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ABSTRACT Unlike its intercept, a linear classifier’s weight vector cannot be tuned by a simple grid
search. Hence, this paper proposes weight vector tuning of a generic binary linear classifier through the
parameterization of a decomposition of the discriminant by a scalar which controls the trade-off between
conflicting informative and noisy terms. By varying this parameter, the original weight vector is modified
in a meaningful way. Applying this method to a number of linear classifiers under a variety of data
dimensionality and sample size settings reveals that the classification performance loss due to non-optimal
native hyperparameters can be compensated for by weight vector tuning. This yields computational savings
as the proposed tuning method reduces to tuning a scalar compared to tuning the native hyperparameter,
which may involve repeated weight vector generation along with its burden of optimization, dimensionality
reduction, etc., depending on the classifier. It is also found that weight vector tuning significantly improves
the performance of Linear Discriminant Analysis (LDA) under high estimation noise. Proceeding from this
second finding, an asymptotic study of the misclassification probability of the parameterized LDA classifier
in the growth regime where the data dimensionality and sample size are comparable is conducted. Using
random matrix theory, the misclassification probability is shown to converge to a quantity that is a function
of the true statistics of the data. Additionally, an estimator of the misclassification probability is derived.
Finally, computationally efficient tuning of the parameter using this estimator is demonstrated on real data.

INDEX TERMS Estimation noise, LDA, linear classifier, MMSE, random matrix theory, weight vector.

I. INTRODUCTION
A binary linear classifier classifies a data point to one class or
the other by thresholding a discriminant that is a linear combi-
nation of the data features. The weights of the features make
up a weight vector and the constant term in the discriminant is
the bias of the classifier.

Despite the availability of sophisticated non-linear methods
for classification, linear classifiers are still widely used. In
fact, new variants of standard linear methods catering to
specific settings and applications are being developed all
the time. A search of the recent literature reveals that linear
classifiers are being employed in many tasks including clinical
neuroimaging [2], digital pulse shape discrimination [3], pre-
dicting the genetic merit of beef cattle [4], and in conjunction

with other methods for applications such as pathogen
identification [5], strategy representation [6], and cancer
classification [7]. Linear classifiers are especially suited to
certain high-dimensional datasets on which they perform
comparably with non-linear classifiers, with the advantage of
much faster training times and quicker classification [8]. Due
to ease of computation, linear classifiers further make good
trial classifiers during the initial exploratory phase, when
the relationship between the data features and labels is yet
unknown [9].

One way of improving a given linear classifier’s perfor-
mance on a particular dataset is by tuning its bias so as to
minimize training error on that dataset [10]. Because the bias
is a scalar, a grid search for the optimum is computationally
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undemanding. Even the need for a grid-search can be elimi-
nated in many cases for which explicit representations of the
optimal bias can be derived. For example, the authors of [11]
derive an explicit bias correction of the Linear Discriminant
Analysis (LDA) classifier discriminant in order to improve
classification in the high estimation noise regime. The authors
of [12] similarly correct for the bias of this classifier in an
explicit form, but in the context of cost-sensitive classification.
Additionally, the references [13] and [14] provide explicit
bias corrections for certain high-dimensional variants of LDA.
A related question has to do with improving upon a linear
classifier’s weight vector, which cannot be tuned or corrected
in the same way. Relying on the intuition that a good weight
vector should be able to extract the maximum discriminatory
information content from the data point being classified, we
show in this work that tuning the multidimensional weight
vector can indeed be reduced to tuning a scalar.

In the first half of this paper, it is shown that any binary
linear classifier discriminant can be decomposed into terms
containing discriminating information and non-discriminating
noise. A linear form of this decomposition parameterized by a
variable α controls the trade-off between conflicting noise and
information terms. At the optimal setting of α, the modified
discriminant performs at least as good as the original classifier
from which it was produced. Following this, the effect of the
weight vector modification on the performance of an assort-
ment of linear classifiers under different data dimensionality
and sample size scenarios is studied. The method specifically
yields significant performance gains for the Linear Discrim-
inant Analysis (LDA) classifier under high estimation noise.
Interestingly, the parameterized LDA operates as a bridge
between LDA and the nearest centroid classifier, and performs
at least as good as either of these classifiers. Additionally, it is
shown that tuning the weight vector according to the proposed
method can significantly improve the performance of certain
classifiers whose native hyperparameters are not optimally
set. It is shown that with weight vector tuning, the Support
Vector Machine (SVM) with non-optimally tuned penalty can
achieve performance close to that of its tuned counterpart. In
this case, tuning the weight vector is fundamentally different
from tuning the native hyperparameter of the classifier as it
occurs post weight vector generation, while the native hyper-
parameter tuning occurs prior to weight vector generation.
For SVM, generating the weight vector for each value of
the native hyperparameter involves solving an optimization
problem. Tuning the weight vector according to the proposed
method, however, reduces to a simple grid search over a scalar
parameter. This idea can be generalized to any classifier with
hyperparameters that are set prior to weight vector generation.

The second half of the paper consists of an asymptotic
study of the parameterized LDA classifier under a growth
regime in which the data dimensionality and sample size
grow proportionally. Under a Gaussian assumption on the data
distribution, we use random matrix theory to show that the
probability of misclassification of this classifier converges to
a limit that is a function of the true class statistics. We also

derive a consistent estimator of the probability of misclas-
sification by which the classifier parameter α can be tuned.
This estimator is more computationally efficient than other
tuning methods which rely on additional testing points or
recycling the training set, e.g. cross-validation, as it requires
no additional testing points and no averaging. We demonstrate
its performance on real data.

An additional finding of this work is a new interpretation
of the optimality of LDA. The LDA decision rule, derived
by maximizing the posterior probability of a test point, as-
suming that it is drawn from a Gaussian distribution with
classes having distinct means and common covariances, yields
a weight vector which is the optimal Bayes direction. It can
be shown that, under a common class covariance, the weight
vector resulting from Fisher’s linear discriminant, in which
the ratio of the distance between the projected class means
and the within class variance is maximized, is proportional
to the Bayes direction [10]. A proportional solution can also
be arrived at via a least squares formulation of the fitted data
from their labels in the binary case [10]. This makes the
Bayes direction optimal in the posterior probability sense, the
Fisher’s linear discriminant sense, and the least squares sense.
Moreover, this paper shows that the Bayes direction is optimal
in the sense that it achieves the minimum noise (in the mean
square error sense) with respect to the test point when the
classes are Gaussian with common covariance.

To summarize, the main contributions of this paper are
� A practical method for weight vector tuning which re-

duces to grid search over a scalar parameter.
� A novel interpretation of the optimality of the LDA clas-

sifier in terms of minimizing test point noise.
� Asymptotic expressions for the probability of misclassi-

fication of the parameterized LDA classifier.
� A consistent estimator of the probability of misclassifi-

cation of the parameterized LDA classifier.

II. WEIGHT VECTOR TUNING PROCEDURE
Consider a supervised classification problem in which a test
point x ∈ Rp is to be labeled as belonging to one of two
classes C0 and C1. A linear classification approach to this
problem imposes a discriminant of the form

wT x + w0, (1)

characterized by a weight vector, w ∈ Rp, and bias, w0 ∈ R.
The decision rule C(x) = 1{wT x + w0 > 0} based on (1) then
classifies x to one of the two classes, i.e., C(x) = i indicates
that x is classified to class Ci, i = 0, 1. Examples of classifiers
which fit this form include LDA, SVM and Least-Squares
SVM (both using linear kernels), and Regularized LDA
(R-LDA).

