., independent on n
because of the absence of the target.23

If we assume perfect knowledge about the target position
and shape, it is easy to verify that the LLR rule is equivalent
to a test between two sequences of Bernoulli random variables
of length n. In this scenario, the aim is to generalize the
detection to the case of unknown target position and shape.
In principle, one could always implement the LLR as in (38),
obtaining

L(n) = 1

n
log

∑

(n)∈T (n) w
(n) f1

(
X (n)

∣∣
(n)
)

f0
(
X (n)
) , (45)

where T (n) and w
(n) are respectively the space and the
(discrete) distribution of all target positions and shapes un-
der consideration. Modeling such space and distribution is
clearly infeasible in a real-world application, especially if we
consider that, in principle, the target can have any possible
shape. A convenient choice for the tractability of the problem
that is usually made in the ETT literature is to model the
target as an ellipsoid, with the target shape posterior in some
cases given by an inverse Wishart distribution (e.g., see [73],
[98], [103] and references therein). In an ETT problem, the
relevant parameters of the target, such as its position, velocity,
and shape are estimated sequentially. Although the ellipsoid
assumption is quite convenient, it is also somehow limiting.
Different from the ETT literature, we focus primarily on the
target detection task, where the D3F decision statistic is based
on a DCNN, whose architecture is represented in Fig. 6. The

23The model (43)-(44) can be further generalized assuming non-uniform
detection and false alarm probabilities; see, e.g., [102].
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FIGURE 6. Illustration of the employed CNN model. The architecture comprises three layers: one convolutional layer, one pooling layer, and one
fully-connected classification layer. The convolutional layer uses a 5 × 5 convolutional kernel and has 20 neurons; the pooling layer uses a 2 × 2 pooling
kernel. The last layer is a fully-connected classification layer with softmax activation function, whose output is the final H0 vs H1 classification.

DCNN is a proper choice to capitalize the dependency struc-
ture embedded in the input data, which can be learned during
the training.

We generate the synthetic training sets Yk under Hk , k =
0, 1, each composed by my images. Under H1, the images in
Yk are generated according to (43)–(44), with varying target
positions, shapes and orientations; thus, the size of the target
n j varies for j = 1, . . . , my. Under H0, only false alarms are
generated randomly. The training set does not include any
explicit information about the actual size, shape and position
of the target; therefore the DCNN-based D3F does not process
directly n or 
(n).

The D3F decision statistic is defined as

Tω

(
X (n)) = log

p(H1)
ω (X (n) )

p(H0 )
ω (X (n) )

, (46)

and is the log ratio of the softmax classifier probabilities
computed by the DCNN, i.e., p(Hk )

ω (X (n) ) of hypothesis Hk ,
k = 0, 1, with p(H0 )

ω (X (n) ) + p(H1)
ω (X (n) ) = 1. The ω vector

represents the network parameters learned in the training
phase. The D3F Tω is the natural generalization of (12) for
IID observations, and plays the role of the LLR (45).24

1) ASYMPTOTIC FRAMEWORK
The model (43)-(44) assumes that the size of the input data is
larger than the target, i.e., n ≤ Nc. Patently, the limit for n that
diverges demands that an infinite input sequence is available.
In this respect, it is implicitly assumed that the DCNN can
process increasingly large images (Nc → ∞). From a practi-
cal perspective, this amounts to assuming that the number of
pixels in the image Nc is always sufficiently larger than the
size of the target n, for any n of interest.

24Numerical simulations for the case of extended target detection are
reported in Section VII-C; the analysis of real-world data is reported in
Section VII-D (see Figs. 13 and 15).

The distribution of the input data under H0, and under H1

conditioned on the target 
(n), remains a sequence of indepen-
dent Bernoulli random variables. As in Section V-B, both the
detection performance and the asymptotic scaled LMGF shall
be conditioned to a realization of the parameter under H1. In
the current scenario, to evaluate the performance, we shall fix
a shape for the target, for instance a circle, and a growing rule
when n increases. The growing rule could be that the radius
r
 of the circle diverges, with n that therefore also diverges
(quadratically) with the radius.

Then, we consider the sequence of random variables T (n)
ω

given by the normalized D3F decision statistic

T (n)
ω = 1

n
Tω

(
X (n)) , (47)

where n =∑i≥1 θi increases, and the randomness of the ob-
servations X (n) is given by the Bernoulli realizations in (43)-
(44). Having fixed the shape of the target, we can generate
the characterization set for each value of n that is of interest,
and then we can compute numerically the asymptotic scaled
LMGF and the relevant parameters of the exact asymptotics to
construct the approximate error probability curves (2). More
details on this are given in Section VI.

D. ASYMPTOTIC NORMALITY AND THRESHOLD SETTING
Assuming that the limit (34) exists, the decision statistic is
then asymptotically normal around the asymptotic expected
value, given by μk = ϕ′

k (0); see (8) and the discussion in
Section II. Specifically, similar to (18), we can define the
normalized statistic under Hk :

T̃ (n)
k = √

n (T (n) − μn,k ),

μn,k = E
[
T (n) |Hk

]
,

σn,k = S
[
T (n) |Hk

]
, (48)

where we indicate with T (n) the LLR (38), or the D3F statistic,
i.e., (40) or (47). For n sufficiently large, μn,k → μk and√

n σn,k → σk =
√

ϕ′′
k (0), and by virtue of the results in [68],
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we have that25

T̃ (n)
k

d−→ N (0, σ 2
k ), under Hk, k = 0, 1. (49)

As in (20), we can then set the asymptotic false alarm proba-
bility α = limn→∞ αn as follows

γn = μn,0 + σn,0Q−1(α), (50)

where μn,0 and σn,0 are given in (48).26

1) CONDITIONALLY INDEPENDENT OBSERVATIONS
To grasp further insights about the asymptotic normality of
the statistic in (48), let us consider the scenario with condi-
tionally independent observations, discussed in Section V-B.
Let us begin with T (n) given by the LLR in (38). The conver-
gence can be established considering that the term Rn in (37)
vanishes in probability. Specifically, under H1 and with a
derivation similar to that reported in Appendix A, we can
show that the LLR is given by the clairvoyant LLR (i.e., that
has knowledge of θ∗, which is the true value of θ ) plus a
remainder term, referred to as R̃n, i.e.,

L(n) = L(n)
θ∗ + R̃n, (51)

with R̃n = 1
n log(wθ∗ (1 + Rn)) that converges to zero in prob-

ability (given that Rn vanishes in probability; see details in
Appendix A). By virtue of Slutsky’s theorem [84], we have
that L(n) converges in distribution to the limit distribution of
the ideal LLR L(n)

θ∗ = 1
n log

∏n
i=1

f (xi|θ∗ )
f (xi|θ0 ) , which is the LLR

of IID observations distributed under H1 with parameter θ∗.
Thanks to the CLT, the normalized LLR of IID observations
converges in distribution to a Gaussian distribution, as al-
ready expressed in (19). Analogously, a similar convergence
holds under H0; indeed, considering (68), we have that L(n)

converges in distribution to the limit distribution of L(n)
θm

=
1
n log

∏n
i=1

f (xi|θm )
f (xi|θ0 ) , which is the LLR of IID observations

distributed under H0 with the parameter θm that minimizes
the KL divergence between f (x|θ ) and f (x|θ0) over θ ∈ 
.
Summarizing, we have that

