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ABSTRACT The analysis of harmonics and non-sinusoidal waveform shape in time-series data is growing
in importance. However, a precise definition of what constitutes a harmonic is lacking. In this paper, we
propose a rigorous definition of when to consider signals to be in a harmonic relationship based on an integer
frequency ratio, constant phase, and a well-defined joint instantaneous frequency. We show this definition is
linked to extrema counting and Empirical Mode Decomposition (EMD). We explore the mathematics of our
definition and link it to results from analytic number theory. This naturally leads to us to define two classes of
harmonic structures, termed strong and weak, with different extrema behaviour. We validate our framework
using both simulations and real data. Specifically, we look at the harmonic structures in shallow water waves,
the FitzHugh-Nagumo neuronal model, and the non-sinusoidal theta oscillation in rat hippocampus local field
potential data. We further discuss how our definition helps to address mode splitting in nonlinear time-series
decomposition methods. A clear understanding of when harmonics are present in signals will enable a deeper
understanding of the functional roles of non-sinusoidal oscillations.

INDEX TERMS Electrophysiology, Empirical Mode Decomposition, Harmonic Analysis, Hilbert Trans-
form, Instantaneous Frequency.

I. INTRODUCTION
Real-world time-series data often show strong non-sinusoidal
features [1], [2], [3], [4]. In neurophysiology, non-
sinusoidality has been observed across multiple species
and different modalities, and such features have functional
roles [5], [6], [7].

Non-sinusoidal waveforms have harmonics in their
spectra, which can produce spurious results when us-
ing cross-frequency connectivity metrics, such as phase-
amplitude coupling (PAC) [8], [9] and phase-phase coupling
(PPC) [10].

This difficulty in distinguishing whether a signal comprises
a single non-sinusoidal oscillation or several interacting os-
cillations has practical consequences for signal processing.
For example, it has been claimed that harmonic coupling may
account for most, if not all, local PAC detected in human
magnetoencephalography (MEG) studies [11]. To tackle this

ambiguity, we need a complete definition for the question
“what exactly is a harmonic?”. The reader might think this
a trivial question, and agree with the definition given by
Wikipedia: “A harmonic is a wave with a frequency that is a
positive integer multiple of the frequency of the original wave,
known as the fundamental frequency [12].” Existing literature
in neuroscience often uses this ‘integer frequency ratio’ defini-
tion of a harmonic [13], with some authors including a stable
phase relationship between harmonics as a condition [11].
We contend that these definitions are correct but incomplete
in that they allow for a wide set of cases where intuitively
separate signals would be labelled as harmonics. For instance,
with one set of amplitude and phase values, the sum of a 10 Hz
and a 20 Hz oscillation may create a single non-sinusoidal
oscillation in which the 20 Hz signal “blends in” to the 10 Hz
base (Fig. 1A). Another amplitude and phase configuration
may create a summed signal in which dynamics from both
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FIGURE 1. Harmonic intuitions. Top plots show the sum of a 10 Hz wave
(base, unit amplitude) and a 20 Hz wave (HF) in red and a reference sine
wave (black). In (A), the HF amplitude is low (0.2) and shape changes
without introducing prominent extrema. In (B), HF amplitude is high (0.75)
and new extrema are introduced. (C) and (D) show the associated
instantaneous frequencies. (C) is well-defined everywhere, whilst (D) goes
negative due to prominent secondary extrema.

the 10 Hz and 20 Hz signals are clearly and separately visible
(particularly if the amplitude of the 20 Hz signal is relatively
high, Fig. 1B). The integer frequency ratio and consistent
phase conditions are not sufficient to separate these cases.

How do we distinguish non-sinusoidality driven harmonics
from independent oscillations (perhaps synchronised in fre-
quency and coherent for purposes of information transfer [14]
and [15])? A complete and intuitive definition of when sig-
nals are in a harmonic relationship is lacking. Fourier-based
methods as commonly used are not suitable for analysis of
nonstationary and nonlinear signals [16]. Many alternative
data-driven decomposition methods exist, for example syn-
chrosqueezed wavelet transforms (SSWT) [17], variational
mode decomposition (VMD) [18], eigenvalue decomposition
(EVD) [19], empirical wavelet transform (EWT) [20], sparse
time-frequency representation [21], time-varying vibration
decomposition [22], and resonance-based signal decompo-
sition [23]. However, of the alternative methods, Empirical
Mode Decomposition (EMD) is a key example that has in-
spired many of the others [24]. It decomposes data into a
handful of Intrinsic Mode Functions (IMFs). EMD does this
by a sifting algorithm where progressively slower oscillations
are identified by finding extrema in the time-series. As such,
it is intimately linked to the harmonic definition we propose.
For instance, in a signal made of two sinusoidal components,
EMD treats them as separate or joint based on which signal
component determines the maxima and minima [25]. More-
over, each IMF has a well-defined, non-negative Instantaneous
Frequency (IF), and is theoretically able to represent any non-
sinusoidal oscillation. However, in noisy real-world data, the

bandwidth of an IMF is limited, even with improved EMD-
based techniques [26]. Highly non-sinusoidal waveforms may
thus have harmonics split across different IMFs, which we
refer to as mode splitting.

Following intuitions from data-driven modal decompo-
sitions [24], [25], we propose that the Instantaneous Fre-
quency [27], [28] is the missing ingredient for a full definition
of a harmonic. IF is able to fully characterise the shape of a
mono-component, non-sinusoidal oscillation but will collapse
into non-physical negative frequencies when representing a
multi-component signal [5]. We can utilise this property to
define an intuitive set of conditions for deciding when two
signal components are in harmonic relation.

In this work, we propose a simple yet powerful set of
conditions to define harmonics. We formalise the notion us-
ing instantaneous frequency and show this can be intuitively
interpreted through notions of extrema counting. We find
a natural interpretation of our results in the language of
EMD. Choosing an analytically tractable model, we further
explore the mathematical properties of our definition. We
link them to results from analytic number theory and find
two types of harmonics differing in their extrema. We then
study harmonics in simulated neuronal oscillations using the
FitzHugh-Nagumo equations and in a model of asymmetric
shallow water waves [2]. Finally, we apply our framework
together with masked EMD to study rat local field potential
(LFP) data. We validate our conditions on the asymmetric
theta oscillation shape and illustrate how to decide whether to
combine modes produced by nonlinear decomposition meth-
ods to address the mode splitting problem.

II. HARMONIC STRUCTURES
A. INTUITION
What do we mean when we say oscillatory time-series are in a
harmonic relation? In lay terms, we mean that one time-series,
the base, determines “most” of the wave properties (e.g. the
period, most of the amplitude), whereas the other time-series,
the harmonics, determine fine details of the waveform shape.
For an example, see Fig. 1. In top panels A and B, we see
the sums of two waveforms, a base 10 Hz sine and a 20 Hz
cosine. In panel A, the 10 Hz waveform is five times the
amplitude of the 20 Hz waveform. The waveforms have an in-
teger frequency ratio and a constant phase relationship, which
guarantees the resulting waveform has the same period as the
base sine function. Additionally, the joint waveform has a
well-defined instantaneous frequency (panel C).

