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ABSTRACT Model selection is an omnipresent problem in signal processing applications. The Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) are the most commonly used
solutions to this problem. These criteria have been found to have satisfactory performance in many cases
and had a dominant role in the model selection literature since their introduction several decades ago,
despite numerous attempts to dethrone them. Model selection can be viewed as a multiple hypothesis
testing problem. This simple observation makes it possible to use for model selection a number of powerful
hypothesis testing procedures that control the false discovery rate (FDR) or the familywise error rate (FER).
This is precisely what we do in this paper in which we follow the lead of the proposers of the said procedures
and introduce two general rules for model selection based on FDR and FER, respectively. We show in a
numerical performance study that the FDR and FER rules are serious competitors of AIC and BIC with
significant performance gains in more demanding cases, essentially at the same computational effort.

INDEX TERMS Model order selection, FDR, FER, AIC, BIC.

I. INTRODUCTION
Model selection is an essential problem in many signal
processing applications [1], [2], [3]. Examples of such ap-
plications include selecting the order of an autoregressive
predictor, the number of source signals impinging on an array
of sensors, the order of a polynomial trend, the number of
components of a nuclear magnetic resonance signal, the di-
mension of a linear regression model, the length and paths of
the impulse response of a multi-path communication channel,
the number of components of a sinusoidal signal, and the rank
of the solution of a matrix approximation problem (the last
four applications form the nucleus of the numerical example
section, and will be described in detail there).

A successful class of rules for model selection is based
on penalizing the model complexity (basically its number of
parameters, let us say k) by adding a penalty term to the
negative log-likelihood [1], [3]:

−2 ln p(y|θ̂k ) + ck (1)

where y is the data vector and θ̂k is the maximum likelihood
estimate for the model with k parameters. Different values of
c are obtained from different types of statistical or informa-
tion theory considerations. For example, c = 2 for the Akaike
information criterion (AIC) [4], and c = ln N for the Bayesian
information criterion (BIC) [5]. The AIC is minimax optimal
in a predictive sense, and the BIC is consistent in a model
selection sense, but as alluded by a discussion in [6] (see
also [7]) neither is optimal (in the sense of maximizing the
probability of selection) and therefore, in principle, they both
can be outperformed by other rules.

The main goal of the present paper is to propose model
selection rules that have the well-established penalized like-
lihood form in (1), like AIC and BIC, but which perform
better than both BIC and AIC especially in demanding cases
(such as for high-dimensional models). The derivation of the
new rules is based on formulating the model selection as a
multi-hypothesis testing problem and using FDR and FER
procedures to solve it [8], [9], [10].
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TABLE 1. The Number of Times H0 was Correctly Accepted/Incorrectly
Accepted/Correctly Rejected/Incorrectly Rejected is Denoted CA/IA/CR/IR,
Respectively. M is the Total (Known) Number of Null Hypotheses and M̃
Denotes the (Unknown) Number of True Null Hypotheses. An IR Decision is
a False Discovery/Alarm, IA is a Miss, and the Other Two are Correct
Detections

Multiple hypothesis testing based on FDR and FER has
found numerous applications in many fields from genomics
and biomedicine to financial economics. However the use of
FDR or FER for model selection in signal processing applica-
tions is almost nonexistent. We begin this paper with a short
introduction of the basic FDR and FER principles [8], [11].
Then we explain how FDR and FER can be used for selecting
the structure (or order) of both linear and nonlinear models
with both sparse and dense parameter vectors. We end-up
the paper with a numerical performance study of the FDR
and FER rules, as well as a comparison with the classical
rules of AIC (Akaike Information Criterion) [2], [4] and BIC
(Bayesian Information Criterion) [2], [5] in the four signal
processing applications mentioned above: linear regression,
communication channel estimation, sinusoidal parameter es-
timation, and low-rank matrix approximation.

The following sections provide details, including further
references, on the technical aspects of the plan laid down
above. The main contribution of this paper is the proposal
of FDR and FER rules based on general penalized-likelihood
criteria similar to AIC and BIC and therefore directly usable
in the many signal processing applications that need model
selection. The main pragmatical finding of the paper is that
the FDR and FER rules perform much better than AIC and
BIC in applications in which the models under consideration
have a wide range of possible orders, and not worse in other
cases in which the classical rules are known to be consistent
(BIC) or possess an optimal minimax prediction property
(AIC). Given the good performance of the FDR and FER
criteria and the fact that they have the same well-established
penalized-likelihood form as AIC and BIC, it is our opinion
that the former can be considered to be serious competitors of
the latter.

II. FALSE DISCOVERY RATE (FDR)
Consider a set of M null hypotheses : H0

1 , . . . , H0
M . Let Tk > 0

be the test statistic for H0
k , and let pk denote the false discov-

ery probability:

pk = prob(reject H0
k |H0

k = true) (2)

(pk is also called the probability of false alarm or false pos-
itive, or simply the significance level). Table 1 summarizes
the four possible outcomes when testing one of the above null
hypotheses (denoted H0 in the table).

The FDR is defined as the expected proportion of IR out of
the total R:

FDR = E[IR/R] (3)

(FDR = 0 if R = 0). In many practical applications, for in-
stance in genomics, it is important to keep the ratio IR/R under
a pre-specified level, to avoid wasting lab time on investi-
gating an unnecessarily large number of “false discoveries”.
Intuitively, keeping this ratio small is also important for model
selection to prevent selecting unduly complex models too of-
ten. We will explain the way in which FDR can be used for
model selection in the next sections. In the rest of this section
we discuss a procedure for controlling the FDR in the sense
that [8]:

FDR ≤ M̃

M
α ≤ α (4)

where α is a pre-specified level. Following the recommenda-
tion in [9], [10], and to simplify the exposition, we will use
α = 0.01 in what follows (but note that the choice of α in (4)
is an interesting aspect, see e.g [10]).