In this paper, we propose a method of tuning the weight
vector w, which reduces the non-discriminative ‘noisy’ com-
ponents of the original discriminant (1). As a result, the
modified discriminant achieves a testing error rate at least as
good as the original and, in certain cases, much better.
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Throughout this paper, let the means and covariances of
classes C0 and C1 be denoted by μ0, �0 and μ1, �1 respec-
tively. In Section II-A, we explore an ideal case in which the
discriminant neatly decomposes into separate information and
noise terms and the noises cancel out optimally in a linear
fashion under the assumption of perfectly known means and
that C0 and C1 makeup a Gaussian mixture model with com-
mon class covariance �0 = �1 = �. Inspired by the findings
of Section II-A, in Section II-B we heuristically extend this
result to a more practical scenario which assumes unknown
means and no restriction on the class distributions.

A. KNOWN CLASS MEANS
In this section, assume that the data distribution means μ0 and
μ1 are known exactly and that �0 = �1 = �. We proceed to
derive a noise-minimized version of (1).

Consider the shifted test point x̃ = x − μ0+μ1
2 . For any

given classifier with weight vector w, we show that the
projection of x̃ onto w, i.e., wT x̃, can be decomposed into ‘in-
formative’ components which aid in discriminating the class
of x and ‘noisy’ components which interfere with discrimi-
nating the class of x. We then take advantage of this hidden
structure for the purpose of reducing the overall noise and
obtaining a better classifier.

Let μ = μ1 − μ0. The expression x̃ can be expressed as the
sum of its projection onto μ and projection orthogonal to μ as

x̃ = μμT

μT μ
x̃ + Pμx̃ (2)

where Pμ =
(

I − μμT

μT μ

)
is the projection orthogonal to μ.

Substituting (2) into wT x̃ results in the decomposition of
wT x̃ as

wT μ

μT μ
μT x̃ + wT Pμx̃ (3)

We now show that the first term in (3) is composed of an
informative component and noisy component with respect to
x, while the second term consists solely of noise. Assume
x ∈ Ci, where i is either 0 or 1. Then, assuming the Gaussian
mixture model

x|x ∈ Ci ∼ N (μi,�) (4)

with ith class prior πi = P[x ∈ Ci], we have x|x ∈ Ci ∼ μi +
�1/2z, i = 0, 1, where z ∼ N (0, I). The first term in (3),
conditioned on the class of x, is then distributed as follows

wT μ

μT μ
μT x̃|x ∈ Ci ∼ wT μ

μT μ
μT

(
(−1)i+1 μ

2
+ �1/2z

)

= (−1)i+1 wT μ

2︸ ︷︷ ︸
I1(information)

+

N1(noise)︷ ︸︸ ︷
wT μ

μT μ
μT �1/2z (5)

The first term in (5) carries information about the class of x
through its sign. The second term is the same regardless of the

class of x and therefore carries no discriminating information.
This is a direct result of assuming a common covariance be-
tween C0 and C1. The informative component is denoted by I1

while the noisy component with respect to x is denoted by N1.
Similarly,

wT Pμx̃|x ∈ Ci ∼ wT Pμ

(
(−1)i+1 μ

2
+ �1/2z

)
= wT Pμ�1/2z︸ ︷︷ ︸

N2(noise)

The discriminatory component of this term is lost in the or-
thogonal projection, and therefore this term consists solely of
noise with respect to the testing point, denoted by N2.

To recap, the decomposition of the weight vector divides
the discriminant into a single observable term containing I1

and N1 and a single observable term containing N2. Without
the decomposition, none of these individual noise/information
terms are accessible. Now, in the interest of achieving bet-
ter classification performance, we wish to reduce the overall
noise content in the discriminant. We can leverage the ob-
servable term containing N2 to bring out the information in
the observable term containing both information I1 and noise
N1. To this end, consider the following modification of the
discriminant (3),

wT μ

μT μ
μT x̃ + g

(
wT Pμx̃

)
(6)

for any function g(·), and which, by the above analysis, is
equivalent to

I1 + N1 + g (N2)

The optimal g(·) such that

E
[
(N1 + g (N2))2]

is minimized is the MMSE estimator E[−N1|N2]. This choice
of g(·) has the effect of minimizing the total noise in the
discriminant in the mean square error sense. We show in
Section II-A1 that it simultaneously minimizes the probability
of misclassification. In the following Lemma 1, we derive the
exact form of g(·) for a given w based on the class distribution
assumptions (4).

Lemma 1: The optimal g(N2) is the linear function of N2

given by g∗(N2) = αMMSE(w)N2, where

αMMSE(w) = −wT μ

μT μ

μT �Pμw
wT Pμ�Pμw

. (7)

Proof: See the proof of Lemma 1 in our extended report
available on arXiv [1]. Note that N2 is observable only through
the expression wT Pμx̃ and so when using this result we re-
place N2 by its observable counterpart. Based on this result,
we have the following theorem.

Theorem 1: The discriminant that minimizes the noise with
respect to the test point in the MSE sense for a given w, known
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means, and under the data distribution assumptions of (4), is

wT μ

μT μ
μT x̃ + αMMSE(w)wT Pμx̃, (8)

or, equivalently, w′T x + w′
0, where

w′ = wT μ

μT μ
μ + αMMSE(w)Pμw

and

w′
0 = −1

2

(
wT μ

μT μ
μ + αMMSE(w)Pμw

)T

(μ0 + μ1).

Theorem 1 is obtained by simply evaluating (6) using g∗(·).
Note that this result applies to a general weight vector w in
a known mean setting. Section II-B1 considers actual weight
vectors corresponding to popular linear classifiers in an un-
known mean setting, while Section III studies the weight
vector tuning of LDA, in particular, in an unknown mean
setting.

We now make several remarks concerning Theorem 1.
Firstly, the modified discriminant is linear. This is a direct
result of the Gaussian assumption (4), which, while not tech-
nically necessary, is desirable, as it produces a simple linear
form which inspires the parameterized formulation presented
in the next section. Secondly, the original weight vector w
is modified to w′ and a bias w′

0 is generated. This bias is
the optimal bias in the sense of minimizing the probability
of misclassification under the class distribution assumptions
of (4) and equal class priors when fixing the weight vector
to w′ (see [15] Proposition 2). Finally, viewing the modified
discriminant (8) as a function of a parameter α as follows

wT μ

μT μ
μT x̃ + αwT Pμx̃, (9)

α = αMMSE(w) yields a stationary point of its probability
of misclassification and achieves the minimum probability
of misclassification when wT μ > 0. This is demonstrated in
Section II-A1.

The following corollary of Theorem 1 lends intuition as
well as credibility to this technique by showing that it recovers
the Bayes optimal classifier discriminant for the assumed class
distributions from its weight vector. The Bayes classifier in
this case is linear. It is the LDA classifier, with decision rule

1

{
μT �−1x̃ + ln

π1

π0
> 0

}
. (10)

The LDA weight vector is w = �−1μ.
Corollary 1: Computing the parameter (7) corresponding to

the LDA classifier (10) yields

αMMSE
(
�−1μ

) = 1

and the resulting discriminant (8) recovers the LDA discrimi-
nant in (10) when the class priors are equal.