√
n(L(n) − μn,k ) converges in

distribution to a zero-mean Gaussian distribution N (0, σ 2
k )

under Hk , with the expected values given by the following
KL divergences

μn,k → μk =
{

D( f (x|θ∗)|| f (x|θ0)) k = 1
−D( f (x|θ0)|| f (x|θm)) k = 0,

and σk = S
[
log f (x|θ )

f (x|θ0 ) |Hk

]
, with θ = θ∗ under H1 and θ =

θm under H0. Note that the convergence of μn,k is coherent
with the convergence of the scaled LMGF (39); indeed, it
is easy to verify that μk = ϕ′

k (0) from the properties of the

25Note that in the problem of extended target detection in previous section,
the statistic under H0 does not depend on 
(n), and thus n.

26The histograms of the decision statistic under both hypotheses and for
different values of n are reported in Fig. 11 for the case of conditionally
independent observations and in Fig. 14 for the case of extended target
detection. In both the figures the histograms appear quite close to the normal
distributions, even for small values of n.

asymptotic scaled LMGF [65]. For the convergence of the
D3F (40), we can proceed analogously, assuming that the D3F
Rn term vanishes in probability to zero. However, this latter
condition is not strictly necessary to establish the aforemen-
tioned convergence, as reported in Section VII. In other words,
the convergence of Rn to zero is just a sufficient condition for
the Gaussian convergence of the D3F.

2) TARGET DETECTION IN BINARY IMAGES
In the problem described in Section V-C, the LLR is practi-
cally infeasible. However, it is worth mentioning that it would
converge asymptotically in distribution to a Gaussian distribu-
tion because of the aforementioned conditional independence
of observations.

Let us consider the sequence of decision statistic T (n)
ω de-

fined in (47). The DCNN training set used in this work is
composed by different target shapes, positions, orientations,
and size n, whose knowledge is not capitalized during the
learning phase. In other words, the DCNN (and the resulting
D3F) is not dependent on the parameter n; this dependence
is only induced through the input observations. Given that
under H0 the observations contain only false alarms, then the
normalized statistic (48) is independent on 
(n). However, we
have observed empirically, as illustrated in Fig. 14 [where we
plot the histograms of the normalized statistic (47)], that the
D3F (46) is approximately Gaussian-distributed under H0; in
other words:

Tω

(
X (n)) ∼ N (μ0, σ

2
0 ), (52)

where, as for the other scenarios, both the parameters μ0 and
σ0 can be estimated from the characterization set. Thanks
to (52), the threshold can be again set as in (50):

γ = μ0 + σ0Q−1(α), (53)

where α is the desired false alarm rate. Assuming that (52)
holds, the normalized statistic (47) clearly vanishes under H0

for n large enough, and therefore the LDP does not hold under
H0. The LDP can be instead verified under H1. Indeed, we
also observe empirically that the normalized decision statis-
tic (47) converges to a Gaussian distribution, as illustrated in
Fig. 14.

Remark: It is possible to justify that the D3F statistic (52)
under H0 is approximately Gaussian assuming that the width
of any of the layers of the network diverges; a similar ar-
gument can be found in [48], [50]. Specifically, at the first
DCNN layer, the samples at the input of the different non-
linearities (i.e., at the output of the convolutional layers) can
be modeled, under some mild assumptions, as Gaussian ran-
dom variables. This is thanks to the CLT for independent (but
non-identically distributed) samples [84] and the IID assump-
tion of X (n) under H0. Then, we conjecture that this mech-
anism propagates among the layers. Specifically, we suppose
that the CLT can be still exploited to model the samples at
the input of the (i + 1)th non-linearity, if the i-th layer’s width
is sufficiently large and assuming that the correlations among
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the i-th layer’s output samples are weak enough to invoke the
CLT.

It is worthwhile observing that the assumptions made
in [48], [50] require the network weights being IID; con-
versely, here the weights are fixed and the network inputs
are random. A further analysis of this convergence is left to
future works; we focus instead here on the convergence in the
parameter n.

VI. RATE FUNCTION ESTIMATION AND ERROR
PROBABILITY APPROXIMATIONS
In the previous section we have established the main large de-
viations properties of the D3F test (1). In this section we detail
a viable means to compute rate functions, approximate error
probability curves, and evaluate the threshold parameters, ex-
ploiting the characterization set Z . In some circumstances
an overlap between the characterization set and the training
set is possible. For this reason, in Appendix B we show that
the estimators based on the sample mean, which will be de-
tailed in the next subsections, converge in probability to the
proper quantities of interest. In other words, the independence
between characterization set and training set is not strictly
necessary.

Before entering into details, let us consider that the charac-
terization set depends on the specific parameter θ ∈ 
 under
consideration when the observations are conditionally inde-
pendent (see the definition in Section V-B), as well as on
the extended target 
(n) under consideration, defined in Sec-
tion V-C.

A. RATE FUNCTION ESTIMATION
We propose two procedures to estimate the rate func-
tion. The former is based on the direct estimation of
the LMGF, or its scaled version, and relies on solv-
ing numerically the Fenchel-Legendre transform thanks
to a numerical representation of the (scaled) LMGF.
The latter, which is more accurate, instead requires
to sample from the exponentially tilted distribution via
MCMs.

1) DIRECT ESTIMATION APPROACH
A statistically consistent estimator of the LMGF, i.e.,
log E[exp(t τ (x))|Hk], for the first scenario (Section III) can
be obtained by replacing the expected value with the sample
mean:

ϕ̂k (t ) = log
1

mz

mz∑
j=1

exp(t τ j,k ), (54)

where τ j,k = tω(z j,k ) is the elementwise D3F; the samples z j,k

are assumed IID according to Hk , k = 0, 1, and taken from
the characterization set Z , whose size is mz for each hypoth-
esis. Thanks to the law of large numbers, ϕ̂k (t )

a.s.−−→ ϕk (t ) for

mz → ∞.27 Then, it is possible to compute numerically the
Fenchel-Legendre transform of the estimated LMGF ϕ̂k (t ),
which leads to an estimate of the rate function. The same
approach can be adopted when we deal with the scaled LMGF
in (34), for different values of n:

ϕ̂n,k (t ) = 1

n
log

1

mz

mz∑
j=1

exp(n t T (n)
j,k ), (55)

where T (n)
j,k is computed exploiting the characterization set,

and we have again replaced the expected value with the
sample mean and implicitly assumed the dependency on the
parameter θ or 
(n). Clearly, a sufficiently large value of mz

is required to approximate the scaled LMGF; moreover it is
also required that n is large enough to capture the asymptotic
behaviour of interest. For each value of n, the approximate
scaled LMGF can be exploited to compute the saddlepoint,
as in (32), but with a rate function In given by the Fenchel-
Legendre transform of the estimated version of the scaled
LMGF for a given n. This approach is valid in view of the
non-asymptotic regime; see, e.g., the discussion in [90]. We
apply this strategy to compute the approximate error probabil-
ity curves for the problem of deciding the presence/absence of
an extended target in an image, discussed in Section V-C.