Following from the Introduction, harmonic signals thus
blend into a single waveform. In panel B, the 20 Hz wave-
form is now 0.75x the amplitude of the 10 Hz waveform.
New prominent extrema appear in each resulting cycle. The
summed signals retain their dynamics, making them nonhar-
monic. Instantaneous Frequency (IF) is emerging as a robust
way to characterise non-sinusoidal waveform shape, but this
frequency as traditionally defined only makes sense if it is
non-negative [5] and [29]. Prominent extrema are what causes
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IF to be negative, as in panel D. As such, we propose to define
that in addition to an integer frequency ratio and a constant
phase relationship, harmonics are signals that added to the
base have a non-negative joint IF. The reader is encouraged to
further explore the link between harmonics and instantaneous
frequency using our custom shape generator and an interactive
notebook accompanying this paper. The latter is a repository
which includes code to reproduce all figures in this paper.

B. FORMALISING HARMONIC CONDITIONS
Here we formalise the above intuitions. We shall say that the
resultant signal x(t ) formed as a sum of N sinusoids ordered
by increasing frequency,

x(t ) =
N∑

n=1

an cos(ωnt + φn), (1)

is to be considered a harmonic structure if:
1) All sinusoids have an integer frequency relationship to

the base and a constant phase relationship, i.e. ωn =
nω0, n ∈ Z and dφn

dt = 0,
2) The joint instantaneous frequency fJ is finite and non-

negative for all t , i.e. ( fJ ≥ 0)∀t ,
where an are the sinusoids’ amplitudes.

The first condition is the same as that typically used in
the literature [11]. In lay terms, it means the joint waveform
repeats and is the same at t and t + T , where T is the period
of the base function. We can easily show this: Noting that
ω1 = 2π/T,

x(t + T ) =
N∑

n=1

an cos(nω1(t + T ) + φn) (2)

⇒ x(t + T ) =
N∑

n=1

an cos(nω1t + φn + 2πn) (3)

⇒ x(t + T ) =
N∑

n=1

an cos(ωnt + φn) = x(t ), (4)

as all functions are 2π periodic.
Our signal model considers continuous oscillations with

constant an, but we note that all of the analysis in this paper
also applies if this waveform experiences amplitude modu-
lation (so long it happens slowly with a time scale TAM >

2π/ω1). This is a consequence of Bedrosian’s Theorem [30]
and is outlined further in the Discussion.

C. INSTANTANEOUS FREQUENCY
We aim to understand non-sinusoidal signals through in-
stantaneous frequency, which fully characterises waveform
shapes [28]. Hence, in this section, we analytically derive the
instantaneous frequency for our signal model (1).

Following [24], we define the instantaneous frequency us-
ing the analytic signal phase. For a real signal u(t ), define
its analytic counterpart as xA = u(t ) + iv(t ), where v(t ) is the
Hilbert transform of u(t ). We can rewrite the analytic signal

as xA = A(t )eiθ (t ), where the instantaneous phase is obtained
from the real and imaginary components of xA as tan θ = v/u.
From this we define the instantaneous frequency as

f (t ) = 1

2π

dθ

dt
= 1

2π

uv̇ − vu̇

u2 + v2
, (5)

where u̇, v̇ signify the time derivatives. This right-most ex-
pression is derived in Appendix A.

Using linearity of the Hilbert transform and equation (5),
we can find the general joint instantaneous frequency for our
sum of sinusoids (1):

2π f (t ) =

∑
n,m

[anamωm cos((ωn − ωm)t + (φn − φm))]

A2
, (6)

where the denominator is

A2 =
(∑

n

an cos(ωnt + φn)

)2

+
(∑

n

an sin(ωnt + φn)

)2

,

(7)
and we used the standard Hilbert transform v = an sin(ωnt +
φn) for u = an cos(ωnt + φn). The full derivation of this ex-
pression is in Appendix B.

We note that here we use the negative frequency exclu-
sion as a useful way to gain insight into waveform shape.
Research into instantaneous frequency is on-going, and other
approaches exist. For instance, we may redefine the negative
frequencies using the multi-valued inverse tangent func-
tion [29]. In this paper, the negative frequencies are a feature,
not a bug - they quantify changes in local extrema. Other ways
of applying the instantaneous frequency may prove useful in
different contexts.

D. CASE N = 2 AND LINK TO EXTREMA COUNTING
Harmonic condition 2 requires the instantaneous frequency
to be non-negative. Recall that this is based on the premise
that signals that cause prominent extrema are not harmonics,
and that prominent extrema cause ill-defined, negative IF (see
Fig. 1). Here we illustrate how harmonic condition 2 is linked
to extrema present in the waveform (Fig. 2).

It is instructive to consider the case with N = 2. With only
two sinusoids, we can write our signal model (1), without loss
of generality, as

x(t ) = cos t + a cos(ωt + φ), t ∈ R, (8)

where a and ω are the amplitude / frequency ratios of the
waveforms and φ their phase difference. We further restrain
ourselves to the case ω > 1, such that the cos t term can
be referred to as the base (or lower frequency component,
LF), with the other termed the potential harmonic (or higher
frequency component, HF). This simplified case follows that
of [25], except for swapping a and ω ( f in the original paper)
into the HF term for greater clarity.

We now re-state the harmonic conditions for the case of
N = 2, i.e. the conditions that need to be met for us to consider
HF as a harmonic to LF.
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FIGURE 2. EMD separation of simulated two-tone signals with amplitude
ratio a and frequency ratio ω in relation to harmonics. Gray shading shows
whether EMD treats signals as separate oscillations (light) a single
waveform (dark), or a mixture of waveforms (gray). Black line indicates
where the first IMF has 50% similarity to HF as per [25]. Purple lines show
where harmonic condition 1 (integer frequency ratio) is satisfied. The lines
aω = 1 (red, solid) and aω2 (red, dashed) are also shown. Insets show
three possible types of two-tone signals. (i) A strong harmonic structure -
HF adds to the non-sinusoidal shape with no secondary extrema. (ii) A
weak harmonic structure - small secondary extrema are present but the
joint IF is still well-defined. (iii) Two tones are separate and not
harmonically related. Strong secondary extrema are present and the IF is
not well-defined. The separation map is reproduced from [25].

The first condition simply amounts to ω = n, n ∈ Z (purple
lines in Fig. 2), and φ = 0.

The second condition requires that the joint IF is non-
negative for all time points. The joint IF from (6) simplifies
to

2π fJ = 1 + ωa2 + a(1 + ω) cos[(ω − 1)t − φ]

1 + a2 + 2a cos[(ω − 1)t − φ]
. (9)

The denominator in (6) is always non-negative, so to have
a non-negative joint IF we demand a non-negative numerator,
noting the minimum value of a cosine expression is −1:

1 + ωa2 − a(1 + ω) ≥ 0

⇒ aω(a − 1) ≥ a − 1.