Since there is no modification of the weight vector, we
conclude that the LDA weight vector (in the case of known

statistics) is optimal relative to itself in that it achieves the
minimum noise (in the mean square error sense) with respect
to the test point under the assumed class distributions.

1) EXPERIMENTS WITH KNOWN MEANS
For the following simulation and any simulations involving
synthetic data in the remainder of this paper, the exact ex-
pected testing error/probability of misclassification of a linear
classifier learned on a given training set is computed using
knowledge of the data distribution from which the testing data
is generated. All synthetic data in this paper is generated from
a two-class Gaussian mixture model. The expected testing
error under these data distribution assumptions of a generic
binary linear classifier

1
{
βT x + β0 > 0

}
,

with weight vector β and intercept β0, can easily be derived
as (see Lemma 1 in [16])

π0�

(
βT μ0 + β0√

βT �0β

)
+ π1�

(
−βT μ1 + β0√

βT �1β

)
. (11)

Now consider the parameterized version (9) of (8). The ob-
jective of the following simulation is to show that αMMSE(w)
given by (7) coincides with the α yielding a stationary point
of the expected testing error of (9). The stationary point is a
minimum when wT μ > 0 and is otherwise a maximum, as in
that case, the orientation of w flips the class labels.

To demonstrate this, a weight vector w is uniformly sam-
pled from all w such that ‖w‖2 = 1 using the method in [17].
It is then fed to (9) and the exact expected testing error with
varying α is plotted using (11). The quantity αMMSE(w) is
then computed from (7) for comparison. The class statistics
used for this simulation are

μ0 = 1

p1/4

[
1T

�√p	 0T
p−�√p	−2 2 2

]T
, μ1 = 0p, (12)

and

�0 = �1 = 10

p
1p1T

p + 0.1Ip (13)

where p = 200. Here, π0 = π1 = 0.5.
Fig. 1(a) and (b) show the results when wT μ > 0 and

wT μ < 0, respectively. In Fig. 1(a), the minimum expected
testing error occurs at α = 0.15341. This exactly coincides
with αMMSE(w) of Theorem 1 that minimizes the noise in the
discriminant. In Fig. 1(b), the maximum expected testing error
occurs at α = −0.12029, which, again, exactly coincides with
αMMSE(w) that minimizes the noise in the discriminant. The
latter discriminant’s behavior can be explained by the fact that
the orientation of the randomly generated w flips the class
labels. Simply taking the negative of w yields a classifier
having the minimum expected testing error at αMMSE(w). In
conclusion, minimizing the noise in the discriminant in the
MSE sense is equivalent to minimizing the expected testing
error, as long as w is sensibly oriented. This motivates using
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FIGURE. 1. Plot of the expected testing error of (9) against α for a randomly generated weight vector w.

this criteria as the basis for designing a better classifier in the
next section.

B. UNKNOWN CLASS MEANS
The previous section derives the discriminant with minimum
noise with respect to the test point for a general binary lin-
ear classifier with weight vector w under the assumption of
Gaussian classes with known means and a common covari-
ance. A more practical scenario is when all class statistics
are unknown and sample statistics are used instead. Using
the sample mean estimates introduces an additional estimation
noise into the discriminant.

Let the n individual training vectors corresponding to
classes C0 and C1 make up the columns of the matrices
X0 ∈ Rp×n0 and X1 ∈ Rp×n1 , respectively (n = n0 + n1). The
maximum likelihood estimates of the class means are given
by the sample means μ̂0 = 1

n0
X01n0 and μ̂1 = 1

n1
X11n1 . Let

μ̂ = μ̂1 − μ̂0 and ˆ̃x = x − μ̂0+μ̂1
2 . Given a weight vector, w,

wT ˆ̃x can be expressed as

wT ˆ̃x = wT μ̂

μ̂T μ̂
μ̂T ˆ̃x + wT Pμ̂

ˆ̃x (14)

where Pμ̂ = (I − μ̂μ̂T

μ̂T μ̂
). Regardless of the class distributions

and whether assuming distinct covariances �0 and �1 or com-
mon class covariances �0 = �1 = �, following a similar line
of logic to the analysis in Section II-A reveals that, while the
first term in (14) is similarly composed of both information
and noise (whether that be estimation noise, noise from the
test point, or both), the second term is not purely noise. In
fact, it is informative. This is shown in detail in Appendix A
of our extended report available on arXiv [1].

Thus, when the means are unknown, the approach taken
in Section II-A of minimizing the squared sum of ‘noise 1’
with the second term no longer applies, as the second term is
informative. Nonetheless, the interaction of this term with the

noise in the first term can potentially yield performance gains
and so motivated by Section II-A, the following parameterized
version of the sample statistic equivalent of (8) is proposed

wT μ̂

μ̂T μ̂
μ̂T ˆ̃x + αwT Pμ̂

ˆ̃x (15)

where α is a parameter to be tuned.
The following Section II-B1 demonstrates that a better mis-

classification rate may be achieved by setting α to a value that
is not equal to one (where α = 1 recovers the original pro-
jection with optimal bias assuming equal priors and the class
distribution in (4)). A significant improvement is observed
when the estimation noise is high.

1) EXPERIMENTS WITH UNKNOWN MEANS
In this section we explore the behavior of (15) under a variety
of settings and for an assortment of starting weight vectors.
We first list and briefly describe the discriminants from which
these weight vectors are extracted, namely, LDA, logistic
regression, linear support vector machine (SVM), regular-
ized LDA (R-LDA), and randomly-projected LDA ensemble
(RP-LDA).
� LDA (see [10]) in the form (10) is the Bayes classifier

for data distributed as (4). In practice, the class statistics
are unknown and sample estimates are used instead. The
sample means μ̂0 and μ̂1 are defined at the beginning
of Section II-B. The maximum likelihood estimates of
the common covariance matrix and class priors are the
pooled sample covariance matrix

�̂ = (n0 − 1)�̂0 + (n1 − 1)�̂1

n0 + n1 − 2
,

where �̂0 = 1
n0−1 (X0 − μ̂01T )(X0 − μ̂01T )T and �̂1 =

1
n1−1 (X1 − μ̂11T )(X1 − μ̂11T )T , and the prior estimates
π̂i = ni

n , i = 0, 1, respectively. The LDA discriminant is
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then

μ̂T �̂
−1 ˆ̃x + ln

π̂1

π̂0
.

� For linearly separable training data, SVM with linear
kernel (see [10]) finds a hyperplane that maximizes
the margin between one class and the other subject
to constraints of perfect classification on the training
points. When the training data is linearly inseparable,
the constraints are relaxed by penalizing each (possibly)
misclassified point. The penalty is a parameter that must
be tuned. This variant is called the soft-margin SVM
with linear kernel, and it is what we use in this paper.

� Logistic regression (see [10]) models the log-odds
‘ln( P[x∈C1|x]

1−P[x∈C1|x] )’ as a linear function of the test point.
The decision boundary corresponds to the set of points
at which the log-odds equals zero. The weight vector and
bias of the decision boundary are learned by maximizing
the likelihood of the training data.

� R-LDA counters the small sample issue in LDA by reg-
ularizing the pooled sample covariance estimate before
inverting it. There are several possibilities for the form
of the regularization (see [18]). In this paper we opt for

μ̂T (�̂ + γ Ip
)−1 ˆ̃x + ln

π̂1

π̂0
,

where γ is the regularization parameter that must be
tuned.