2) RATE FUNCTION ESTIMATION VIA THE EXPONENTIAL
CHANGE OF MEASURE, AND SAMPLING FROM THE TILTED
DISTRIBUTION
The direct estimation of the scaled LMGF can be inaccurate
when mz is not large enough to accommodate possibly high
values of t and/or n. A valid alternative is use an importance
sampling procedure to generate samples from the exponen-
tially tilted distribution; such procedure is also referred to as
exponential change of measure [66], [104], [105]. The ap-
proach is general enough to be applied to a generic sequence
of data X (n).

The main idea is to estimate directly the derivative of the
(asymptotic) scaled LMGF, based on which the rate function
estimation can be computed. To this end, let us observe that

lim
n→∞ E

f (t )
n,k

[
T (n)(X (n) )

] = ϕ′
k (t ), (56)

provided that the input X (n) is sampled from the tilted dis-
tribution, indicated with f (t )

n,k (X (n) ) under Hk . The tilted

distribution of X (n) under Hk is defined as follows

f (t )
n,k (X (n) ) = exp(n t T (n)(X (n) ))

W (t )
n

fk (X (n) ), (57)

where W (t )
n is the distribution normalizing factor. The deriva-

tion is straightforward and is reported, e.g., in [66]. We

27If the characterization set is overlapped with the training set, then the
strong convergence should be replaced with the weak convergence, see details
in Appendix B.
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assume that X (n) can be sampled from the tilted distribution
with the MH algorithm28 or with an alternative strategy.

As a consequence, a viable estimator of ϕ′
k (t ) can be ob-

tained by the sample mean of T (n)(X (n)
j ), where data X (n)

j ,
j = 1, 2 . . . , m′

z, are drawn from the tilted distribution (57):

ϕ̂′
n,k (t ) = 1

m′
z

m′
z∑

j=1

T (n)(X (n)
j ), X (n)

j ∼ f (t )
n,k (X (n) ). (58)

The rate function is given by the Fenchel-Legendre trans-
form, which can be efficiently solved numerically exploiting
the estimated derivative of the scaled LMGF (58) thanks to
the duality property discussed in Section V-A; see also (36).
Specifically, the approximate point that solves the Fenchel-
Legendre transform is given by the equation γ = ϕ̂′

k,n(tγ ).
Then, based on (36), the rate function can be computed by
integrating numerically the derivative of the scaled LMGF
with the boundary condition that the scaled LMGF is null in
t = 0.

Finally, it is worthwhile stressing that the number of data
m′

z required by the MH-based method to achieve a reliable
estimate of the rate function (which implicitly requires a large
value of n) is significantly smaller compared to the direct
estimation method (54)-(55); see details, e.g., in [66].

Remark: The main drawback of the method based on the
exponential change of measure is that we need to sample
from the tilted distribution. The MH-based method provides
a viable means to accomplish this task, however it demands
some knowledge of the input data distribution to generate
samples used in the MH algorithm as well as to compute the
so-called acceptance ratio. The possibility of sampling data
and computing the acceptance ratio is perfectly acceptable in
several scenarios, for instance in the context of GANs and
VAE. Furthermore, as already discussed in Section II, a partial
knowledge of the statistical model of the input data is one of
the distinguishing features of model-based ML approaches,
see, e.g., [76], [77].

B. ERROR PROBABILITY APPROXIMATIONS
The error probability approximations introduced in Section II
and reported in Table 1 are based on the small and large de-
viations principles. The small deviations approximation relies
on the Gaussian convergence of the decision statistic, see (19)
and (49), and only requires the computation of the mean μn,k

and the variance σ 2
n,k of the decision statistic under each hy-

potheses, as it will be detailed in the next subsection.
The large deviations approximation is provided by the exact

asymptotics, or the saddlepoint approximation, introduced in
Section IV-D, for a given value of n. Specifically, this approx-
imate expression of the error probability follows the structure
given in (32), which is valid not only for IID observations,

28Details about the well-known MH algorithm implementation are omitted
for brevity, however relevant information can be found, e.g., in [106] and
about its application in the LDP context in [66].

but also in more general cases [62]. To compute (9)-(10)
we basically need to apply the approximation (32) to the er-
ror probabilities αn = P [T (n) ≥ γn|H0] and βn = P [−T (n) >

−γn|H1], where γn → γ and γ is the asymptotic threshold,
as detailed in Section IV-D. Thus, we need the following
ingredients:

1) The saddlepoint tγ ,k corresponding to the solution
ϕ′

n,k ((−1)ktγ ,k ) = γ under Hk , k = 0, 1;
2) The value of the rate function Ik (γ ), under Hk , k = 0, 1;
3) The second derivative of the (scaled) LMGF in the sad-

dlepoint, ϕ′′
n,k ((−1)ktγ ,k ) under Hk , k = 0, 1.

The first two ingredients are automatically available from
the estimation of the rate function, and the third one is eas-
ily obtained from the (scaled) LMGF (details omitted for
brevity).

Special attention should be paid when the threshold moves
with n, as the approximation can be inaccurate, especially for
small values of n, as it will be discussed in Section VII. In
these cases, we can resort to the “non-asymptotic” saddlepoint
approximation [90], which basically consists in computing
the previous three ingredients for each value of γn, instead
of γ . This leads to compute the (scaled) LMGF (55), the
saddlepoint tγn,k , and an approximate rate In(γn), all varying
with n.

With this approach, i.e., leveraging the properties of the
scaled LMGF for a given value of n, the approximate rate is
not guaranteed to be strictly positive as the intervals [γn,∞)
for αn and (−∞, γn) for βn may include the related expected
value of the decision statistic, i.e., μn,k . In such cases, we
can exploit the small deviations approximation instead of the
exact asymptotics. Clearly, the aforementioned Gaussian ap-
proximation is not expected to perform well when n diverges,
as already pointed out in the previous sections, and as it
will be verified in Section VII. However, under the assump-
tion that μ0 < γ < μ1, it is expected that, for large enough
values of n, the aforementioned critical situations do not
occur.

C. ESTIMATION OF μn,k AND σn,k TO SET THE TEST
THRESHOLD
The threshold γn of the test in (1) can be selected following
two strategies:

1) By fixing one of the error probabilities to a desired level,
for instance the false alarm, see (20) and (50), where γn

converges to μ0; or
2) In such a way that both error probabilities vanish, with

γn = γ ∈ (μ0, μ1).
In the first strategy it is necessary to estimate μn,k and σn,k .