Assume that the distribution of Tk under H0
k is known. Also,

assume that the hypotheses H0
k (k = 1, . . . , M ) have been or-

dered [8], [9], [10], [12] so that

T1 ≥ T2 ≥ · · · ≥ TM (5)

Let,

pk = α
k

MηM
, (6)

where ηM is the so-called harmonic number

ηM = 1 + 1

2
+ · · · + 1

M

(≈ ln M + 0.577 for large M
)
.

(7)
Also let qpk be the following quantile of the distribution of Tk :

qpk : prob(Tk ≥ qpk |H0
k ) = pk (8)

Finally, let

k̂ = max [k : Tk ≥ qpk ]. (9)

Then reject the hypotheses H0
1 , . . . , H0

k̂
and accept

H0
k̂+1

, . . . , H0
M , or reject no hypothesis if there is no k

that satisfies the inequality in (9). The above procedure
ensures that (4) is satisfied under general conditions on the
statistics {Tk} (see, e.g., [13]). If the test statistics can be
assumed to be independent or positively correlated then the
following larger significance levels,

pk = αk

M
, (10)

can be shown to ensure the control of FDR as in (4) [8], [13].
A compact self-contained proof of this result for independent
statistics is presented in the Appendix. Note that if we used
(6) in the case of independent statistics {Tk} then FDR would
be controlled at level α

ηm
.
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Remark 1: Equivalently k̂ can be defined as the maximum
value of k for which the p-value corresponding to the observed
Tk is less than the significance level pk . In this paper we prefer
to directly compare {Tk} to the quantiles {qk} as in (9).

III. MODEL SELECTION USING FDR
We will separately consider two types of models that are
frequently encountered in signal processing applications:
linear-in-the parameters models and nonlinear-in-the param-
eters models.

A. LINEAR MODELS
Let {x1, . . . , xM} be a set of N × 1 known vectors, and let the
observed data vector y ∈ R

N be given by:

y =
M∑

j=1

c jx j + e, (11)

where an unknown number of the coefficients {c j} are differ-
ent from zero, and the noise e is normally distributed with
zero mean and covariance matrix σ 2I : e ∼ N (0, σ 2I). The
problem is to decide which of the M possible regressors {x j}
in (11) have really contributed to the data vector y, or equiv-
alently which of the parameters {c j} are zero and which are
different from zero. The maximum likelihood estimates of the
unknown parameters in (11) are given by (see, e.g., chap 4
in [1]):

θ̂ =

⎡
⎢⎢⎣

ĉ1
...

ĉM

⎤
⎥⎥⎦ = (XT X)−1XT y (12)

σ̂ 2 = 1

N
||y − Xθ̂||2 (13)

where

X = [x1, . . . , xM ] (14)

(assuming that the inverse in (12) exists). Moreover, the co-
variance matrix of the estimation errors in θ̂ has the following
simple expression:

Cov(θ̂) = σ 2(XT X)−1 (15)

It is well known (see, e.g., [1], [7]) that the statistics :

Tk = |ĉk|2
σ̂ 2[(XT X)−1]kk

(16)

are asymptotically chi-square distributed with one degree of
freedom:

Tk ∼ χ2(1) k = 1, . . . , M (Under H0
k ) (17)

To use the above {Tk} as test statistics in the procedure of
Section II we must order them so that (see (5)):

T1 ≥ T2 ≥ · · · ≥ TM (18)

The thresholds {qpk } in (8) can be obtained from a ta-
ble/calculator of the χ2(1) distribution, and then we can use
(9) to find the regressors that should be included in the model.

Remark 2: Alternatively we can get the quantiles {qpk }, for
given {pk}, from a table (or calculator) of the standard normal
distribution. Indeed t ∼ χ2(1) if t = z2 with z ∼ N (0, 1).
Consequently,

prob(t ≥ qp) = prob(z ≥ q1/2
p ∪ z ≤ −q1/2

p ) = 2φ(−q1/2
p )
(19)

where φ(z) is the cumulative distribution function of N (0, 1).
Hence, we can get γp that satisfies

prob(z ≥ γp) = p

2
(20)

from a table of N (0, 1) and use qp = γ 2
p in (9).

We can relate the above FDR rule to the classical AIC and
BIC rules. To do so we consider the following hypotheses:

Hk : the model (11) contains exactly k regressors {x1, . . . , xk}
for k = 0, . . . , M (with H0: y = e). Note that, because the
regressors are ordered according to (18), the hypotheses Hk

are nested (i.e., under Hk the regressors are x1, . . . , xk , the first
(k − 1) of which are the regressors under Hk−1). Also note
that the ordering of the regressors is a departure from the tra-
ditional way in which AIC and BIC are applied to (11). Finally
we note that, in the terminology of the previous section, Hk is
equivalent to {H0

1 , . . . , H0
k } being false and {H0

k+1, . . . , H0
M}

being true.
Under Hk the negative log-likelihood function of y in (11)

is given by :

− ln p
(
y|θk, σ

2
k

) = constant+ N

2
ln(σ 2

k )+ 1

2σ 2
k

||y−Xkθk||2,
(21)

where

Xk = [x1, . . . , xk] for k = 1, . . . , M (X0 = 0) (22)

θk = [c1, . . . , ck]T (23)

The above function is minimized by (compare with (12) and
(13)):

θ̂k = (
XT

k Xk
)−1

XT
k y (24)

σ̂ 2
k = ||y − Xk θ̂k||2

N
(25)

and the minimum value is (to within a constant) :

−2 ln p(y|θ̂k, σ̂
2
k ) = N ln σ̂ 2

k (26)

The likelihood ratio is defined as follows:

Tk = − 2 ln
p(y|θ̂k−1, σ̂

2
k−1)

p(y|θ̂k, σ̂
2
k )

= 2 ln p(y|θ̂k, σ̂
2
k ) − 2 ln p(y|θ̂k−1, σ̂

2
k−1) (27)

VOLUME 3, 2022 405



STOICA AND BABU: FDR AND FER RULES FOR MODEL SELECTION IN SIGNAL

Inserting (26) in (27) yields the following simple expression
for Tk :

Tk = N ln

(
σ̂ 2

k−1

σ̂ 2
k

)
for (k = 1, . . . , M ) (28)

We have used the same notation for the right-hand sides of
(16) and (28) because these two quantities are asymptotically
equivalent (see Remark 3 below). Consequently, under Hk−1
the Tk in (28), similarly to (16), also has an asymptotic chi-
square distribution with one degree of freedom. In fact it is
well known that the likelihood ratio has an asymptotic χ2

distribution, viz.