� RP-LDA ensemble (see [19]) counters the small sam-
ple issue in LDA by reducing the dimensionality of the
training samples (and test point) using random matrices.
Each projection Ri ∈ Rd×p yields a discriminant. These
are averaged over all M projections so that the final
discriminant has the form

1

M

M∑
i=1

μ̂T RT
i (Ri�̂RT

i )−1Ri ˆ̃x + ln
π̂1

π̂0

The reduced dimension d is a parameter that must be
tuned.

For these simulations, we consider two data distributions:
data generated from classes having a common covariance and
data generated from classes having distinct covariance matri-
ces. We also consider three regimes of n versus p: n on the
order of p (p = 400, n = 450), n > p (p = 10, n = 500), and
n < p (p = 300, n = 100). We apply the appropriate classi-
fiers to each regime. LDA requires n > p, soft-margin SVM
is applicable in any regime, logistic regression requires n be
much greater than p to ensure convergence of the maximum
likelihood estimates of the weight vector and bias, and finally,
R-LDA and RP-LDA are designed for the regime n < p.

Each classifier is trained on a generated training set. Ad-
ditionally, for SVM, R-LDA, and RP-LDA, the penalty, γ ,
and d parameters are chosen to minimize the expected test-
ing error given that training set. The SVM penalty is tuned
within the set {10−4, 10−3, 10−2, 10−1, 1, 10, 100, 1000}, γ

within the set [10−4, 2], in increments of 0.1, and d from
1 to the maximum allowable setting of d = rank(�̂) − 2, in
increments of 2. After this is done, we have a weight vector w
for each classifier. Each weight vector is fed into (15) to obtain
an α-parameterized version of the discriminant. Let us refer to
these new classifiers as α-LDA, α-SVM, α-log, α-RLDA, and
α-RPLDA for short. For each α-parameterized discriminant,
we vary α and compute the expected testing error using (11).
These errors are averaged over 100 independently generated
training sets. Error bars depicting the standard errors are plot-
ted alongside this average.

Recall that setting α = 1 in (15) produces a discriminant
having the original weight vector w and a bias with minimum
probability of misclassification (under the Gaussian mixture
model and equal priors assumption) for that weight vector.
In what follows, we use α = 1 as a reference point for de-
termining whether or not there is a significant improvement
in classifier performance at the α achieving the minimum
error rate. To quantify the improvement, we report percentage
changes relative to the average expected testing error at α =
1 computed as error at α achieving the minimum−error at α=1

error at α=1 × 100.
This quantity reflects the fact that a given error improvement
starting at an already low error rate at the baseline α = 1 is
more significant than when the error is high to start with.

The first set of class statistics we consider are (12), (13),
and π0 = π1 = 0.5. Corresponding to this data distribution
are Figs. 2, 3, and 4.

Fig. 2(a) and (b) plot the average expected testing errors of
α-LDA and α-SVM respectively against varying α when p =
400 and n = 450. At α = 0.25, the α-LDA classifier achieves
a 30.2% relative decrease in the average expected testing error.
Note that ordinary LDA (α = 1) is nowhere near optimal. On
the other hand, α-SVM achieves a 0.355% decrease in aver-
age expected testing error at α = 1.02. These results suggest
that there is a lot to be gained performance-wise by LDA
in this regime but not so much by linear SVM. This can be
attributed to the fact that LDA relies on sample estimation
and that the noise due to estimation is high when p = 400 and
n = 450. This is further supported by the results of Fig. 3(a),
(b) and (c), which plot the average expected testing errors of
α-LDA, α-SVM, and α-log, respectively against varying α

when p = 10 and n = 500. The minimum average expected
occurs at exactly α = 1 for α-LDA, α = 1.01 for α-SVM and
at α = 0.99 for α-log, with the latter two classifiers achieving
a relative decrease of no more than 1% and 0.2% respectively.
The extreme behavior in all three figures can be explained
by the fact that there is very little estimation noise for this
choice of dimensions. What is notable is the difference be-
tween Figs. 2(a) and 3(a) whch suggests that the weight vector
tuning method is most effective under high estimation noise
and for methods which are most sensitive to it. This idea is
again reinforced in Fig. 4(a), (b), and (c), in which the average
expected testing errors of α-RLDA, α-RPLDA, and α-SVM
respectively are plotted against varying α when p = 300 and
n = 100. The relative decrease in errors for each of the three
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FIGURE. 2. Plots of expected testing error averaged over 100 training sets for data generated from classes with a common �. Here, p = 400 and n = 450.

FIGURE. 3. Plots of expected testing error averaged over 100 training sets for data generated from classes with a common �. Here, p = 10 and n = 500.

classifiers does not exceed 1.3%. It must be that R-LDA and
RP-LDA are able to reduce much of the estimation noise on
their own, and so the α parameterization does not bring much
improvement.

Figs. 5 and 6 are based on data with the class statis-
tics (12), [�0]i j = 0.9|i− j|, i, j = 1, . . . , p, �1 = 10

p 1p1T
p +

0.1Ip, and π0 = π1 = 0.5. The difference here is that the
class covariances are distinct. Fig. 5(a) and (b) again plot
the average expected testing errors of α-LDA and α-SVM,
respectively, against varying α when p = 400 and n = 450. In
this case, α-LDA significantly improves in performance when
α is set to a non-unit value. It achieves a relative decrease in
error of 27.6% at α = 0.05, while α−SVM achieves a relative
decrease in error of 0.4% at α = 1.14. Finally, Fig. 6(a), (b),
and (c) plot the average expected testing errors of α-RLDA,
α-RPLDA and α-SVM against varying α when p = 300 and
n = 100. Here, the relative decreases in error do not exceed
0.6%.

As described at the beginning of this section, for each
training set, the SVM penalty is tuned to the value yielding

the lowest expected testing error. We found that SVM does
not show much improvement when it is α parameterized. It is
interesting to observe what happens when the penalty is not
tuned beforehand. Instead we set the penalty to 1 (its default
setting in the MATLAB R2019b ‘fitcsvm’ function) uniformly
across all training sets. Fig. 7 shows the resulting average
expected testing error of α-SVM plotted against vary α in the
same setting as in Fig. 5(b), i.e. p = 450, n = 400, and distinct
�0 and �1. In this case, α-SVM achieves a relative decrease
in error of 17.7% at α = 0.2. Clearly, the method improves
performance when w itself is not at its optimal.

Taking this idea further, we show that tuning the weight
vector of a SVM classifier with a poorly chosen penalty can
compensate for the resulting loss in performance. Fig. 8 is
based on the USPS dataset consisting of separate training and
testing sets of grayscale images of handwritten digits 0 − 9.
Pairs of digits are used to form a binary classification prob-
lem. For each pair of digits, a poorly tuned SVM classifier
is α parameterized and the testing error plotted against α to
illustrate the effect of weight vector tuning.
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FIGURE. 4. Plots of expected testing error averaged over 100 training sets for data generated from classes with a common �. Here, p = 300 and n = 100.

FIGURE. 5. Plots of expected testing error averaged over 100 training sets for data generated from classes with distinct �0 and �1. Here, p = 400 and
n = 450.