They can be computed straightforwardly, as they represent
the expected value and the standard deviation of the decision
statistic under Hk , respectively. Both μn,k and σn,k can be
estimated via the sample mean exploiting the characterization
set. Specifically, given that μn,k is the expected value of the
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FIGURE 7. Elementwise D3F (solid curve) versus the input x. The elementwise D3F is defined as 2 layers NN trained with my = 104 independent samples
under each hypothesis, distributed according to a Laplace (left) and Gaussian (right) with θ0 = 0 under H0 and different values of θ1 under H1. The LLR
function (dashed curve) is also reported for the different values of θ1. Each color represents a specific value of θ1.

decision statistic, the sample mean estimator is the following

μ̂n,k = 1

mz

mz∑
j=1

T (n)
j,k , (59)

where T (n)
j,k is provided by the characterization set. We can

estimate σn,k analogously. In the second strategy, we only
need the asymptotic mean values μk , which can be estimated
again with the sample mean, or as the derivative of the scaled
LMGF, as reported in (8). Alternatively, from the rate func-
tions we can compute the asymptotic means which are the
points where the rates are nulls, i.e., Ik (μk ) = 0.

VII. EXPERIMENTAL RESULTS AND NUMERICAL
SIMULATIONS
In this section, we provide a numerical analysis and the san-
ity check of the theoretical results previously stated. Before
entering into details, we remind the distinction between the
number of samples my under each hypothesis, namely the
size of the training set, and the number of samples mz of
the characterization set, used to compute the means μn,k and
standard deviations σn,k , as well as the rate functions and
the approximate error probability curves. In the following
simulation campaign we have chosen the size of the charac-
terization set always equal to the number of Monte Carlo runs
used to compute the empirical error probabilities. For the MH
algorithm, we used the parameter n = nMH , with nMH = 104,
to sample from the tilted distribution (57); this is done to
compute the numerical version of (56). Then, in the exact
asymptotic formula (32), the variable n ≥ 1 is let varying to
describe the error probability curve.

A. IID OBSERVATIONS
We start by analysing the case of IID observations presented in
Secs. III and IV. Specifically, we consider a shift-in-mean de-
tection problem with noise distributed according to a Laplace
distribution. Let us denote by L(a, b) a (shifted) Laplace dis-
tribution with shift parameter a and scale parameter b, i.e.,
having the following probability density function

fL(x) = 1

2b
e− |x−a|

b . (60)

The goal is to test xi ∼ L(θ0, σ ) under H0 versus xi ∼
L(θ1, σ ) under H1. The elementwise D3F is trained with my

independent observations under both H0 and H1. As loss
function, the binary cross-entropy loss (17) is adopted. The
D3F is defined as a simple fully connected NN with two hid-
den layers of 5 neurons each. The first hidden layer has a tanh
activation function, and the second is followed by a softmax
activation function; the elementwise D3F tω(x) is given by
the log ratio of the two softmax outputs; see (15). Fig. 7
illustrates the shape of the D3F tω(x) trained with data drawn
from a Laplace (left panel) and Gaussian distribution (right
panel), my = 104, for different values of θ1 with θ0 = 0 and
σ = 1, as well as the shape of the LLR computed for the same
parameters. The scenario with Gaussian data is described in
the next subsection. It is apparent that the D3F and the LLR
functions are similar, but different for extreme values of x (i.e.,
|x| � 0). However, we will see later that these differences are
not informative in terms of detection performance.

In Fig. 8 we analyse the scenario with θ0 = 0, θ1 = 0.05
and σ = 1. We show both the rate functions: I0(γ ) under H0

and I1(γ ) under H1 for the LLR (dashed line) and D3F (solid
line) and two different values of my (represented with dark and
light blue). The rates are computed by letting the threshold γ

vary and are evaluated with the direct method described in
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FIGURE 8. Rate function I1(γ ) (y-axis) versus I0(γ ) (x-axis) of the LLR
(dashed black), see Theorem 4.2, and the D3F (solid lines), see
Theorem 4.3. Two different D3F statistics are considered with my = 103

(light blue) and my = 104 (dark blue). We report also their respective finite
sample-size version −n−1 log αn and −n−1 log βn, where the error
probabilities αn and βn (markers) are computed for different values of n
via Monte Carlo simulations. The maximum achievable rate is the KL
divergence, attained by the LLR, when the rate under the other hypothesis
is null. Data are IID and generated according to a Laplace distribution with
θ0 = 0, θ1 = 0.05, and σ = 1. Number of Monte Carlo runs is 105 for the
empirical curves when n = 2 · 103 and n = 5 · 103, while the curve for
n = 106 is obtained sampling from the tilted distribution via the MH
algorithm.

Section VI. The convergence is also assessed numerically for
different values of n (i.e., 2 · 103 and 5 · 103) by computing the
error probabilities αn and βn (markers) empirically via Monte
Carlo simulations. The empirical curves for n = 106 cannot
be computed via Monte Carlo simulations being the error
probability prohibitively small.29 For this reason, we resort
to the framework of tilted distribution sampling [65]. We can
see that −n−1 log αn → I0(γ ) and −n−1 log βn → I1(γ ), as
established by (27)–(29).

In Fig. 8, as expected, being the optimal detector, the LLR
achieves the best rates. However, we observe that, increasing
my from 103 to 104, the D3F curve gets closer and closer to the
curve of the LLR. The extreme values of the LLR rate, where
I0 = 0 or I1 = 0, provide respectively the best achievable rate,
which is equal to the KL divergence D( f0|| f1) when I1 = 0
and D( f1|| f0) when I0 = 0. We analyze the test performance
of both the decision statistics in one of these extreme points
in Fig. 9, where I0(0) = 0, setting the threshold as in (20)
and thus obtaining αn → ᾱ. The desired values of false alarm
are set to 0.25 and 0.05, and, in this case study, we set the
parameter under H1 to θ1 = 2, while θ0 = 0.

In Fig. 9, plots on the left refer to the LLR, while those on
the right refer to the D3F, and the markers represent the em-
pirical probabilities computed via Monte Carlo simulations.

29To give a rough idea, with n = 106 and a rate I = 10−4, the error proba-
bility would be ∼ exp(−102) ≈ 3.7 × 10−44.

The upper panels illustrate the behaviour of αn, which tends
to the desired values (dashed lines) even for small values of
n. The lower panels show instead the behaviour of βn for
the two desired asymptotic false alarm levels and their ap-
proximations. These approximations rely on either the exact
asymptotics (32) (solid line), properly refined as described in
Section VI-B, or the Gaussian convergence (19) (dashed line).
We shall note that for values of n lower than 10, the Gaussian
approximation is accurate, especially when the false alarm is
smaller, while the exact asymptotics in this example uniformly
provide a good approximation. However, it becomes evident
as n increases that the Gaussian approximations converge to
zero faster than the exact asymptotic curves, which instead
match much better the empirical probability values. This be-
haviour of the Gaussian approximation is perfectly aligned
with the theory discussed in the previous sections, as the
Gaussian approximation is quite accurate when the interval,
representing the event of interest, is not too far away from
the mean where the decision statistic sequence is converging;
alternatively, when it is too far away, the theory of large devia-
tions shall be used to achieve a better accuracy. It is interesting
to highlight that in Fig. 9, even if the convergence rate is equal
for the two different asymptotic false alarm probabilities, the
sub-exponential terms intervene to separate the curves. More-
over, the curves exhibit the same rate, meaning that for large
n the curves converge to zero in parallel with the same slope.