−2 ln
p(y|θ̂k−1, σ̂

2
k−1)

p(y|θ̂k, σ̂
2
k )

∼ χ2(dim θk − dim θk−1)

(under Hk−1 ⊂ Hk ) (29)

not only for the linear model in (11) but under much more
general conditions (see, e.g., [14] and chapter 11 in [1]). We
will make use of this result in the next sub-section.

Remark 3: It is well known and easy to show that if σ 2 is
given and the regressors are orthogonal then the equivalence
between (16) and (28) holds in finite samples. This equiva-
lence also holds even if the regressors are not orthogonal but
the proof is a bit more complicated. First, observe that:

2 ln p
(
y|θ̂k, σ

2) − 2 ln p
(
y|θ̂k−1, σ

2)
=

(∥∥y − Xk−1θ̂k−1
∥∥2 − ∥∥y − Xk θ̂k

∥∥2
)

/σ 2

= yT
(

I − Xk−1
(
XT

k−1Xk−1
)−1

XT
k−1

)
y/σ 2

− yT
(

I − Xk
(
XT

k Xk
)−1

XT
k

)
y/σ 2

= rT
k

⎧⎨
⎩R−1

k −
[

I
0

] (
[I 0] Rk

[
I
0

])−1

[I 0]

⎫⎬
⎭ rk/σ

2,

(30)

where

rk = XT
k y (31)

Rk = XT
k Xk (32)

and we used the fact that

Xk−1 = Xk

[
I
0

]
. (33)

Next note that the numerator in (30) can be rewritten as:

rT
k R−1/2

k

⎧⎨
⎩Ik − R1/2

k

[
I
0

] ⎛
⎝[I 0]

× Rk

[
I
0

] ⎞
⎠−1

[I 0] R1/2
k

⎫⎪⎬
⎪⎭ R−1/2

k rk . (34)

The matrix between curly brackets in (34) is the orthogo-
nal projector onto the null space of the (k − 1) × k matrix
[I 0]R1/2

k . Because

[I 0] R1/2
k R−1/2

k u = 0

(
u =

[
0
1

])
, (35)

it follows that the said null space is spanned by the vector
R−1/2

k u. Consequently (34), and hence (30), can be written
as:

rT
k R−1

k uuT R−1
k rk/σ

2uT R−1
k u = |ĉk |2 /σ 2 [

R−1
k

]
kk (36)

which coincides with (16) (for known σ 2).
To proceed with the discussion on the connection between

FDR and penalized likelihood criteria (such as AIC and BIC),
observe that the inequality Tk ≥ qpk (see (9) in the description
of FDR) is equivalent to (see (27)):

2 ln p(y|θ̂k, σ̂
2
k ) − 2 ln p(y|θ̂k−1, σ̂

2
k−1) ≥ qpk (37)

which in turn holds if and only if

CFDR
k ≤ CFDR

k−1

where

CFDR
k = −2 ln p(y|θ̂k, σ̂

2
k ) +

k∑
j=1

qp j (38)

The conclusion is that evaluating (38) for k = 1, 2, . . . and
selecting the k̂ at which the last minimum of the criterion
occurs is equivalent to the FDR procedure based on the like-
lihood ratio (and also asymptotically equivalent to the FDR
based on the statistics in (16)). To relate (38) to AIC and BIC
(see e.g. [2], [4] and [5] for details on these two rules) it only
remains to observe that for qp = 2, we obtain

CAIC
k = −2 ln p(y|θ̂k, σ̂

2
k ) + 2k (39)

and for qp = ln N , we get

CBIC
k = −2 ln p(y|θ̂k, σ̂

2
k ) + k ln N (40)

As we will show later, the above AIC and BIC rules applied
to (11) after ordering the regressors (which can be viewed
as modifications of the classical rules using FDR ideas, see
e.g. [10] and references therein) perform reasonably well
whenever their basic assumptions hold. The main advantage
of this modified way of using AIC and BIC is computational.
The traditional use of AIC and BIC requires testing all 2M

possible combinations of zero and non-zero coefficients in
(11), which quickly would become prohibitive as M increases.

B. NONLINEAR MODELS
A common type of model in signal processing applications has
the same basic form as (11) but with the essential difference
that the “regressors” {x j} depend on unknown parameters.
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This means that, under Hk , the model is given by :

y =
k∑

j=1

c jx j (b j ) + e (41)

where both {c j} and {b j} (as well as σ 2) are unknown. There-
fore, in the present case the parameter vector of the “signal”
term in (41) comprises both the linear parameters {c j} and the
nonlinear ones {b j}:

θk = [c1, . . . , ck, bT
1 , . . . , bT

k ]T (42)

The likelihood ratio property in (29) is valid in this general
case as well, and thus we can use FDR either in the hypothesis
testing form, (9), or in the model selection criterion form (38),
to obtain an estimate k̂ of the integer-valued parameter of (41).
An important difference from the procedure described in the
previous section is that in the present case we do not need to
do anything to order the test statistics {Tk} as in (18). Indeed,
for (41) we can expect that an analog ranking will hold in most
cases without any intervention by the user. This means that in
the case of (41) both AIC and BIC as well as FDR can be
used without any concern about ordering the test statistics. To
explain why this is so, note that for (41) we estimate not only
the coefficients {c j} by minimizing the fitting criterion but also
the parameters {b j} that define the regressors. Therefore, for
example for k = 1, we determine both the optimal c1 and the
optimal regressor x1. The greedy procedure described in the
previous section chooses (for k = 1) the regressor for which
T1 in (16) is larger than T2, T3, etc. However, this is nothing
but a computationally convenient surrogate for the complete
procedure which would fit the regressors one by one to y in
order to find the best regressor (out of all possible regressors)
for the one-regressor (k = 1) model.