For the digit pair ‘2’ and ‘6,’ an optimized SVM classifier
can achieve a testing error of 0.0217. Fig. 8(a) shows the
testing error of α-SVM starting with a poorly tuned SVM
classifer whose testing error on this digit pair is 0.0489. By
weight vector tuning, the testing error can be brought down to
0.0272. This is comparable to the performance of the original
optimized SVM classifer. Similarly, for the digit pair ‘3’ and
‘5,’ an optimized SVM classifier can achieve a testing error
of 0.0675. Fig. 8(a) shows the testing error of α-SVM starting
with a poorly tuned SVM classifer whose testing error on this
digit pair is 0.0951. By weight vector tuning, the testing error
can be brought down to 0.0736.

The significance of this finding is the potential savings in
computation that can be made by weight vector tuning versus
penalty tuning. The reason for this is that weight vector tuning
is an afterthought; it occurs post weight vector generation.
On the other hand, setting the penalty is done prior to weight
vector generation. An optimization problem must be solved to
generate the weight vector with each setting of the penalty. At

best, generating this weight vector has a complexity of O(n2)
at each setting of the penalty [20].

This idea generalizes to any linear classifier whose native
hyperparameters are set prior to weight vector generation.
The tuning of the hyperparameters will then involve repeat-
edly generating the weight vector. If this process is costly,
weight vector tuning can provide a more computationally effi-
cient method of improving performance than tuning the native
hyperparameters. Another example that is not demonstrated
here is the RP-LDA ensemble classifier whose projection
dimension d is a native hyperparameter. Tuning this is com-
putationally inefficient as it means projecting all the data
with each setting of d . A simple alternative is weight vector
tuning.

Before ending this section, we briefly touch on the question
of multiple classes. The weight vector tuned classifier pro-
posed in this work is a binary classifier. Nevertheless, it can
be easily extended to a multi-class setting as in [14] which
considers a variant of the LDA binary classifier derived under
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FIGURE. 6. Plots of expected testing error averaged over 100 training sets for data generated from classes with distinct �0 and �1. Here, p = 300 and
n = 100.

FIGURE. 7. Plot of expected testing error of α-SVM with penalty set to 1
averaged over 100 training sets for data generated from classes with
distinct �0 and �1. Here, p = 400 and n = 450.

our same assumption of two Gaussian classes. To summa-
rize, one may consider a one-versus-the-rest approach or a
one-versus-one approach to apply a binary classifier to the
multi-class setting [21]. Assuming each class is Gaussian,
by grouping multiple classes together, the one-versus-the-rest
approach violates this assumption as ‘the rest’ is a Gaussian
mixture model. That leaves us with only the one-versus-one
approach as a viable option, but this approach can lead to
ambiguous classification [21]. As suggested in [14], these
ambiguities can be resolved by favoring the class with the
higher discriminant scores in the case of ties.

Overall, we conclude from this section that α-LDA in the
‘n on the order of p’ scenario shows the most promise in
terms of improved performance. For this reason, we proceed
to study this classifier in the RMT asymptotic regime in the
next section.

III. ASYMPTOTIC ANALYSIS OF THE PARAMETERIZED
LDA CLASSIFIER
In this section, we extend our study of α-LDA, the modified
weight discriminant (8) corresponding to the plugin LDA
weight vector. The α-LDA discriminant

μ̂T �̂
−1

μ̂

μ̂T μ̂
μ̂T ˆ̃x + αμ̂T �̂

−1
Pμ̂

ˆ̃x

is a bridging between LDA (when α = 1) and the nearest
centroid classifier (when α = 0) with decision rule

1
{||μ̂0 − x||22 − ||μ̂1 − x||22 > 0

} = 1
{
μ̂T ˆ̃x > 0

}
which classifies x to the class with nearest sample mean. It is
the Bayes classifier for data distributed as (4) when � = Ip.

As the previous section shows, α-LDA exhibits the greatest
improvement in performance among the sampled classifiers,
particularly when the data dimensionality p is on the order
of the number of samples n. This can be attributed to the
fact that the LDA weight vector is an explicit function of the
sample statistics. Due to estimation noise, there is much to
be gained in this regime. We thus pursue an asymptotic study
of α-LDA in growth regime where n and p grow at constant
rates to each other. Under this growth regime, we derive an
asymptotic expression and an estimator for the probability of
misclassification of α-LDA. Note that this analysis is based on
Gaussian data assumptions under both common and distinct
class covariances. This is required in order to be able to derive
exact expressions of the probability of misclassification for
which the limit and estimator are computed.

A. ASYMPTOTIC ANALYSIS
In this section we first show that under the following growth
regime assumptions

a) 0 < lim inf p
n < lim sup p

n < 1
b) ni

n → ci ∈ (0, 1), i = 0, 1
c) lim supp ‖μ0 − μ1‖2 < ∞
d) lim supp ‖�i‖2 < ∞, i = 0, 1
e) lim inf p λmin(�i ) > 0, i = 0, 1
and considering the training set to be random, the proba-

bility of misclassification of the α-LDA classifier converges
to a quantity that is a function of only true statistics. This
quantity is referred to as the deterministic equivalent (DE)
of the probability of misclassification. The DE approximates
the random realization of the probability of misclassification,
and can be useful for understanding the behavior of the clas-
sifier with synthetic data, for which the statistics are perfectly
known. In practice, however, the statistics are unknown. For
this reason, we also derive an estimator of the probability of
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FIGURE. 8. Plots of testing error on USPS digit pairs of α-SVM with penalty set non-optimally.

misclassification which is consistent under the same growth
assumptions. This is referred to as a G-estimator of the prob-
ability of misclassification and can be used to tune α. To
proceed with these derivations, we first require an expression
for the expected probability of misclassification.

Assuming the classes C0 and C1 are Gaussian with means
and covariances μ0, �0 and μ1, �1 respectively, the prob-
ability of misclassification of a test point x by the α-LDA
classifier has the form

ε = π0�

⎛
⎝ m0√

σ 2
0

⎞
⎠+ π1�

⎛
⎝− m1√

σ 2
1

⎞
⎠

where m0, m1, σ 2
0 , and σ 2

1 are the discriminant means and vari-
ances conditioned on x ∈ C0 and x ∈ C1 respectively. Define

ρ = μ̂T �̂
−1

μ̂

μ̂T μ̂
. Then for i = 0, 1,

mi =
(
ρμ̂T + αμ̂T �̂

−1
Pμ̂

)(
μi − μ̂0 + μ̂1

2

)
and

σ 2
i =

(
ρμ̂T + αμ̂T �̂

−1
Pμ̂

)
�i

(
ρμ̂T + αμ̂T �̂

−1
Pμ̂

)T
.

In the following sections, we present the DEs and G-
estimators for both the general case of distinct covariances and
the special case of common covariances.