B. CONDITIONAL INDEPENDENT OBSERVATIONS:
COMPOSITE HYPOTHESIS TESTING
Let us now move on with the composite hypothesis testing
problem described in Section V-B. This time we consider
Gaussian observations xi ∼ N (θ, σ ); the Laplace example is
similar and not reported for brevity. We assume σ = 1 under
both the hypotheses. Under H0, we set the parameter θ0 = 0,
whereas under H1 it can take two different possible values
in 
 = {θ1, θ2}; specifically, we set θ1 = 0.25 and θ2 = 0.35.
The two parameter values are a priori equally probable. The
D3F is trained exactly as for the IID case, but the training pro-
cedure is repeated for each value of θ under H1, as described
in Section V-B. The number of training samples is my = 103

under each hypothesis and for each value in 
. The shape of
the elementwise D3F is illustrated in the right-hand side plot
of Fig. 7. In Fig. 10, we report the convergence of βn to zero
(left-side panel) for the two possible values θ1, θ2 of the true
parameter θ∗ under H1, with an asymptotic false alarm fixed
to 0.25, and resorting to the threshold selection γn described in
Section V-D. We can see that the false alarm αn (right side, top
panel) converges quickly to the desired value even for small
values of n for both the LLR and the D3F. We compare the
exact asymptotic approximations (both the direct computation
and the exponential tilting sampling methods described in
Section VI-B) with the Monte Carlo simulation of the error
probability βn of the D3F (104 runs) and the LLR (107 runs).30

30The number of Monte Carlo runs of the LLR is larger than the D3F thanks
to a convenient manipulation of the conditional LLR in (38).
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FIGURE. 9. Error probabilities αn and βn for IID Laplace observations. Plots in the left column refer to the LLR (shades of red), and those in the right
column to the D3F (shades of blue). The plots in the top row illustrate the behaviour of αn, which tends to the desired values ᾱ equal to 0.25 (light
red/blue) and 0.05 (dark red/blue). The plots in the bottom row show the behaviour of βn (markers), computed via Monte Carlo simulations, and its two
approximations: one based on the exact asymptotics (solid line), and the other one based on the Gaussian approximation (19) (dashed line), referred to
small deviations in Section III-B. The parameters are θ0 = 0 and θ1 = 2, and the training set size is my = 103; the number of Monte Carlo runs is 106.

It is important to highlight that in this specific setting, different
from the Laplace example, both the LLR and the D3F achieve
the same performance in terms of error probabilities. This will
be confirmed in the rate function analysis in Figure 12.

We also report the convergence of γn for both LLR and
D3F (middle and bottom, respectively, right-side panels), and,
as expected, γn → γ = μn,0. It is worthwhile to note that
the agreement between the exact asymptotic approximations
and the Monte Carlo simulations is less accurate when n is
smaller than 10, and this is because the threshold γn is larger
than μn,1(θ ). In the aforementioned condition, as explained
in Section VI-B, the estimated rate is not guaranteed to be
strictly positive; consequently, the saddlepoint approximation
can be meaningless.

A pictorial analysis of the “small deviations” regime is
reported in Fig. 11, which illustrates the convergence to the
Gaussian distribution discussed in Section V-D. Left-column
panels refer to the LLR, and right-column panels to the D3F.
Each row refers to a different value of n, specifically 30, 207,
1439. The decision statistic distribution is simulated under H0

and H1 for each value of θ ∈ 
, and we report in Fig. 11 the
related histograms (colored area). Moreover, we also plot the
approximated Gaussian distributions N (x;μn,k, σn,k ) (solid
lines) where μn,k ∼ μk and σn,k ∼ σk/

√
n. There is almost

a perfect match between the histograms and the Gaussian
distributions for all the values around the means; however, as

we already discussed, the agreement is expected to be increas-
ingly less accurate on the tails.31 We observe that the larger n,
the more the distributions of the decision statistic concentrate
around the asymptotic mean μk , with a decreasing variance,
which confirms the convergence in (49). We also show how
the threshold moves with n so that the asymptotic false alarm
remains fixed at the desired level of 0.25, as in Fig. 10.

In Fig. 12, we set a fixed threshold γ ∈ (μ0, minθ∈
 μ1(θ ))
in order to allow the convergence to zero of both the error
probabilities (see left-hand side panels of Fig. 12). By doing
so, trivial operating points are avoided. For this reason, we
report in the right hand side panels of Fig. 12 the Fenchel-
Legendre transform (computed by means of the exponential
tilting method) of both the LLR (dark blue) and the D3F
(light blue), under H0 and H1 for both values of θ . The LLR
curves have a parabolic shape, in perfect agreement with (39).
Indeed, the asymptotic scaled LMGF for conditionally inde-
pendent Gaussian observations is given by the LMGF of the
elementwise LLR, which is still Gaussian distributed; then,
it is easy to compute the Fenchel-Legendre transform, which
turns out to be a parabola (see, e.g., [55]). Interestingly, the
D3F rate curves seem to be approximately an horizontal shift
of the LLR ones. However, in order to have a meaningful

31The distributions’ tails cannot be easily visualized in the histograms, but
they are analyzed in terms of error probabilities in Figs. 10 and 12.
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FIGURE 10. Composite hypothesis test with Gaussian observations. The D3F is trained with m = 103 samples. Leftmost panel: error probability βn of the
LLR and D3F; exact asymptotic approximation via exponential tilting sampling for the LLR (solid line) and the D3F (dotted line), Monte Carlo simulations
of LLR (�, 107 runs), and D3F (�, 104 runs) for each values of the true parameter θ∗. Rightmost upper panel: false alarm probability αn, desired level
ᾱ = 0.25 (solid line), LLR (�) and D3F (�). Rightmost mid and bottom panels: threshold γn of LLR and D3F compared to the mean μn,0 under H0 and the
mean μn,1(θ) under H1 where θ ∈ 	.

