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ABSTRACT This work examines the problem of learning the topology of a network from the samples
of a diffusion process evolving at the network nodes, under the restriction that a limited fraction thereof
is probed (partial observability). We provide the following main contributions. Given an estimator of the
combination matrix (i.e., the matrix that quantifies the pairwise interaction between nodes), we introduce the
notion of identifiability gap, a minimum separation between the entries of the estimated matrix that is critical
to enable discrimination between connected and unconnected node pairs. Then we focus on the popular
Granger estimator. First, we prove that this matrix estimator, followed by a universal clustering algorithm
inspired by the k-means algorithm, learns faithfully the probed subgraph as the network size increases. This
result is proved for the case where the network topology is obtained through an Erdős-Rényi random graph
under statistical concentration of the node degrees, and the combination matrix is symmetric with nonzero
entries bounded in terms of the reciprocal of the maximal and minimal degree. The analysis explores different
connectivity regimes, including the dense regime where the probed nodes are influenced by many connections
coming from the latent (hidden) part of the graph. Second, we answer a sample complexity question and
establish that the number of samples for the Granger estimator scales almost quadratically with the expected
graph degree. We also propose three other estimators that are proved to achieve faithful graph learning, and
compare them to the Granger estimator, gaining nontrivial insights especially for the case of directed graphs.

INDEX TERMS Graph learning, network tomography, dense networks, Granger estimator, diffusion net-
work, Erdős-Rényi graph, identifiability gap, graph concentration.

I. INTRODUCTION
Learning the graph structure that governs the evolution
of a networked dynamical system from data collected at
some accessible nodes is a challenging inverse problem
with applications across many domains. The objective of
such inferential problems is to discover the interaction pro-
file among the network nodes since the topology has a
critical effect on system behavior [3], [4], [5], [6]. Graph

learning plays a central role in many applications includ-
ing, among other possibilities: estimating the longevity or
the source of an epidemics [7], [8]; revealing commonali-
ties and agent influence over social networks [9], [10], [11];
discovering the routes of clandestine information flows [12],
[13]; identifying defective elements [14]; addressing the fun-
damental issue in neuroscience that links brain functional
connectivity (i.e., a “functional” topology estimated from
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FIGURE 1. Illustration of the graph learning problem considered in this
work.

blood-oxygenation-level-dependent signals) to brain struc-
tural connectivity (i.e., the anatomical topology of neuron
interconnections) [15], [16], [17].

Depending on the particular context, the aforementioned
class of problems can be referred to in different ways, in-
cluding topology inference [18], network tomography [19],
[20], structure learning [21], or graph learning [22]. We adopt
these terminologies almost interchangeably throughout our
treatment.

This article addresses the graph learning problem under the
framework of partial observability, i.e., when only a fraction
of the network nodes can be probed. This setting is partic-
ularly important in large-scale networked systems, where it
is not feasible to gather data from all nodes comprising the
network. We solve the learning problem for distinct regimes
of network wiring, including densely-connected networks, a
case often overlooked in the literature.

II. OVERVIEW OF THE LEARNING PROBLEM
The structure of the learning problem addressed in this work
can be summarized as follows. Streams of data originating
from a certain subnetwork are collected, and the goal is to
estimate the (unknown) topology linking the nodes of this
subnetwork from the collected data. The graph learning pro-
tocol will involve two main steps: an estimation step, where
a combination matrix (i.e., a matrix quantifying the strength
of the connections among the network nodes) is estimated;
and a thresholding step, where node pairs linked by a strong
edge (i.e., node pairs whose corresponding estimated matrix
entry lies above some threshold) are deemed connected. A
structurally-consistent estimator is one that ends up assigning
strong ties to interacting pairs and weak ties to non-interacting
pairs. In this way, at the thresholding stage, one can correctly
classify the pairs as interacting and non-interacting. Fig. 1
gives a graphical summary of the aforementioned procedure.

It is useful to illustrate the learning problem in relation to
some popular networked systems. To start with, let us neglect
some practical limitations, in particular assume that: i) all
nodes can be monitored (full observability); ii) there are no

limitations in terms of computational power; and iii) there
are no limitations on the available time samples. Then, the
first inferential stage consists of finding a matrix estimator to
quantify the strength of pairwise interactions in the network.
One notable estimator relies on computing the (spatial) co-
variance matrix R0 = limn→∞ E[yny�

n ], where yn denotes the
vector collecting the data from all nodes at time n, and where
iii) justifies the limit and (under an ergodic assumption) im-
plies that the statistical average can be learned from the data.
When the matrix R0 provides a consistent estimator for the
connection strengths, we talk of a correlation network [18].
For these networks, interactions between two nodes are direct
and they are accordingly captured by pairwise correlations.
One example of a correlation network is the ferromagnetic
Ising model [23] with independent and identically distributed
(i.i.d.) time samples, and under certain constraints of sparsity
on the network and of regularity on the interaction weights.

Another classic model for graph learning is a Gaussian
graphical model. In this case, R0 is no longer the proper
estimator, but its inverse R−1

0 (which is often referred to as the
precision or concentration matrix) is a consistent estimator,
in that its support coincides with the underlying graph of
interactions. Over Gaussian graphical models, the pairwise
interaction between adjacent nodes is affected by other nodes,
and this latent influence is the reason why spatial correlation
between measurements is no longer sufficient to capture the
network structure.

For most standard graphical models, interactions across
network nodes are described through a multivariate distri-
bution that characterizes a collection of dependent random
variables defined on the nodes. It is usually assumed that i.i.d.
samples of these variables are available for the learning pro-
cess. In other words, over graphical models the data samples
do not arise from a dynamical process governing the time evo-
lution of the nodes’ outputs. In contrast, in this article we will
be dealing with networked dynamical systems, where signals
evolve at the nodes and are affected by the evolution of the
signals at neighboring nodes as well. One relevant example
is the diffusion or first-order Vector AutoRegressive (VAR)
system described by (3) further ahead. For such graphs, the
proper estimator for graph connectivity turns out to be the
Granger estimator, R1R−1

0 , which combines in a suitable way
information contained in the covariance matrix, R0, and in the
one-lag covariance matrix, R1 = limn→∞ E[yny�

n−1].

A. STRUCTURAL-CONSISTENCY, HARDNESS AND
SAMPLE-COMPLEXITY
We are now ready to introduce three concepts that play an
important role in graph learning problems.

1) STRUCTURAL CONSISTENCY
In the previous examples, the graph structure can be retrieved
from a statistical descriptor related to the measurements,
i.e., R0 for correlation networks, R−1

0 for Gaussian graphical
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models, and R1R−1
0 for VAR models. Since the involved co-

variance matrices can be computed from the measurements,
with arbitrary precision as the number of samples increases,
we conclude that in the aforementioned three examples the
graph can be correctly identified.

In a more general setting, consider a statistical descriptor
that can be consistently estimated from the data as the number
of samples goes to infinity. If, for sufficiently large networks,
the statistical descriptor allows to identify the correct graph
structure, we shall say that the graph learning problem is
identifiable, and that the corresponding descriptor achieves
structural consistency.

In this work we focus on the case in which the measure-
ments are available from only a limited subset of nodes,
with identifiability referring here to the subgraph connecting
these monitored nodes. Under this setting,1 many interesting
questions arise, such as: Does partial observability impair
identifiability of the monitored subnetwork? If not, how can
we design structurally-consistent estimators?

We remark that the concepts of identifiability and
structural consistency disregard complexity issues, since
they assume that the necessary statistical quantities (e.g.,
the true covariance matrices) are available. For example, we
assume that R1R−1

0 can be computed exactly, which means
that matrix inversion is possible whatever the size of the
network, and that we have sufficient time to learn perfectly
the true covariance matrices.

2) HARDNESS
How much computational complexity is required to evaluate
the matrix estimator necessary for a particular graph learning
problem? For example, if one is interested in the precision
matrix, R−1

0 , the hardness is related to the complexity of the
matrix inversion. Many works attempt to reduce the complex-
ity by leveraging particular constraints such as smoothness of
the node-level signals and/or sparsity of the underlying graph
of interactions.

Notably, there are topology inference problems that are
computationally intractable (e.g., NP-hard) [24], [25], [26],
[27]. It is therefore critical to identify meaningful systems
where this does not happen [28]. The present work sheds
light on a relevant class of systems whereby structure learning
with statistically dependent observations and under partial
observability has affordable computational complexity, even
for the important case of dense (thus, loopy and non-tree
like) networks. However, we remark that the concept of hard-
ness disregards the complexity associated with the empirical
estimation of the pertinent matrices from the available data
samples. This fundamental element of complexity is usually
referred to as sample complexity.

1It should be remarked, however, that certain issues may arise also in the
full observability case. For instance, as the network size increases, the entries
of the matrix estimators might become smaller and smaller, and, hence, it
is critical to identify whether a stable threshold can be found to classify
connected/unconnected node pairs.

3) SAMPLE COMPLEXITY
In practice, only a finite amount of data is available and,
therefore, only approximate versions of the aforementioned
matrix estimators can be computed. There exist several results
about sample complexity in the context of high-dimensional
graphical models, where the number of samples necessary to
get some prescribed accuracy is related to the system parame-
ters, e.g., to the network size and to the density of connections.
Results relative to sample complexity over dynamical graph
systems are comparably less mature [18]. Over these sys-
tems, the dependence among the time samples induced by
the dynamical model complicates the theoretical analysis of
the convergence of the empirical estimators, and, hence, the
analysis of sample complexity. Useful results about the sam-
ple complexity of vector autoregressive models like the one
addressed in this work are available in [29], [30], [31], [32].
These results do not consider the partial observability setting
and, hence, they do not apply here.2 Nonetheless, in [29],
[30], [31], [32] we can find useful techniques to bound the
errors associated to the empirical covariance matrices over
vector autoregressive models. These types of bounds will be
exploited in the proof of Theorem 3, where we establish the
sample complexity of the estimators proposed in this work.

III. RELATED WORK
The learning problem considered in this work lies in the
broad field of signal processing over graphs [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
dealing in particular with the identification of an unknown
network topology from measurements gathered at the net-
work nodes [18]. These types of inferential problems can be
addressed under different settings, including the case where
measurements from all network nodes are available (full ob-
servability), and the case where only a fraction of nodes is
accessible (partial observability). Even if we focus on the
partial observability setting, we deem it useful to start with
some results pertaining to the full observability setting.

A. GRAPH LEARNING UNDER FULL OBSERVABILITY
The majority of works on graph learning over networks fo-
cuses on linear system dynamics, with nonlinear dynamics
typically being tackled by variational characterizations under
a small-noise assumption [47], [48], [49], or by increasing the
dimensionality of the observable space [50], [51].

Topology inference for a general class of linear stochas-
tic dynamical systems (e.g., VAR models of arbitrary order,
or even non-causal linear models) is addressed in [52]. An
approach based on Wiener filtering is proposed to infer the

2In order to avoid misunderstandings, we remark that the terminology “par-
tial samples” or “missing data” used in [31], [32] refers to a different problem.
In our setting samples from only a subset of the network are available, while
in [31], [32] samples from the whole network are available but, given an
overall amount of data generated at each node, a certain fraction per node
is randomly lost and/or corrupted.
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topology, which provides exact reconstruction for self-kin net-
works or, in general, guarantees reconstruction of the smallest
self-kin network embracing the true network.

There exist works dealing with more general dynamical
systems and graphs. For example, in [53] the concept of
directed information graphs is advocated to discover depen-
dencies in networks of interacting processes linked by causal
dynamics, and a metric based on functional dependencies is
proposed in [54] to learn causal relationships over a possibly
nonlinear network.

Moving closer to our setting, among linear (or linearized)
systems, special attention is devoted to autoregressive diffu-
sion models [55], [56], [57]. For instance, in [55] causal graph
processes are exploited to devise a computationally tractable
algorithm for graph structure recovery with performance guar-
antees. Recent works exploit optimization and graph signal
processing techniques to feed the graph learning algorithm
with proper structural constraints. In [56], [57], it is shown
how to capitalize on the fact that the weighting matrix and
the covariance matrix share the same eigenvectors, and how
to solve the topology inverse problem through optimization
methods under sparsity constraints. An account of the meth-
ods for the full observability regime can be found in [18].

We stress that most of the aforementioned methods work
in the graph spectral domain. This has to be contrasted with
the methods proposed in this paper, which rely instead on the
graph edge domain. Working in the edge domain allows us
to obtain a transparent relationship for the matrix estimators,
which is critical to establish identifiability under the challeng-
ing partial observability setting.

In summary, while in certain cases (e.g., general linear
models and/or nonlinear models) identifiability can be an
issue, most of the works on diffusion models focus on re-
ducing complexity by exploiting proper structural constraints
(e.g., smoothness or sparsity of the signals defined on the
graph) [18]. However, all the aforementioned results pertain
to the case where node measurements from the entire network
are available. We focus instead on the case in which only
partial observation of the network is permitted.

B. GRAPH LEARNING UNDER PARTIAL OBSERVABILITY
A fundamental challenge of our work is performing struc-
ture learning when only partial observation is allowed [58].
Under this setting, results for retrieving particular network
graphs (polytrees) are available in [59] and [60]. Consider-
ing instead the case of general topologies, and with focus
on VAR/diffusion models like the one considered in this
work, references [61], [62] establish technical conditions for
exact or partial topology identifiability. However, these iden-
tifiability conditions act at a very “microscopic” level (they
are formulated in terms of some precise details of the lo-
cal graph structure and/or of the statistical model), and are
therefore impractical over large-scale networks. In contrast,
in this work we pursue a statistical approach that is genuinely

tailored to the large-scale setting: an asymptotic frame-
work is considered, where the thermodynamic limit of large
networks is afforded by using random graphs, and the con-
ditions on the network connection topology are summarized
at a macroscopic level through average descriptive indicators
(e.g., probability of drawing an edge). In a similar vein, de-
tailed asymptotic analysis with performance guarantees are
available for graphical models with latent variables. For ex-
ample, in [63] it is shown that, under certain conditions
concerning the interactions between the observed and the
unobserved network nodes, the “sparsity+low-rank” frame-
work can be exploited to estimate the amount of latent
variables [63], and to reconstruct the topology of the observ-
able subnetwork. Likewise, in [21] the graph learning problem
is tackled in the context of locally-tree graphs, whereas in [64]
a local separation criterion is imposed to deal with Gaus-
sian graphical models. Still in the framework of learning
graphical models with latent variables, in [65] an influence-
maximization metric is proposed, to show that ferromagnetic
restricted Boltzmann machines with bounded degree are an
instance of graphical models that can be efficiently learned.

However, and as already explained in Section II, graphi-
cal models do not match the networked dynamical models
considered in this work. For these models, results for graph
learning under partial observability have been recently ob-
tained in [19], [20], [66], [67], [68]. More specifically, i)
in [19] the whole network graph is assumed to follow an
Erdős-Rényi construction and the number of observable nodes
grows with the overall network size N ; whereas ii) in [20]
the number of monitored nodes is held fixed (and, hence, the
fraction of observable nodes vanishes in the limit of large
N), the graph of the monitored nodes is left arbitrary, and
the unobserved component continues to obey an Erdős-Rényi
model. The present work focuses on the former model.3 It is
therefore necessary to explain clearly why the present work
constitutes a significant progress in the context of local to-
mography over diffusion networks, in comparison to [19].

C. MAIN ADVANCES
The key contributions of this work in relation to [19] are as
follows.

— One first advance relates to the regime of connectivity.
Reference [19] addresses only the case that the network
is sparsely connected, which means that the connec-
tion probability is allowed to vanish with N in a way
that preserves network connectedness. In this work we
examine also the dense regime, where the connection
probability is not vanishing.

— We advance also with respect to the results currently
available under the sparse regime. In [19] a consistency
result is proved, for all sparsely connected networks,

3Even if the machinery used to prove our results can be applied to the latter
model as well, we deem it useful to focus on a single model, in order to make
the exposition more organic and to convey better the main message of the
work.
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in terms of an average fraction of misclassified node
pairs. In the present work, we introduce in Section V
a significantly stronger notion of consistency (referred
to as universal local structural consistency), which will
apply to all networks that fulfill a property of statistical
concentration of node degrees. These networks will be
shown to be all the dense networks, as well as most part
of the sparse networks. Using such stronger notion of
consistency answers also the following important ques-
tion (posed, and only partially answered in [19], where
the answer was obtained under a certain approximation
of independence): does the fraction of mistakes scale
properly with N?

— We are able to offer a rigorous proof that the connected
and unconnected node pairs can be recovered through
some universal clustering algorithm. In particular, we
propose a variant of the k-means algorithm that is
shown to be asymptotically consistent.

— We achieve the significant advance of ascertaining the
sample complexity of the Granger estimator, i.e., we
establish how the number of samples must scale with
the network size to let this estimator learn the graph of
probed nodes faithfully.

— Another advance relates to the topology inference
algorithms. The matrix estimators available in the full-
observability setting help guide the choice of a matrix
estimator for the partial observability setting. For ex-
ample, one can replace the Granger estimator with a
version that considers only the subnetwork of observed
measurements. This choice is widely adopted in causal
inference from time series (when one neglects the ex-
istence of latent components), and has been adopted,
e.g., in [19], [20]. In this work we characterize thor-
oughly the Granger estimator. Then, in Section VIII
we consider three other matrix estimators, namely,
the one-three-lags estimator (computing the difference
between the one-lag and three-lags covariance matri-
ces), the one-lag covariance matrix and the covariance
matrix between the residuals (i.e., difference between
subsequent time samples). We show that all the three
estimators are structurally consistent.