(10)

If a > 1, we can divide both sides by (a − 1) freely, but if
a < 1, we must flip the equality sign when dividing by (a −
1). Case a = 1 satisfies the inequality trivially, thus we obtain
the following restrictions on a and ω:{

aω > 1 if a > 1
aω ≤ 1 if a ≤ 1.

(11)

As was demonstrated in [25], the aω multiple is a key deter-
minant of extrema locations in a joint two-tone signal such as

x. Specifically, aω > 1 means the extrema rate is exactly the
same as that of the HF component. HF is the dominant mode,
and we could consider LF to be its ‘sub-harmonic’. How-
ever, harmonics typically have progressively lower amplitudes
(a < 1), so we shall reserve the term ‘harmonic’ only for the
cases of decreasing amplitudes. This case might potentially be
useful when fixing specific instances of EMD mode splitting
issues.

If a ≤ 1, in order to have a well-defined IF, we demand
the extrema rate to not be set by HF. If aω2 < 1, it is set by
LF ([25], Fig. 2), otherwise the extrema rate is a mixture of
HF and LF extrema. The a < 1 case is the more the common
situation for non-sinusoidal functions present in e.g. neuro-
physiological recordings.

The aω = 1 line is also crucial in the behaviour of EMD
when splitting signals [25]. In the gray shading of Fig. 2, we
can see the space of potential harmonics crosses both regions
where EMD treats tones separately and as one modulated
signal. This means that waveform shape reconstruction (com-
bining several IMFs) may be necessary in cases where EMD
separates them. This issue is even more widespread in real-
world data including noise due to dyadic behaviour intrinsic
to EMD [31]. If two IMFs satisfy the harmonic conditions,
we can say to have identified a base and a harmonic. Due to
linearity of the Hilbert transform, adding them to produce a
single broad instantaneous frequency shape is then valid.

Superimposed on the EMD separation map, Fig. 2 shows
the possible types of joint two-tone signals. For low ampli-
tudes such that aω ≤ 1, the joint waveform forms a harmonic
structure as its properties are dominated by the LF base and its
joint IF is well-defined (inset (i)). Small secondary extrema
are present when aω2 > 1 (inset (ii)). This anticipates the
distinction between strong and weak harmonics we describe
below. Finally, if the HF amplitude is too high (inset (iii)),
the IF ceases to be well-defined, large secondary extrema are
present, and we no longer consider HF to be a harmonic.

We can also re-write this result in a more general form
that will be useful when considering multiple harmonics.
Because ω = n, we can write aω ≤ 1 ⇒ an ≤ 1 ⇒ a ≤ 1/n.
Similarly, aω2 ≤ 1 ⇒ a ≤ 1/n2. Thus amplitude conditions
are of the form a = 1/nγ , where γ is a real exponent. For
γ ≥ 1, we are guaranteed a non-negative joint instantaneous
frequency.

In summary, the N = 2 case illustrates key insights into
harmonic systems. We see how demanding the instantaneous
frequency to be non-negative is directly linked to the presence
of extrema and the extrema rate. This is linked to EMD as
it is a decomposition technique built on sifting extrema. We
also see that cases with non-negative IF may have small sec-
ondary extrema, and whether these are present anticipates the
strong/weak harmonic types introduced below.

E. EXAMPLES OF HARMONIC STRUCTURES
Here we briefly consider three common examples of periodic
signals with strong harmonics - the triangular wave (y1), saw-
tooth wave (y2), and square wave (y3). Electrophysiological
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data often shows aspects of these waves (e.g. the ‘flat top’
of motor mu waves [32]), so they serve as a useful reference
point. Their Fourier series are well-known:

y1(x) = 8

π2

∞∑
n=0

1

(2n + 1)2
cos(2n + 1)x (12)

y2(x) = 2

π

∞∑
n=1

1

n
sin nx (13)

y3(x) = 4

π

∞∑
n=0

1

2n + 1
sin(2n + 1)x (14)

All three trivially satisfy Condition 1 as their frequency ratios
are integers only and all phases are constant and zero. We are
in the regime a < 1 for all three as HF harmonics get pro-
gressively smaller in amplitude. From the Fourier coefficients,
the aiωi product for neighbouring harmonics n and n + 1 in
structure yi is as follows:

a1ω1 = 1/(2n + 1) (15)

a2ω2 = 1 (16)

a3ω3 = 1 (17)

It is clear all three examples satisfy the aω ≤ 1 condition
for neighbouring harmonics and are thus bona fide harmonic
structures as expected. Alternatively, given the frequencies
are some integers m, the amplitude falls as a = 1/mγ with
γ1 = 2, γ2,3 = 1. These waveforms and their instantaneous
frequencies are plotted in the Appendix Fig. A1.

F. CASE N = 3
The general case of (6) is not conducive to simple conditions
such as (11). However, we know that in reality, the amplitude
falls with frequency for any candidate harmonic structure.
In this and the following section, we explore the amplitude-
frequency relationship of the form ωn = n, an = 1/nγ , that
is anωn = 1/nγ−1 with γ ≥ 1 ∈ R. This is the generalised
form of the standard harmonic structures above and it will
turn out to be insightful in the N = ∞ case. The reader can
explore a wide variety of harmonic structures and their IF in
the interactive notebook attached to this paper. The case of an
exponentially falling amplitude is explored in Appendix E.

We have seen that for N = 2, γ ≥ 1 always leads to a
non-negative instantaneous frequency. Here we show how this
is modified in the case of N = 3. This is relevant e.g. for an
EMD sift where an IMF includes two harmonics [10].

Our signal model is

x(t ) = cos t + a1 cos(ω1t ) + a2 cos(ω2t ), t ∈ R, (18)

with an = 1/nγ , ωn = n, and a constant phase assumed. We
again use (6), noting its denominator is always positive. As

such, demanding a non-negative IF to satisfy harmonic condi-
tion 2 means

4

3γ
cos 2t +

(
3

2γ
+ 5

2γ 3γ

)
cos t + 1 + 2

22γ
+ 3

32γ
≥ 0.

(19)
We can rewrite this as a quadratic in cos t using the double
angle formula and compute the discriminant to find the re-
strictions on γ . This is done in Appendix D. Here we note
that the critical exponent γc which guarantees a non-negative
IF is found as the solution to

9

4γc
+ 25

36γc
+ 128

9γc
− 32

3γc
− 34

12γc
− 96

27γc
= 0, (20)

which we numerically find to be γc = 1.0177, which is only
very slightly different from the N = 2 case where γc = 1. As
the number of harmonics in a given IMF can be expected to
be small, we can therefore apply the aω ≤ 1 condition to find
harmonic structure.

G. CASE N = ∞ AND TWO TYPES OF HARMONICS
STRUCTURES
In this section, we use an analytically tractable harmonic
model to look at shapes with an infinite number of harmonics.
In doing this, we find some shapes gain no secondary extrema
even with infinitely many harmonics, whilst some do. We use
this to classify harmonics into two types.

In the previous section, we found that for N = 3, requiring
a non-negative IF is equivalent to having a critical exponent
γ > 1 for a signal model (6) with an = 1/nγ and ωn = n.
Here we ask the question: if we have an infinite number of
harmonics, are there any exponents γ for which no secondary
extrema are introduced?