FIGURE 11. Empirical distribution of the decision statistics (left column: LLR, right column: D3F) in the case of composite Gaussian hypotheses, where
θ0 = 0 under H0 (blue) and θ ∈ {θ1, θ2} under H1, with θ1 = 0.25 (orange) and θ2 = 0.35 (yellow). Gaussian distribution under H0 (solid gray line) and
under H1 (solid red line), with parameters provided by the small deviations and estimated from the characterization set. Panels in each row refer to the
same value of n. For the D3F case, the neural network was trained with m = 103 samples. The distributions of the LLR decision statistics have been
estimated with 106 realizations, while those for the D3F statistics with 104 realizations. The threshold γn (dashed gray vertical line) moves with n so that
α is fixed to 0.25.
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FIGURE 12. Composite hypothesis test with Gaussian observations. The leftmost plots show: the error probabilities αn and βn of the LLR and the D3F; the
exact asymptotics computed via exponential tilting for the LLR (solid) and the D3F (dashed); the Monte Carlo simulations for the LLR (�, 107 runs) and
the D3F (�, 104 runs); the asymptotic rates (dot-dashed) given by (39). The rightmost plots show the rate functions under both hypotheses, computed via
exponential tilting. The bottom-right plot is a close-up of the rectangular region represented by the box in the top-right plot and shows the test
operational points given by the thresholds γD3F and γLLR for the D3F and LLR, respectively. The D3F is trained with m = 103 samples.

comparison, we also need to select two thresholds, indicated
with γLLR and γD3F for the LLR and the D3F, respectively
(see bottom-right panel in Fig. 12, which provides a zoom of
the upper-right panel), so that the rates under H0 for the LLR
and D3F are equal. Once the thresholds have been chosen, the
rates under H1 are automatically determined for both the LLR
and the D3F in each of the points θ1 and θ2. In the left-hand
side panels of Fig. 12 we show αn (top) and βn (bottom).
Specifically, we report the empirical error probabilities com-
puted by means of Monte Carlo simulations, along with the
asymptotic approximations, which again are in a very good
agreement. Similar to the previous example (Fig. 10), the LLR
and D3F achieve the same performance; this is also due to
the fact that they have very similar rate functions, as reported
in the Fenchel-Legendre transform curves in the right-side
panels of Fig. 12. We also plot the theoretical asymptotic
rate provided by (39), which intercepts the curves when n is

sufficiently large. It is interesting to observe that αn converges
faster to zero than βn, being the rate around 0.02, while βn

has two rates, the first is around 0.011 when θ∗ = θ2 and the
second is below 0.005 when θ∗ = θ1. Our intuition suggests
that the performance will always be worse for θ∗ = θ1, given
that this value is closer to θ0 than θ2. Indeed, in the left-side
part of the parabola the rate function of θ2 is always larger than
the rate function of θ1 for both the LLR and the D3F, and this
behaviour is confirmed in Fig. 10, where the error converges
to zero faster when θ∗ = θ2; see the rate functions of H1 in
the point in which the rate of H0 is null in μ0 (around −0.04
for the LLR and −0.03 for the D3F). We have the opposite
behaviour on the right side of the parabola, where the rate
of θ1 is larger than the rate of θ2; however, this region is not
relevant for our scopes, as there are always no large deviations
for βn under θ1, and no large deviations for both values of θ

when the threshold is larger than μ1(θ2).
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C. EXTENDED TARGET DETECTION
In order to corroborate the results in Section V-C, we consider
now a more complex scenario, where the data are representa-
tive of the output of a high-resolution sensor, e.g., a radar, a
sonar, or an optical camera. The goal is to decide about the
presence/absence of a target in the surveillance region. In this
scenario, the D3F is the output of a DCNN, whose input is an
image of 500 by 500 pixels; see Fig. 6 for a schema of the
DCNN architecture.

In this setup, the DCNN is trained starting from 5120
examples of elliptical targets and as many examples of rect-
angular targets, whose position and dimensions are generated
randomly; targets are also rotated by a random angle (some
notional examples of images are reported in Fig. 2). All the
target shape parameters are selected independently, and the
random generation allows for partial observations (target on
the boundary only partially visible) to be represented in the
training set. For each realization of the target shape parame-
ters, 5 independent realizations of the background noise are
generated. In this way, the resulting training set is composed
by 76800 images, of which 25600 generated from the null
hypothesis (absence of target), and 51200 from the alterna-
tive one (one half are targets with elliptical shape and the
other half are targets with rectangular shape). All the im-
ages are generated in agreement with the model described
in Section V-C. The training set is generated with pixel-wise
detection and false alarm probabilities p1 = 0.9 and p0 = 0.1,
respectively. The threshold is selected as in (53) to achieve
approximately a desired false alarm level of 0.3, 0.075 and
0.005. The related miss detection probability is reported in
the upper panel of Fig. 13, where we simulate a target with
a circular shape, located in the center of the image, with n
being the number of resolution cells occupied by the tar-
get. The miss detection probability is estimated via Monte
Carlo simulations with 105 runs, and compared with the exact
asymptotics via the direct estimation method and the Gaussian
approximation.

To further shade light on the detector behaviour, we also
perform a sensitivity analysis with respect to the pixel-wise
detection and false alarm probabilities, p1 and p0, respec-
tively. Specifically, we simulate the mismatched scenario
where p1 = 0.8 and p0 = 0.2, reported in the upper panel of
Fig. 13.

As observed in the previous subsections, the Gaussian ap-
proximation is quite good for small values of n, whereas (as
it is expected) the empirical miss detection probabilities are
closer to the exact asymptotic as n increases. The curves,
obtained via exact asymptotics, are displayed starting from
values of n where the approximation is meaningful, i.e., when
the expected mean of the decision statistic is larger than the
threshold (see the panel at the bottom of Fig. 13) for the
matched scenario.

Clearly, the performance of the mismatched scenario is
worse than the matched one given that the pixel-wise false
alarm rate is higher (0.2 instead of 0.1) and the pixel-wise
detection rate is lower (0.8 instead of 0.9). However, it is

FIGURE 13. Detection of presence/absence of an extended target in a
binary image. Top panel: miss detection probability βn, with n being the
number of resolution cells occupied by the target. The error probability is
computed for three different false alarm levels via Monte Carlo
simulations (�) with 105 runs, and compared with the exact asymptotic
and Gaussian approximations. Two scenarios are considered: in the
former, the detection probability and false alarm probability of each cell
resolution (pixel) are p1 = 0.9 and p0 = 0.1, respectively; in the latter, they
are p1 = 0.8 and p0 = 0.2, respectively. Middle panel: desired false alarm
level ᾱ vs false alarm level observed in the Monte Carlo simulation (�).
Bottom panel: convergence of γn, μ1,n and

√
nσk,n for k = 0, 1, where

γn = γ

n , with γ given in (53), while μ1,n and
√

nσk,n are the parameters of
the normalized decision statistic (47).

worthwhile highlighting that, even if the training and the ac-
tual input data exhibit a significant mismatch, the D3F is still
able to perform target detection when the size of the target
increases.

For each value of the desired false alarm level α, we esti-
mate the actual false alarm level and plot it in the mid panel of
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FIGURE 14. Empirical distribution of the normalized D3F statistics (47) for the problem of detecting an extended target in an image under H0 (blue) and
H1 (orange). Left column, matched scenario: P1 = 0.9, P0 = 0.1. Right column, mismatched scenario: P1 = 0.8, P0 = 0.2. The D3F empirical distribution is
compared with the Gaussian distributions under H0 (solid gray line) and H1 (solid red line). The Gaussian distribution parameters, μn,k and σ2

n,k , are
provided by the small deviations, and estimated from the characterization set. The D3F is translated to obtain μn,0 = 0. Panels in each row refer to the
same value of n.