— Finally, we examine the important case of directed
graphs. Our theorems are proved under the assumption
of symmetric combination matrices. However, while
the three new estimators are implicitly constructed by
exploiting symmetry, the construction of the Granger
estimator does not assume any symmetry, and, hence,
we expect that it performs well also over directed
graphs. We show by numerical simulations that this
is actually the case. In contrast, and remarkably, the
other estimators lose their learning ability over directed
graphs.

Notation: We use boldface letters to denote random vari-
ables, and normal font letters for their realizations. Matrices
are denoted by capital letters, and vectors by small letters.

This convention can be occasionally violated, for example, the
total number of network nodes is denoted by N . The symbol

p−→ denotes convergence in probability as N → ∞.
Sets and events are denoted by upper-case calligraphic let-

ters, whereas the corresponding normal-font letter will denote
the cardinality of the set. For example, the cardinality of S is
S. The complement of S is denoted by S′.

For a K × K matrix Z , the submatrix spanning the rows of Z
indexed by set S ⊆ {1, 2, . . . , K} and the columns indexed by
set T ⊆ {1, 2, . . . , K}, is denoted by ZST, or alternatively by
[Z]ST. When S = T, the submatrix ZST is abbreviated as ZS.
Moreover, in the indexing of a submatrix we keep the index
set of the corresponding full matrix. For example, if S = {2, 3}
and T = {2, 4, 5}, the submatrix M = ZST is a 2 × 3 matrix,
indexed as follows:

M =
(

z22 z24 z25
z32 z34 z35

)
=
(

m22 m24 m25
m32 m34 m35

)
. (1)

For a matrix M, the symbols ‖M‖1, ‖M‖2 and ‖M‖∞ denote
the vector-induced �1, �2 and �∞ norms of M, respectively.
The symbol ‖M‖max denotes instead the maximum absolute
entry of M. The symbol log denotes the natural logarithm.

IV. NETWORKED DYNAMICAL SYSTEM
Let yi(n) be the output measurement produced by node i at
time n. Likewise, let xi(n) be the input source (e.g., streaming
data or noise) exciting node i at time n. It is convenient to stack
the input and output variables, respectively, into the vectors:

xn = [x1(n), x2(n), . . . , xN (n)]�,

yn = [y1(n), y2(n), . . . , yN (n)]�. (2)

The stochastic dynamical system considered in the present
work is given by the following network diffusion process
(a.k.a. first-order Vector AutoRegressive (VAR) model):

yn = A yn−1 + σ xn (3)

where A is some stable N × N matrix with nonnegative en-
tries, and σ 2 is a variance factor. The bold notation for A is
used since, as explained in the next section, we will be dealing
with random graphs.

By rewriting (3) on an entrywise basis:

yi(n) =
N∑

�=1

ai� y�(n − 1) + σ xi(n), (4)

we readily see that the support-graph of A reflects the con-
nections among the network nodes. Indeed, (4) shows that,
at time n, the output of node i is updated by combining the
outputs of other nodes from time n − 1. In particular, node
i scales the output of node � by using a combination weight
ai�, which implies that the output of node � is effectively used
by node i if, and only if ai� �= 0. After the combination step,
the output measurement yi(n) is adjusted by incorporating the
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streaming-source value, xi(n), which is locally available at
node i at current time n.

Formulations like the one in (3) arise naturally across
many application domains, e.g., in economics [69], in the
variational characterization of nonlinear stochastic dynamical
systems [70], or in distributed network processing applica-
tions where several useful strategies such as consensus [34],
[71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81] and
diffusion [82], [83], [84], [85], [86], [87] lead to data models
of the form in (4).

In our partial observability setting, only a subset of
nodes can be probed: for each node i belonging to the
subset of probed nodes, S, a stream of n measurements,
yi(1), yi(2), . . . , yi(n) is acquired. The learning task is to re-
construct the graph of interconnections corresponding to the
combination (sub)matrix AS. Since we will study the graph
learning problem in the asymptotic regime where the network
size N goes to infinity, it is necessary to specify how the
cardinality of the probed set scales with N .

Definition 1 (Partial observability setting): The subnet-
work of observable measurements, S, has a cardinality S
scaling as:

S

N
N→∞−→ ξ ∈ (0, 1), (5)

which means that ξ is the (asymptotic) fraction of monitored
nodes. Since ξ is strictly less than one, condition (5) conforms
to a partial observability setting.

A. RANDOM GRAPH AND COMBINATION MATRIX
In the following, we denote by G the adjacency matrix of
the network graph, whose entry gi j is equal to one if nodes i
and j are connected, and is equal to zero otherwise. The bold
notation is used because we deal with random graphs.

Given a realization of the random graph, a combination
matrix is obtained by applying a certain combination rule or
policy to this graph. The combination policy defines how the
weights ai j are assigned given the particular graph structure.
Formally, we have that:

A = π (G), (6)

where π : {0, 1}N×N → R
N×N is a deterministic policy and

the randomness of A arises from the randomness of graph G.
In summary, the system in (3) contains three sources of

randomness, namely, the combination matrix A, the initial
state y0, and the input source {xn}. Let us now detail how
these sources of randomness interact. Once a realization A =
A is given, the stochastic dynamical system in (3) evolves
according to the randomness of the initial state and the input
source. In the statistical physics jargon, matrix A is a quenched
variable: once realized, it is frozen and process yn evolves over
the same matrix for all n.

Conditionally on A, vector y0 is assumed to have finite-
variance entries, possibly mutually dependent and dependent
on the particular matrix realization. The random variables
xi(n) are independent of y0 and of the matrix realization.

They have zero mean and unit variance, and are independent
and identically distributed (i.i.d.), both spatially (i.e., w.r.t. to
index i) and temporally (i.e., w.r.t. to index n).

The particular distribution of y0 and xn is immaterial to
the results stated in Theorems 1 and 2 further ahead. In
comparison, Theorem 3 is proved under the assumption of
Gaussian xn, and initial state y0 distributed (conditionally
on A) according to the stationary distribution of the VAR
model.4 These two assumptions are commonly adopted in the
sample-complexity analysis of graph learning models, where
the available results exploit the concentration properties of the
covariance matrices R0 and R1 under stationary Gaussian VAR
models [29], [30], [31], [32].

V. CONSISTENT GRAPH LEARNING
Let us consider a stream of n consecutive observations taken
over the probed subset of nodes S, and collected into the S × n
matrix Y n whose (�, i) entry is, for � ∈ S and i = 1, 2, . . . , n:

[Y n]�i = y�(i). (7)

A matrix estimator will be formally defined as some measur-
able function of the data ÂS,n = fn(Y n), namely,

fn : RS×n → R
S×S. (8)

We focus on the class of asymptotically stable estimators that
converge as the number of samples increases. In particular, we
consider the class of estimators that, for any realization of the
combination matrix A, guarantee the following convergence
in probability:

lim
n→∞P[‖ÂS,n − h‖max > ε|A = A] = 0. (9)

We remark that the limiting estimator in (9), h, is a deter-
ministic quantity, given A = A. However, this limit will be in
general different for the 2N (N−1)/2 possible realizations of the
random graph, i.e., we should write h = h(A) in (9). In the
following, we will use the following notation

ÂS = h(A), (10)

where we suppressed the sample subscript n to denote the lim-
iting matrix estimator ÂS. The terminology “limiting matrix
estimator” will be generally used in our achievability analysis,
i.e., when we disregard sample complexity and let n = ∞.
Using (10) in (9) we have:

lim
n→∞P[‖ÂS,n − ÂS‖max > ε] = 0 (11)

Owing to dependence on A, the limiting matrix estimator ÂS

is still random, and its randomness is determined solely by
the randomness of the underlying graph. Our main goal is
to establish that, in the commonly adopted doubly-asymptotic
framework [21], [63] where the network size N becomes large
and the number of samples n increases with N , it is possible
to retrieve consistently (i.e., with probability converging to

4The stationary distribution will depend on the particular realization A.
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FIGURE 2. Identifiability gap.

1) the true graph of the probed subset of nodes. In order to
achieve this goal, in the next section we start by examining
the asymptotic properties of the limiting estimator ÂS as the
network size N goes to infinity.

A. ANALYSIS OF THE LIMITING ESTIMATOR AS N → ∞
In order to ascertain whether or not it is possible to dis-
criminate interacting (i.e., connected) from non-interacting
(i.e., unconnected) nodes, via observation of their output mea-
surements, we now introduce the concept of margins and
identifiability gap.

Definition 2 (Margins): Let ÂS be a limiting matrix estima-
tor for AS. The lower and upper margins corresponding to the
unconnected pairs are defined as, respectively:5

δN � min
i, j∈S:ai j=0

i �= j

âi j, δN � max
i, j∈S:ai j=0

i �= j

âi j . (12)

Likewise, the lower and upper margins corresponding to the
connected pairs are defined as, respectively:

�N � min
i, j∈S:ai j>0

i �= j

âi j, �N � max
i, j∈S:ai j>0

i �= j

âi j . (13)

�
The aforementioned margins are useful to examine the

achievability of structural consistency for a limiting estimator
ÂS — see Fig. 2 for an illustration — and lead to the concept
of identifiability gap.

Definition 3 (Universal local structural consistency): Let
ÂS be a limiting matrix estimator for AS. If there exist a
positive sequence sN , a real value η, and a positive value �,
such that, for any ε > 0:

lim
N→∞

P[|sN δN − η| < ε] = 1,

lim
N→∞

P[|sN δN − η| < ε] = 1,

5The definitions in (12) and (13) are void if the nodes in S are all connected
or all unconnected, respectively. For these singular cases, we can formally
assign arbitrary values to the margins. We will see later that, under the Erdős-
Rényi model, these events are irrelevant as N → ∞.

lim
N→∞

P[|sN �N − (η + �)| < ε] = 1,

lim
N→∞

P[|sN �N − (η + �)| < ε] = 1, (14)

we say that ÂS achieves universal local structural consistency,
with scaling sequence sN , bias η, and identifiability gap �. �

Remark 1 (Locality): We use the qualification “local” to
emphasize that the structure of the subnetwork S must be
inferred from observations gathered locally in S, even if the
nodes of S undergo the influence of many other nodes belong-
ing to the larger embedding network. �

Remark 2 (Bias): For the true combination matrix, the en-
tries corresponding to unconnected pairs are zero. In contrast,
(14) reveals that the scaled entries for unconnected pairs can
be close to η, which results therefore in a bias. However,
and remarkably, this bias does not constitute a problem for
consistent classification of connected/unconnected node pairs,
i.e., the bias does not affect in any manner identifiability. �

Remark 3 (Identifiability gap): Since we can write:

|sN δN − η| < ε ⇒ sN δN < η + ε, (15)

and

|sN �N − (η + �)| < ε ⇒ sN �N > η + � − ε, (16)

from the second and third formulas in (14) we conclude that,
with high probability as N gets large:6

sN δN < η + ε, sN �N > η + � − ε. (18)

The first inequality in (18) means that the minimum entry of
sN ÂS taken over the connected pairs essentially stays above
the value η + � > η. Likewise, the second inequality means
that the maximum entry of sN ÂS taken over the unconnected
pairs essentially does not exceed η. Combining these two
relationships, we conclude that the entries of the (limiting)
estimated matrix corresponding to connected node pairs stand
clearly separated from the entries corresponding to uncon-
nected node pairs. The minimum amount of separation is
quantified by the gap, �. �

The notion of structural consistency implies the existence of
a threshold, comprised between η and η + �, which correctly
separates (in the limit of large N) the entries of the matrix
estimator, in such a way that the entries corresponding to
connected pairs lie above the threshold, whereas the entries
corresponding to unconnected pairs lie below the threshold.

However, an accurate determination of the separation
threshold requires some prior knowledge of the monitored
system. For instance, to set a detection threshold one needs to

6Actually, the existence of a gap would be guaranteed by a weaker notion
of consistency, namely, by:

lim
N→∞

P[sN δN < η + ε] = 1,

lim
N→∞

P[sN �N > η + � − ε] = 1. (17)

However, this notion would not be sufficient to guarantee the important
clustering property that we discuss in Remark 4.
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know the scaling sequence sN . In the problems dealt with in
this work we will see that sN = N pN , where N pN represents
the average number of neighbors in the network, and in several
practical applications this number is unknown.

As a result, the threshold setting might be a critical issue,
and it would be highly desirable to have a universal (i.e., blind
and nonparametric) method to set the threshold. For example,
it would be highly desirable to determine a separation thresh-
old using machine learning tools such as a standard clustering
algorithm (e.g., a k-means clustering with k = 2). As dis-
cussed in the next remark, this possibility is automatically
enabled by the clustering property embodied in Definition 3.

Remark 4 (Clustering): According to the notion of univer-
sal structural consistency, the pair of (scaled) margins over the
unconnected pairs, sN δN and sN δN , converge to one and the
same value, η, which implies that all the entries of sN ÂS cor-
responding to the unconnected pairs are sandwiched between
these margins — see Fig. 2. A similar behavior is observed
for the scaled entries over the connected pairs, which converge
altogether to η + � since they are sandwiched between sN �N
and sN �N . In summary, we conclude that the connected and
unconnected node pairs cluster into well-separated classes
that can be identified, e.g., by means of a universal clustering
algorithm. �

B. A CONSISTENT CLUSTERING ALGORITHM
The definition of universal local structural consistency implies
that the unconnected node pairs cluster around η, whereas the
connected node pairs cluster around the higher value η + �.
Accordingly, for sufficiently large N, there is no doubt that
any reasonable clustering algorithm will be able to identify
properly these two clusters. For example, an asymptotically
correct guess of the true clusters (i.e., of the true graph) can
be obtained by simply choosing as a threshold the midpoint
between the maximum and minimum matrix entries.

The simplest classification rule based on such threshold
does not try to cluster the data, but it works asymptotically
since, as N → ∞, the scaled matrix entries converge to two
possible values, η or η + �. For finite network and/or sample
sizes, the scaled matrix entries exhibit a certain variability
around these values, and it would be more appropriate to
employ a clustering algorithm, like the popular k-means al-
gorithm (in our case, we know that k = 2).

However, the k-means algorithm has a well-known draw-
back in the case of unbalanced clusters. One example of
unbalanced clusters is shown in Fig. 3. We see that the k-
means algorithm (top panel) tends to be highly biased by the
largest cluster, resulting in a wrong configuration. Here the
two centroids estimated by the k-means algorithm are both
located within the largest ensemble (circles), leading to a
wrong classification. Since in our model it is actually permit-
ted that, for large N , one cluster can dominate the other one
(for instance, when pN → 0, the cluster of unconnected node
pairs becomes predominant), we are not guaranteed that the
k-means algorithm works properly as N → ∞. In summary,
the k-means algorithm with k = 2 can mitigate finite-size

FIGURE 3. Visual comparison between the k-means algorithm and the
clustering algorithm proposed in this work, for the case of unbalanced
clusters. The true clusters are identified by different symbols (circle vs.
square). The clusters produced by the algorithms are identified by different
colors (blue vs. red).

issues, but it does not provide asymptotic guarantees. In or-
der to solve this issue, we propose a simple modification of
the k-means algorithm, detailed in the pseudo-code shown in
Algorithm 1.

Let v be the L × 1 vector to be clustered, with entries that
have been arranged in ascending order. The k-means algo-
rithm, with k = 2, attempts to minimize the following cost
function: ∑

v j∈C0

(v j − c0)2 +
∑

v j∈C1

(v j − c1)2, (19)

over all possible clusters C0 and C1, with c0 and c1 being the
cluster centroids, defined as:

c0 = 1

|C0|
∑

v j∈C0

v j, c1 = 1

|C1|
∑

v j∈C1

v j . (20)
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It is useful to recall that the minimum of the cost function
in (19) must fulfill the following necessary condition: the
midpoint between the two centroids is a threshold that sep-
arates the two clusters [91]. In our one-dimensional case, with
k = 2, this property implies that it suffices to consider only
the cluster configurations C0( j) = {1, 2, . . . , j} and C1( j) =
{ j + 1, j + 2, . . . , L}, for j ∈ {1, 2, . . . , L − 1}. Obviously, if
two points, say vi and vi+1, are coincident, considering their
possible permutations is pointless. Accordingly, we see that
any possible partition is identified by an index j.

Now, for large N the true clusters of connected and uncon-
nected pairs become almost perfectly localized, and, hence,
two centroids belonging to the true clusters match the neces-
sary condition — see the bottom panel in Fig. 3. However,
as we have observed when examining Fig. 3, if the sizes of
the true clusters are very different, the k-means algorithm
can be in error. For this reason, we now introduce a simple
modification of the k-means algorithm that overcomes this
issue by taking into account also the distance between the
centroids.

First, the algorithm enumerates all admissible cluster pairs
through an index j spanning the set {1, 2, . . . , L − 1}. The
set of indices fulfilling the necessary condition of k-means
are collected in the set A = { j1, j2, . . .}. At this stage, the
classic k-means would simply select, among these admissi-
ble configurations, the one ensuring the minimum cost. We
modify this rule by selecting the index7 j	 ∈ A that maxi-
mizes the distance between the clusters’ centroids, namely,
j	 = argmax j∈A[c1( j) − c0( j)], with c0( j) and c1( j) being
the centroids corresponding to the clusters identified by index
j. With this modified rule, we want to i) retain the good
behavior exhibited by k-means in typical situations; and ii)
guarantee that the algorithm achieves consistent graph learn-
ing, as we will formally establish in the next theorem.

Before stating the theorem, let us introduce the input-output
relationship that relates the estimated combination matrix to
the estimated graph through the clustering algorithm. The
procedure is as follows. Once an estimated matrix M is com-
puted, it is vectorized and sorted in ascending order, before
feeding the clustering algorithm described in the pseudo-code
reported in this page. More formally, given a matrix M with
index set S, let diag(M ) be the diagonal matrix with same
diagonal entries as M, such that M0 = M − diag(M ) is the
matrix M with diagonal entries set to zero.