An important aspect concerning the application of FDR (or
FER, see the next section) to nonlinear models described by
(41) is the choice of M: how many null hypotheses {H0

k } do
we (implicitly) test when taking a decision about the possible
inclusion in (41) of an additional regressor? In the real-valued
parameter case, which we consider in this paper, the set of pos-
sible regressors spanned by the nonlinear parameters in (41)
is a manifold, and hence M is theoretically infinite. However
for any given regressor vector there are many regressors in its
vicinity that are only infinitesimally different from it and thus
can be neglected. Consequently, from a practical standpoint,
we can “sample” the said manifold using a finite number M of
regressors that cover it well. The selection of these regressors,
and therefore of M, is a problem whose solution is application
dependent (see Section IV for details and examples).

IV. MODEL SELECTION USING FER
Consider, once again, the hypotheses {H0

k }M
k=1, which have

been ordered according to (5). The so-called familywise error
rate is defined as (see Table 1):

FER = prob(IR ≥ 1) (43)

Bonferroni rule is the oldest and simplest procedure for con-
trolling the FER. It uses the following significance levels:

pk = α/M (44)

and it guarantees that

FER ≤ α (45)

Because the significance levels in (44) do not depend on k, the
Bonferroni rule does not require the hypotheses to be ordered.
However, it turns out that in many cases these significance
levels are “too small” and hence the Bonferroni rule is too
conservative (i.e., it has a high probability of miss).

A more powerful rule, that controls the FER as in (45), uses
the following sequence of significance levels [11]:

pk = α/(M + 1 − k). (46)

A simple proof of the fact that the inequality in (45) is satisfied
runs as follows. Let

C = the sub-set of true null hypotheses, hence |C| = M̃
(47)

H0
h = the first incorrectly rejected null hypothesis in the

sequence H0
1 , H0

2 , . . . H0
M . (48)

Then it must hold that:

Th ≥ qα/(M+1−h) (49)

and

H0
1 , . . . , H0

h−1 = correctly rejected, hence h − 1 ≤ M − M̃
(50)

It follows that the total false alarm probability of the rule
based on (46) satisfies:

prob

(⋃
h∈C

Th ≥ qα/(M+1−h)

)
≤

∑
h∈C

prob
(
Th ≥ qα/(M+1−h)

)
=

∑
h∈C

α

M + 1 − h
≤

∑
h∈C

α

M̃
= α,

(51)
where the first inequality follows from Boole’s union bound
and the second from (50) (the equality follows from the def-
inition of the quantiles). With this observation, the proof of
(45) is concluded.

Note that, similarly to the control of FDR using (6), the
control of FER as in (45) does not require any assumption on
the statistics {Tk}. However, like for FDR, the upper bound
in (45) can be loose if {Tk} are highly correlated. Also note
that, the expression for the significance levels in (46) is quite
intuitive: let us say that we have rejected H0

1 , . . . , H0
k−1 and

are currently considering H0
k , then there are M − k + 1 hy-

potheses left to test and consequently we can change the
denominator M in the Bonferroni significance levels (44) to
M + 1 − k.

We can directly use (46) to obtain a model selection crite-
rion analog to the FDR criterion in (28), which we will call
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FER for short:

CFER
k = −2 ln p

(
y|θ̂k, σ̂

2
k

) +
k∑

j=1

qp j (52)

(like for FDR, we choose α = 0.01 in (46)).
Next we remark on a difference between FER and FDR,

which is quite relevant to model selection. Let C be defined as
in (47), and let:

C̄ = the subset of false null hypotheses,
∣∣C̄∣∣ = M−M̃ � k0

PFA = probability of false alarm (the probability of rejecting

all hypotheses in C̄ and at least one in C)

PD = probability of detection (the probability of rejecting

all hypotheses in C̄ and nothing else)

We can write PFA as

PFA = prob(rejecting all H0
k ∈ C̄|IR ≥ 1) prob(IR ≥ 1)︸ ︷︷ ︸

FER

≤ FER (53)

Because for a sound selection procedure PD is close to one, it
follows that in such a case

PFA ≈ FER (54)

Consequently α can be expected to be a tight upper bound
on the P FA of a sound rule that controls FER at level α.
Interestingly such a rule also controls the FDR at level α

because FDR≤ FER:

FDR = E(IR/R) ≤ E(I(IR ≥ 1)) = prob(IR ≥ 1) = FER
(55)

On the other hand, the converse is not necessarily true: a pro-
cedure that controls FDR at level α may have a substantially
larger FER (and hence PFA) than α. Intuitively this is so since,
out of the total number of R rejections in a data realization,
an FDR control at level α allows on the average IR = αR
of them to be incorrect; and αR incorrect rejections per data
realization yield a PFA significantly larger than α. We can
use Markov’s inequality to lend some support to the above
intuitive argument:

FDR ≥ λprob(IR/R ≥ λ) for any λ > 0. (56)

Note that we cannot use (56) to upper bound FER by FDR≤ α

because FER corresponds to λ → 0 in (56), in which case the
bound in (56) becomes infinite and hence useless. However,
we can heuristically make use of (56) in the following manner.
For a sound procedure with PD close to 1, R can be expected
to be near k0 (a bit smaller if there are false negatives, or a
bit larger when there are false positives). Using the approxi-
mation R = k0 in (56) yields the following approximate upper
bound on FER in terms of FDR:

FER = prob

(
IR

k0
≥ 1

k0

)
≈ prob

(
IR

R
≥ 1

k0

)
≤ k0FDR

≤ αk0 (57)

Seemingly, therefore, the PFA of an FDR controlling pro-
cedure can be significantly larger than that of a procedure
that controls the FER at the same level. However, while we
have empirically observed higher PFA values for the FDR
rule (especially in cases with many false null hypotheses, i.e.
k0 >> 1), the increase was not as drastic as suggested by (57).
A possible explanation is that the control of FDR may often be
loose and therefore the achieved FDR might be considerably
smaller than the bound (M − k0)α/M in (4), which decreases
as k0 increases; also the procedure based on (6) in fact may
control FDR at a level much smaller than α, for instance at
level α/ηm whenever the regressors are (nearly) orthogonal.