1) DE OF THE PROBABILITY OF MISCLASSIFICATION
Formally, the DE of ε, denoted by ε̄, is a sequence of p and n

satisfying ε − ε̄
a.s.−→ 0 under the growth regime assumptions

(a)-(f). For sequences m̄i and σ̄ 2
i , i = 0, 1, such that

mi − m̄i
a.s.−→ 0

σ 2
i − σ̄ 2

i
a.s.−→ 0 (16)

under the growth regime assumptions (a)-(e), it is

ε̄ = π0�

⎛
⎝ m̄0√

σ̄ 2
0

⎞
⎠+ π1�

⎛
⎝− m̄1√

σ̄ 2
1

⎞
⎠

(see Lemma 2 in [22] for proof). Thus, the DE ε̄ is itself a
function of DEs m̄0, m̄1, σ̄ 2

0 , and σ̄ 2
1 which are also functions

of only true statistics.
In the following theorem, we state the expressions of m̄0,

m̄1, σ̄ 2
0 , and σ̄ 2

1 which are used to compute ε̄. This is fol-
lowed by a corollary which corresponds to the special case
when �0 = �1 = �.1 First, define the following quantities for
i = 0, 1 and j, k = 1, 2,

Q̄ =
(

n0 − 1

n − 2

1

1 + δ̃
�0 + n1 − 1

n − 2

1

1 + ν̃
�1

)−1

,

Ai = �iQ̄,

R jk = n j−1 − 1

nk−1 − 1

[
(I2 − �)−1 �

]
j,k ,

[�]1 j = n j−1 − 1

n − 2

(
1

1 + δ̃

)2 1

n − 2
trA0A j−1,

[�]2 j = n j−1 − 1

n − 2

(
1

1 + ν̃

)2 1

n − 2
trA1A j−1,

Q̃i = Q̄
(
Ai + R1(i+1)A0 + R2(i+1)A1

)
,

κ =
μT Q̄μ + 1

n0
trA0 + 1

n1
trA1

μT μ + 1
n0

tr�0 + 1
n1

tr�1
,

η =

(
1

1− p
n−2

)[
μT �−1μ + p

n0
+ p

n1

]
μT μ +

(
1
n0

+ 1
n1

)
tr�

,

τ = 1

1 − p
n−2

, ᾱ = 1 − α,

and δ̃ and ν̃ are the results of the fixed point iteration of δ̃ =
1

n−2 tr�0Q̄ and ν̃ = 1
n−2 tr�1Q̄ for any positive initialization

of δ̃ and ν̃.

1Note in these statements that while technically n − 2 is equivalent to n
asymptotically, we retain the n − 2 in these expressions for increased accu-
racy in finite dimensions.
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Theorem 2. (Distinct covariance DEs): The DEs m̄0, m̄1,
σ̄ 2

0 , and σ̄ 2
1 satisfying (16) under the growth regime assump-

tions (a)–(e) are given by

m̄i = ᾱκ

[
(−1)i+1

2
μT μ + 1

2

(
1

n0
tr�0 − 1

n1
tr�1

)]

+ α

[
(−1)i+1

2
μT Q̄μ + 1

2

(
1

n0
trA0 − 1

n1
trA1

)]
and

σ̄ 2
i = ᾱ2κ2

[
μT �iμ + 1

n0
tr�0�i + 1

n1
tr�1�i

]

+ 2αᾱκ

[
μT Aiμ + 1

n0
tr�iA0 + 1

n1
tr�iA1

]

+ α2
[
μT Q̃iμ + 1

n0
tr�0Q̃i + 1

n1
tr�1Q̃i

]
for i = 0, 1.

Proof: See Appendix B-A of our extended report [1].
Corollary 2. (Common covariance DEs): The DEs m̄0, m̄1,

σ̄ 2
0 , and σ̄ 2

1 satisfying (16) under the growth regime assump-
tions (a)–(e) are given by

m̄i = ᾱη

(
(−1)i+1

2
μT μ + 1

2

(
1

n0
− 1

n1

)
tr�

)

+α

[
τ

2

[
(−1)i+1μT �−1μ + p

n0
− p

n1

]]
and

σ̄ 2
i = ᾱ2η2

[
μT �μ +

(
1

n0
+ 1

n1

)
tr�2

]

+ α2τ 3
[
μT �−1μ + p

n0
+ p

n1

]

+ 2αᾱτη

[
μT μ +

(
1

n0
+ 1

n1

)
tr�

]
for i = 0, 1.

Proof: See Appendix B-B of our extended report [1].

2) G-ESTIMATOR OF THE PROBABILITY OF
MISCLASSIFICATION
The G-estimator ε̂ of the probability of misclassification ε is
a function of sample statistics μ̂0, μ̂1, �̂0, and �̂1 such that

ε̂ − ε
a.s.−→ 0 under the growth regime assumptions (a)-(f). For

sequences m̂i and σ̂ 2
i , i = 0, 1, which are functions of only

sample statistics, such that

m̂i − mi
a.s.−→ 0

σ̂ 2
i − σ i2

a.s.−→ 0 (17)

under the growth regime assumptions (a)-(e), it is

ε̂ = π̂0�

⎛
⎝ m̂0√

σ̂ 2
0

⎞
⎠+ π̂1�

⎛
⎝− m̂1√

σ̂ 2
1

⎞
⎠ .

The following theorem states the expressions of m̂0, m̂1,
σ̂ 2

0 , and σ̂ 2
1 which are used to compute ε̂. This is followed by

a corollary which is specific to the case when �0 = �1 = �

is assumed. First, define

λi =
1

n−2 tr�̂i�̂
−1

1 − 1
n−2 tr�̂i�̂

−1 .

Theorem 3. (Distinct covariance G-estimators): The G-
estimators m̂0, m̂1, σ̂ 2

0 , and σ̂ 2
1 , satisfying (17) under the

growth regime assumptions (a)-(e) are given by

m̂i = (−1)i+1ᾱρ

(
1

2
μ̂T μ̂ − 1

ni
tr�̂i

)

+ (−1)i+1α

(
μ̂T �̂

−1
μ̂ − n − 2

ni
λi

)

and

σ̂ 2
i = (1 − α)2ρ2μ̂T �̂iμ̂ + 2αᾱρ (1 + λi ) μ̂T �̂i�̂

−1
μ̂

+ α2 (1 + λi )
2 μ̂T �̂

−1
�̂i�̂

−1
μ̂

for i = 0, 1.
Proof: See Appendix C-A of our extended report [1].
Corollary 3. (Common covariance G-estimators): The G-

estimators m̂0, m̂1, σ̂ 2
0 , and σ̂ 2

1 , satisfying (17) under the
growth regime assumptions (a)-(e) are given by

m̂i = (−1)i+1

2

(
ρμ̂T + αμ̂T �̂

−1
Pμ̂

)
μ̂

+ (−1)i+1

[
ρ(α − 1)

1

ni
tr�̂ − α

p
ni

1 − p
n−2

]

and

σ̂ 2
i = ρ2ᾱ2μ̂T �̂μ̂ + α2τ 2μ̂T �̂

−1
μ̂ + 2αρᾱτ μ̂T μ̂

for i = 0, 1.
Proof: See Appendix C-B of our extended report [1].
Notice that ε̂ is a function of the sample statistics. It esti-

mates the probability of misclassification without the need for
additional testing data and it is much more computationally
efficient than the cross-validation procedure. In the next sec-
tion, we show how to use ε̂ for the purpose of tuning the α

parameter.

B. TUNING THE α-LDA PARAMETER
In this section, α-LDA is applied to real data. The objective is
to show how α-LDA performs as compared to LDA and the
nearest centroid classifier on real data, as well as to demon-
strate the use of the G-estimator ε̂ in tuning the α parameter.
We consider binary classification of digit pairs from the USPS
dataset [23] and phoneme pairs from the dataset [24]. For
each problem, we train and test LDA, nearest centroid, and
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FIGURE. 9. Plots of testing error estimates of classifying USPS digit pairs for LDA, the nearest centroid, and α-LDA as well as the G-estimator ε̂ of the
α-LDA expected testing error.