Let

u = vec(M0) : RS×S → R
S(S−1) (21)

be a one-to-one8 mapping that transforms the off-diagonal
entries of the S × S matrix M0 into an S(S − 1) × 1 vector
u. Let

v = 
 u, (22)

7In principle we could have multiple maximizers, but we will see later in
Lemma 8 and Theorem 1 that in our case the maximizer j	 is unique with
high probability.

8The mapping is invertible since it operates on matrices with null diagonal.

with 
 being the permutation matrix that sorts the entries of
u in ascending order. The vector v is given as input to the
clustering algorithm clu(v), obtaining the clusters:

C	
0 = C0( j	), C	

1 = C1( j	), (23)

as described in the pseudo-code of the algorithm. We
use the reverse permutation 
−1 to cluster the entries of u
from the corresponding clustering on the entries of v. Then,
using the inverse mapping vec−1, we decide which cluster a
particular entry mi j belongs to, and accordingly estimate an
adjacency matrix Ĝ, whose main diagonal is set convention-
ally to 0, and whose off-diagonal entries, for all i, j ∈ S with
i �= j, are set as:

ĝi j = I[mi j ∈ C	
1], (24)

where I[E] denotes the indicator function, which is equal to
1 if condition E is true, and is equal to 0 otherwise. The
overall mapping that leads from M to Ĝ, passing through the
algorithm clu, will be compactly denoted by graphclu.

Theorem 1 (Sample consistency of the proposed clustering
algorithm): Let ÂS,n be a stable matrix estimator belonging
to class (11), with the limiting matrix estimator ÂS achieving
universal local structural consistency according to Defini-
tion 3. Let GS be the (random) support graph associated to
AS and let

ĜS,n = graphclu(ÂS,n) (25)

be the subgraph estimated by the proposed clustering algo-
rithm. If the probability that GS is fully connected or fully
disconnected vanishes as N → ∞, a certain scaling law n(N )
exists such that:

lim
N→∞

P
[
ĜS,n(N ) = GS

] = 1 (26)

Proof: See Appendix H. �

VI. GRANGER ESTIMATOR
Preliminarily, it is useful to examine the steady-state covari-
ance matrix corresponding to the dynamics in (3).

According to our generative model, given a certain real-
ization of the combination matrix A = A, we let the system
evolve according to (3). Exploiting (3) we see that:

E
[
yny�

n

∣∣A = A] = An
E
[
y0y�

0

]
(An)T + σ 2

n−1∑
i=0

Ai(Ai )T . (27)

Using now the stability and symmetry of A along with (27)
we get the following limiting covariance (convergence of the
series is guaranteed by stability):

R0 = R0(A) = lim
n→∞E

[
yny�

n |A = A
]

= σ 2
∞∑

i=0

A2i = σ 2(I − A2)−1, (28)

where I is the N × N identity matrix. The bold notation:

R0 = R0(A) (29)
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will be finally used to account for the randomness in A coming
from the underlying Erdős-Rényi graph.

Likewise, we introduce the steady-state one-lag covariance
matrix:

R1 = R1(A) = lim
n→∞E

[
yny�

n−1|A = A
]
, R1 = R1(A), (30)

which exploiting the dynamics in (3) can be written as:

R1 = AR0. (31)

From (31) we obtain the following well-known relationship:

A = R1R−1
0 , (32)

a quantity that is also referred to as the best one-step predictor
or Granger estimator [52], [61]. Under the partial observabil-
ity setting, it is tempting to adapt the structure in (32) by
considering only the observable subnet S [19], [20]:

Â
(Gra)
S = [R1]S([R0]S)−1, (33)

which obviously does not allow us to incorporate well the
contribution of latent nodes. In [19] it is shown that such
limiting matrix estimator admits the following representation:

Â
(Gra)
S = AS + E(Gra), (34)

where (we recall that S′ denotes the subset of unobserved
nodes):

E(Gra) = ASS′H[A2]S′S, (35)

with:

H = (IS′ − C)−1, C � [A2]S′ . (36)

For later use, it is also useful to rewrite (35) on an entrywise
basis, for all i, j ∈ S:

e(Gra)
i j =

∑
�,m∈S′

ai�h�ma(2)
m j (37)

where the symbol a(k)
i j denotes the (i, j) entry of the k-th

matrix power Ak .

VII. MAIN RESULT
In this section, we illustrate the characterization of consis-
tency and sample complexity regarding the Granger estimator.
We start by introducing the assumptions on the class of
random graphs and combination matrices used to prove the
results.

A. ASSUMPTIONS ON THE GRAPH
In this article we address the useful case where the network
graph is generated according to the Erdős-Rényi random
graph model, namely, an undirected graph whose edges are
drawn, one independently from the other, through a sequence
of Bernoulli experiments with identical probability of suc-
cess (i.e., of connection) [88], [89]. In particular, the notation
G (N, pN ) will represent an Erdős-Rényi graph over N nodes,

and with connection probability pN . Accordingly, the vari-
ables gi j , for i = 1, 2, . . . , N and j > i, are independent
Bernoulli random variables with P[gi j = 1] = pN , and the
matrix G is symmetric. As it will be clear soon, the explicit
dependence of the connection probability upon N will be
critical to examine the evolution of random graphs in the
thermodynamic limit of large N .

As one fundamental graph descriptor, in this work we use
the degree of a node. The degree of node i is defined as:

d i = 1 +
∑
� �=i

gi�, (38)

namely, the cardinality of the i-th node neighborhood (in-
cluding i itself). In particular, we shall use the minimal and
maximal degrees that are defined as, respectively:

dmin � min
i=1,2,...N

d i, dmax � max
i=1,2,...N

d i. (39)

One meaningful (and classic) way to characterize the behavior
of random graphs is to examine their thermodynamic limit as
the network size goes to infinity. Such an asymptotic charac-
terization is useful because it captures average behavior that
emerges with high probability over large networks.

In examining the thermodynamic behavior of random
graphs, the connection probability pN is generally allowed
to scale with N . This degree of freedom allows representing
different types of asymptotic graph behavior. For example,
recalling that the average number of neighbors over an Erdős-
Rényi graph scales as N pN , different graph evolutions can be
obtained with different choices of pN . For example, a constant
pN will let the number of neighbors grow linearly with N .
In comparison, a pN scaling as (log N )/N would correspond
to a number of neighbors growing logarithmically with N .
In summary, different limiting regimes are determined by the
way the connection probability evolves with N . It is useful for
our purposes to list briefly the main regimes that are of interest
for the forthcoming treatment.

— Connected regime: In this work we focus on the regime
where the graph is connected with high probability. This
regime prescribes that the pairwise connection probability
scales as [88], [89]:

pN = log N + cN

N
, cN

N→∞−→ ∞. (40)

— Sparse (connected) regime: The connected regime can be
obtained also when the pairwise connection probability, pN ,
vanishes as N gets large. In particular, we shall refer to this
scenario as the sparse connected regime:

pN
N→∞−→ 0 under (40) [Sparse connected regime]. (41)

— Dense regime: We call dense the regime where the pair-
wise connection probability converges to a nonzero quantity,
namely pN → p > 0.

The aforementioned taxonomy basically focuses on the
concepts of connectedness and sparsity. These concepts have
been advocated in previous works related to topology in-
ference under partial observability, and, in particular, some
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TABLE 1. Useful Taxonomy to Illustrate the Relationships Between
Concentration and Sparsity Over a Connected Erdős-Rényi Graph. The
sequence ωN goes to Infinity as N → ∞

useful structural consistency results have been proved under
the sparse (connected) regime.

One essential element of novelty in our analysis is exploit-
ing a different feature, namely, the concentration of graph
degrees. We wish to avoid confusion here: the term “concen-
tration” does not refer to the number of node connections.
Instead, the concept of concentration is borrowed from a
common terminology in statistics, which is used to refer to
statistical quantities that concentrate around some determin-
istic value as N → ∞ [90]. In particular, we will focus our
attention on the uniform concentration properties of the mini-
mal and maximal degrees of random graphs.

— Uniform concentration regime: The uniform concentra-
tion regime is enabled by choosing the following pairwise
connection probability:

pN = ωN
log N

N
N→∞−→ p, ωN

N→∞−→ ∞, (42)

which is tantamount to assuming that (40) holds true with the
sequence cN growing faster than log N . Under this regime,
the minimal and the maximal degrees of the graph both con-
centrate asymptotically around the expected degree 1 + (N −
1)pN ∼ N pN , in the following precise sense:

dmin

N pN

p−→ 1,
dmax

N pN

p−→ 1 [Uniform concentration] (43)

The physical meaning of (43) is that both the minimal and the
maximal degrees scale, asymptotically with N , as the expected
degree. Indeed, (43) can be restated as: dmin ∼ N pN + gN and
dmax ∼ N pN + g′

N , where gN and g′
N are sequences that are

asymptotically dominated by N pN .
Table 1 summarizes the sparsity/concentration taxonomy

arising from the previous arguments. We are now ready to ex-
tract from the above taxonomy the elements that are relevant
to the forthcoming treatment.

1) Comparing (42) against (40), we see that the regime of
concentration does not include all classes of connected
Erdős-Rényi graphs. In fact, while in (40) cN is any
arbitrary divergent sequence (e.g., we can have cN =
log log N), according to (42) the sequence cN should
grow with N more than logarithmically. The regime
where the graph is connected, whereas (42) is not ful-
filled, will be referred to as the very sparse regime.

FIGURE 4. Venn diagram illustrating the relationships between
concentration and sparsity over a connected Erdős-Rényi graph.

2) According to (42), the regime of concentration can be
either sparse or dense. In particular, the regime is dense
when p > 0, and is sparse when p = 0.

The aforementioned categorizations are illustrated in Fig. 4
by means of a Venn diagram.

B. ASSUMPTIONS ON THE COMBINATION MATRIX
The forthcoming theorems will be proved under the assump-
tion that the combination matrix belongs to the following
class.

Assumption 1 (Regular diffusion matrices): The combina-
tion matrix A is symmetric and satisfies the conditions:

N∑
�=1

ai� = ρ,
κ

dmax
gi j ≤ ai j ≤ κ

dmin
gi j ∀i �= j (44)

for some parameters ρ and κ , with 0 < κ ≤ ρ < 1. �
We remark that the most common combination matrices en-

countered in the literature automatically satisfy Assumption 1.
Some popular choices are the Laplacian and the Metropolis
rules reported below, which arise naturally in many applica-
tions, for instance, they are one fundamental ingredient of
adaptive networks [35]. The matrix entries corresponding to
these combination rules are defined as follows. For i �= j,
0 < ρ < 1, and 0 < λ ≤ 1:

ai j = ρλ
gi j

dmax
, [Laplacian rule] (45)

ai j = ρ
gi j

max
{
d i, d j

} , [Metropolis rule] (46)

whereas the self-weights are determined by the leftmost con-
dition in (44), yielding aii = ρ −∑� �=i ai�. It is immediate to
verify that the Laplacian rule yields a regular diffusion matrix
with κ = ρλ, whereas the Metropolis rule yields a regular
diffusion matrix with κ = ρ.

C. GRANGER ESTIMATOR: UNIVERSAL LOCAL
STRUCTURAL CONSISTENCY
The next theorem establishes the fundamental consistency
properties of the Granger estimator presented in Section VI.
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FIGURE 5. Graphical illustration of Theorem 2. In the plot, the entries of
the true matrix AS are vectorized following column-major ordering, and
the (vectorized) (i, j ) pairs are rearranged in such a way that the zero
entries appear before the nonzero entries. The same ordering used for the
true matrix is applied to the entries of the estimated matrix, ̂AS. All
matrices are scaled by NpN . Broken lines display the theoretical values,
computed by using (48), of the bias η and of the quantity η + �, where � is
the identifiability gap.

Theorem 2 (Universal local structural consistency of the
Granger estimator): Let A be a regular diffusion matrix with
parameters ρ and κ , with the network graph drawn according
to an Erdős-Rényi random graph model G (N, pN ) where the
fraction of observable nodes, S/N , converges to some nonzero
value ξ . Then, under the uniform concentration regime where:

pN = ωN
log N

N
→ p, with ωN → ∞, (47)

the Granger estimator achieves universal local structural con-
sistency as detailed in Definition 3, with scaling sequence
sN = N pN , and with bias η and identifiability gap � given
by:

η = κ2 p
(2ρ − κ ) (1 − ξ )

1 − (ρ2 − 2ρκξ + κ2ξ )
, � = κ (48)

Proof: The proof of the theorem is provided in Ap-
pendix D, and relies on a number of auxiliary lemmas and
theorems reported in the appendices. In particular, the core of
the proof is the following. First, Theorem 6 in Appendix C
constructs uniform (w.r.t. N) bounds on the entries of the
matrix H in (36). These bounds are useful to characterize the
error associated to the Granger estimator. Then, exploiting
the asymptotic concentration property of the maximal and
minimal degrees, it is possible to prove the convergence of the
matrix series relevant for the computation of the errors in (37).
These convergence properties are finally used to compute the
bias and the identifiability gap in (48). �

The main message conveyed by Theorem 2 is illustrated in
Fig. 5, where we depict: i) the entries of the true combination
matrix, vectorized and ordered as shown in the figure, and

magnified by N pN ; and ii) the entries of the limiting estimated
combination matrix, magnified by N pN , vectorized and or-
dered with the same ordering used for the true combination
matrix. The essential features illustrated in Section V are
clearly visible in Fig. 5. Comparing the true and estimated
matrices, we can appreciate the emergence of the bias and of
the gap. Both these phenomena are predicted by Theorem 2, as
we can see from the theoretical values η and �, computed by
using (48) and displayed in Fig. 5 with broken lines. We ob-
serve how the (scaled) estimated matrix entries corresponding
to unconnected node pairs are clustered around the theoretical
value η, whereas the entries corresponding to connected pairs
are clustered around the theoretical value η + �. It is also seen
how the bias does not affect separability between the groups
of connected and unconnected node pairs.

Remark 5 (Role of degree concentration): For the class of
regular diffusion matrices in Assumption 1, concentration of
the degrees induces concentration of the nonzero entries of the
combination matrix. This creates an identifiability gap in the
true matrix AS. However, what is critical for graph recovery is
the existence of an identifiability gap in the estimated matrix

Â
(Gra)
S , which is in fact proved in Theorem 2. Let us provide

some intuition behind this result.
To this aim, we start by examining the useful represen-

tations of the limiting matrix estimator in (34). From this
representation, we see that the existence of an identifiability

gap in the limiting matrix estimator Â
(Gra)
S depends on the

true matrix AS, but will depend strongly also on the error
matrix E(Gra). Since each entry in E(Gra) is a function of the
entries in A (in general, also of the latent nodes belonging to
the unobserved subset S′), a key point is to understand how
the ai j’s combine with each other to produce E(Gra). As ob-
served before, the ai j’s exhibit concentration (in their nonzero
values). On the other hand, they exhibit also randomness (in
the location of the nonzero entries, due to the random graph
model). The attributes of concentration and randomness are
critical to reveal the nontrivial result shown in Theorem 2.
It will be seen that the ai j’s combine with each other so as
to induce a concentration in E(Gra), which in turn determines
the emergence of an identifiability gap in Â

(Gra)
S . In summary,

the overall influence of latent nodes is quantified by an error
matrix, whose entries converge to some deterministic quantity,
equally for both connected and unconnected node pairs. In
this way, the connections among the probed nodes stick out
consistently from the error floor. In summary, in the limit of
large networks the Granger estimator equals the ground-truth
matrix plus a uniform shift of its entries and, hence, the net-
work structure is preserved. �

We now illustrate the relevance of Theorem 2 by means of
numerical experiments. In Fig. 6, we display the probability
of correct graph learning for the limiting Granger estimator,
with reference to the dense case (with constant connection
probability pN = p = 0.1 for all N) for different choices of
combination policies and relative parameters. In Fig. 7, we
consider instead one example of uniform-and-sparse regime,
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FIGURE 6. Performance of the limiting Granger estimator as a function of
N under the dense regime with connection probability pN = 0.1, and
fraction of probed nodes ξ = 0.15. In the simulations, the initial vector y0

has all zero entries, σ = 1, and the input source samples xi (n) are i.i.d.
samples from a standard Gaussian distribution. The probability of correct
graph recovery is evaluated by means of 104 Monte Carlo runs.

FIGURE 7. Performance of the limiting Granger estimator as a function of
N under the uniform-and-sparse regime with connection probability
pN = (log log N) log N

N , and fraction of probed nodes ξ = 0.15. In the
simulations, the initial vector y0 has all zero entries, σ = 1, and the input
source samples xi (n) are i.i.d. samples from a standard Gaussian
distribution. The probability of correct graph recovery is evaluated by
means of 104 Monte Carlo runs.

with ωN = log log N , namely, with connection probability de-
creasing with N as

pN = log log N
log N

N
. (49)

In both plots, we see that the simulations match well the
theoretical predictions obtained from Theorem 2, since the
probability of correct graph learning approaches 1 as the net-
work size grows.

D. GRANGER ESTIMATOR: SAMPLE COMPLEXITY
In light of Theorem 1, the universal local structural consis-
tency of the limiting estimators ÂS implies consistency of the
matrix estimators ÂS,n = fn(Y n) (i.e., of the real estimators
based on the measured samples) as the sample size n grows
with the network size N with some law n(N ). This section is
devoted to establishing which law n(N ) is sufficient to achieve
consistent learning for the Granger estimator.

First of all, it is necessary to introduce the following esti-
mator:

Â
(Gra)
S,n = [R̂1,n]S([R̂0,n]S)−1, (50)

which is nothing but the finite-sample version of (32) ob-
tained by replacing the true covariance matrices with their
empirical counterparts. The estimator in (50) is assumed to
be unspecified when [R̂0,n]S is singular (which must happen
when n < N). In order to bypass the instability related to
matrix inversion, we introduce also the following regularized
version of the Granger estimator.