Fig. 13. We observe that the Gaussian approximation is less
accurate as α decreases (between 10−4 and 10−3) because
the tail of the decision statistic is not necessarily Gaussian,
and would be more accurately ruled by the related LMGF and
its Fenchel-Legendre transform. The Gaussian approximation,
discussed in Section V-D, is pretty accurate for both hypothe-
ses as long as we focus on values of the decision statistic
close to the mean, as we can observe in the histograms of
the statistic (47), reported in Fig. 14 for both the matched
(left-side panels) and mismatched scenarios (right-side pan-
els). A fixed offset to the decision statistic is applied so that
the resulting expected mean of decision statistic distribution,
under H0, is zero. As explained in Section V-D, the decision
statistic under H0 is independent on n [see (52)]. Indeed, the
standard deviation σ0,n of the statistic (47) converges to zero
faster than 1√

n
(see the bottom panel in Fig. 13). However, the

data are still well approximated by a Gaussian distribution,
as illustrated in Fig. 14. On the other hand, the convergence
under H1 is verified empirically in agreement with the LDP.
Indeed, μ1,n converges to an asymptotic value μ1, whereas√

nσ1,n converges to an asymptotic value σ1, as reported in
the panel at the bottom of Fig. 13.

D. EXTENDED TARGET DETECTION IN A REAL-WORLD
SCENARIO USING X-BAND RADAR DATA
In this subsection we consider real-world data collected by
a coherent high-resolution X-band maritime radar located

in the Gulf of La Spezia, Italy. The radar is a low power,
compact, lightweight, quickly deployable system, while still
achieving high performance with relatively simple electronics.
This is thanks to the use of pulse compression and linear fre-
quency modulated continuous wave. The radar has an antenna
mounted on a rotor with variable rotating speed and the possi-
bility to lock and hold the position towards a specific direction
with a 0.1◦ accuracy. The range resolution is approximately
1 m, while the angular resolution is 0.172◦ [107]. More details
about the radar system, the signal processing chain, and the
data collection are available in [103], [107], [108], [109].

For our analysis, we consider three acquisitions from two
large vessels and a tugboat, illustrated in the top row of
Fig. 15. The Automatic Identification System (AIS) is used
as ground truth; this is an common approach in literature
(see, e.g., [109], [110], [111]). The vessels observed in the
radar images are T1, a container ship (MMSI: 351361000)
being pushed by T2, a tugboat (MMSI: 247222500), and a
passenger ship (MMSI: 255803790). From the radar frame,
a rectangular region is selected (indicated with a red box);
then, persistent clutter is masked out. A pixel-wise maximum
likelihood detector is applied in each resolution cell, see more
details in [109]. The result of this processing step are binary
images, reported in the second row of Fig. 15. It can be seen
that, for each radar frame, it is possible to detect correctly the
extended targets, with some clutter still being present (in the
upper right hand corner of the second row’s central panel).
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FIGURE 15. Analysis of the normalized D3F statistics (47) in the extended target scenario. Panels in the first row show three radar frames with AIS
contacts overlaid. From these, a rectangular region (indicated with a red box) is extracted; then, persistent clutter is masked out and a detector applied.
The output of this processing stage is illustrated in the second row, with the targets lighting up n = 788, n = 446 and n = 250 respectively, from left to
right. Since the false alarm level is extremely low, synthetic clutter is introduced (third row). Finally, the empirical distribution of the normalized D3F
statistic is computed from 1000 independent realizations and showed in the panels on the last row; the superimposed red curves are Gaussian
distributions, showing that the D3F statistic is following the small deviations principle in all three cases.

The false alarm rate is very low, creditably so from the
surveillance perspective but not so useful to explore our per-
formance prediction results. For this reason we introduce at
this point some synthetic clutter, as in the model (43)–(44).
Examples of binary images with synthetic clutter added are
reported in the third row of Fig. 15. These represent the input
to compute the normalized D3F statistic (47) using the same
DCNN, trained with synthetic data, described in the previous

subsection. It is interesting to notice that the DCNN is able to
detect the target correctly, even if it was not trained directly
on radar data.

Finally, from the generation of independent pixel-wise
false alarms, with p0 = 0.1, we have multiple independent
realizations of the normalized D3F statistic for each radar
acquisition. Then, we can construct histograms of the de-
cision statistic (last row of Fig. 15), which again appears
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evidently Gaussian-distributed, thus confirming the conver-
gence already discussed in Section V-D with real-world data.

VIII. CONCLUSION
In this paper, we have proposed a novel method to analyze
the performance of a Machine Learning (ML) classification
technique. The ML classifier is based on a suitable decision
statistic, referred to as the Data-Driven Decision Function
(D3F), which is learned from training data, and its perfor-
mance is defined in terms of error probabilities and their
convergence rates.

We have provided the mathematical conditions, based on
the theory of large deviations, for the D3F to exhibit an er-
ror probability that vanishes exponentially with a parameter
n, which represents the amount of information accumulated
about the classification problem. Three different classifica-
tion problems have been investigated: i) independent and
identically distributed data with simple hypotheses, ii) con-
ditionally independent data with composite hypotheses, and
iii) (weakly) dependent data with an unknown dependency
structure. In the first two settings, the parameter n is the num-
ber of observations available for testing; in the third setting, it
represents the size of an extended target in a radar image.

The mathematical conditions can be verified numerically
exploiting the available set of data or by generating synthetic
data. Thanks to the theory of large deviations, it has been
shown that such conditions depend on the Fenchel-Legendre
transform of the cumulant-generating function of the D3F.
Moreover, we have derived approximations for two asymp-
totic regimes of the D3F statistic. In the first one, referred
as to as the small deviations regime (related to the central
limit theorem), it is possible to establish the convergence of
the normalized D3F statistic to a Gaussian distribution for
values of n large enough. This property can be used to set
a desired, asymptotic false alarm probability, which turns out
to be accurate also for operationally-relevant values of n. In
the second regime, referred to as the large deviations regime,
we have established the conditions for the error probabilities
to vanish to zero exponentially. Then, exploiting the exact
asymptotics, which is a refinement of the large deviations
theory, we have also provided an accurate approximation of
the error probability curve as function of n. All the theoretical
findings are corroborated and supported by extensive numer-
ical simulations, as well as by an analysis of real-world data
acquired by an X-band marine surveillance radar system.

We believe that the proposed method is especially relevant
in the context of model-based ML, where the statistical struc-
ture of problem under investigation is partially known or can
be easily simulated.