α-LDA on the relevant dataset. The empirical errors are plot-
ted against varying α. Also plotted is the G-estimator ε̂ of the
error of α-LDA.2

Fig. 9 shows the results on two digit pairs from the USPS
dataset. As mentioned in Section II-B1, this dataset consists
of grayscale images of handwritten digits 0 − 9 encoded as
256-dimensional vectors.

For Fig. 9(a), we use the digit pair ‘2’ and ‘6’. Overall,
there are n = 1395 total training vectors and 368 total testing
vectors corresponding to this digit pair. The figure shows that
LDA achieves the lowest empirical error on this digit pair.
This performance is matched by α-LDA at α = 1. Although
ε̂ does not exactly match the empirical error, for parameter
tuning it suffices that it follows the same trend. In this case,
if we had directly used ε̂ to tune the α parameter, we would
have set it to α = 0.85. This setting results in an increase of
merely 0.0054 in error compared to the optimal setting. For
more sensitive applications, the parameter setting suggested
by the G-estimator may be used as a starting point from
which to search for the optimal α using a more accurate (but
computationally-intensive) method.

For Fig. 9(b), we use the digit pair ‘5’ and ‘8’. Overall,
there are n = 1098 total training vectors and 326 total testing
vectors corresponding to this digit pair. In this case, α-LDA
achieves the lowest error of 0.0307 at α = 0.65. This is a
16.6% decrease in error relative to LDA which has an error
rate of 0.0368. If we had directly used ε̂ to tune the α param-
eter, we would have set it to α = 0.8. This setting incurs no
loss in accuracy. Notice this dataset has less training samples
than the last one. The increased estimation noise explains why
α-LDA is able to provide a performance advantage over LDA.

Fig. 10 considers a phoneme pair. The phoneme dataset
consists of a total of 4509 instances of digitized speech vectors

2Note that for these particular datasets, the two G-estimators almost match.
Out of the two, the G-estimator which assumes common covariances is
plotted.

FIGURE. 10. Plots of testing error estimates of classifying phonemes ‘aa’
and ‘ao’ for LDA, the nearest centroid, and α-LDA as well as the
G-estimator ε̂ of the α-LDA expected testing error.

of the five phonemes ‘aa,’ ‘ao,’ ‘dcl,’ ‘iy,’ and ‘sh,’ having 256
features each. All 1717 instances of the phonemes ‘ao’ and
‘aa’ (which are the closest in pronunciation) were extracted
in order to construct this binary classification problem. As the
dataset is not pre-divided into training and testing sets, the
splitting was performed randomly. We take advantage of this
to construct a classification problem in which n is not much
greater than p. A training set consisting of 400 samples is
randomly extracted from the full set of ‘aa’ and ‘ao’ phonemes
according to the same proportions. This leaves 1317 samples
for testing. Based on the simulations from the previous sec-
tion, we expect to observe a much greater performance gain
in this scenario compared to Fig. 9.

Fig. 10 shows that, as expected, α-LDA significantly out-
performs LDA with an error of 0.224 corresponding to the
former compared to 0.3083 corresponding to the latter. It
achieves a 27.3% decrease in error at α = 0.525. In this case,
it seems that the data leans more towards an isotropic co-
variance structure, as nearest centroid performs better than
LDA. Even so, α = 0 is not optimal. Thus, α-LDA provides
the best balance between both of these classifiers. Lastly, the
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G-estimator points towards an α setting of 0.4. Using this
setting incurs an increase in error of just 0.0023 relative to
the optimal setting.

IV. CONCLUSION
In this work, we design a method of weight vector tuning for
binary linear classifiers based on the decomposition of the dis-
criminant into informative and noisy components. The tuning
takes the form of a linear parameterization of the decomposi-
tion. Deriving this method reveals a novel interpretation of the
classic LDA classifier weight vector as minimizing the noise
from the test point to which it is applied.

We simulate the performance gain of this method for a
variety of linear classifiers: LDA, SVM, logistic regression,
R-LDA, and RP-LDA ensemble, and under different data di-
mensionality and sample size settings. Firstly, we find that
weight vector tuning can compensate performance loss due to
poorly chosen native classifier hyperparameters. It thus elim-
inates the need for native hyperparameter tuning. As weight
vector tuning occurs post weight vector generation, this can
be advantageous in terms of computational efficiency when
the native hyperparameters need to be set prior to weight
vector generation. Secondly, we find that the parameteriza-
tion significantly improves the performance of LDA under
high estimation noise. We proceed to derive the parameter-
ized LDA classifier misclassification probability in the RMT
growth regime corresponding to these settings, in which the
data dimensionality and sample size grow at comparable rates
to each other. We also provide an estimator of the probability
of misclassification which neither relies on additional data
samples nor requires intensive computations, and thus can be
used to tune the parameter of this classifier in a computation-
ally efficient manner.
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V. Toman, “Strategy representation by decision trees with linear classi-
fiers,” in Proc. Int. Conf. Quantitative Eval. Syst., 2019, pp. 109–128.

[7] R. Alanni, J. Hou, H. Azzawi, and Y. Xiang, “A novel gene selection
algorithm for cancer classification using microarray datasets,” BMC
Med. Genomic., vol. 12, no. 1, 2019, Art. no. 10.

[8] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “Recent advances of large-scale
linear classification,” Proc. IEEE, vol. 100, no. 9, pp. 2584–2603,
Sep. 2012.

[9] R. O. Duda, D. G. Stork, and P. E. Hart, Pattern Classification. Hobo-
ken, NJ, USA: Wiley, 2001.

[10] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical
Learning (Springer Statistics Series). New York, NJ, USA: Springer,
2001.

[11] C. Wang and B. Jiang, “On the dimension effect of regularized
linear discriminant analysis,” Electron. J. Statist., vol. 12, no. 2,
pp. 2709–2742, 2018.

[12] A. Zollanvari, M. Abdirash, A. Dadlani, and B. Abibullaev, “Asymp-
totically bias-corrected regularized linear discriminant analysis for
cost-sensitive binary classification,” IEEE Signal Process. Lett., vol. 26,
no. 9, pp. 1300–1304, Sep. 2019.

[13] S. Huang, T. Tong, and H. Zhao, “Bias-corrected diagonal discriminant
rules for high-dimensional classification,” Biometrics, vol. 66, no. 4,
pp. 1096–1106, 2010.

[14] H. Sifaou, A. Kammoun, and M.-S. Alouini, “High-dimensional linear
discriminant analysis classifier for spiked covariance model,” J. Mach.
Learn. Res., vol. 21, pp. 1–24, 2020.

[15] Q. Mai, H. Zou, and M. Yuan, “A direct approach to sparse discrim-
inant analysis in ultra-high dimensions,” Biometrika, vol. 99, no. 1,
pp. 29–42, 2012.

[16] L. B. Niyazi, A. Kammoun, H. Dahrouj, M.-S. Alouini, and T. Y.
Al-Naffouri, “Asymptotic analysis of an ensemble of randomly pro-
jected linear discriminants,” IEEE J. Sel. Areas Inf. Theory, vol. 1,
no. 3, pp. 914–930, Nov. 2020. [Online]. Available: https://arxiv.org/
abs/2004.08217

[17] E. W. Weisstein, “Hypersphere point picking,” From MathWorld–A
Wolfram Web Resource, 2017. [Online]. Available: http://mathworld.
wolfram.com/HyperspherePointPicking.html

[18] Y. Guo, T. Hastie, and R. Tibshirani, “Regularized linear discriminant
analysis and its application in microarrays,” Biostatistics, vol. 8, no. 1,
pp. 86–100, 2007.