For i ∈ S, the i-th row of the regularized Granger estimator

Â
(reGra)
S,n is a solution to the constrained optimization problem

(here x is a row vector, and by [M]iS we denote the i-th row of
submatrix MS):

min
x∈RS

∥∥x [R̂0,n]S − [R̂1,n]iS
∥∥∞ s.t. ‖x‖1 ≤ 1. (51)

The �1-constraint on the admissible row vectors x in (51)
arises from the fact that the rows of our target estimator, the
limiting Granger estimator, have �1-norm bounded by 1 —
see (315) in Appendix I.

It is also useful to observe that, in view of (50), when the
sample covariance matrix is invertible, the non-regularized
Granger estimator is the only matrix that yields a zero residual

in (51). As a result, whenever ‖Â
(Gra)
S,n ‖∞ ≤ 1 the plain and

regularized Granger estimators coincide.
Now, assuming that the empirical covariance matrices con-

verge to the true covariance matrices as n → ∞, it is easily
seen that both the plain and regularized Granger estimators
converge to their limiting counterparts and, hence, guarantee
condition (11). Since in Theorem 2 we established that the
limiting Granger estimator achieves universal local structural
consistency, in view of Theorem 1 this property implies that
estimators (50) and (51) are able to learn well the underlying
subgraph of probed nodes, provided that the number of sam-
ples n grows as the network size N diverges. The goal of a
sample complexity analysis is to establish how this number
of samples should scale with N in order to grant correct graph
learning. The forthcoming theorem provides an answer for the
class of models (3) with Gaussian input source.

Theorem 3 (Sample complexity of the Granger estimator):
Assume that model (3) holds with i.i.d. standard Gaussian
source data {xn}, and with initial state y0 distributed (condi-
tionally on A) according to the stationary distribution of the
VAR process in (3). Let A be a regular diffusion matrix with
parameters ρ and κ , with the network graph drawn according
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to an Erdős-Rényi random graph model G (N, pN ) where the
fraction of observable nodes, S/N , converges to some nonzero
value ξ . Let ÂS,n be the regularized Granger estimator in (51).
Then, under the uniform concentration regime where:

pN = ωN
log N

N
N→∞−→ p, with ωN → ∞, (52)

we have that:

lim
N→∞

P[graphclu(ÂS,n(N ) ) = GS] = 1, (53)

provided that the number of samples is on the order of:9

n(N ) = �
(

(N pN )2 log S
)

(54)

Moreover, in the dense regime where p > 0, the same result
holds for the non-regularized Granger estimator in (50).

Proof: See Appendix I. �
We see from (54) that under the dense regime the growth

is essentially quadratic in N , since pN converges to some
positive constant p. In order to see what happens under the
sparse regime, it is useful to apply (52) and rewrite the sample
size in (54) as (we recall that S grows linearly with N in view
of (5)):

n(N ) ∼ (ωN log N )2 log S ∼ ω2
N (log N )3, (55)

revealing that the specific sample complexity under the sparse
regime depends on the specific speed of growth of the se-
quence ωN , which in fact regulates the sparsity of the problem.

The scaling law found in (54) is significant since it matches
well with the scaling laws that have been found in the litera-
ture in relation to other graphical models.

For linear dynamical systems like (3) operating under full
observability, sample complexity has been examined for a
fixed error in estimating the combination matrix and/or the
covariance matrices. It has been shown that the sample com-
plexity grows logarithmically with N , but proportionally to the
inverse square of the error [29], [30], [31], [32]. In our case,
such growth would imply the (N pN )2-scaling, since we need
the error to be bounded by ε/(N pN ).

Under the regime of partial observability, an algorithm is
proposed in [92] whose sample complexity scales as log N
when the node degree is kept fixed. When the degree grows
with N (as in our setting), then the sample complexity in [92]
contains an additional (N pN )3 factor. However, the authors
of [92] indicate that they suspect the exponent could be re-
duced to 2, which would then match our result. In addition,
to grant graph recovery a lower bound on the minimum
combination-matrix entry is assumed in [92], but this bound
is not allowed to scale with N .

Remark 6 (Factors affecting sample complexity): The sam-
ple complexity found in Theorem 3 is primarily determined
by the error in estimating the empirical covariance matrices,

9With the �(·) notation we mean that there exist a constant C > 0 and a
value N0 > 0 such that, for all N ≥ N0, any sample complexity scaling as
n(N ) ≥ C(N pN )2 log S guarantees consistent learning.

FIGURE 8. Sample complexity. For every N, we evaluated numerically
(circles) the number of samples necessary to reach 90% of the
performance reached by the limiting estimator for the same value of N.
Curves displayed with broken line are ∝ (NpN )2 log S, i.e., they refer to the
theoretical sample complexity predicted by Theorem 3. In the dense case,
pN = 0.1, whereas in the sparse case pN = (log log N) log N

N . The
combination matrix is obtained through a Laplacian rule with ρ = 0.5 and
λ = 0.75, and the fraction of probed nodes is ξ = 0.15. In the simulations,
the initial vector y0 has all zero entries, σ = 1, and the input source
samples xi (n) are i.i.d. samples from a standard Gaussian distribution.

which is examined in Lemma 9. The limitations of the em-
pirical covariance matrices in high-dimensional settings are
well known. For example, the covariance matrix is singular
when n < N . Even for larger n the number of parameters to
be estimated (i.e., the matrix entries) grows quadratically, thus
requiring a high number of samples to get good performance.
On the other hand, when focusing on the ‖ · ‖max error norm,
it is known that a maximum error up to an ε can be obtained
when the number of samples grows logarithmically with the
dimension [29], [30], [31], [32]. This effect is summarized by
the log S factor appearing in (54). Unfortunately, this is not the
main factor determining the sample complexity. The main fac-
tor is instead the N pN term. This term arises because, in order
to guarantee that the matrix entries are well classifiable, we
need to guarantee a maximum error up to ε/(N pN ), which is
related to the scaling law of the smallest combination-matrix
entry. �

We now complement the asymptotic result in Theorem 3
with an empirical evaluation of the sample complexity. This
is a cumbersome task from a computational viewpoint, which
is however critical to establish the practical relevance of Theo-
rem 3. In Fig. 8, we considered different values of the network
size N . For every N , we evaluated numerically (circles) the
number of samples necessary to reach 90% of the performance
reached by the limiting estimator for the same value of N .
We display with broken line the theoretical curves, which
are proportional to (N pN )2 log S, according to the theoretical
scaling law in (54). Under both the dense and sparse regimes,
we see that the match with the theoretical curves is excellent.
Therefore, under the dense regime (green) the scaling law of
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the sample complexity is almost quadratic in N . In compari-
son, under the sparse uniform concentration regime (blue) the
sample complexity is mitigated, and scales as:

(log log N )2(log N )3, (56)

since in the considered example pN was chosen as in (49).

VIII. OTHER ESTIMATORS
So far we have shown that, over uniformly-concentrated
Erdős-Rényi graphs, the Granger estimator operating under
partial observability achieves consistent graph learning. The
proof has been carried out assuming symmetric combination
matrices, albeit the Granger estimator construction does not
require symmetry. Symmetry has been assumed for technical
reasons, since it leads to a closed-form expression for the
covariance matrix that helps in the proof.

In this section, we present three other estimators that
provably achieve universal local structural consistency under
Assumption 1. However, differently from the Granger esti-
mator, the construction itself of these estimators relies on
symmetry. For this reason, we will show later that these es-
timators are sensitive to the symmetry assumption and their
performance deteriorates over asymmetric combination ma-
trices, whereas the performance of the Granger estimator does
not.

A. ONE-THREE-LAGS ESTIMATOR
We have already observed that (3) can be exploited to obtain
the formula R1 = AR0. Actually, the formula can be general-
ized to covariance matrices corresponding to any lag, namely,
for m = 1, 2, . . . we have:

Rm = Rm(A) = lim
n→∞E

[
yny�

n−m|A = A
] = AmR0(A),

Rm = Rm(A) = AmR0. (57)

Considering now the series expansion in (28), from (57) we
get:

R1 − R3 = σ 2A
(
I + A2 + A4 + · · · )

− σ 2A3 (I + A2 + A4 + · · · ) = σ 2A, (58)

which motivates the one-three-lags limiting estimator pro-
posed in [93]:

Â
(1-3-lags)
S = [R1]S − [R3]S = σ 2AS, (59)

revealing that in the symmetric case, the desired submatrix
over the probed subset S is equal, up to a scaling factor, to the
difference between the one-lag and the three-lags covariance
matrices.

B. LIMITING ONE-LAG ESTIMATOR
In this section, we use the one-lag covariance matrix to es-
timate the combination matrix.10 The reason behind such

10When σ 2 is known, the relationship between R1 = σ 2A(I − A2)−1 and
A is invertible under the full observability regime. This can be easily shown

choice is the following series expansion of the one-lag covari-
ance matrix:

R1 = AR0 = σ 2A(I − A2)−1

= σ 2(A + A3 + A5 + · · · ). (60)

When applied only to the submatrix corresponding to S, (60)
yields:

Â
(1-lag)
S = [R1]S = σ 2(AS + [A3]S + [A5]S + · · · ). (61)

It is convenient to rewrite (61) as:

Â
(1-lag)
S = σ 2(AS + E(1-lag)), (62)

where:

E(1-lag) =
∞∑

h=1

[A2h+1]S, (63)

or, for all i, j ∈ S:

e(1-lag)
i j =

∞∑
h=1

a(2h+1)
i j (64)

C. LIMITING RESIDUAL ESTIMATOR
Let us introduce the residual vector that computes the (scaled)
difference between consecutive time samples:

rn � yn − yn−1√
2

. (65)

We observe that:

lim
n→∞E[rnr�

n |A = A] = R0 − R1 = σ 2(I + A)−1. (66)

Accordingly, it makes sense to introduce the following limit-
ing estimator:

Â
(res)
S = [R1]S − [R0]S = −σ 2 [(I + A)−1]

S

= σ 2 (AS − IS − [A2]S + [A3]S + · · · ) . (67)

The structure of (67) motivates the introduction of the matrix:

E(res) = −IS +
∞∑

h=1

([A2h+1]S − [A2h]S), (68)

yielding:

Â
(res)
S = σ 2(AS + E(res)). (69)

Equation (68) implies that, for all i, j ∈ S, with i �= j:

e(res)
i j =

∞∑
h=1

(
a(2h+1)

i j − a(2h)
i j

)
(70)

by resorting to the spectral decomposition of R1/σ
2 and A (which share the

same eigenvectors), and by finding the eigenvalues of A from those of R1/σ
2;

this inversion operation can be successfully realized because A is symmetric
and has spectral radius less than one. However, we remark that σ 2 is assumed
unknown and, more importantly, that we work under a partial observability
regime, and, hence, the aforementioned inversion procedure does not apply.

VOLUME 3, 2022 349



MATTA ET AL.: GRAPH LEARNING OVER PARTIALLY OBSERVED DIFFUSION NETWORKS: ROLE OF DEGREE CONCENTRATION

TABLE 2. Biases and Identifiability Gaps of the Estimators Listed in the
Leftmost Column. In all Cases, the Scaling Sequence is sN = NpN . In the
Formulas we set ζ = ρ − κ

We are ready to state the theorem that characterizes the
consistency of the aforementioned three estimators.

Theorem 4 (Universal local structural consistency of the
estimators in Section VIII): Let A be a regular diffusion
matrix with parameters ρ and κ , with the network graph drawn
according to an Erdős-Rényi random graph model G (N, pN )
where the fraction of observable nodes, S/N , converges to
some nonzero value ξ . Then, under the uniform concentration
regime where:

pN = ωN
log N

N
→ p, with ωN → ∞, (71)

the one-three-lags, one-lag, and residual estimators achieve
universal local structural consistency as detailed in Defini-
tion 3, with scaling sequence sN = N pN , and with the biases
and identifiability gaps listed in Table 2.

Proof: See Appendix E. �
It is instructive to compare the different estimators reported

in Table 2. First of all, we notice that the proper scaling
sequence for all estimators is sN = N pN . Consider now the
identifiability gap. The gap of the Granger estimator is equal
to the bounding constant κ that characterizes the regular dif-
fusion matrix (44). The other estimators exhibit two main
differences with respect to the Granger estimator. First, they
depend also on the variance of the input process, σ 2. This
behavior should be expected, since in the Granger estimator
the one-lag covariance matrix multiplies the inverse of the
covariance matrix, and, hence, the effect of σ 2 disappears.
In contrast, the other estimators do not cancel this effect out.
Second, when κ �= ρ (a condition that occurs, for instance,
for the Laplacian rule), the term σ 2κ multiplies a factor that
is a function of ρ − κ . This factor is greater than one for
the one-lag estimator, whereas it is smaller than one for the
residual estimator. Note that the dependence alone upon σ 2, as
well as a magnified/reduced gap, do not imply any conclusion
about the structure-learning performance of the pertinent es-
timators for finite network and/or sample sizes. What plays a
role in this case is the spread of the matrix entries around their

FIGURE 9. Performance of the limiting estimators proposed in this work,
as a function of N under the dense regime with connection probability
pN = 0.1, and fraction of probed nodes ξ = 0.15. The combination matrix
is obtained through a Laplacian rule with ρ = 0.99 and λ = 0.9. In the
simulations, the initial vector y0 has all zero entries, σ = 1, and the input
source samples xi (n) are i.i.d. samples from a standard Gaussian
distribution. The probability of correct graph recovery is evaluated by
means of 104 Monte Carlo runs.

FIGURE 10. Performance of the limiting estimators proposed in this work
as a function of N, under asymmetric combination matrices. Specifically,
the random graph is generated as a binomial graph with connection
probability equal to 0.1, and the combination matrix is obtained through a
uniform averaging rule with ρ = 0.99 and λ = 0.2. The fraction of probed
nodes ξ = 0.15. In the simulations, the initial vector y0 has all zero entries,
σ = 1, and the input source samples xi (n) are i.i.d. samples from a
standard Gaussian distribution. The probability of correct graph recovery is
evaluated by means of 104 Monte Carlo runs.

limiting values, and the identifiability gap does not contain
information about such spread.

Let us switch to the analysis of the bias. First, we notice
that η = 0 for the one-three-lags estimator,11 which is ob-
vious since (the limiting version of) this estimator is equal

11In order to avoid misunderstandings, we point out that in our treatment
we use the term “bias” to quantify the distance from zero of the estimated
matrix entries corresponding to unconnected pairs. In this respect, the one-
three-lags estimator is unbiased. However, it is not an unbiased estimator of
the combination matrix AS, due to the presence of the scaling factor.
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FIGURE 11. Directed graphs. The four panels refer to the limiting matrix estimators considered in this work. The entries of the estimated matrix, ̂AS are
displayed according to the following rule. First, the entries of the true matrix AS are vectorized following column-major ordering, and the (vectorized)
(i, j ) pairs are rearranged in such a way that the zero entries appear before the nonzero entries. Such ordering is then applied to the entries of the
estimated matrix, ̂AS, which are scaled by NpN , and displayed with blue circles if they correspond to unconnected pairs, and with red squares otherwise.
The underlying graph is a binomial graph with connection probability equal to 0.1. The combination matrix is obtained through the uniform averaging rule
in (72), with parameters ρ = 0.99 and λ = 0.2. We see that the Granger estimator preserves the identifiability gap, whereas the other estimators do not.

to the true matrix scaled by σ 2. The biases of the other
estimators are proportional to the limiting connection prob-
ability p and, hence, we have always η = 0 in the sparse
case, where p = 0. Furthermore, we observe that only the
bias of the Granger estimator depends upon the fraction
of monitored nodes ξ . This finding makes sense, since the
Granger estimator is based upon inversion of a partial matrix
(which clearly varies with the number of latent variables),
whereas the other estimators are natively determined by pair-
wise correlations. In comparison, only the bias of the Granger
estimator does not depend upon σ 2, and this behavior is
easily grasped in light of the explanation in the previous
paragraph.

We complement our theoretical findings with some numer-
ical experiments. First, we test the limiting estimators over
one of the settings adopted in Fig. 6. The results are reported
in Fig. 9. We see that, in agreement with Theorem 4, all the
limiting estimators have probability of correct graph recovery
converging to 1 as N grows. In particular, the one-three-lags
estimator (which, as we know, coincides with the true matrix)
has the same performance as the residual estimator. These
estimators perform better than the one-lag estimator, which
is in turn better than the Granger estimator. This ordering
is relative to this particular example, and we have observed
various behavior in other experiments, depending on different
factors, such as the degree of observability or the type of
combination matrix. However, there is a more important com-
parison that should be made between the Granger estimator
and the other estimators, which pertains the case of directed
graphs.

To this end, we generate a directed topology by using a
binomial graph, namely, a random graph where all directed
edges are drawn as i.i.d. realizations of Bernoulli variables,
with the success corresponding to the edge presence. We
remark that, over a binomial graph, the event of a directed
edge i → j is independent of the event of a directed edge
j → i. Then, we consider the following uniform averaging

combination policy, with 0 < λ ≤ 1:

ai j = ρλ

d i
gi j, (72)

and aii = ρ −∑N
� �=i ai�.