APPENDIX A
LIMIT OF THE LLR’S SCALED LMGF WITH
CONDITIONALLY INDEPENDENT OBSERVATIONS
Let us compute the asymptotic scaled LMGF of L(n) (38)
under H1 when the true parameter is θ∗ and the data are

generated according to f (·|θ∗). Hereafter, we omit the condi-
tioning on the hypothesis in the expected values to simplify
the notation. We can write the equality (37) and note that
the first term converges to zero assuming a non-trivial prior
wθ∗ > 0. The terms at the exponent in Rn converge to the KL
divergence between θ∗ and θ when θ∗ is true. Specifically,
given that the data are IID, the following holds

1

n

n∑
i=1

log
f (xi|θ∗)

f (xi|θ )
a.s.−−→ D(θ∗||θ ) = E

[
log

f (xi|θ∗)

f (xi|θ )

]
> 0,

(61)
where the convergence is a.s. assuming mild regularity condi-
tions, and that the hypotheses identified by the different values
of θ are distinguishable, namely D(θ∗||θ ) > 0, ∀ θ∗, θ ∈ 


with θ∗ �= θ . Under mild regularity conditions of the log-
likelihood ratio the convergence holds also in mean square.
At this point it is easy to recognize in (37) that Rn vanishes
exponentially fast with n. The asymptotic LMGF of the first
term L(n)

θ∗ is given by:

lim
n→∞

1

n
log E

[
exp(n t L(n)

θ∗ )
]

= ϕθ∗ (t ), (62)

with ϕθ∗ (t ) = log E
[
exp
(

t log f (x1|θ∗ )
f (x1|θ0 )

)]
. The asymptotic

LMGF of L(n) is given by:

lim
n→∞

1

n
log E

[
exp
(

n t L(n)
θ∗

)
(1 + Rn)t

]
. (63)

We shall now multiply and divide by the expected value

E
[
exp
(

n t L(n)
θ∗

)]
= exp(n ϕθ∗ (t )), obtaining

1

n
log E

[
exp
(

n t L(n)
θ∗

)
(1 + Rn)t

]

= ϕθ∗ (t ) + 1

n
log

E
[
exp
(

n t L(n)
θ∗

)
(1 + Rn)t

]
exp
(
n ϕθ∗ (t )

) . (64)

Since Rn > 0, the second term in (64) is larger than
1
n log

E[exp(n t L(n)
θ∗ )]

exp(n ϕθ∗ (t )) = 0 (the numerator and the denominator
are equal). Then, we have

1

n
log E

[
exp
(

n t L(n)
θ∗

)
(1 + Rn)t

]
≥ ϕθ∗ (t ). (65)

We can now apply Hölder’s inequality to the argument of the
expectation in (63) and obtain

1

n
log E

[
exp
(

n t L(n)
θ∗

)
(1 + Rn)t

]
≤ 1

n p
log E

[
exp
(

n pt L(n)
θ∗

)]
+ 1

n q
log E

[
(1 + Rn)q t ]

= 1

p
ϕθ∗ (pt ) + 1

n q
log E

[
(1 + Rn)q t ] , (66)

where p−1 + q−1 = 1. The second term in the equation above
vanishes if Rn (which is strictly positive) grows as nr with r <

1. Now, given that Rn vanishes exponentially in probability
thanks to the continuous mapping, the term (1 + Rn)q t → 0
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in probability. The convergence in mean holds if the function
(1 + x)q t is bounded, which is the case assuming a limited
interval tmin < t < tmax, or if the convergence of Rn is a dom-
inated convergence (see details in [112]). Consequently, we
have

lim
n→∞

1

n
log E

[
exp
(

n t L(n)
θ∗

)
(1 + Rn)t

]
≤ 1

p
ϕθ∗ (pt ),

lim
n→∞

1

n
log E

[
exp
(

n t L(n)
θ∗

)
(1 + Rn)t

]
≥ ϕθ∗ (t ), (67)

where in the second inequality we have exploited the conti-
nuity of ϕθ∗ (t ); the first inequality holds also in the limit of
p → 1. Considering both (65) and (67), we can conclude that
the asymptotic scaled LMGF under H1 is ϕθ∗ (t ).

Let us focus on H0, remembering that the data are gener-
ated according to f (·|θ0). We can rewrite the log-likelihood
ratio (38) as follows:

L(n) = 1

n
log wθm + 1

n
log
∏n

i=1

f (xi|θm)

f (xi|θ0)︸ ︷︷ ︸
L(n)

θm

+ 1

n
log

⎛⎜⎜⎝1 +
∑

θ∈
,θ �=θm
wθ exp (−nDn(θ ))︸ ︷︷ ︸

Rn

⎞⎟⎟⎠ ,

(68)

where

θm = arg min
θ∈


D(θ0||θ )

and

Dn(θ ) = 1

n

n∑
i=1

log
f (xi|θ0)

f (xi|θ )
− 1

n

n∑
i=1

log
f (xi|θ0)

f (xi|θm)
.

The term Dn(θ ) converges a.s. to the difference between the
divergences D(θ0||θ ) − D(θ0||θm), which is strictly positive
if there is a single point of minimum θm (in the case of
multiple minimum points the procedure is analogous). The
structure of the log-likelihood ratio (68) is formally the same
of (37), then with similar augmentations we can show that
the asymptotic scaled LMGF under H0 is given by ϕθ0 (t ) =
log E

[
exp
(

t log f (x1|θm )
f (x1|θ0 )

)]
, where the expectation is taken

under H0 and the true parameter is θ0.

APPENDIX B
WEAK LAW OF LARGE NUMBERS WHEN THE
CHARACTERIZATION SET IS EQUAL TO THE TRAINING SET
It is possible to exploit the training set to compute the quanti-
ties of interest, such as the LMGF, as indicated in Section VI.
This is the case when the characterization set and the train-
ing set are the same or overlapped. The goal is to show
that the sample means, such as (54) and (55), converge to
their expected means even if τ j = tωY (y j ), ∀ j = 1, 2, . . . , my,

where ωY is a stochastic function of the training data Y =
(y1, y2, . . . , ymy ), provided by the learning mechanism.32

Therefore, we should consider a joint space probability be-
tween Y and ω, where ω is referring to the aforementioned
ωY . Let us also assume that ω takes values in a finite and
discrete space �. The dependency of ω from the size of the
training set my is omitted for simplicity.

Let us consider the following event for any given ε > 0

Aε (ω,Y ) =
⎧⎨⎩
∣∣∣∣∣∣ 1

my

my∑
j=1

g(tω(y j )) − ḡω

∣∣∣∣∣∣ > ε

⎫⎬⎭ , (69)

where ḡω = E[g(tω(y))|ω], where y is distributed accordingly
to the marginal distribution of an element in Y , which is
independent of ω. Let us now evaluate the probability of the
event of interest

P [Aε (ω,Y )] =
∑
ω̄∈�

P [Aε (ω,Y ) ∩ {ω = ω̄}]

=
∑
ω̄∈�

P [Aε (ω̄,Y )] P [{ω = ω̄} |Aε (ω̄,Y ) ]

≤
∑
ω̄∈�

P [Aε (ω̄,Y )] . (70)

Note that by construction when we evaluate P [Aε (ω̄,Y )],
ω is fixed to the value ω̄, and the evaluation of this probability
is carried on according to the marginal of Y . Now, being the
observations yi IID, by invoking the law of large numbers we
have that for my → ∞ for any ω̄

P [Aε (ω̄,Y )] → 0. (71)

From (70)–(71), it follows directly that P [Aε (ω,Y )] → 0.
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