Both FDR and FER rules can be used as in (9) to select the
null hypotheses to be rejected. Alternatively, they can select
these hypotheses using:

ˆ̂k = min
k

[
k : Tk < qpk

] − 1 (58)

The rules based on (9) are called “stepup rules “ because they
proceed forward to test Tk for k = 1, 2, . . . , up to the largest
k for which Tk ≥ qpk . Different from this, the rules based on
(58) can be implemented in a backward fashion to test Tk for
k = M, M − 1, . . . , up to the smallest k for which Tk < qpk

and so they are called “stepdown rules”.
With reference to the associated model selection criterion

Ck , the stepdown and stepup rules correspond to picking up

the first ( ˆ̂k) and, respectively, the last (k̂) minimum point of

the criterion. Clearly k̂ ≥ ˆ̂k and thus the stepup rules have
a larger probability of false alarm (and, correspondingly, a
smaller probability of miss) than the stepdown rules using
the same sequence of significance levels. However, significant
differences between the stepup and stepdown rules usually
occur only for small values of N or high noise levels, a regime
in which they have rather small PD and hence are not really
useful anyway. As N increases (or the noise power decreases),
the criterion Ck tends to be unimodal and therefore the two
types of rules yield same estimate k̂ = ˆ̂k. To avoid choosing
between stepup and stepdown rules the user may decide to
pick up the global minimum of Ck , which is what we will
do in the numerical experiments of the next section. It is our
experience that the global minimum of Ck coincides with the

better one of k̂ and ˆ̂k in most realizations.
To illustrate the differences between the significance levels,

quantiles and the corresponding penalties used by FDR, FER,
AIC and BIC we consider an example with M = 30 and
N = 1000 (α = 0.01). From the results presented in Fig. 1 we
can see that the FDR and FER penalties are larger than those
of BIC and AIC.

V. SIGNAL PROCESSING APPLICATIONS AND
NUMERICAL ILLUSTRATIONS
We will present four signal processing applications of the
FDR and FER rules, and compare their performance with that
of AIC and BIC.
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FIGURE 1. Comparison of significance levels, quantiles and penalties of FDR, FER, AIC and BIC, M = 30, N = 1000, α = 0.01.

A. LINEAR REGRESSION
We generate the data vector y using (11) with k0 = 10 (the
true number of regressors), an X matrix with elements in-
dependently drawn from N (0, 1), M = 100, {c j}5

j=1 = 5,

{c j}8
j=6 = 3 and {c j}10

j=9 = 1; the indexes of the 10 non-zero
coefficients are independently drawn from U [1, 100] and then
fixed, and the noise variance is set to 1. The detection prob-
ability (which is the probability of selecting the 10 correct
regressors) is shown as a function of N in Fig. 2(a). It can
be seen from the figure that FDR and FER perform similar
to each other and their performance is much better than that
of AIC or BIC. The false alarm probability vs N is shown in
Fig. 2(b). The false alarm probabilities of FDR and FER are
quite low for all values of N ; on the other hand, the false alarm
probabilities of AIC and BIC are rather large and they tend
to increase with N (the reason behind this behavior will be
explained in the discussion at the end of the second example).
In Fig. 2(c), the average model order selected by each method
is shown for different values of N . It can be seen that as N
increases both FDR and FER choose the correct model order.
AIC, on the other hand, significantly overestimates the model
order, and to some extent BIC does the same as well.

B. COMMUNICATION CHANNEL
We consider a finite-memory channel with input denoted
{u(k)}N

k=1. Then the output of the channel can be written as
in (11) with

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(1) · · · 0
...

. . .
...

... u(1)

...
...

u(N ) · · · u(N − M )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)

We generate {u(k)} as a white normal sequence with
zero mean and unit variance. The noise variance is σ 2 = 1.
Different from the linear regression example, here we con-
sider a case in which the sparsity of the parameter vector
is more pronounced (i.e. we assume a multi-path chan-
nel): k0 = 5, M = 100, c j = 2 for j = 1, 10, 20, 40 and 60
and N is varying in [100, 300]. The detection probability,
false alarm probability, and average model order are displayed
versus N in Fig. 3. Similar to the linear regression case, the
detection performances of FDR and FER are similar to each
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FIGURE 2. Linear regression application. The values of different parameters: k0 = 10, M = 100, {c j }5
j=1 = 5, {c j }8

j=6 = 3, {c j }10
j=9 = 1, and σ2 = 1.

other and significantly better than those of AIC and BIC.
Also both FDR and FER choose the correct model order as
N increases.

An explanation of the poor performance of AIC and BIC
in the two examples above, in particular their high probability
of false alarm/discovery, runs as follows. Let us assume that
the k0 true regressors have been selected by the rule. The
next step is to decide if the number of regressors should
be increased to k0 + 1. Ideally, making this decision would
require comparing the likelihoods of the model with order k0

and all models with order k0 + 1. There are M − k0 models
with k0 + 1 regressors that we should compare with, and it is
clear that if the comparison were done with each of them then
the false alarm probability, which is p for one test (see Fig. 1),
would significantly increase beyond p. While we make only
one comparison, we compare with the model which includes
the (k0 + 1)−th regressor selected in the first step of the pro-
cedure (according to the ranking in (18)) and that model is
likely to produce a larger increase of the likelihood function
than any of the other (M − k0 − 1) models. Consequently the
single comparison that we make is basically equivalent to

comparing the k0−order model with all (M − k0) models of
order (k0 + 1).