[19] R. J. Durrant and A. Kabán, “Random projections as regularizers:
Learning a linear discriminant ensemble from fewer observations than
dimensions,” in Proc. Asian Conf. Mach. Learn., 2013, vol. 29, 2013,
pp. 17–32. [Online]. Available: http://jmlr.org/proceedings/papers/v29/
Durrant13.htmlGoogleScholar

[20] L. Bottou and C.-J. Lin, “Support vector machine solvers,” Large Scale
Kernel Machines, vol. 3, no. 1, pp. 301–320, 2007.

[21] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning, vol. 4. New York, NY, USA: Springer, 2006.

[22] L. B. Niyazi, A. Kammoun, H. Dahrouj, M.-S. Alouini, and T. Y. Al-
Naffouri, “Asymptotic analysis of an ensemble of randomly projected
linear discriminants,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 3,
pp. 914–930, Nov. 2020.

[23] Y. Le Cun et al., “Handwritten zip code recognition with multilayer
networks,” in Proc. 10th Int. Conf. Pattern Recognit., 1990, vol. 2,
pp. 35–40.

[24] T. Hastie, A. Buja, and R. Tibshirani, “Penalized discriminant analysis,”
Ann. Statist., vol. 23, no. 1, pp. 73–102, 1995.

LAMA B. NIYAZI received the B.Sc. degree in electrical and computer engi-
neering from Effat University, Jeddah, Saudi Arabia, in 2015, and the M.Sc
degree in electrical engineering in 2017 from the King Abdullah University
of Science and Technology (KAUST), Thuwal, Saudi Arabia, where she is
currently working toward the Ph.D. degree with the Electrical and Computer
Engineering Program. Her research focuses on the application of random
matrix theory to machine learning.

ABLA KAMMOUN (Member, IEEE) was born in Sfax, Tunisia. She re-
ceived the Engineering degree in signal and systems from Tunisia Polytechnic
School, La Marsa, Tunisia, and the masters and Ph.D. degrees in digital
communications from Telecom Paris Tech, Paris, France (formerly, Ecole
Nationale Supeure des T). From 2010 to 2012, she was a Postdoctoral
Researcher with the TSI Department, Telecom ParisTech. She was with Su-
pelec, Alcatel-Lucent Chair on Flexible Radio until 2013. She is currently a
Research Scientist with the King Abdullah University of Science and Tech-
nology, Saudi Arabia. Her research interests include performance analysis of
wireless communication systems, random matrix theory, and statistical signal
processing.

318 VOLUME 3, 2022

https://arxiv.org/abs/2110.00567
http://www.sciencedirect.com/science/article/pii/B9780128157398000055
http://www.sciencedirect.com/science/article/pii/B9780128157398000055
https://arxiv.org/abs/2004.08217
https://arxiv.org/abs/2004.08217
http://mathworld.wolfram.com/HyperspherePointPicking.html
http://mathworld.wolfram.com/HyperspherePointPicking.html
http://jmlr.org/proceedings/papers/v29/Durrant13.htmlGoogleScholar
http://jmlr.org/proceedings/papers/v29/Durrant13.htmlGoogleScholar


HAYSSAM DAHROUJ (Senior Member, IEEE)
received the B.E. degree (with high distinc-
tion) in computer and communications engineering
from the American University of Beirut, Beirut,
Lebanon, in 2005, and the Ph.D. degree in electri-
cal and computer engineering from the University
of Toronto (UofT), Toronto, ON, Canada, in 2010.
In July 2020, he joined the Center of Excellence
for NEOM Research, King Abdullah University of
Science and Technology (KAUST), Saudi Arabia
as a Senior Research Scientist. From June 2015 to

June 2020, he was with the Department of Electrical and Computer Engineer-
ing, Effat University, Jeddah, Saudi Arabia, as an Assistant Professor, and as
a Visiting Scholar with the Computer, Electrical and Mathematical Sciences
and Engineering (CEMSE) division at KAUST, where he also was a Research
Associate between April 2014 and May 2015. Prior to joining KAUST, he
was an Industrial Postdoctoral Fellow, UofT, in collaboration with BLiNQ
Networks Inc., Kanata, Canada, where he worked on developing practical
solutions for the design of non-line-of sight wireless backhaul networks.
His contributions to the field led to five patents. During his doctoral studies
at UofT, he pioneered the idea of coordinated beamforming as a means
of minimizing intercell interference across multiple base stations. His main
research interests include 6G wireless systems, cloud- and fog-radio access
networks, cross-layer optimization, cooperative networks, convex optimiza-
tion, machine learning, distributed algorithms, and optical communications.
The journal paper on this subject was ranked second in the 2013 IEEE
Marconi paper awards in wireless communications. Dr. Dahrouj was the
recipient of both the Faculty Award of excellence in research, and the Faculty
Award of excellence in teaching (at the university level) in May 2017. He is
an Associate Editor for the Frontiers in Communications and Networks, and
a Lead-Guest Editor of the Frontiers special issue on Resource Allocation
in Cloud-Radio Access Networks and Fog-Radio Access Networks for B5G
Systems.

MOHAMED-SLIM ALOUINI (Fellow, IEEE) was
born in Tunis, Tunisia. He received the Ph.D. de-
gree in electrical engineering from the California
Institute of Technology (Caltech), Pasadena, CA,
USA, in 1998. He was a Faculty Member with
the University of Minnesota, Minneapolis, MN,
USA. Then, he was with Texas A&M University
at Qatar, Education City, Doha, Qatar, before join-
ing the King Abdullah University of Science and
Technology, Thuwal, Saudi Arabia, as a Profes-
sor of electrical engineering in 2009. His research

interests include modeling, design, and performance analysis of wireless
communication systems.

TAREQ Y. AL-NAFFOURI (Senior Member,
IEEE) received the B.S. degrees in mathematics
and electrical engineering (with first Hons.) from
the King Fahd University of Petroleum and Min-
erals, Dhahran, Saudi Arabia, the M.S. degree in
electrical engineering from the Georgia Institute
of Technology, Atlanta, Georgia, and the Ph.D.
degree in electrical engineering from Stanford Uni-
versity, Stanford, CA, USA, in 2004. He was a
Visiting Scholar with the California Institute of
Technology, Pasadena, CA, in 2005 and summer

2006. He was a Fulbright Scholar with the University of Southern Califor-
nia, Los Angeles, CA, in 2008. He is currently a Professor with Electrical
Engineering Department, King Abdullah University of Science and Technol-
ogy (KAUST), Thuwal, Saudi Arabia. His research interests include sparse,
adaptive, and statistical signal processing and their applications to wireless
communications and localization, machine learning, and network information
theory. He has more than 350 publications in journal and conference proceed-
ings and 24 issued/pending patents. Dr. Al-Naffouri was the recipient of the
IEEE Education Society Chapter Achievement Award in 2008 and Al-Marai
Award for innovative research in communication in 2009. Dr. Al-Naffouri
was an Associate Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING

during 2013–2018.

VOLUME 3, 2022 319



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