Consider the sum to infinity of the numerator in (6). If all
phases have the same value, the IF has a maximum at t = 0
and, where all cosines add constructively. For a well-defined
waveform, IF needs to remain finite even in the infinite limit.
If all phases are the same, consider the case with all φn = 0
without loss of generality. The numerator becomes

∞∑
n,m

anamωm =
∞∑

n=1

1

nγ

∞∑
m=1

1

mγ−1
, (21)

where as mentioned we again used the form ωn = n, an =
1/nγ . We recognise these sums as the hyper-harmonic series
(p-series). These diverge to infinity for exponent values ≤ 1
[33], and lie on the real line of the Riemann Zeta function for
exponent values > 1 [34], [35]. Thus, including the denomi-
nator, we can write

IF(t = 0) = ζ (γ − 1)

ζ (γ )
, (22)

where ζ (x) = ∑∞
n=1

1
nx . This only converges to a finite real

number provided γ > 2. We therefore get two types of har-
monic structures:

1) Weak harmonic structures. These have neighbouring
harmonics that can be added to form a well-defined IF,
but their IF diverges to infinity in the N = ∞ limit and
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FIGURE 3. Two types of harmonic structures. (A) Weak harmonics: First
N = 20 harmonics from (13). Secondary extrema are present and IF tends
to a delta function. (B) Strong harmonics: First N = 20 harmonics from
(23). No secondary extrema are present and the waveform is smooth with
a finite IF in the N = ∞ limit.

ceases to be well-defined. They have γ ≤ 2, such as
(13), and have small secondary extrema.

2) Strong harmonic structures. These have a well-defined
(non-negative and finite) instantaneous frequency, even
in the infinite limit. Harmonics do not introduce any new
extrema and γ > 2. An example is

y4(x) =
∞∑

n=1

1/n2 sin nx. (23)

This distinction can be observed in Fig. 3. A weak har-
monic structure (left) has small secondary extrema, whereas
a strong harmonic structure (right) does not. We have dis-
covered this distinction in analysing structures with N = ∞
harmonics. However, the distinction of a waveform having
small secondary extrema classifying it as weak also applies
to real-world cases with a finite number of harmonics.

To illustrate how no new extrema are present in strongly
harmonic structures, we can consider an analytically tractable
example of (1) with an = 1/nγ , ωn = n and φn = 0 (Fig. 4).
Restrict ourselves to the case of even N for simplicity. These
structures have an extremum at t = π for any number of
harmonics. If this is to be the only extremum in (0, 2π ), it
must be convex. This is as a concave extremum would imply
a local maximum and thus at least two additional secondary
minima either side as the function must eventually turn to
form maxima at t = 0 and t = 2π . We therefore demand a
positive second derivative at t = π for no new secondary
extrema:

ẍ = −
N∑

n=1

cos nπ

nγ−2
=

N∑
n=1

(−1)n−1

nγ−2
> 0. (24)

This sum as a function of γ is plotted in panel (C) of Fig. 4 for
example values of N . We can see the second derivative is pos-
itive above γ > 2, indicating no new extrema are present as
proposed. Interestingly, this function converges to the Dirich-
let η function [36] in the N = ∞ limit, though its properties
were not used here as we are interested in even N cases only.
Odd N cases have an odd number of secondary extrema and

FIGURE 4. Two types of harmonics driven by the analytic amplitude term
(A, B, C) and phase shifting (D, E). (A) Weak harmonic structure with
γ = 1.25. Left: time-series (4 harmonics), right: equivalent polar plot of
aeiθ . A secondary maximum is present at t = π (red line). (B) Strong
harmonic structure with γ = 2.25. Left: time-series (4 harmonics), right:
equivalent polar plot of aeiθ . No secondary maximum is present as curves
are convex at t = π. (C) Second derivative of a sum of cosines at t = π for
different numbers of harmonics N. It is clear the concave/convex transition
is at γ = 2, marking the change from weak to strong harmonics. Note both
curves (A) and (B) here have a well-defined IF > 0 everywhere. (D)
Parameter space for the amplitude ratios and phase differences for a
single pair of signals (f = 1 Hz and 2 Hz) is split into three regions based
on our harmonic criteria. Six example points in this space are highlighted
(red), covering the strong harmonic, weak harmonic, and non-harmonic
cases. The strong/weak boundary is depicted with a pink line. (E) Two
cycles of each of the six simulated signals (red dots in D) with the base
signal in gray.

are thus more tedious to analyse. We finally note here that this
weak/strong distinction can be also understood as a constraint
on the amplitude part of the analytic signal xA = aeiθ cardioid
traced out in the complex (or equivalently polar) plane. This
is illustrated in the left panels of Fig. 4A, B.

The practical issue with the standard definition of integer
frequency and constant phase is that it equates a very wide
class of signals in the same group. Depending on amplitude
and phase differences, the sum of two sinusoids with an in-
teger frequency ratio can appear as a smooth non-sinusoidal
signal, or as a complex combination of oscillations resembling
phase-amplitude coupling (Fig. 4D, E). Both signals 1 and
4 in Fig. 4E appear as smooth non-sinusoidal waveforms but
produce spurious phase-amplitude coupling if this is naïvely
estimated. In contrast, signals 3 and 6 appear to have clear
cross frequency coupling but could mistakenly be interpreted
as having non-sinusoidal shape if only shape is evaluated. Our
harmonic conditions clearly separate these cases (Fig. 4D),
correctly identifying 1 and 4 as harmonically related
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FIGURE 5. Harmonic assessment decision tree. Depending on whether signals meet condition 1 (light grey), condition 2 (dark grey), and how quickly
harmonic amplitude falls, the joint signal is either not a harmonic (bottom left, multiple oscillatory processes present and IF sometimes negative), a weak
harmonic structure (bottom centre, small secondary extrema present but IF non-negative), or a strong harmonic structure (bottom right, no secondary
extrema).

non-sinusoidal signals and 3 and 6 as non-harmonic separate
(but interacting) oscillations. Cases 2 and 5 only differ in
the phase lag and represent the strong/weak harmonic dis-
tinction. Case 2 has small additional peaks in the time-series
whilst case 5 remains smooth. Whilst case 5 is a clear strong
harmonic, case 2 is more ambiguous and could represent
shape or separate processes depending on whether individual
extrema are important in a particular application [37]. The
phase-dependence of the weak/strong distinction depends on
whether harmonics add constructively to the base or not. The
analytical expression for the weak/strong boundary in the
phase plane can be found by using Sturm’s Theorem [38]. For
an amplitude ratio a and phase difference φ in Fig. 4D, it is
approximately a = 1/4(1 + (cos φ)2/3).

In summary, a well-defined IF with harmonic amplitudes
falling off fast enough means harmonics introduce no new
extrema, which we classify as strong harmonics. Harmonic
structures with non-negative IF but with amplitude or phase
modulation dynamics introducing small secondary extrema
are then of the weak type. We studied the analytically tractable
harmonic model of a = 1/nγ because it appears in common
waveshapes. However, below we also present results from
more realistic waveshapes based on the FitzHugh-Nagumo
neuron model and an asymmetric shallow water wave model.
In Appendix E, we further consider exponentially decaying
harmonic amplitudes.