The somewhat counter intuitive increase of the probability
of false alarm of AIC and BIC as N increases, see the above
figures, also begs an explanation. Consider AIC as an exam-
ple: it will produce a false alarm if Ck0 ≥ Ck0+1 (k0 being
the true number of regressors). Let us say that for N >> 1
this happens in 100% of cases (i.e. noise realizations), as in
Fig. 2. For a much smaller value of N , however, the random
fluctuations of the negative-log-likelihood in the AIC criterion
are much larger and therefore it can happen that by chance
Ck0 ≤ Ck0+1 in a number of cases, which explains why the
probability of false alarm can be smaller for a smaller value of
N . Obviously the probability of false alarm of both AIC and
BIC can be kept at bay by increasing their penalties. However
there are no clear rules for how to do that in the general case:
only heuristic suggestions, which lack theoretical motivation,
are available.

An interesting aspect, related to the above discussion, con-
cerns the application of selection rules to the nonlinear model
in (41) which will be considered in the next two examples.
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FIGURE 3. Communication channel application. The values of different parameters: k0 = 5, M = 100, c1 = c10 = c20 = c40 = c60 = 2, and σ2 = 1.

As explained in Section III-B, in the case of this model, it
is the parameter estimation method that implicitly selects the
“best regressor” to be added to the model when we increase
the order by one (k → k + 1). However, in the case of (41),
the regressor set is a manifold (spanned by the parameters
{b j}) and hence M is theoretically infinite. Consequently, the
situation seems to be worse than in the linear model case,
unless the rule has a built-in feature that increases the penalty
term to prevent a blow-up of the false-alarm probability. This
feature does exist: when we increase the order from k to
k + 1, the number of parameters (and hence the number of
degrees of freedom of the X 2 distribution of the likelihood
ratio statistics) increases by 1 + dim(b) instead of just by 1
(assuming, for simplicity, that dim(b j ) does not depend on
j). This leads to a proportionate increase of the penalties of
AIC and BIC. For FDR and FER the penalties also increase
due to the increase of the quantiles that compose the penalty
terms of the latter rules. In addition to this (as mentioned
above) in the case of nonlinear models the regressor set is a
manifold, which can be accurately sampled (or covered) only
if M is sufficiently large. A larger value of M leads to smaller
significance levels for both FDR and FER, which in turn leads

to an increase of the penalty terms of these rules and therefore
a reduction of the false-alarm probability.

C. SINUSOIDAL SIGNALS
This is a typical signal processing application of the nonlinear
model discussed in Section III-B with

x j = [sin(2π f j + φ j ) . . . sin(N2π f j + φ j )]
T , (60)

where f j is the normalized frequency and φ j is the initial
phase of j−th sinusoid. A generic regressor vector of the
above form can be re-written as:⎡

⎢⎢⎢⎢⎢⎣
cos (2π f ) sin (2π f )

...
...

...
...

cos (N2π f ) sin (N2π f )

⎤
⎥⎥⎥⎥⎥⎦

[
a

b

]
(61)

where a = sin(φ) and b = cos(φ). The nonlinear parameter
of (61) is the frequency f whose variation in the interval [0,1]
generates the regressor set/manifold. It follows from basic
results in spectral analysis (see e.g. [15]) that a sampling of
f using a grid with step 1/N yields a satisfactory covering of
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FIGURE 4. Sinusoidal signal application. Parameter settings: k0 = 3, c1 = 5, c2 = 3, c3 = 2, f1 = 0.1, f2 = 0.25, f3 = 0.42, φ1 = 0.1π,

φ2 = −0.7π, φ3 = −0.32π, and σ2 = 1.

the said manifold. Consequently, in the present case we can
use the significance levels of FDR and FER in (6) and (46)
with M = N :

pFDR
k = αk

N (0.577 + ln N )
(62)

pFER
k = α

N + 1 − k
(63)

From the above significance levels we can calculate the
corresponding quantiles (and hence the penalties) of the two
rules using a χ2 calculator for a distribution with 3 degrees of
freedom (which is the number of unknown parameters in (61):
a, b and f ).

We consider the following specific values of the
parameters in this example: k0 = 3, c1 = 5, c2 = 3, c3 = 2,

f1 = 0.1, f2 = 0.25, f3 = 0.42, φ1 = 0.1π, φ2 =
−0.7π, φ3 = −0.32π , N varying in [10, 140], and σ 2 = 1.
We obtain approximate maximum likelihood estimates of
{ f j}k

j=1 using the periodogram method (see e.g. [15]) and

then use { f̂ j} to estimate {c j, φ j}k
j=1 via a simple linear least

squares method. The estimate of σ 2 is obtained as in (13).

The probability of correct detection, probability of false alarm
and average model order selected by the four rules are shown
as a function of N in Fig. 4. In this example BIC worked
almost as well as FDR and FER and the performance of AIC
also improved significantly compared with what we saw in
the previous examples. This was expected as BIC is known to
be consistent in the present application, and AIC is known to
work reasonably well too.

D. LOW-RANK MATRIX APPROXIMATION
We consider a noisy matrix whose “signal part” has a low rank
:

A = BCDT + E (64)

where A ∈ R
m×n, B ∈ R

m×k0 , D ∈ R
n×k0 , and

C =

⎡
⎢⎢⎢⎢⎢⎣

c1 0 · · · 0

0 c2 · · · ...
...

...
. . . 0

0 0 0 ck0

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

k0×k0 (65)
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with ko << min(m, n). The elements of the noise matrix E in
(64) are assumed to be i.i.d. normal variables with zero mean
and variance denoted σ 2. The low-rank decomposition in (64)
is not unique and, to be more specific, we assume that BCDT

is the singular value decomposition (SVD) of the signal part
of (64), therefore B and D are semi-unitary matrices and
C is positive semi-definite (BT B = DT D = I and {ck ≥ 0}).
Furthermore, to simplify the notation and exposition we focus
on the case of square matrices: m = n (the general case of
m 
= n can be treated in much the same manner).