The performance of the different estimators is reported in
Fig. 10. We see that all but the Granger estimator fail in
learning the true graph. This happens also for the one-three-
lags estimator, which was used because it reproduces (up
to the scaling factor σ 2) the true combination matrix. How-
ever, it must be remarked that this property relies exclusively
on the symmetry assumption, and is lost in the asymmetric
case. Also the other two estimators are sensitive to symmetry.
More information is gained by examining the matrix-entries
realizations shown in Fig. 11, where we see clearly that, in
this example with a directed graph, the identifiability gap
is preserved by the Granger estimator, but is lost by the
other proposed estimators, a behavior that explains clearly the
performance obtained in Fig. 10. In particular, the estimator
that seems to suffer more from the lack of symmetry is the
one-three-lags estimator, with a kind of reversed pattern ex-
hibited in the second plot of Fig. 11. This behavior confirms a
classical mismatched-model trade-off: the more one method is
matched to a nominal scenario (i.e., the symmetric scenario),
the more sensitivity it exhibits in a mismatched scenario.

IX. CONCLUDING REMARKS AND OPEN ISSUES
This work examined the problem of graph learning when data
can be collected from a limited subset of nodes. The goal is
to learn the topology of the subgraph of probed nodes. We
showed that an estimator of the combination matrix known
as Granger estimator, followed by a universal clustering al-
gorithm, is able to achieve faithful graph learning, requiring
a number of samples that grows almost quadratically with
the expected node degree. We explored various regimes of
connectivity, including the often overlooked regime of dense
connectivity. Several works in the literature of graph learning
assume in fact sparsity in the graph of connections. The role
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of sparsity in graph learning can be (at least) twofold. On one
hand, sparsity can be leveraged to reduce the complexity as-
sociated to the estimators (we have seen this effect also in our
analysis of the sample complexity). On the other hand, in the
presence of latent variables, sparsity can be leveraged since it
reduces the (unseen) effect of the latent unobserved nodes on
the probed nodes [20], [63]. One revealing conclusion stem-
ming from our analysis is that, under the setting considered in
this work (Erdős-Rényi graphs and regular diffusion matrices)
an important role is played by another structural property
of the graph, namely, the statistical concentration of node
degrees. Finally, we proposed three structurally consistent
estimators and compare them against the Granger estimator,
obtaining nontrivial insights, especially over directed graphs.

There are several open issues that may deserve attention.
This work focused on the Erdős-Rényi model, and used cer-
tain regularity assumptions on the diffusion matrix. A useful
extension would be to examine structural consistency for other
graph models, and/or under different regularity assumptions.
For example, one might have network heterogeneity (e.g.,
different connectivity across nodes) and/or dependence in the
edge formation process, and an interesting question is whether
or not consistency can be achieved under these conditions.
Preliminary results along this direction are available in [94].

Another open issue concerns directed graphs, which
are relevant, e.g., in the context of causal inference. In
this work we have examined this issue through numerical
experiments, showing that the Granger estimator seems to
preserve its learning capability over directed graphs, while
the other proposed estimators are much more sensitive to
asymmetries in the graph construction. From the theoretical
side, the graph-edge-domain approach developed in this work
could be exploited and generalized to get insights about the
directed graph setting.

APPENDIX A
USEFUL PROPERTIES OF MAXIMAL AND
MINIMAL DEGREES
We denote by Bi(N, q), with i = 1, 2, . . . , K , a sequence of K
binomial random variables (not necessarily independent) with
success probability q over N independent Bernoulli trials.
Moreover, we denote by Bmax(N, q, K ) and Bmin(N, q, K )
the maximum and the minimum over this sequence, respec-
tively. The following two relationships are standard inequal-
ities arising from the application of the Chernoff bounding
technique, and will be the fundamental building blocks to
characterize the asymptotic behavior of several random quan-
tities arising in our problem. The inequalities are as follows.12

12For any t > 0, we can write:

P[Bi(N, q) ≥ x] = P[eBi (N,q) t ≥ ext ] ≤ e−xt
E[eBi (N,q) t ], (73)

where the latter inequality is an application of Markov’s inequality. Since
a binomial variable of parameters N and q is the sum of N independent
Bernoulli variables with success probability equal to q, we can further write:

E[eBi (N,q) t ] = (qet + 1 − q
)N = (1 + q(et − 1)

)N ≤ eNq(et −1), (74)

For any t > 0:

P[Bmax(N, q, K ) ≥ x] ≤ Ke−xt+Nq(et −1), (75)

P[Bmin(N, q, K ) ≤ x] ≤ Kext−Nq(1−e−t ). (76)

We now apply these fundamental bounds to some specific
random variables that are of interest in our setting.

We start by characterizing the behavior of the variables:

Bmax(N, pN , N ), Bmin(N, pN , N ), (77)

which, as we will see, are useful to characterize the be-
havior of the maximal and minimal degree of the graphs
that we use in this work. The forthcoming lemma contains
fundamental (classic) results about the asymptotic behavior
of Bmax(N, pN , N ) and Bmin(N, pN , N ) under the different
regimes for the probability pN .

Lemma 1 (Asymptotic scaling of Bmax(N, pN , N ) and
Bmin(N, pN , N )): Let the probability pN scale with N accord-
ing to (42). Then:

Bmax(N, pN , N )

N pN

p−→ 1,
Bmin(N, pN , N )

N pN

p−→ 1 (78)

Proof: The following inequality, holding for all ε > 0, is
easily obtained from (75) by setting K = N , q = pN , x =
(1 + ε)N pN , t = log(1 + ε), and gε � 1 + (1 + ε)(log(1 +
ε) − 1):

P[Bmax(N, pN , N ) ≥ (1 + ε)N pN ] ≤ Ne−N pN gε . (79)

Using now (42) in (79) we get:

P[Bmax(N, pN , N ) ≥ (1 + ε)N pN ] ≤ N1−ωN gε
N→∞−→ 0,

(80)
which follows because gε > 0 for all ε > 0, as g0 = 0 and
dgε/dε > 0 for all ε > 0.

Likewise, the following inequality, holding for all 0 <

ε < 1, is easily obtained from (76) by setting K = N , q =
pN , x = (1 − ε)N pN , t = − log(1 − ε), and hε � 1 − (1 −
ε)(1 − log(1 − ε)):

P[Bmin(N, pN , N ) ≤ (1 − ε)N pN ] ≤ N1−ωN hε
N→∞−→ 0,

(81)
which follows because hε > 0 for all 0 < ε < 1, as h0 = 0
and dhε/dε > 0 for all 0 < ε < 1. By joining (80) with (81),
and observing that Bmax(N, pN , N ) ≥ Bmin(N, pN , N ), we
conclude that (78) holds true. �

As a simple corollary to Lemma 1, we can now obtain the
characterization of the maximal and minimal degrees.

Corollary 1 (Behavior of dmax and dmin): If the connection
probability of the Erdős-Rényi model obeys (42), then we
have:

dmax

N pN

p−→ 1,
dmin

N pN

p−→ 1[Uniform concentration] (82)

where the latter inequality follows by observing that, for z > 0, one has (1 +
z)N ≤ eNz . Combining (74) with (73) yields (75). (76) is worked out with a
similar technique.
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Proof: The degree of a single node is equal to 1 plus (be-
cause in our setting the degree counts also the node itself)
a binomial random variable with parameters N − 1 and pN .
Therefore, we have the following representation:

dmax = 1 + Bmax(N − 1, pN , N ), (83)

dmin = 1 + Bmin(N − 1, pN , N ). (84)

In order to obtain useful bounds involving dmax and dmin,
let us introduce a modified sequence of binomial variables,
obtained by adding one more (independent) Bernoulli trial to
each binomial variable Bi(N − 1, pN ), with i = 1, 2, . . . , N .
The corresponding maximum and minimum taken over the
modified sequence will be denoted by B̃max(N, pN , N ) and
B̃min(N, pN , N ), respectively. Since a Bernoulli variable can
be either zero or one, from (83) and (84) we get readily the
following bounds:

dmax ≤ 1 + B̃max(N, pN , N ), (85)

dmin ≥ B̃min(N, pN , N ), (86)

and, hence, the claims of the corollary follow readily from
Lemma 1, with the factor 1 playing no role as N → ∞. �

A. ANOTHER USEFUL CONCENTRATION RESULT
Lemma 2 (Maximum and minimum of N2 binomial variables
with success probability p2

N ): Assume that the success proba-
bility obeys (42). Then we have that:

Bmax(N, p2
N , N2)

N pN

p−→ p,
Bmin(N, p2

N , N2)

N pN

p−→ p (87)

Proof: If pN → p > 0, we can set p′
N = p2

N , and obviously
p′

N converges to p2 > 0, implying that the binomial variables
of parameters N and p′

N are generated under the uniform
concentration regime. The result in (87) then readily follows
by exploiting (75) and (76) as done in the proof of Lemma 1.

If pN → p = 0, it suffices to prove the claim for the maxi-
mum. Applying (75) we can write:

P[Bmax(N, p2
N , N2) ≥ εN pN ] ≤ N2e−N pN [εt−pN (et −1)]

= N2N−ωN [εt−pN (et −1)].

(88)

where, in the last step, we used the equality N pN = ωN log N
that follows from (42). Moreover, since we are considering the
case where pN → 0 as N → ∞, for any ε′ > 0 and for suffi-
ciently large N we will have pN < ε′, so that, asymptotically,
it is legitimate to replace (88) with:

P[Bmax(N, p2
N , N2) ≥ εN pN ] ≤ N2N−ωN [εt−ε′(et −1)]. (89)

Now, choosing ε′ small enough so that ε′(et − 1) < εt , we
finally get:

P[Bmax(N, p2
N , N2) ≥ εN pN ]

N→∞−→ 0, (90)

which completes the proof of the lemma. �

APPENDIX B
BOUNDS ON THE POWERS OF A
In the following, the symbol a(k)

i j denotes the (i, j) entry of

the k-th matrix power Ak , and N denotes the set of all nodes.
Table 3 lists some random variables that are necessary to state
and prove the theorems.

We start with a technical lemma that will be used to prove
Theorem 2.

Lemma 3 (Bounds on the entries of Ak): The entries of the
combination matrix power Ak are bounded as follows:

αk ≤ a(k)
ii ≤ αk, (91)

and, for i �= j:

β
k

ai j + γ
k
m ≤ a(k)

i j ≤ βk ai j + γk M, (92)

where, for k ≥ 2, the (random) sequences αk , αk , βk , β
k
, γk ,

and γ
k
, are determined by the following recursions:

αk+1 = Ma,self αk + Ma ρk, (93)

βk+1 = αk + Ma,self βk, (94)

γk+1 = βk + Ma,sum γk, (95)

with the initialization choices:

α2 = Ma2,self, β2 = 2Ma,self, γ2 = 1, (96)

and

αk+1 = ma,self αk, (97)

β
k+1

= αk + ma,self β
k
, (98)

γ
k+1

= β
k
+ ma,sum γ

k
, (99)

with the initialization choices:

α2 = ma2,self, β
2

= 2ma,self, γ
2

= 1. (100)

Proof: We start by examining the relationships pertaining
to the main diagonal terms, namely, (91). For k = 2 the claim
is trivially true with the values of α2 and α2 in (96) and (100),
because of the definitions of Ma2,self and ma2,self reported on
line 3) of Table 3. We shall therefore reason by induction
to prove that (91) holds for an arbitrary k. In particular, we
assume the claim verified for k, and manage to prove that it is
verified for k + 1. To this aim, we start by writing the diagonal
terms of the (k + 1)-th matrix power as:

a(k+1)
ii =

∑
�∈N

ai�a(k)
�i = aiia

(k)
ii +

∑
�∈N
� �=i

ai�a(k)
�i , (101)

and, hence:

aiia
(k)
ii ≤ a(k+1)

ii ≤ aiia
(k)
ii + Ma ρk, (102)

where we have used the fact that
∑

�∈N a(k)
�i = ρk along with

the definition of Ma appearing on line 1) of Table 3. In (102),
we can bound the term aii by using the definitions on line 2)
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TABLE 3. Random Variables and Convergences Relevant for the Proofs of the Theorems

of Table 3, and the term a(k)
ii by using (91) (which is true for k

by the induction hypothesis), yielding:

ma,self αk ≤ a(k+1)
ii ≤ Ma,self αk + Ma ρk, (103)

from which we conclude that (91) holds true for k + 1, with
the sequences αk and αk obeying the recursions in (93)
and (97), respectively.

We switch to the proof of (92). In particular, we will focus
on the upper bound in (92), since the proof for the lower bound
is similar. For all i, j ∈ N, with i �= j, we have:

a(2)
i j =

∑
�∈N

ai�a� j = (aii + a j j )ai j +
∑
�∈N
� �=i, j

ai�a� j

≤ 2Ma,self ai j +
∑
�∈N
� �=i, j

ai�a� j (104)

≤ 2Ma,self ai j + M (105)

≤ 2Ma,self Ma + M, (106)

where we have applied the definitions listed on lines 1), 2)
and 8) of Table 3. First, we observe that (105) implies that the
right inequality in (92) holds true in the case k = 2, with the
choices detailed in (96). Moreover, we have:

a(k+1)
i j =

∑
�∈N

ai�a(k)
� j = ai ja

(k)
j j +

∑
�∈N
� �= j

ai�a(k)
� j . (107)

Therefore, since (91) holds true, and assuming that (92) holds
for an arbitrary k ≥ 2, we have:

a(k+1)
i j ≤ αkai j + βk

∑
�∈N
� �= j

ai�a� j + γk M
∑
�∈N
� �= j

ai�

≤ (αk + βk Ma,self )ai j + (βk + γk Ma,sum)M,

(108)

which shows that the right inequality in (92) holds with the
sequences βk and γk obeying (94) and (95), respectively, with
the initialization choices in (96). �

Let us introduce the following series (all the infinite sum-
mations will be shown to be bounded), defined in terms of the
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variables introduced in Lemma 3:

�
(even)
α �

∞∑
h=1

α2h, �(even)
α �

∞∑
h=1

α2h, (109)

�
(even)
β �

∞∑
h=1

β2h, �
(even)
β

�
∞∑

h=1

β
2h

, (110)

�
(even)
γ �

∞∑
h=1

γ2h, �(even)
γ �

∞∑
h=1

γ
2h

, (111)

and

�
(odd)
α �

∞∑
h=1

α2h+1, �(odd)
α �

∞∑
h=1

α2h+1, (112)

�
(odd)
β �

∞∑
h=1

β2h+1, �
(odd)
β

�
∞∑

h=1

β
2h+1

, (113)

�
(odd)
γ �

∞∑
h=1

γ2h+1, �(odd)
γ �

∞∑
h=1

γ
2h+1

. (114)

We are now ready to state and prove the first theorem, which
provides upper and lower bounds on sums of powers of the
matrix A. These bounds will be critical to examine the con-
centration behavior of the one-lag and residual estimators.

The main message conveyed by the theorem is that, for all
i, j ∈ N, the individual (i, j) entries of sums of powers of A
can be upper and lower bounded in terms of the elements ai j ,
and in terms of suitable bounding random variables that do not
depend on the node indices i and j. These bounding random
variables are m and M on line 8) of Table 3, and the “�”
variables appearing in (109)–(114). We remark that, in order
to prove our main results in Theorem 2, we will not need
the explicit expression of these “�”, but only their limiting
properties, detailed in (118) and (119).

Theorem 5 (Bounds on the sum of powers of A): The com-
bination matrix A fulfills the following bounds for all i, j ∈ N:

�(even)
α ≤

∞∑
h=1

a(2h)
ii ≤ �

(even)
α ,�(odd)

α ≤
∞∑

h=1

a(2h+1)
ii ≤ �

(odd)
α ,

(115)
and for i �= j:

ai j �
(even)
β

+ m�(even)
γ ≤

∞∑
h=1

a(2h)
i j ≤ ai j �

(even)
β + M�

(even)
γ ,

(116)

ai j �
(odd)
β

+ m�(odd)
γ ≤

∞∑
h=1

a(2h+1)
i j ≤ ai j �

(odd)
β + M�

(odd)
γ .

(117)

If A is a regular diffusion matrix of parameters ρ and κ accord-
ing to Assumption 1, then under the uniform concentration
regime the bounding variables “�” converge in probability, as

N → ∞, to deterministic quantities, namely,

�
(even)
α and �(even)

α

p−→ ζ 2

1 − ζ 2
,

�
(even)
β and �

(even)
β

p−→ 2 ζ

(1 − ζ 2)2
,

�
(even)
γ and �(even)

γ

p−→ 1 + ζ 2 + 2ρ ζ

(1 − ρ2)(1 − ζ 2)2
,

(118)

�
(odd)
α and �(odd)

α

p−→ ζ 3

1 − ζ 2
,

�
(odd)
β and �

(odd)
β

p−→ 3 ζ 2 − ζ 4

(1 − ζ 2)2
,

�
(odd)
γ and �(odd)

γ

p−→ ρ + ρ ζ 2 + 2 ζ

(1 − ρ2)(1 − ζ 2)2
.

(119)

where we set ζ = ρ − κ .
Proof: Calling upon Lemma 3, and using in (91) and (92)

the definitions (109)–(114), we immediately get (115), (116),
and (117). However, it is necessary to show that the “�”
random variables are proper random variables, i.e., that all
the infinite summations in (109)–(114) are bounded. We will
explain this conclusion with reference to the upper bounding
sequences, with the case of the lower bounding sequences be-
ing dealt with similarly. The system of recursions in (93)–(95)
can be solved by calculating first αk , then βk (after substituting
αk) and finally γk (after substituting βk). Applying Lemma 7,
it can be verified that all the obtained solutions are linear com-
binations of geometric sequences with ratio strictly smaller
than one, from which finiteness of the summations �α , �β

and �γ follows.
Next we focus on proving the convergence in probability in

(118) and (119). To this end, it is instrumental to introduce the
following auxiliary series:

�α � �
(even)
α + �

(odd)
α , �α � �(even)

α + �(odd)
α ,

�β � �
(even)
β + �

(odd)
β , �β � �

(even)
β

+ �
(odd)
β

,

�γ � �
(even)
γ + �

(odd)
γ , �γ � �(even)

γ + �(odd)
γ . (120)

We start by showing that the following convergence takes
place:

�α and �α

p−→ ζ 2

1 − ζ
,

�β and �β

p−→ 1 − (1 − ζ )2

(1 − ζ )2
,

�γ and �γ

p−→ 1

(1 − ρ)(1 − ζ )2
. (121)

First of all, it is convenient to rewrite the series in (120) in
the following more explicit form:

�α �
∞∑

k=2

αk, �α �
∞∑

k=2

αk, (122)
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�β �
∞∑

k=2

βk, �β �
∞∑

k=2

β
k
, (123)

�γ �
∞∑

k=2

γk, �γ �
∞∑

k=2

γ
k
. (124)

Let us consider (93). By summing over index k and us-
ing (122), we can write:

�α = α2 + Ma,self �α + Ma ρ2

1 − ρ
⇒ �α = Ma2,self + ε

1 − Ma,self
,

(125)

where we have set ε = Ma ρ2

1−ρ
. Likewise, operating on (94) and

using (123), we get:

�β = β2 + �α + Ma,self �β ⇒ �β = 2Ma,self + �α

1 − Ma,self
.