H. SUMMARY: HOW TO ASSESS A HARMONIC
In this section, we summarise key metrics we have identified
whilst exploring the theory of harmonic structures above. We

list their role in studying harmonics and their practicability.
Assessing harmonics using these quantities can be reduced to
a simple decision tree (Fig. 5).
� ωn, the frequency ratio between signals. Needs to be an

integer for harmonic structures. Tests whether signals
align such that the base period is unchanged. For real-
world data, it is easy to check from e.g. peaks in the
power spectrum.

� φn, the phase relationship between signals. Needs to be
constant for harmonic structures. Can be checked using
metrics such as the phase locking value or distance cor-
relation.

� fJ , the joint instantaneous frequency. Non-negative if
signals are harmonics. Tests that the waveform does not
contain prominent extrema which would indicate sepa-
rate oscillatory dynamics. It can be assessed in multiple
ways:

– (6) - analytical expression for when all parameters are
known. Useful for forward modelling and simulation, but
impractical to assess in real signals.

– aω, the harmonic ratio multiple. Tests a single pair of
components with amplitude ratio a and frequency ratio
ω. Computationally cheaper and easier to use than as-
sessing fJ > 0 directly.

– The Hilbert transform. In complex signals, instantaneous
frequency can be numerically estimated with software
packages such as emd in Python [39].

� γ , the harmonic amplitude drop-off exponent. It dis-
tinguishes weak and strong harmonic structures, i.e.
the presence of any secondary extrema. Assesses any
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number of harmonics at once. It is a good fit if amplitude
roughly falls according to a power law.

All of the first three must meet appropriate conditions
for the structure to count as harmonic. If only some are
met, we do not believe a harmonic relationship can be
claimed. However, a null result should not be interpreted
as definitive evidence that the signal is not harmonic, as
excessive noise or insufficient data may be limiting the
testing procedure. This decision procedure has been imple-
mented into the EMD-Python toolbox and is available as
the emd.imftools.assess_harmonic_criteria function. A tuto-
rial explaining it is available in the documentation as well.

III. METHODS
Analysis of experimental data was done in Python 3.9.0.
EMD was applied using the Python EMD package (v0.4.0),
available with tutorials at emd.readthedocs.io [39]. Packages
NumPy [40], SciPy [41], dcor [42], and Statsmodels [43]
were used for analysis. Package Matplotlib [44] was used for
plotting.

A. SIMULATIONS
We simulated 10 seconds of a FitzHugh-Nagumo neuron with
a sampling rate of 100 kHz and parameters giving rise to a
continuous 25 Hz oscillation (stimulation current I = 0.475,
initial membrane potential V0 = 0, recovery parameter W0 =
−0.4, scaling parameters a = 0.7, b = 0.8, and τ = 12.5
[45]). This is a dynamical system governed by the coupled
equations

V̇ = V − V 3

3
− W + I (25)

τẆ = V + a − bW. (26)

Its instantaneous frequency was computed with the Hilbert
transform (emd.spectra.frequency_transform) and its power
spectrum with the Fourier transform (scipy.fft.fft). Harmonic
peaks were found using scipy.signal.find_peaks. For com-
parison with our analytical results, the log harmonic peak
amplitudes were fitted against their log frequency using linear
regression to estimate the harmonic amplitude drop off expo-
nent γ .

Next, we simulated 100 seconds of asymmetric water waves
using the Abreu approach [2]. The sampling rate was 10 kHz,
nonlinearity degree r = 0.75, and nonlinearity angle φ =
−π/4. These parameters were chosen to produce realistic
water waves similar to those presented in Fig. 13 in [2]. The
governing equation of this process is

u(t ) = f
sin(ωt ) + r sin φ

1+ f

1 − r cos(ωt + φ)
> 0, (27)

where r is the nonlinearity degree, φ the nonlinearity angle,
and f = √

1 − r2. The rest of the harmonic analysis pro-
ceeded in the same way as the FitzHugh-Nagumo analysis
above.

B. RAT DATA
The rodent hippocampal theta oscillation is known to be non-
sinusoidal [46], [47]. Therefore, to demonstrate our results on
experimental data, we chose a publicly available hippocampal
data set of Long-Evans rats [48], [49]. A 1000 s local field po-
tentials (LFP) recording from rat EC-013 sampled at 1250 Hz
was used for analysis. The electrode analysed was implanted
in the hippocampal region CA1. The recording was first down-
sampled to 625 Hz using scipy.signal.decimate. EMD sift was
then computed with NIMF = 8 modes using the mask sift [50]
with the first mask frequency found from zero crossings in the
signal and the rest as divided by increasing powers of 2. The
sift threshold was 10−8 and mask amplitudes were all equal
to the standard deviation of the input signal. Instantaneous
phase, frequency, and amplitude were computed from the
IMFs using the Hilbert transform with an instantaneous phase
smoothing window of five time-points. The base theta IMF
was chosen as that whose average instantaneous frequency
was closest to the Fourier spectral theta peak estimated using
Welch’s method (peak in 4–8 Hz, function scipy.signal.welch,
8 s segment length / 0.125 Hz resolution). Individual cycles
were computed from jumps in the wrapped instantaneous
phase. To discard noisy cycles, only cycles with monotonic
instantaneous phase and instantaneous amplitude above the
50th IA percentile were used for further analysis. Cycles were
phase-aligned with N = 48 phase points and the shape was
represented by the mean of the phase-aligned instantaneous
frequency [5].

Next the harmonic conditions were tested. The recording
was split into 20 segments of 50 s each. Recall that the first
condition requires integer frequency ratios and a constant
phase relationship between signals. Therefore, the first condi-
tion was taken to be satisfied if (i) the ratio between mean IF
of HF mode and base was not significantly different from an
integer, tested with a one-sample t-test with the nearest integer
as the null hypothesis, and (ii) the base and HF had a constant
phase relationship indicated by a significant distance corre-
lation between their whole-recording instantaneous phases
tested with the Student’s t-test. The distance correlation was
used because it captures any statistical dependence between
phases, not just a linear relationship (Pearson correlation) or
a monotonic relationship (Spearman correlation). The second
condition (that the joint IF is non-negative) was met if the
amplitude and frequency ratios between HF and base satisfied
the aω ≤ 1 condition outlined above. To classify the harmonic
structure, the value of aω2 was also tested. We used the ampli-
tude and frequency ratios instead of testing for non-negative
IF directly because details of IF calculation are often unreli-
able due to noise and EMD sift issues.