We can re-write (64) as in (41) with y = vec(A),
E = vec(E), and the following unknown “regressor” vectors
(with a Kronecker-product structure):

xk = dk ⊗ bk (66)

where bk and dk are the k−th columns of B and D. Under
Hk , the negative log-likelihood function associated with (64)
is given by (to within a constant):

− ln p(A|Bk, Ck, Dk, σ
2
k ) = m2

2
ln σ 2

k

+ 1

2σ 2
k

||A − BkCkDT
k ||2F (67)

It is well known that the maximum likelihood estimates
B̂k, Ĉk, D̂k which minimize the above function with respect
to Bk, Ck, Dk can be obtained by truncating the SVD of the
matrix A keeping only the k largest singular values and asso-
ciated singular vectors [16] (note that the SVD provides all
estimated models for k = 1, . . . , m). The estimate of σ 2

k is
then given by :

σ̂ 2
k = 1

m2
‖A − B̂kĈkD̂T

k ||2F = ĉ2
k+1 + · · · + ĉ2

m

m2
(68)

The likelihood ratio statistics Tk have the same expression as
in (28) but with N replaced by m2 :

Tk = m2 ln

(
σ̂2

k−1

σ̂ 2
k

)
(69)

However in the present case Tk has an asymptotic chi-square
distribution with 2 m degrees of freedom (see (23)): Tk ∼
χ2(2 m). This means that the quantiles qpk should be com-
puted for χ2(2 m), with 2 m being possibly much larger than
the number of degrees of freedom encountered in the previous
cases. The main difference from the previous applications,
however, is the fact that finding a satisfactory sampling of the
regressor vector set is a bit more complicated in the present
case.

Consider the FDR first. A generic vector b (and similarly
for d) lies on the (m − 1)-dimensional surface of the unit
sphere in R

m. For 1D this “surface” consists of 2 points (+1
and −1). In 2D the said surface is a circle, and we can use 360
vectors to sample it (with 1 deg between adjacent vectors).
In 3D we can cover the surface using 360 deg in longitude
and 180 deg in latitude, therefore we can use 180 × 360 =
2(180)2 vectors to sample it. Generalizing to m−dimensions

leads to the conclusion that a number of 2(180)m−1 vectors
can be used to sample the set of a generic b regressor (and
similarly for d). Because all possible combinations between
the b and d vectors can occur, the total number of regressor
vectors is:

4(180)2(m−1) (70)

Consequently the significance levels of FDR are given by:

pFDR
k = αk

4(180)2(m−1)[0.577 + 2(m − 1) ln (180) + ln 4]
(71)

where we used the approximation in (7) for the harmonic
number (which holds well here because (70) is a large num-
ber).

Next we consider the FER, for which the only difference
from the above discussion is as follows. For b1 there is no
difference as for FER too this vector is only restricted to lie on
the surface of the unit sphere in R

m, but b2 must be orthogonal
to b1 (and similarly for d1 and d2); hence b2 belongs to a
sphere in R

m−1, b3 to a sphere in R
m−2 (because b3 must be

orthogonal to both b1 and b2), and so forth. Making use of this
observation and of (70) we can write the significance levels of
FER as:

pFER
k = α

4(180)2(m−k)
(72)

Remark 4: The above sampling of the spherical surface,
based on patches of 1 deg in longitude and latitude, is denser
close to the poles than around the equator (easy to visualize
in 3D). If desired, a uniform patching can be obtained using
the expression for the solid angle subtended by the spherical
surface in R

m:


m = 2πm/2

�(m/2)
[in steradians] (73)

where �(·) is the gamma function. The conversion of (73)
from steradians to “degrees” (for example, square-degrees for

3D) can be done multiplying (73) by
( 180

π

)m−1
. For m = 1,

2 and 3 this gives 
m = 2, 360, and 4(180)2/π . The first
two of these numbers are the same as the values given by
our simpler formula, 2(180)m−1, but the third one is smaller
(which was expected as our sampling is denser close to the
poles). We have tried using (73) in FDR and FER rules in a
limited number of cases but failed to notice any significant
difference from the performance of the rules based on our
simpler (although less uniform) sampling formula.

Regarding the implementation of (71) and (72), note that
for large values of m (m > 10), the chi-square calculator in
MATLAB can fail to return meaningful quantiles. To cir-
cumvent this numerical problem we suggest the following
alternative. We first calculate the quantile corresponding to
pk from the standard normal distribution and then use the
approximation χ2(2 m) ≈ N (2 m, 4 m), which holds for suf-
ficiently large m, to obtain the corresponding quantile for
the chi-square distribution. To compute the quantiles of the
normal distribution (as the normal distribution calculator in
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FIGURE 5. Low-rank matrix approximation application. Parameter settings: k0 = 3, m = n = 100, c1 = 5, c2 = 3, c3 = 3.

MATLAB does not work well either for small p values) we
used the fact that ln(p) is well approximated (for sufficiently
small p) by the following function of the quantile (q) of the
normal distribution [17]:

ln(p) = ln

⎛
⎝ e− q2

2√
2πq

⎞
⎠ (74)

= −q2

2
− ln(

√
2π ) − ln(q) (75)

In sum for given p, we first solve the above nonlinear equation
using the Fsolve function in MATLAB and obtain q and next
use q in the normal approximation of the chi-square distribu-
tion to obtain the corresponding chi-square quantile.

In the simulation example of (64) we consider the fol-
lowing specifications: k0 = 3, m(= n) = 100, c1 = 5, c2 =
3, and c3 = 3. Furthermore B and D are m × 3 semi-unitary
matrices obtained from the QR decomposition of random ma-
trices with i.i.d. normal elements. Fig. 5 shows the probability
of detection, probability of false alarm, and the average model
order selected by the four rules for a range of values of 1/σ 2.

The detection probabilities of FDR and FER almost coincide
with each other and they converge to one much faster than
the detection probability of BIC. On the other hand, AIC
has a constant detection probability over the range of noise
variances considered, which is almost equal to probability of
false alarm of this rule.