(126)
Finally, applying the above procedure to (95) and using (124),
we obtain:

�γ = γ2 + �β + Ma,sum �γ ⇒ �γ = 1 + �β

1 − Ma,sum
, (127)

which, using (125) and (126), after straightforward algebra
yields:

�γ = 1 − M2
a,self + Ma2,self + ε

(1 − Ma,sum)(1 − Ma,self)2
. (128)

Now, in view of the convergences in probability proved in
Lemma 6 — specifically, in view of (206), (209), (212) — it
is legitimate to replace the pertinent variables in (125), (126),
and (128), with their limits (that are reported in Table 3). After
some lengthy, though straightforward, algebra, this replace-
ment leads to (121).

We now move on to prove (119). Using the definitions of

�
(even)
α and �

(odd)
α in (109) and (112), and summing over k the

terms in (93), we see that:

�
(odd)
α =

∞∑
k=3
k odd

αk =
∞∑

k=2
k even

αk+1

= Ma,self

∞∑
k=2

k even

αk + Ma

∞∑
k=2

k even

ρk

= Ma,self �
(even)
α + Ma

∞∑
k=1

ρ2k

= Ma,self �α − Ma,self �
(odd)
α + Ma

ρ2

1 − ρ2
,

(129)

yielding:

�
(odd)
α = Ma,self �α + ε′

1 + Ma,self
, (130)

where we defined ε′ = Ma
ρ2

1−ρ2 . Using now (120) and (130),
we further obtain:

�
(even)
α = �α − ε′

1 + Ma,self
. (131)

Proceeding in a similar way, from (94) we obtain:

�
(odd)
β = �

(even)
α + Ma,self �

(even)
β

= �
(even)
α + Ma,self �β − Ma,self �

(odd)
β , (132)

yielding:

�
(odd)
β = Ma,self �β + �

(even)
α

1 + Ma,self
, (133)

and

�
(even)
β = �β − �

(even)
α

1 + Ma,self
. (134)

Finally, from (95), we can write:

�
(odd)
γ = �

(even)
β + Ma,sum �

(even)
γ

= �
(even)
β + Ma,sum �γ − Ma,sum �

(odd)
β , (135)

yielding:

�
(odd)
γ = Ma,sum �γ + �

(even)
β

1 + Ma,sum
, (136)

and

�
(even)
γ = �γ − �

(even)
β

1 + Ma,sum
. (137)

The limiting results in (118) and (119) are now obtained by
replacing, in (130), (131), (133), (134), (136), and (137), the
pertinent random variables with their limiting counterparts
shown in Table 3. �

APPENDIX C
BOUNDS ON THE MATRIX H IN (36)
The following technical lemma is instrumental to prove The-
orem 6. We recall that, from (36), we have the definition
C � [A2]S′ .

Lemma 4 (Bounds on the entries of Ck): The entries of the
matrix power Ck are bounded as follows:

α′
k ≤ c(k)

��
≤ α′

k, (138)

and, for � �= m:

β′
k

a�m + γ ′
k

≤ c(k)
�m ≤ β

′
k a�m + γ ′

k, (139)

where, for k ≥ 1, the (random) sequences α′
k , α′

k , β
′
k , β′

k
, γ ′

k ,
and γ ′

k
, are determined by the following recursions:

α′
k+1 = Mc,self α′

k + (2Ma,self Ma + M) ρ2k, (140)

β
′
k+1 = 2Ma,self α′

k + Mc,self β
′
k, (141)
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γ ′
k+1 = Mα′

k + (2Ma,self M
(S′ ) + MM(S′ )

a,sum)β
′
k

+ Mc,sum γ ′
k, (142)

with the initialization choices:

α′
1 = Mc,self, β

′
1 = 2Ma,self, γ ′

1 = M, (143)

and

α′
k+1 = mc,self α′

k, (144)

β′
k+1

= 2ma,self α′
k + mc,self β′

k
, (145)

γ ′
k+1

= mα′
k + (2ma,self m

(S′ ) + mm(S′ )
a,sum)β′

k

+ mc,sum γ ′
k
, (146)

with the initialization choices:

α′
1 = mc,self, β′

1
= 2ma,self, γ ′

1
= m. (147)

Proof: We start with the inequalities pertaining to the main
diagonal of matrices Ck , namely, with (138). For k = 1 we use
the definitions of α′

1 and α′
1 in (143) and (147), respectively,

to see that (138) is trivially satisfied in view of the definitions
appearing on line 6) of Table 3. We shall now prove that (138)
holds for an arbitrary k by induction. Assume thus that (138)
is true for k, we need to show that it is true for k + 1. From
the definition of matrix C in (36), we can write its terms on
the main diagonal as:

c(k+1)
��

=
∑
h∈S′

c�hc(k)
h�

= c��c(k)
��

+
∑
h∈S′
h �=�

c�hc(k)
h�

. (148)

In view of (106) we can write:∑
h∈S′
h �=�

c�hc(k)
h�

=
∑
h∈S′
h �=�

a(2)
�h c(k)

h�
≤ (2Ma,self Ma + M)

∑
h∈S′
h �=�

c(k)
h�

.

(149)
Moreover, since C = [A2]S′ , the first relationship in (44) can
be recursively applied to show that:∑

h∈S′
h �=�

c(k)
h�

≤ ρ2k . (150)

Therefore, from (148), (149) and (150) we conclude that:

mc,self c(k)
��

≤ c(k+1)
��

≤ Mc,self c(k)
��

+(2Ma,self Ma + M) ρ2k,

(151)
having further used the definitions on line 6) of Table 3
to bound the term c��. Since we have assumed that (138)
holds true for k, we can further apply (138) into (151),
yielding:

mc,self α′
k ≤ c(k+1)

��
≤ Mc,self α′

k + (2Ma,self Ma + M) ρ2k,

(152)
which reveals that (138) holds true for k + 1, with the se-
quences α′

k and α′
k obeying the recursions in (140) and (144),

respectively.

Let us move on to examine the case � �= m. For all �, m ∈
S′, with � �= m, we can use (105) to conclude that:

c�m ≤ 2Ma,self a�m + M. (153)

Equation (153) shows that the upper bound in (139) holds for
k = 1, with the choices in (143). Now, rewriting the relation-
ship Ck+1 = CCk on an entrywise basis, we have:

c(k+1)
�m =

∑
h∈S′

c�hc(k)
hm

= c�mc(k)
mm +

∑
h∈S′
h �=m

c�hc(k)
hm. (154)

Now, we can bound c(k)
mm by applying (138) and c�m by ap-

plying (153). Moreover, assuming as induction hypothesis
that (139) holds true for an arbitrary k, we can bound c(k)

hm,
finally obtaining from (154):

c(k+1)
�m ≤ α′

k (2Ma,self a�m + M)

+ β
′
k

∑
h∈S′
h �=m

c�hahm + γ ′
k

∑
h∈S′
h �=m

c�h

≤ α′
k (2Ma,self a�m + M)

+ β
′
k

∑
h∈S′
h �=m

c�hahm + Mc,sum γ ′
k, (155)

where in the last step we applied the definition of Mc,sum

appearing on line 7) of Table 3 to bound the sum of the c�h. Let
us focus on the last summation in (155). Using the definitions
on line 6) of Table 3 to bound the term c��, and (153) to bound
the term c�h for h �= �, we get:∑

h∈S′
h �=m

c�hahm = c��a�m +
∑
h∈S′

h �=�,m

c�hahm

≤ Mc,self a�m + 2Ma,self

∑
h∈S′

h �=�,m

a�hahm

+ M
∑
h∈S′

h �=�,m

ahm

≤ Mc,self a�m + 2Ma,self M
(S′ ) + MM(S′ )

a,sum,

(156)

where, in the latter inequality, we have further applied the def-
initions listed on lines 5) and 9) of Table 3. Using now (156)
into (155) we get:

c(k+1)
�m ≤ (2Ma,self α′

k + Mc,self β
′
k︸ ︷︷ ︸

β
′
k+1

) a�m
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+ [Mα′
k + (2Ma,self M

(S′ ) + MM(S′ )
a,sum)β

′
k + Mc,sum γ ′

k︸ ︷︷ ︸
γ ′

k+1

],

(157)

which shows that the right inequality in (139) holds
also for k + 1, with β

′
k , and γ ′

k obeying the recursions
in (141) and (142), respectively, with the initialization choices
in (143). The proof of the left inequality in (139) is
similar. �

Let us now introduce the following series (all the infinite
summations will be shown to be bounded):

�α �
∞∑

k=1

α′
k, �α �

∞∑
k=1

α′
k, (158)

�β �
∞∑

k=1

β
′
k, �β �

∞∑
k=1

β′
k
, (159)

�γ �
∞∑

k=1

γ ′
k, �γ �

∞∑
k=1

γ ′
k
. (160)

The next theorem provides upper and lower bounds on the
matrix H introduced in (36). These bounds will be critical to
examine the concentration behavior of the Granger estimator.

Theorem 6 (Bounds on the matrix H): The matrix H in (36)
fulfills the following bounds, for all �, m ∈ S′:

1 + �α ≤ h�� ≤ 1 + �α, (161)

and for � �= m:

�β a�m + �γ ≤ h�m ≤ �β a�m + �γ . (162)

If A is a regular diffusion matrix of parameters ρ and κ accord-
ing to Assumption 1, then under the uniform concentration
regime the bounding variables “�” converge in probability, as
N → ∞, to deterministic quantities, namely,

�α and �α

p−→ ζ 2

1 − ζ 2
,

�β and �β

p−→ 2 ζ

(1 − ζ 2)2
,

N pN�γ and N pN�γ

p−→ φ, (163)

where we set:

φ � κ2 p
1 − ζ 2 + 2 ζ [2 ζ (1 − ξ ) + κ (1 − ξ )]

[1 − (ρ2 − 2ρκξ + κ2ξ )][1 − ζ 2]2
, ζ = ρ − κ.

(164)
Proof: The matrix H defined in (36) can be expressed as:

H = (IS′ − C)−1 = IS′ + C + C2 + · · · (165)

Calling upon Lemma 4 and summing the inequalities in (138)
over index k, from (158) we immediately get (161). Likewise,
summing over k the inequalities in (139), from (159) and
(160) we obtain (162).

However, it is necessary to show that the “�” random
variables are proper random variables, i.e., that all the infinite

summations in (158)–(160) are bounded. We will explain this
conclusion with reference to the upper bounding sequences,
with the case of the lower bounding sequences being dealt
with similarly. The system of recursions in (140)–(142) can
be solved by calculating first α′

k , then β
′
k (after substituting

α′
k) and finally γ ′

k (after substituting α′
k and β

′
k). Applying

Lemma 7, it can be verified that all the obtained solutions are
linear combinations of geometric sequences with ratio strictly
smaller than one, from which convergence of the series �α ,
�β and �γ in (158)–(160) follows.

Next we focus on proving the convergence in probability in
(163). Let us consider (140). By summing over index k and
using (158), we can write:

�α = α′
1 + Mc,self �α + ε ⇒ �α = Mc,self + ε

1 − Mc,self
, (166)

where we have set:

ε = (2Ma,self Ma + M)
ρ2

1 − ρ2
. (167)

Likewise, from (141), summing over index k and using (159),
we can write:

�β = β
′
1 + 2Ma,self �α + Mc,self �β, (168)

yielding:

�β = 2Ma,self (1 + �α )

1 − Mc,self
. (169)

Using now (166) into (169), we get:

�β = 2Ma,self

(1 − Mc,self )2
(1 + ε). (170)

Finally, applying the same procedure to (142) and using (160),
we obtain:

�γ = γ ′
1 + M�α + (2Ma,self M

(S′ ) + MM(S′ )
a,sum)�β

+ Mc,sum �γ , (171)

which yields the solution:

�γ = M(1 + �α ) + (2Ma,self M
(S′ ) + MM(S′ )

a,sum)�β

1 − Mc,sum
.

(172)

Now, in view of the convergences in probability proved in
Lemma 6 — specifically, in view of (206), (214), (223), (224)
and (230) — it is legitimate to replace the pertinent variables
with their limits (that are reported in Table 3) in (166), (169),
and (172), which, after some lengthy, though straightforward,
algebra, leads to (163). �

APPENDIX D
PROOF OF THEOREM 2
We start by proving an auxiliary lemma.

Lemma 5 (Sufficient conditions for universal local struc-
tural consistency): Let the network graph be drawn according
to an Erdős-Rényi random graph model, and let A be a regular
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diffusion matrix with parameters ρ and κ . Let S be the set of
observable nodes and consider then a limiting estimator:

ÂS = AS + E. (173)

Assume that, for all i, j ∈ S, with i �= j:

wN ai j + zN ≤ ei j ≤ wN ai j + zN , (174)

where the quantities wN , wN , zN and zN do depend on the
network size, N , but they do not depend on (i, j), and fulfill
the following convergences:

wN
p−→ w, wN

p−→ w,

N pN zN
p−→ z, N pN zN

p−→ z. (175)

Then, under the uniform concentration regime, the limiting
estimator ÂS achieves universal local structural consistency,
with scaling sequence sN = N pN , bias η = z, and identifia-
bility gap � = κ (1 + w).

Proof: Using (12) and (173) we can write:

δN = min
i, j∈S:ai j=0

i �= j

ei j, δN = max
i, j∈S:ai j=0

i �= j

ei j, (176)

and, hence, from (174) we get:

N pN zN ≤ N pN δN ≤ N pN δN ≤ N pN zN . (177)

Using (175), we conclude that:

N pN δN
p−→ z, N pN δN

p−→ z. (178)

Let us now examine the connected pairs. From (174) we know
that:

(1 + wN ) ai j + zN ≤ ai j + ei j ≤ (1 + wN ) ai j + zN , (179)

which, used along with (13) gives:

N pN�N ≥ N pN (1 + wN ) min
i, j∈S:ai j>0

i �= j

ai j + N pN zN , (180)

and

N pN�N ≤ N pN (1 + wN ) max
i, j∈S:ai j>0

i �= j

ai j + N pN zN . (181)

In view of Assumption 1 we can write, for all pairs (i, j)
where ai j > 0:

κ
N pN

dmax
≤ N pN ai j ≤ κ

N pN

dmin
. (182)

Using (182) in (180) and (181), calling upon Corollary 1, and
exploiting the convergences in (175), we conclude that:

N pN �N
p−→ κ (1 + w) + z, N pN �N

p−→ κ (1 + w) + z.
(183)

It remains to apply the definition of bias and identifiability gap
in (14) to get the claim of the lemma. �

Proof of Theorem 2: The proof boils down to combining
Theorem 6 with Lemma 5.

From (37) we can write, for i, j ∈ S, with i �= j:

e(Gra)
i j =

∑
�,m∈S′

ai�h�ma(2)
m j

=
∑
�∈S′

ai�h��a(2)
� j +

∑
�,m∈S′
� �=m

ai�h�ma(2)
m j

≤ (1 + �α )
∑
�∈S′

ai�a(2)
� j (184)

+ �β

∑
�,m∈S′
� �=m

ai�a�ma(2)
m j (185)

+ �γ

∑
�,m∈S′
� �=m

ai�a(2)
m j , (186)

where the inequality is obtained by bounding the entries of the
matrix H , specifically, we have that (184) follows from (161),
whereas (185) and (186) follow from (162).

Let us focus on (186). Using (104) to bound the term a(2)
m j ,

we can write:∑
�,m∈S′
� �=m

ai�a(2)
m j ≤ 2Ma,self

∑
�,m∈S′
� �=m

ai�am j

+
∑

�,m∈S′
� �=m

ai�

∑
h∈N

h �=m, j

amhah j . (187)

We now use (105) to bound the term a(2)
� j in (184) and the term

a(2)
m j in (185), whereas we use (187) to bound (186), finally

obtaining:

e(Gra)
i j ≤ (1 + �α )

∑
�∈S′

ai�(2Ma,self a� j + M)

+ �β

∑
�,m∈S′
� �=m

ai�a�m(2Ma,self am j + M)

+ 2�γMa,self

∑
�,m∈S′
� �=m

ai�am j

+ �γ

∑
�∈S′

ai�

∑
h∈N
h �= j

ah j

∑
m∈S′

m �=�,h

amh, (188)

which can be recast in the following convenient form:

e(Gra)
i j ≤ (1 + �α )

[
2Ma,self M

(S′ ) + MM̃(S′ )
a,sum

]
+ �β

[
2Ma,self M

(S′ )
a3,sum + MM̃(S′ )

]
+ �γ

[
2Ma,self

˜̃M(S′ ) + ˜̃M(S′ )
a,sum

]
� zN , (189)

where we have used the definitions listed on lines 9), 10), 11),
12), 13) and 14) of Table 3. The arguments leading to this
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result can be repeated by replacing upper bounds with lower
bounds, and maxima with minima (e.g., M replaced by m, or
�α replaced by �α), yielding:

e(Gra)
i j ≥ (1 + �α )

[
2ma,self m

(S′ ) + mm̃(S′ )
a,sum

]
+ �β

[
2ma,self m

(S′ )
a3,sum + mm̃(S′ )

]
+ �γ

[
2ma,self

˜̃m(S′ ) + ˜̃m(S′ )
a,sum

]
� zN . (190)

Now, under the uniform concentration regime we can use
the pertinent convergences in probability listed in Table 3, in
conjunction with the convergences in (163), which, after some
tedious but straightforward algebra, lead to:

N pN zN
p−→ η, N pN zN

p−→ η (191)

where η is the bias corresponding to the Granger estimator in
Table 2. Accordingly, we can conclude that the error for the
Granger estimator fulfills the hypotheses of Lemma 5, with
the choice wN = wN = 0, and with the quantities zN and zN
defined in (189) and (190), respectively. This concludes the
proof for the claim pertaining to the behavior of the limiting
Granger estimator. �

APPENDIX E
PROOF OF THEOREM 4
Proof: Since the limiting one-three-lags estimator is equal to
the true matrix AS, the proof for this estimator comes from
Assumption 1 and Corollary 1.