IV. RESULTS
A. SIMULATIONS
We first explored harmonics in a simulated FitzHugh-Nagumo
neuron spiking continuously at 25 Hz (Fig. 6, top). The wave-
form was highly non-sinusoidal, as has been noted by other
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FIGURE 6. Harmonics in real-world models, the FitzHugh-Nagumo neuronal spiking model (top) and Abreu water wave model (bottom). (A) 200 ms of
membrane voltage of the neuron. Model parameters were chosen to produce continuous 25 Hz spiking and the oscillation waveforms are highly
non-sinusoidal. (B) Instantaneous frequency of the waveform in (A). Sharp edges correspond to higher frequencies. (C) Power spectrum of the data. A
base at 25 Hz with harmonics at each following 25 Hz increment are clearly visible. Red dots signify individual harmonic peaks. Blue line is the linear fit
to harmonic amplitudes in the log-log plane. The waveform is a strong harmonic structure (no secondary extrema) and harmonics fall off roughly as
an = k/n2.08. (D) 3 s of wave velocity. Model parameters were chosen to qualitatively reproduce wave flume results from [2]. (E) Instantaneous frequency
of the waveform. (F) Power spectrum of the data. A base at 1 Hz with harmonics at 1 Hz increments are clearly visible. Red dots signify harmonic peaks
<10 Hz, green dots ≥10 Hz. Blue line is the log-log fit to harmonic amplitudes <10 Hz, cyan ≥10 Hz. The 10 Hz split was chosen as the curve knee
because of the faster than linear drop off. The waveform is a strong harmonic structure (no secondary extrema). Harmonic drop-off exponent γ is beyond
2 and keeps increasing (an ≈ k/n2.9 <10 Hz; an ≈ k/n10 ≥10 Hz).

researchers [1]. This meant its instantaneous frequency trace
ranged between 11 Hz and 80 Hz. Importantly, the IF always
remained positive. Together with harmonic peaks in the power
spectrum at integer multiples of 25 Hz, their constant phase re-
lationship, and an unchanged period, this meant the waveform
indeed qualified as a harmonic structure in our framework.

In the theoretical section, we explored harmonics where
amplitude falls as an = 1/nγ . To compare our simulated neu-
ron to this analytically tractable model, we performed a linear
fit of the harmonic peak amplitudes in the log-log plane. Har-
monic amplitude fell as approximately an = k/n2.083 (Pearson
r = −0.936, P = 3.69 × 10−13). This confirmed our ana-
lytical model was useful as an approximation to a system
simulating the behaviour of neurons. Moreover, the wave-
form was a strong harmonic structure (it had no secondary
extrema), just as we would predict with γ > 2.

Next, we studied harmonics in a model of shallow water
waves used in coastal engineering applications [2] (Fig. 6, bot-
tom). The resulting 1 Hz waveform was highly non-sinusoidal
with a sharp rising edge and an IF sweep from 0.63 Hz to
1.84 Hz. Harmonic amplitudes fell rapidly, making a single
log-log linear fit inappropriate. Instead, we looked at the
harmonic drop-off slope in harmonics with low and high
frequencies. The low/high frequency split was chosen as the
curve knee at 10 Hz, so harmonics with <10 Hz and ≥10 Hz
were fitted. In the general case, non-linear fits may be appro-
priate with local slopes marking the strong/weak distinction.
Both fits showed harmonic amplitudes were falling with γ >

2 confirming it is a strong harmonic structure. Specifically,
an = k/n2.892 (Pearson r = −0.955, P = 6.12 × 10−5) for
harmonics <10 Hz and an = k/n10.55 (Pearson r = −0.997,
P = 8.69 × 10−8) for harmonics ≥10 Hz.
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FIGURE 7. Harmonics in rat local field potential (LFP) data. (A) Power spectral density of the data. A base around 7.5 Hz with a harmonic around 15 Hz
are clearly visible. (B) Example 1.5 s of masked EMD sift results. Base is in IMF-4 and harmonic is in IMF-3 due to limited IMF bandwidth in the presence
of noise. Joint waveform is shown as IMF-(3+4) (C) Phase-aligned IF (mean ± SEM across cycles). Both IMF-3 and IMF-4 are nearly sinusoidal. After
verifying harmonic conditions between IMF-3 and IMF-4 are met, IMFs are added to reconstruct the full non-sinusoidal shape (purple).

TABLE I Results in Rat LFP Data

B. RAT DATA
We validated our harmonic framework by applying it to the
known non-sinusoidal hippocampal theta waveform. Masked
EMD extracted four IMFs of interest (Fig. 7). IMF-4 was
identified as the dominant base oscillation as it was closest
in frequency to the Fourier theta peak. We then tested if IMFs
higher in frequency showed a harmonic relationship with this
base by applying the harmonic conditions (Table I). To avoid
problems with autocorrelation, data was split into twenty 50 s
segments and mean values for each segment were computed
(see Methods).

Condition 1 is equivalent to testing for an integer frequency
ratio and a stable phase relationship. IMF-1 and IMF-3 both
showed a frequency ratio to the base not significantly different
from an integer (11 and 2 respectively, P > 0.05). However,
only IMF-3 also showed a significant (P < 0.001) and modest
distance correlation (0.28) between its instantaneous phase
and that of the base, showing presence of phase-phase cou-
pling. IMF-3 had a very small (0.03), but also significant
distance correlation.

Condition 2 was tested by the aω ≤ 1 relationship where
a was the ratio of mean instantaneous amplitudes and ω

the corresponding ratio for instantaneous frequencies. The
aω products of IMF-2 and IMF-3 with the base signal were
significantly below 1 (P = 1.7 × 10−4 and P = 2.9 × 10−15

respectively, one-sample Bonferroni-corrected t-test).

Taking both conditions into account, we found IMF-3 and
IMF-4 to be robustly harmonically related. Each individual
condition (integer frequency ratio, constant phase relation-
ship, aω ≤ 1) was inconclusive on its own, showing the
importance of a full definition of a harmonic.

Next we computed the mean of phase-aligned instantaneous
frequency across cycles as a measure of waveform shape [5].
Both IMF-3 and IMF-4 showed nearly sinusoidal cycles. Tak-
ing their harmonic relationship and the linear nature of the
Hilbert transform into account, we added them to produce a
single waveform, IMF-(3+4). This trace captured significantly
more non-sinusoidality and showed the typical hippocampal
theta waveform shape with a faster leading edge.

We note that although cycles were selected for phase mono-
tonicity to discard noisy cycles, this was not a strict criterion.
In fact, 93.8% of cycles across IMFs passed the monotonic
phase criterion, indicating we had a good decomposition even
in presence of noise.

To aid the reader’s own analyses, we have implemented
the above approach to systematically identify harmonic sig-
nal components within the EMD-Python toolbox. This in-
cludes a function to assess joint instantaneous frequency,
emd.imftools.assess_joint_if and a function to assess the har-
monic criteria, emd.imftools.assess_harmonic_criteria.

V. DISCUSSION
Improvements in technology and analysis methods have
shown the importance of non-sinusoidal waveform shape,
particularly in neurophysiological data across species and
modalities. Harmonics arising from non-sinusoidality have a
significant impact on our analysis methods (e.g. on measures
of phase-amplitude coupling) and hence impact our under-
standing of physical oscillations. Having precise vocabulary
to describe these and test for them is thus only going to
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grow in importance. Our work provides much-needed clarity
on what exactly a harmonic is. Our definition is based on
rigorous, easy to understand conditions which match common
intuitions about harmonics. We define two signals to be in a
harmonic relationship if adding the higher frequency signal
to the base does not dramatically change its main properties
(frequency and amplitude; equivalent to usual conditions of
integer frequency ratios and a constant phase relationship - for
a example which does not meet this see Fig. A1D) and if the
joint oscillation has a well-defined instantaneous frequency
(equivalent to saying there are no prominent secondary ex-
trema).