Remark 5: Asymptotic performance studies of model se-
lection rules typically require that [dim(θk )]2/N → 0 as N →
∞. This condition was satisfied in all three previous examples.
However, in the present case the above ratio is larger than
1 even for k = 1: (2 m)2/m2 = 4. Consequently the perfor-
mance of the rules is not expected to increase with m. That
is the reason why in this example we have plotted the perfor-
mance metrics versus 1/σ 2.

VI. CONCLUSION
Most models used in signal processing applications contain
both real-valued parameters and integer-valued parameters
(which determine the structure, in particular the orders, of
the model). The estimation of the former is well studied and
understood and there are optimal methods, such as the method
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of the maximum likelihood, which attain the ultimate accu-
racy. On the other hand, the estimation of the latter parameters
(i.e., the operation of model selection), while also extensively
studied, is less understood and well-established methods that
always perform better than any competitor do not exist. AIC
and BIC rules, without a doubt, are the workhorses of model
selection in the signal processing literature and elsewhere
(see, e.g. [2], [3], [4]). Under certain conditions, the former
is known to overestimate the true orders with a (false alarm)
probability of about 0.16, whereas the latter is consistent (as
N → ∞). AIC’s tendency of overestimation should not be
viewed as a drawback if the model is to be used for prediction.
However, if the main purpose of the modeling exercise is
acquiring information about the actual data generating mech-
anism and model interpretability is important, then consistent
(or nearly so) model selection becomes a key factor and con-
sequently BIC is to be preferred to AIC.

The problem is that, as illustrated in the previous section,
in applications in which the range of possible model orders
is considerable (i.e., M >> 1), even BIC can perform rather
poorly. The primary aim of this paper was to show that model
selection methods, which perform much better than BIC in
such applications and not worse in regular cases in which
BIC is consistent, do exist. We have shown how the FDR and
FER procedures of multiple hypothesis testing can be used
to derive such methods (or rules) that can perform better in
terms of model selection accuracy than both AIC and BIC. A
secondary goal of the paper was to briefly introduce the FDR
and FER principles to those readers who were less familiar
with them.

The FDR and FER rules presented in the previous sections
can be directly used in many signal processing applications.
Furthermore, the basic ideas of these rules can be employed
to develop new rules for model selection based on even more
advanced results and methods from the multiple hypothesis
testing literature. Indeed there exist several enhanced versions
of (6) and (46) as well as more sophisticated methods for con-
trolling the FDR or FER (see, e.g., [18], [19]). Can we use the
methodology described in this paper along with those more
advanced hypothesis testing methods to obtain new model
selection rules with enhanced performance? This is a question
that is worthy of further research in our opinion.

APPENDIX
PROOF OF (4) FOR INDEPENDENT STATISTICS AND THE
SIGNIFICANCE LEVELS IN (10)
Using the definitions of k̂ in (9) and C in (47) we can write
FDR as:

FDR = E

⎡
⎣∑

j∈C I
(

Tj ≥ qpk̂

)
k̂

⎤
⎦ (76)

where I(·) denotes the indicator function (I(A) = 1 if A =
true and I(A) = 0 if A = false). The expression for FDR in
(76) holds because any H0

j with j > k̂ (and hence Tj < qpk̂
)

is accepted, whereas any H0
j with j ≤ k̂ is rejected and its

test statistics satisfies Tj ≥ Tk̂ ≥ qpk̂
. Interestingly there can

be T ′
j s that are under their quantiles, Tj < qp j , but they are

rejected too if j ≤ k̂ (see (9)).
The main difficulty associated with evaluating the expec-

tation in (76) is that Tj and k̂ are not independent of each
other. To overcome this problem we will try to find a k̃ j that is
independent of Tj and which is such that

I
(

Tj ≥ qpk̂

)
k̂

≤
I
(

Tj ≥ qpk̃ j

)
k̃ j

∀ j (77)

To do so, we replace Tj by a value T̃1 >> 1 (theoretically
infinite, but a value T̃1 > T1 suffices). Then we re-order the
statistics with Tj replaced by T̃1 :

[T1, . . . , Tj−1T̃1, Tj+1, . . . , TM ] → [T̃1, T̃2, . . . , T̃M ] (78)

(with T̃1 ≥ T̃2 · · · ≥ T̃M ). Let k̃ j be defined similarly to k̂
but for the statistics {T̃k}. From the definition in (78) it is
clear that T̃k = Tk−1 for k = 2, . . . , j and T̃k = Tk for k = j +
1, . . . , M. This observation has the following implications:
� If j > k̂ then I(Tj ≥ qpk̂

) = 0 and thus (77) must hold.
Note that the inequality in (77) can be strict in such a case
because T̃k ≥ Tk (for k = 1, . . . , j), consequently we
might have T̃k ≥ qpk even when Tk < qpk . This means
that in the present case k̃ j ≥ k̂ with strict inequality being
possible and we have qpk̃ j

< qpk̂
if k̃ j > k̂ and hence the

RHS in (77) can be > 0.
� If j < k̂ then T̃k = Tk for k = k̂, . . . , M and thus k̃ j = k̂

so (77) holds.
� Finally, If j = k̂ then T̃k = Tk for k = k̂ + 1, . . . , M and

T̃k̂ = Tk̂−1 ≥ Tk̂ ≥ qpk̂
, so we still have k̃ j = k̂ and (77)

holds true.
Using (77) along with the fact that k̃ j and Tj are indepen-

dent of one another (as k̃ j depends on {Tk}k 
= j) we can write:

FDR ≤
∑
j∈C

E

(
I(Tj ≥ qpk̃ j

)

k̃ j

)

=
∑
j∈C

Ek̃ j

{
ETj

(
I(Tj ≥ qpk̃ j

)

k̃ j

)}

=
∑
j∈C

Ek̃ j

{
prob(Tj ≥ qpk̃ j

)

k̃ j

}
(79)

=
∑
j∈C

αk̃ j

Mk̃ j
= M̃

M
α (80)

The proof of (4) is thus concluded.
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