The proof for the one-lag and residual estimators boils
down to combining Theorem 5 with Lemma 5. In light of the
definitions of bias and gap, it suffices to prove the claim with
σ 2 = 1, and then scale the values obtained for the bias and the
gap by an arbitrary σ 2.

Using (64), the error corresponding to the one-lag estimator
can be written as (for all i, j ∈ S with i �= j):

e(1-lag)
i j =

∞∑
h=1

a(2h+1)
i j , (192)

and, hence, using the bounds in (117), we can write:

�
(odd)
β

ai j + �(odd)
γ m ≤ e(1-lag)

i j ≤ �
(odd)
β ai j + �

(odd)
γ M.

(193)
Examining the bounds on e(1-lag)

i j , we see that there are two
contributions in the error. For example, let us consider the

upper bound. The first contribution, �
(odd)
β , multiplies the

entries of the combination matrix, ai j , thus playing a role

for connected node pairs. The second contribution, �
(odd)
γ M,

plays a role for all nodes, whether or note they are connected.
Now, using the convergence results in (119) and in (230),

simple algebraic calculations lead to:

N pN �(odd)
γ m

p−→ η, N pN �
(odd)
γ M

p−→ η, (194)

where η is equal to the bias of the one-lag estimator as defined
in the pertinent row of Table 2. For what concerns �

(odd)
β

and

�
(odd)
β , from (119) we see that:

�
(odd)
β

p−→ �/κ − 1, �
(odd)
β

p−→ �/κ − 1, (195)

where � is equal to the bias of the one-lag estimator as defined
in the pertinent row of Table 2 (recall that we are working with
σ 2 = 1). It remains to apply Lemma 5, with the choices:

wN = �
(odd)
β , wN = �

(odd)
β

,

zN = �
(odd)
γ M, zN = �(odd)

γ m, (196)

which concludes the proof for the limiting one-lag estimator.
Let us switch to the analysis of the residual estimator. Us-

ing (70), the error corresponding to the residual estimator can
be written as (for all i, j ∈ S with i �= j):

e(res)
i j =

∞∑
h=1

a(2h+1)
i j −

∞∑
h=1

a(2h)
i j , (197)

and, hence, using the bounds in (116) and (117), we can write:

e(res)
i j ≤ (�

(odd)
β − �

(even)
β

) ai j + (�
(odd)
γ M − �(even)

γ m),
(198)

and

e(res)
i j ≥ (�(odd)

β
− �

(even)
β ) ai j + (�(odd)

γ m − �
(even)
γ M).

(199)
Now, using the convergence results in (118), (119) and (230),
simple algebraic calculations lead to:

N pN (�
(odd)
γ M − �(even)

γ m)
p−→ η,

N pN (�(odd)
γ m − �

(even)
γ M)

p−→ η, (200)

where η corresponds to the bias for the residual estimator
listed in the pertinent row of Table 2. Likewise, exploit-
ing (118), (119) and the representation of the gap � of the
residual estimator in Table 2, we can prove that:

(�
(odd)
β − �

(even)
β

)
p−→ �/κ − 1,

(�(odd)
β

− �
(even)
β )

p−→ �/κ − 1. (201)

It remains to apply Lemma 5, with the choices:

wN = �
(odd)
β − �

(even)
β

,

wN = �
(odd)
β

− �
(even)
β , (202)

and

zN = �
(odd)
γ M − �(even)

γ m,

zN = �(odd)
γ m − �

(even)
γ M, (203)

which concludes the proof of the theorem. �
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APPENDIX F
USEFUL CONVERGENCE RESULTS
Lemma 6 (List of Convergences under Uniform Concentra-
tion): If the connection probability fulfills (42), the conver-
gences listed in Table 3 hold true.

Proof:
1)

Ma
p−→ 0, ma

p−→ 0 (204)

From the inequalities in (44) we know that, for i �= j:

ai j ≤ κ

dmin
, (205)

which implies (204) in view of Corollary 1.
2)

Ma,self
p−→ ρ − κ, ma,self

p−→ ρ − κ (206)

Since aii = ρ −∑�∈N
� �=i

ai�, from (44) we can write:

aii ≤ ρ − κ

dmax

∑
�∈N� �=i

gi� = ρ − κ
d i − 1

dmax

≤ ρ − κ
dmin − 1

dmax
. (207)

Therefore, recalling that Ma,self � maxi=1,2,...,N aii,
we can write:

Ma,self ≤ ρ − κ
dmin − 1

dmax
. (208)

In view of Corollary 1, we have that the ratio dmin−1
dmax

converges to 1 in probability. Repeating the same rea-
soning with lower bounds in place of upper bounds,
and with minima in place of maxima, yields the same
result, and, hence, (206) follows.

3)
Ma2,self

p−→ (ρ − κ )2, ma2,self
p−→ (ρ − κ )2

(209)

We can write:

a(2)
ii =

∑
�∈N

ai�a�i = a2
ii +

N∑
�∈N
� �=i

ai�a�i

≤ a2
ii + κ2

d2
min

N∑
�∈N
� �=i

gi�

≤ a2
ii + κ2 dmax − 1

d2
min

, (210)

where the intermediate inequality follows by (44).
Therefore, recalling that Ma2,self � maxi∈N a(2)

ii , we
can write:

Ma2,self ≤ M2
a,self + κ2 dmax − 1

d2
min

, (211)

where the last term vanishes in probability in view
of Corollary 1. Using now (206), and repeating the
same reasoning with lower bounds in place of upper
bounds, and with minima in place of maxima, the re-
sult in (209) follows.

4)
Ma,sum

p−→ ρ, ma,sum
p−→ ρ (212)

From the first relationship in (44) we can write:∑
�∈N
� �= j

ai� = ρ − ai j, (213)

and the claim in (212) follows readily by (204).
5)

M(S′ )
a,sum

p−→ κ (1 − ξ ), m(S′ )
a,sum

p−→ κ (1 − ξ )

(214)

In view of (44) we can write:∑
h∈S′

h �=�,m

ahm ≤ κ

dmin

∑
h∈S′

h �=�,m

ghm. (215)

Now we observe that the random variable:∑
h∈S′

h �=�,m

ghm (216)

is a binomial random variable with number of trials
equal to S′ − 2, and success probability equal to pN .
In other words, we get the following representation:

max
�,m∈S′
� �=m

∑
h∈S′

h �=�,m

ghm = Bmax(S′ − 2, pN , (S′ − 1)S′),

(217)
because maximization is carried over all pairs �, m ∈
S′, with � �= m. Moreover, since in the uniform con-
centration regime we have:

pN = ωN
log N

N
, ωN

N→∞−→ ∞, (218)

and since S′/N → 1 − ξ as N → ∞, we can regard
the connection probability pN as a connection proba-
bility scaling with respect to S′, namely,

pN = ωN
log S′

S′
S′

N

log N

log(S′/N ) + log N

= ωS′
log S′

S′ � pS′ , (219)

where:

ωS′ = ωN
S′

N

log N

log(S′/N ) + log N
N→∞−→ ∞. (220)

This shows that the uniform concentration regime
can be referred also to the scaling of the involved
quantities w.r.t. S′ (in place of N). Accordingly, apply-
ing (75) with the choices K = (S′ − 1)S′, N = S′ − 2,
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and pS′ = ωS′ log(S′)/S′, and reasoning as done in the
proof of of Lemma 2, we get:

Bmax(S′ − 2, pS′ , (S′ − 1)S′)
S′ pS′

p−→ 1. (221)

It remains to use (217) in (215) to get:∑
h∈S′

h �=�,m

ahm ≤ κ
N pN

dmin︸ ︷︷ ︸
p−→1

S′

N︸︷︷︸
→1−ξ

× Bmax(S′ − 2, pS′ , (S′ − 1)S′)
S′ pS′︸ ︷︷ ︸

p−→1

.

(222)

Repeating the same reasoning with lower bounds in
place of upper bounds, and with minima in place
of maxima, yields the same result, and, hence, (214)
follow.

6)
Mc,self

p−→ (ρ − κ )2, mc,self
p−→ (ρ − κ )2 (223)

This result follows readily by repeating the same steps
used to prove (209).

7)
Mc,sum

p−→ ρ2 − 2ρκξ + κ2ξ

mc,sum
p−→ ρ2 − 2ρκξ + κ2ξ

(224)

Using the definition of C in (36), we note that we can
write:∑

h∈S′
h �=m

c�h =
∑
h∈S′
h �=m

∑
j∈N

a� ja jh

=
∑
j∈S

a� j

∑
h∈S′
h �=m

a jh +
∑
j∈S′

a� j

∑
h∈S′
h �=m

a jh. (225)

Applying the same procedure used in the previous
items of this section, it is readily proved that, if j ∈ S

(and, hence the self-term a�� is not present, because
� ∈ S′):

max
j∈S
∑
h∈S′
h �=m

a jh
p−→ κ (1−ξ ), min

j∈S
∑
h∈S′
h �=m

a jh
p−→ κ (1−ξ ),

(226)
whereas, if j ∈ S′:

max
j∈S
∑
h∈S′
h �=m

a jh
p−→ ρ − κξ, min

j∈S
∑
h∈S′
h �=m

a jh
p−→ ρ − κξ .

(227)
Likewise, we can show that:

max
�∈S′

∑
j∈S

a� j
p−→ κξ, min

�∈S′

∑
j∈S

a� j
p−→ κξ, (228)

and that:

max
�∈S′

∑
j∈S′

a� j
p−→ ρ − κξ, min

�∈S′

∑
j∈S′

a� j
p−→ ρ − κξ .

(229)
Plugging (226)–(229) into (225) finally yields (224).

8)
N pN M

p−→ κ2 p, N pN m
p−→ κ2 p (230)

In view of (44), we can write:∑
�∈N
� �=i, j

ai�a� j ≤ κ2

d2
min

∑
�∈N
� �=i, j

gi�g� j . (231)

Now we see that the quantity:∑
�∈N
� �=i, j

gi�g� j (232)

is a binomial random variable with number of tri-
als equal to N − 2, and success probability equal
to p2

N , since when � �= i, j, the product variable
gi�g� j is a Bernoulli variable with success probabil-
ity p2

N . Therefore, we are allowed to introduce the
definition:

Bmax(N − 2, p2
N , (N − 1)N ) = max

i, j∈N
i �= j

∑
�∈N
� �=i, j

gi�g� j,

(233)
which, in view of Lemma 2, yields:

1

N pN
max
i, j∈N
i �= j

∑
� �=i, j

gi�g� j
p−→ p. (234)

Now, from the definition of M in Table 3, line 8), we
get:

N pNM ≤ κ2 Bmax(N − 2, p2
N , (N − 1)N )

N pN︸ ︷︷ ︸
p−→p

N2 p2
N

d2
min︸ ︷︷ ︸
p−→1

.

(235)
Repeating the same reasoning with lower bounds in
place of upper bounds, and with minima in place of
maxima, we get the claim in (230).

9)
N pN M(S′ ) p−→ κ2 p(1 − ξ )

N pN m(S′ ) p−→ κ2 p(1 − ξ )
(236)

The proof for the case where p = 0 comes from (230)
because, from the definitions listed on lines 8) and 9)
of Table 3, we see that M(S′ ) ≤ M. The proof for the
case where p > 0 is readily obtained by using the same
arguments leading to (230).

10)
N pN M(S′ )

a3,sum
p−→ κ3 p(1 − ξ )2

N pN m(S′ )
a3,sum

p−→ κ3 p(1 − ξ )2
(237)
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We have that:∑
�,m∈S′
� �=m

ai�a�mam j =
∑
�∈S′

ai�

∑
m∈S′
m �=�

a�mam j

≤ max
i∈S
∑
�∈S′

ai� max
j∈S,�∈S′

∑
m∈S′
m �=�

a�mam j .

(238)

Reasoning as done for proving (236), we can show
that:

N pN max
j∈S,�∈S′

∑
m∈S′
m �=�

a�mam j
p−→ κ2 p(1 − ξ ). (239)

Likewise, reasoning as done for proving (214), we can
show that:

max
i∈S
∑
�∈S′

ai�
p−→ κ (1 − ξ ). (240)

Finally, using (239) and (240) into (238), repeating the
same reasoning with lower bounds in place of upper
bounds, and with minima in place of maxima, we
get (237).

11) The following list of convergences is obtained by triv-
ial variations on the previous proofs.

M̃(S′ )
a,sum

p−→ κ (1 − ξ ), m̃(S′ )
a,sum

p−→ κ (1 − ξ )˜̃M(S′ )
a,sum

p−→ κ3(1 − ξ )2, ˜̃m(S′ )
a,sum

p−→ κ3(1 − ξ )2

M̃(S′ ) p−→ κ2(1 − ξ )2, m̃(S′ ) p−→ κ2(1 − ξ )2

˜̃M(S′ ) p−→ κ2(1 − ξ )2, ˜̃m(S′ ) p−→ κ2(1 − ξ )2

(241)
�

APPENDIX G
USEFUL LEMMA
Lemma 7: Let 0 < α < 1, 0 < ρ� < 1 and β� ∈ R for all � =
1, 2, . . . , L, and introduce the following recursion:

fk+1 = α fk +
L∑

�=1

β�ρ
k
� . (242)

Then, fk is equal to:(
f0 +

L∑
�=1

β�

α − ρ�

)
αk −

L∑
�=1

β�

α − ρ�

ρk
� , (243)

namely, fk can be represented as a linear combination of
geometric sequences with ratio strictly smaller than one, a
structure that will be particularly convenient in the proofs of
Theorems 5 and 6.

Proof: Exploiting (242), we can write:

f1 = α f0 +
L∑

�=1

β�,

f2 = α2 f0 + α

L∑
�=1

β� +
L∑

�=1

β�ρ�,

...

fk = αk f0 +
L∑

�=1

β�

k−1∑
j=0

αk−1− jρ
j
�
. (244)

The last equation can be manipulated as follows:

fk = αk f0 +
L∑

�=1

β�α
k−1

k−1∑
j=0

(ρ�

α

) j

= αk f0 +
L∑

�=1

β�α
k−1 1 − (ρ�/α)k

1 − ρ�/α

= αk f0 +
L∑

�=1

β�

αk − ρk
�

α − ρ�

, (245)

which corresponds to (243). �

APPENDIX H
SAMPLE CONSISTENCY
We start with a useful lemma that characterizes the output of
the clustering algorithm proposed in Section V-B, when its
input is constituted by two well-separated classes.

Lemma 8 (Consistency of the clustering algorithm): Let

v1 ≤ v2 ≤ · · · ≤ vL (246)

be a set of real numbers such that, for ν0, ν1 ∈ R, ε > 0, and
k ∈ {1, 2, . . . , L}:

ν0 − ε < vi < ν0 + ε, i = 1, 2, . . . , k

ν1 − ε < vi < ν1 + ε, i = k + 1, k + 2, . . . , L. (247)

Then, for all ε > 0 such that:

ε <
ν1 − ν0

6
, (248)

the clustering algorithm clu(v) described in Section V-B, pro-
duces as output a unique pair of clusters corresponding to
j	 = k, namely:

C	
0 = C0(k) = {v1, v2, . . . , vk},

C	
1 = C1(k) = {vk+1, vk+2, . . . , vL}. (249)

Proof: We recall that the algorithm clu(v) considers a pair
of clusters as admissible if the midpoint between the cen-
troids of the clusters separates them. Accordingly, we start by
showing that the cluster configuration in (249) is admissible.
In view of (247), the centroids of C0(k) and C1(k) fulfill the
following bounds:

ν0 − ε < c0(k) < ν0 + ε, ν1 − ε < c1(k) < ν1 + ε,

(250)
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and, hence, their midpoint fulfills the condition:

ν0 + ν1

2
− ε <

c0(k) + c1(k)

2
<

ν0 + ν1

2
+ ε. (251)

In view of (247) and (251), a sufficient condition for the
clusters in (249) to be admissible is the following:

ν0 + ε <
ν0 + ν1

2
− ε,

ν0 + ν1

2
+ ε < ν1 − ε, (252)

which amounts to:

ε <
ν1 − ν0

4
, (253)

and the admissibility of the configuration in (249) follows by
(248).