Our work complements and contrasts with existing litera-
ture that deals with harmonics and instantaneous frequency.
As mentioned in the Introduction, most authors consider
signals at an integer frequency ratio to the base (with a
constant phase relationship) to automatically be a harmonic.
The attempts to remove influence of harmonics from Fourier-
based analyses have included identifying them using bicoher-
ence [11], [51] and more recently by subtracting harmonic
components from the signal [52]. Both of these are based
around the Fourier spectrum. We propose that apart from
this Fourier-transform understanding of harmonics, our under-
standing should also be informed by the shape. If a signal has
large secondary extrema, it is no longer suitable to call it a sin-
gle waveform. With regards to instantaneous frequency (IF),
we have used the standard definition used by e.g. [27], which
interprets negative frequencies as non-physical. Recently, at-
tempts have been made to redefine negative instantaneous
frequencies to be meaningful [29], but in all cases there is a
fundamental qualitative difference between the positive and
negative IF sections. In this work, we use IF as a tool to
quantify waveform shape, and as such the common definition
is most useful. This may not generalise to other applications.

Given our exploration of the above definition, we propose
to understand harmonic structures as being of two types. The
weak type has a well-defined instantaneous frequency (IF) for
neighbouring harmonics, but harmonics introduce additional
low-amplitude extrema and amplitude modulation leading to
the IF being ill-defined in the limit of infinite harmonics.
The strong type has a structure with a well-defined IF even
for an infinite amount of harmonics and has no extrema
beyond those of the base function. Some authors have pre-
viously suggested IF of the weak type is meaningless, and
have proposed methods to restrict IMF bandwidth to disal-
low these [18]. Our distinction explains why this arises and
distinguishes between the two harmonic structure types. Us-
ing an analytically tractable model and linking it to results
about the Riemann Zeta function, we show how the distinc-
tion arises. Weak harmonic structures are often the typical
examples of harmonics outside Neuroscience (e.g. the saw-
tooth function), so it makes sense to keep them included in
the definition of harmonics whilst noting their difference to
harmonics which do not introduce extrema. Interestingly, the
harmonic identified in our LFP data was consistent with be-
ing of the strong type (γ exponent not significantly different

from 2), as were harmonics in the FitzHugh-Nagumo model
neuron (γ = 2.08). We postulate this is because real-world
non-sinusoidal neural signals are derived from an underlying
smooth variation in electrochemical properties. It is natural
that resulting oscillatory waveforms are also smooth without
new extrema, i.e. they are strongly harmonic. It qualitatively
agrees with other known types of non-sinusoidal waveforms
in the literature as well [1]. It would be interesting to explore
the effect of simulated physiological parameters on the result-
ing harmonic structure and waveform shape. It is possible that
the generative mechanisms of harmonic signals correspond
to individual nonlinear biophysical processes, whereas non-
harmonic signals may be the result of an interaction between
multiple oscillators present, as highlighted by [1], [5], [53].
Additionally, this distinction is useful for real-world analyses
of phase and instantaneous frequency in presence of noise.
Existing methods often use sliding-window approaches to get
rid of short-term phase fluctuations. However, this may lead to
loss of information about the waveform shape. For instance,
in [54], sliding windows are used to smooth out the “phase
wobble”. This makes the method robust to noise, but it re-
moves waveform shape detail. In our work, we show precisely
what level of phase fluctuation still leads to acceptable in-
stantaneous frequency traces. Depending on the application,
visible peaks or troughs may be interesting [37]. The strong
vs weak harmonic distinction is the natural signal processing
boundary to distinguish these.

Real-world oscillations often come in bursts, i.e. include
amplitude modulation (AM) [55]. Thanks to Bedrosian’s
Theorem [30], all of the results in this paper apply to
amplitude-modulated non-sinusoidal waveforms as long as
the AM frequency is slower than that of the base function,
making the spectra non-overlapping. We propose that talking
about AM faster than the base function does not make sense
anyway - the AM would be such that not even a single full
cycle of the original waveform would be present. Thus, our
results and conditions are fully applicable to sensible AM like
that commonly present e.g. in neurophysiological data, as well
as data that may change shape over time or across trials. In
such nonstationary cases, our conditions should be applied
dynamically to quasi-stationary or single trial epochs.

Fourier or Wavelet transforms may give misleading results
when applied to nonstationary and nonlinear signals. Hence,
alternative methods may complement them. There is a variety
of such methods proposed. Here we focus on Empirical Mode
Decomposition (EMD) for two reasons. First, it is a widely
used analysis method for nonstationary data. Second, extrema
counting is the basis for EMD, so it naturally connects to
our framework for harmonic analysis. In theory, intrinsic
mode functions (IMFs) produced by EMD can accommodate
any non-sinusoidality. Instead of having to remove or worry
about harmonic coupling, connectivity analyses can be per-
formed directly on IMFs if all harmonics are present in one
IMF. Our framework allows for a simple decision process for
when to reconstruct highly non-sinusoidal waveform shapes
in EMD analysis, where harmonics might be split across IMFs
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(Fig. 6). However, our approach relies on averaging across
cycles to account for noise. As such, we sacrifice some of the
single-cycle resolution due to noise. If single-cycle proper-
ties are being investigated, other forms of analysis might be
more appropriate. These include a carefully designed manual
mask, additional pre-processing, or using other EMD-based
tools, e.g. iterated masking EMD [26]). Shape reconstruction
(adding IMFs when appropriate) can also improve cases of
poor sifts. Qualitatively, we have observed masked EMD to
sometimes only partially extract the underlying base from the
non-sinusoidal oscillation, leaving a waveform with negative
instantaneous frequencies. Adding these IMFs reconstructs
the underlying shape and makes EMD more robust to sift-
ing details (e.g. mask amplitudes). This shape reconstruction
method may aid any time-series decomposition method which
is band-limited. This includes a wide variety of data-driven
decomposition methods such as synchrosqueezed wavelet
transforms (SSWT) [17], variational mode decomposition
(VMD) [18], eigenvalue decomposition (EVD) [19], empiri-
cal wavelet transform (EWT) [20], sparse time-frequency rep-
resentation [21], time-varying vibration decomposition [22],
and resonance-based signal decomposition [23]. Decompos-
ing a noisy and non-sinusoidal signal is an ill-posed problem.
However, using our approach, one can now systematically
construct modes with highest acceptable nonsinusoidality.

Finally, we note that in real-world data, phase relationships
may shift from one cycle to the next. The statistical nature
of how we assess the harmonic criteria allows for some level
of between cycle-variability as long as the conditions pass on
average. For example, the combined IMF3+4 case in Fig. 7
passes the harmonic criteria but the specific shapes of each
cycle can be seen to vary. Our criteria can in principle be
applied on a cycle-by-cycle basis and work on single-cycle
waveform reconstruction is ongoing in our lab. As individual
cycles or short segments may show autocorrelation, appropri-
ate permutation tests will need to be carried out instead of the
simpler approach presented here.

The behaviour of summed tones and their instantaneous
frequency can be explored by the readers with an interactive
notebook accompanying this paper.

VI. CONCLUSION
Non-sinusoidal waveforms are ubiquitous in the real world
and our understanding of their functional importance is grow-
ing. For example, the shape of neural oscillations has been
previously shown to change with behaviour and disease (e.g.
in Parkinson’s disease). Such waveforms are composed of si-
nusoidal harmonics present in the Fourier spectrum. However,
a precise definition of when waveforms are to be considered
harmonics is missing in the literature. In this work, we de-
fined harmonic structures to be those that (i) have an integer
frequency ratios and constant phases between constituent sig-
nals and (ii) have a well-defined (non-negative) instantaneous
frequency. We showed this definition can be mathematically
reformulated as specific conditions on the frequencies and
amplitudes of the signals. We found two types of harmonic

structures based on the presence of secondary extrema. We
validated our framework on a simulated FitzHugh-Nagumo
neuron, a model of shallow water waves, and using EMD anal-
ysis of the hippocampal theta oscillation. In the last one, we
showed why both conditions are important to unambiguously
identify harmonics. Our work has important implications for
metrics affected by non-sinusoidality, such as the phase lock-
ing value and other common measures of signal coherence.
Further work is needed to apply our framework in novel
oscillation types and to explore the link between harmonic
structure types and underlying generators of oscillations.

APPENDIX
Interactive visualisations of the link between harmon-
ics and instantaneous frequency are available in our
custom shape generator and an interactive notebook
which accompany this paper. The decision process for
harmonics is implemented in the EMD-Python tool-
box under the functions emd.imftools.assess_joint_if and
emd.imftools.assess_harmonic_criteria.

A. DERIVATION OF (5)
From basic notions of the Argand diagram, the phase angle
θ is defined such that θ = arctan(u/v). The derivative of the
inverse tangent is d

dx arctan x = 1/(1 + x2). Hence, using the
chain and quotient rules, we obtain the phase derivative as

dθ

dt
= 1

1 + (u/v)2
× uv̇ − vu̇

v2
(28)

⇒ dθ

dt
= uv̇ − vu̇

u2 + v2
. (29)

As the instantaneous frequency f = 1
2π

θ̇ , (5) follows.

B. DERIVATION OF (6)
We start with a general sum of sinusoids u, its Hilbert trans-
form v, and their derivatives:

u =
∑

n

an cos(ωnt + φn) (30)

v = −
∑

n

anωn sin(ωnt + φn) (31)

u̇ =
∑

n

an sin(ωnt + φn) (32)

v̇ =
∑

n

anωn cos(ωnt + φn). (33)

Putting these into the IF expression (5), combining the sum-
mations, and taking out a common factor of anamωm, we find

2π f (t )

=

∑
n,m anamωm

[
cos(ωnt + φn) cos(ωmt + φm)

+ sin(ωnt + φn) sin(ωmt + φm)
]

(∑
n an cos(ωnt + φn)

)2 + (∑
n an sin(ωnt + φn)

)2 .

(34)
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FIGURE A1. More examples on harmonic structures. Top - signal and
bottom - instantaneous frequency (IF) for (A) the triangular wave, (B) the
saw-tooth wave, (C) the square wave (all formed from first 1000
harmonics). We see IF spikes near sharp edges but is otherwise
well-defined. In (D), we take similar signals as in Fig. 1 but with HF 4x the
amplitude and 3x the frequency of LF. It is clear the signal properties
(amplitude, frequency) are largely determined by HF and not the LF base.
We thus do not classify this as a harmonic structure.

Applying the standard cosine difference formula in the nu-
merator and omitting the denominator phase for legibility, we
arrive at (6).

The terms in the numerator sum in (6) can be visualised
as terms in an N × N matrix (again omitting the phase; ‘...’
indicates more elements along both axes):

⎛
⎜⎜⎜⎝

a2
1ω1 a1a2ω2 cos 
ω12t a1a3ω3 cos 
ω13t

a2a1ω1 cos 
ω21t a2
2ω2 a2a3ω3 cos 
ω23t

a3a1ω1 cos 
ω31t a3a2ω2 cos 
ω32t a2
3ω3

. . .

⎞
⎟⎟⎟⎠,

(35)
where 
ωnm = ωn − ωm and (34) is the sum of all the matrix
elements. Demanding a well-defined joint IF fJ ≥ 0 is thus
equivalent to restricting the trace of (35) to be greater than the
negative of the sum of all off-diagonal elements. It also makes
it easier to see where (19) comes from, see below.

C. STANDARD HARMONIC STRUCTURES
In Fig. A1, we show the shape and instantaneous frequency of
the triangular, saw-tooth, and square wave. Note how instan-
taneous frequency is well-defined except for delta function
spikes at sharp edges. This means we are dealing with weak
harmonic structures.

D. DERIVATION OF (20)
Equation (19) can be trivially derived using the above matrix
(35) by assuming a1 = 1, an = 1/nγ , and ωn = n. Starting
with (19) and applying the cosine double angle formula
cos 2x = 2 cos2 x − 1, we get

8

3γ
cos2 t +

(
3

2γ
+ 5

2γ 3γ

)
cos t

+
(

1 + 2

22γ
+ 3

32γ
− 4

3γ

)
≥ 0. (36)

This is true so long the discriminant of the quadratic is nega-
tive, i.e. b2 − 4ac ≤ 0, where a, b, c are the coefficients in the
quadratic. Thus, the critical exponent is when b2 − 4ac = 0:(

3

2γ
+ 5

2γ 3γ

)2

− 4

(
8

3γ

)(
1 + 2

22γ
+ 3

32γ
− 4

3γ

)
= 0.

(37)
Expanding and simplifying this equation, we arrive at (20).

A5 EXPONENTIALLY DECAYING HARMONIC STRUCTURES
In the Main Text, we considered harmonic structures where
the amplitude falls off as an = 1/nγ . Here, we study another
analytically tractable case of an = exp(−λn). As in the Main
Text, consider the case with ωn = n and φn = 0 and look at
the maximum IF at t = 0. The numerator is

∞∑
n,m

anamωm =
∞∑

n=1

exp(−λn)
∞∑

m=1

m exp(−λn), (38)

and the denominator simply (
∑∞

n=1 an)2. All these sums con-
verge using standard geometric series methods provided λ >

0. Specifically,

IF(t = 0) = eλ

(eλ − 1)3 . (39)

Harmonic structures with exponentially decaying amplitudes
are thus always strongly harmonic. Interestingly, we found
that in this case adding neighbouring harmonics can some-
times produce negative IF, which becomes non-negative again
as the number of harmonics is increased. This shows how
complex harmonics structures can be. However, the basic dis-
tinction based on presence of secondary extrema still holds.
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