In principle, other admissible configurations could exist.
Next we show that if another admissible configuration distinct
from (249) exists, then this configuration must necessarily
exhibit a smaller inter-cluster distance. First, we note that,
in view of (250), the distance between the centroids of the
clusters in (249) fulfills the bound:

c1(k) − c0(k) > ν1 − ν0 − 2ε. (254)

Let us assume that another admissible configuration j exists,
for a certain j > k. Since now the point v j > ν1 − ε belongs
to C0( j), and since we assumed that configuration j is admis-
sible, then v j must be smaller than the midpoint between the
centroids, yielding, in view of (247):

ν1 − ε < v j <
c0( j) + c1( j)

2

⇒ −c0( j) < c1( j) − 2(ν1 − ε)

⇒ c1( j) − c0( j) < 2c1( j) − 2(ν1 − ε). (255)

On the other hand, in view of (247) we have:

c1( j) < ν1 + ε, (256)

which used along with (255) yields:

c1( j) − c0( j) < 4ε. (257)

Examining the bound on the distance in (254), we see that the
condition:

ν1 − ν0 − 2ε > 4ε ⇔ ε <
ν1 − ν0

6
, (258)

is sufficient for the configuration in (249) to maximize the
inter-cluster distance. Finally, since the situation is similar for
j < k, the proof is complete. �

Proof of Theorem 1: In the following, for i, j ∈ S, the (i, j)
entry of the estimated matrix ÂS,n is denoted by âi j (n). Like-
wise, the (i, j) entry of the limiting estimated matrix ÂS is
denoted by âi j . Let us introduce the following events (we
recall that bold notation refers to random variables):

E0(n, N ) =

⎧⎪⎨⎪⎩ max
i, j∈S:ai j=0

i �= j

∣∣sN âi j (n) − η
∣∣ < ε

⎫⎪⎬⎪⎭ ,

E1(n, N ) =

⎧⎪⎨⎪⎩ max
i, j∈S:ai j>0

i �= j

∣∣sN âi j (n) − η − �
∣∣ < ε

⎫⎪⎬⎪⎭ . (259)

In view of Lemma 8, assuming a sufficiently small ε, the
clustering algorithm proposed in Section V-B reconstructs the
exact graph whenever E0(n, N ) ∩ E1(n, N ) occurs. Accord-
ingly, the theorem will be proved if we show that for some
n(N ):

lim
N→∞

P[E0(n(N ), N ) ∩ E1(n(N ), N )] = 1. (260)

To this aim, let us introduce the events:

E0(N ) =

⎧⎪⎨⎪⎩ max
i, j∈S:ai j=0

i �= j

∣∣sN âi j − η
∣∣ < ε/2

⎫⎪⎬⎪⎭ ,

E1(N ) =

⎧⎪⎨⎪⎩ max
i, j∈S:ai j>0

i �= j

∣∣sN âi j − η − �
∣∣ < ε/2

⎫⎪⎬⎪⎭ , (261)

and

F(n, N ) = {sN ‖ÂS,n − ÂS‖max < ε/2
}
. (262)

By triangle inequality, we have the implication:

E0(N ) ∩ E1(N ) ∩ F(n, N ) ⇒ E0(n, N ) ∩ E1(n, N ), (263)

yielding:

P [E0(N ) ∩ E1(N ) ∩ F(n, N )] ≤ P [E0(n, N ) ∩ E1(n, N )] .

(264)
Since by assumption the limiting matrix estimator ÂS achieves
universal local structural consistency we know that:

lim
N→∞

P [E0(N ) ∩ E1(N )] = 1. (265)

Consider now a sequence εN > 0 that vanishes as N → ∞.
Since ÂS,n is in the class defined by (11), for any fixed N ,
there exists n(N ) such that, for all n ≥ n(N ) we have:

P [F(n, N )] > 1 − εN , (266)

or, by the sandwich theorem:

lim
N→∞

P [F(n(N ), N )] = 1. (267)

Using now (265) and (267) in (264) implies (260) and, hence,
the claim of the theorem. �

APPENDIX I
SAMPLE COMPLEXITY
In the following we will make repeated use of the following
inequality, holding for any two matrices A, B:

‖AB‖max ≤ min(‖A‖max‖B‖1, ‖A‖∞‖B‖max). (268)

Given a regular diffusion matrix fulfilling Assumption 1 with
parameters ρ and κ , let ζ = ρ − κ . We introduce, for a small
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δ, with 0 < δ < 1 − ζ 2, the auxiliary quantities:

ϕ1 � (1 − ζ 2 − δ)(1 − ρ)

16
√

2σ 2
, ϕ2 � (1 − ρ2)2(1 − ρ)

16
√

2σ 2
. (269)

We notice that when δ is sufficiently small, ϕ1 > ϕ2. Next we
introduce some auxiliary functions. Let

bn(x)=

⎧⎪⎨⎪⎩min

{
1 , S2

(
e−n/2 + e

−
[√

nx−√
2
]2
)}

,
√

nx>
√

2

1,
√

nx≤√
2

(270)
where x is a positive quantity, n is the sample size and S is the
number of probed nodes. It is immediate to verify that bn(x)
is non-increasing in x, and that:

lim
n→∞ bn(x) = 0 for all x > 0. (271)

The second auxiliary function is:

bN (δ) = P

[
mini∈N[R0]ii

(maxi∈N[R0]ii )2
<

1 − ζ 2 − δ

σ 2

]
. (272)

We will now examine the behavior of bN (δ) as N → ∞. We
start by showing that, as N → ∞, the minimum and maxi-
mum diagonal entry of R0 concentrate (in probability) around
the same value. In view of (29) we have, for all i ∈ N:

[R0]ii = σ 2[(I − A2)−1]ii = σ 2

(
1 +

∞∑
h=1

a(2h)
ii

)
, (273)

which, using (115), yields:

σ 2
(

1 + �(even)
α

)
≤ [R0]ii ≤ σ 2

(
1 + �

(even)
α

)
. (274)

Applying to the lower and upper bounds in (274) the conver-
gence shown in the first line of (118), by the sandwich theorem
we get:

[R0]ii
p−→ σ 2

(
1 + ζ 2

1 − ζ 2

)
= σ 2

1 − ζ 2
, ∀i ∈ N.

(275)
We note from (274) that the convergence in (275) is uniform
across the index i. In other words,

min
i∈N

[R0]ii
p−→ σ 2

1 − ζ 2
,

max
i∈N

[R0]ii
p−→ σ 2

1 − ζ 2
, (276)

further implying that:

mini∈N[R0]ii

(maxi∈N[R0]ii )2

p−→ 1 − ζ 2

σ 2
. (277)

Since for all δ > 0,

1 − ζ 2 − δ

σ 2
<

1 − ζ 2

σ 2
, (278)

from (272) we conclude that:

lim
N→∞

bN (δ) = 0. (279)

The following lemma characterizes the rate of convergence
of the sample covariance estimators. This lemma adapts Lem-
mas 1 and 2 in [30] to exploit the peculiarities of our setting.

Lemma 9 (Convergence rate of the sample covariance es-
timators): Let us consider the VAR model in (3) with i.i.d.
standard Gaussian input source and initial state distributed
(conditionally on A) according to the stationary distribution
of the VAR process. Let the combination matrix A fulfill
Assumption 1 with parameters ρ and κ , and let the under-
lying graph fulfill the Erdős-Rényi model under the uniform
concentration regime. Then, for all ε > 0 we have:

P
[‖[R̂0,n]S − [R0]S‖max > ε

]
≤ 3 [bn(ε ϕ1) + bn(ε ϕ2) bN (δ)] , (280)

and

P
[‖[R̂1,n]S − [R1]S‖max > ε

]
≤ 4

[
bn−1(ε ϕ1) + bn−1(ε ϕ2) bN (δ)

]
. (281)

Proof: Preliminarily, it is worth noticing that the assump-
tion of stationary initial state is adopted because some results
about covariance matrices that will be used to prove our theo-
rems are obtained under this assumption, which is classically
adopted in sample complexity analysis [29], [30], [31], [32],
[95]. As observed, e.g., in [29], such assumption entails a
mild restriction since the (stable) system in (3) converges
exponentially to the stationary regime.

Let us start by examining the probability in (280) for a fixed
realization of the combination matrix A = A, i.e., we consider
the quantity, for i, j ∈ N:

P

[
|[R̂0,n]i j − [R0]i j | > ε

∣∣∣A = A
]

= P

[
|[R̂0,n]i j − [R0]i j | > ε

∣∣∣A = A
]
, (282)

where

R0 = σ 2(I − A2)−1, (283)

and where, in the considered conditional space, R̂0,n is an
empirical covariance matrix estimated over a VAR model (3)
with deterministic combination matrix A. In fact, given the
graph generation (i.e., given a certain A = A), the random se-
quence yn evolves according to (3), with xn being the assigned
i.i.d. zero-mean, unit-variance source, and with y0 following
the stationary distribution of the VAR model corresponding
to A. For these types of models, an upper bound on the
probability appearing in (282) is derived in [30] relying on
a concentration result for the covariance matrix entries shown
in [95]. More precisely, to obtain an upper bound on the prob-
ability in (282) we now modify the proof of Lemma 1 in [30]
by exploiting the peculiarities of our model. In order to avoid
redundancy, we do not report here the complete arguments and
proofs in [30]. We limit ourselves to modify the specific part
of the proof that is necessary to obtain our bounds.
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Let us consider, for m, m′ = 1, 2, . . . , n, the following
known relationship that is obtained exploiting (3):13

Rm−m′ = E[ymy�
m′ |A = A] = A|m−m′|R0. (284)

In [30] the following inequality is used:

‖Rm−m′ ‖max ≤ ‖Rm−m′ ‖2 ≤ ρ|m−m′|‖R0‖2. (285)

In our case we can replace (285) by the following inequality,
which exploits additional constraints on A:

‖Rm−m′ ‖max ≤ ‖A|m−m′|‖∞‖R0‖max

= ρ|m−m′| max
i∈N

[R0]ii, (286)

where the last equality comes from noticing that: i) the ma-
trix A/ρ is doubly stochastic; and ii) the off-diagonal entries
of the covariance matrix are upper bounded as |[R0]i j | ≤√

[R0]ii[R0] j j by Cauchy-Schwarz inequality.
Applying (286) in the proof of Lemma 1 in [30] (with

every other detail of the proof being unaltered) we get, for√
nεϕ(R0) >

√
2 and all i, j ∈ N with i �= j:

P
[|[R̂0,n]i j − [R0]i j | > ε|A = A

]
≤ 3

(
e−n/2 + e

−
[√

nε ϕ(R0 )−√
2
]2
)

, (287)

where we introduced the definition:

ϕ(R0) = (1 − ρ)

16
√

2

mini∈N[R0]ii

(maxi∈N[R0]ii )2
. (288)

Using the union bound over the set of probed nodes S and the
definition in (270), from (287) and (288) we get, for all n:

P
[‖[R̂0,n]S − [R0]S‖max > ε|A = A

] ≤ 3 bn(ε ϕ(R0)).
(289)

We now complete the proof by taking into account the ran-
domness of the combination matrix A. To this end, let R the set
of all possible realizations of A, and introduce the following
set:

T �
{

A ∈ R :
mini∈N[R0]ii

(maxi∈N[R0]ii )2
≥ 1 − ζ 2 − δ

σ 2

}
, (290)

where we recall that R0 is a function of A — see (283). We
notice that T is a high-probability set, since in view of (272)
and (279) we have:

P
[
A ∈ T′] = bN (δ)

N→∞−→ 0. (291)

By the law of total probability we can write:

P
[‖[R̂0,n]S − [R0]S‖max > ε

]
=
∑
A∈R

P

[
‖[R̂0,n]S − [R0]S‖max > ε

∣∣∣A = A
]
P[A = A]

13The specific representation Rm−m′ = A|m′−m|R0 holds due to the symme-
try of A.

≤ 3
∑
A∈R

bn(ε ϕ(R0)) P[A = A], (292)

where we have used (289). Recalling now the definition of ϕ1

in (269) and of ϕ(R0) in (288), we see that when A ∈ T we
have ϕ(R0) > ϕ1, yielding, since bn(x) is non-increasing in x:

bn(ε ϕ(R0)) ≤ bn(ε ϕ1), ∀A ∈ T. (293)

Moreover, from (273) we see that:

σ 2 ≤ [R0]ii ≤ σ 2

1 − ρ2
, (294)

yielding:

mini∈N[R0]ii

(maxi∈N[R0]ii )2
≥ (1 − ρ2)2

σ 2
, (295)

and in view of the definition of ϕ2 in (269) we conclude that
ϕ(R0) ≥ ϕ2 for all R0, implying then:

bn(ε ϕ(R0)) ≤ bn(ε ϕ2). (296)

Applying (293) and (296) in (292), we can write:

P
[‖[R̂0,n]S − [R0]S‖max > ε

]
≤ 3

∑
A∈T

bn(ε ϕ(R0)) P [A = A]

+ 3
∑
A∈T′

bn(ε ϕ(R0)) P[A = A]

≤ 3bn(ε ϕ1) + 3bn(ε ϕ2) P[A ∈ T′], (297)

and (280) follows by observing that P[A ∈ T′] = bN (δ) —
see (291). In order to obtain (281), we must repeat the same
steps shown above to the proof of Lemma 2 in [30]. �

Let us comment briefly on the structure of the bounds
in (280) and (281). For clarity of presentation, we focus
on (280), since similar considerations would apply to (281).
We notice that the bound in (296) could be used for all possi-
ble realizations of A, while in (297) we used it only for A ∈ T′.
This is because for A belonging to the high-probability set
T, the covariance matrix R0 exhibits a concentration property
that allowed us to obtain the bound bn(ε ϕ1) in (293), which
goes to zero with n faster than bn(ε ϕ2), since ϕ1 > ϕ2. On
the other hand, examining (280) we see that the other bound
bn(ε ϕ2) is further multiplied by the quantity bN (δ), which is
independent on the sample size n and vanishes as the network
size N goes to infinity as a consequence of the aforementioned
concentration properties. As a possible extension, one could
try to refine also the term bn(ε ϕ2) by exploring alternative
bounding techniques — see, e.g., [29], [32].

Corollary 2 (Scaling law useful for sample complexity):
Assume the same conditions used in Lemma 9. If

n(N ) = �
(

(N pN )2 log S
)
, (298)

then we have that:

lim
N→∞

P

[
‖[R̂0,n(N )]S − [R0]S‖max >

ε

N pN

]
= 0, (299)
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lim
N→∞

P

[
‖[R̂1,n(N )]S − [R1]S‖max >

ε

N pN

]
= 0. (300)

Proof: We will prove the claim with reference to (299),
with the proof being identical for (300). Examining (280),
we see that in order to get (299) it suffices to guarantee
that:

lim
N→∞

bn(N )

(
ε ϕ1

N pN

)
= 0, (301)

since the second term in (280) goes to zero automatically as
N → ∞ due to the presence of bN (δ), whatever law n(N )
is chosen. Let us first focus on the second exponential term
in (270), which can be written as:

exp

{
−
(√

n ε ϕ1

N pN
−

√
2

)2

+ 2 log S

}
. (302)

After some straightforward algebra, the exponent in (302) can
be more conveniently rewritten as:

−

⎡⎢⎣
⎛⎝√ nε2 ϕ2

1

2(N pN )2 log S
− 1√

log S

⎞⎠2

− 1

⎤⎥⎦ log S2. (303)

Now, since S/N → ξ > 0 as N → ∞, we see that S → ∞.
Therefore, the second exponential term in (270) converges to
zero if the quantity under brackets in (303) becomes asymp-
totically positive. Noticing that the term (

√
log S)−1 vanishes

as N → ∞, we see that this condition is verified if we have,
for ε′ > 0:

nε2 ϕ2
1

2(N pN )2 log S
> 1 + ε′, (304)

from some N onward, which corresponds to (298). Finally,
since with the found scaling law n(N ) diverges faster than
log S, the first exponential term in (270) converges to zero as
well, and the desired claim in (301) is obtained. �

The next two lemmas are auxiliary to the proof of
Theorem 3.

Lemma 10: Let A, R0, R1, Â, R̂0 and R̂1 be square matrices
of equal size, with:

‖A‖∞ ≤ 1, R1 = AR0. (305)

Assume that R̂0 is invertible and let

Â = R̂1R̂
−1
0 . (306)

Then we have that:

‖Â − A‖max ≤ ‖R̂−1
0 ‖1

(‖R̂0 − R0‖max + ‖R̂1 − R1‖max
)
.

(307)
Proof: From (306) we can write:

‖Â − A‖max = ‖(R̂1 − AR̂0)R̂
−1
0 ‖max

≤ ‖R̂−1
0 ‖1 ‖R̂1 − AR̂0‖max

= ‖R̂−1
0 ‖1 ‖R̂1 − R1

+ R1 − AR0︸ ︷︷ ︸
=0 from (305)

+AR0 − AR̂0‖max

≤ ‖R̂−1
0 ‖1 ‖R̂1 − R1‖max

+ ‖R̂−1
0 ‖1 ‖A‖∞‖R̂0 − R0‖max, (308)

and the result in (307) follows because ‖A‖∞ ≤ 1 in view
of (305). �

Lemma 11: Let A, R0, R1, Â, R̂0 and R̂1 be square matrices
defined over an index set S, with:

‖A‖∞ ≤ 1,R1 = AR0. (309)

Let the i-th row of Â be a solution to the optimization problem:

min
x

∥∥x R̂0 − [R̂1]iS
∥∥∞ s.t. ‖x‖1 ≤ 1, (310)

where x is a row vector and [R̂1]iS is the i-th row of [R̂1]S.
If R0 is invertible, then we have that:

‖Â − A‖max ≤ 2‖R−1
0 ‖1

(‖R̂0 − R0‖max + ‖R̂1 − R1‖max
)
.

(311)
Proof: We recall that for a vector the ‖ · ‖∞ norm amounts

to the maximum absolute value of its entries, whereas for
matrices it is the maximum absolute row sum. Accordingly,
we see that the matrix A introduced in the statement of the
lemma is a candidate solution to (310) since by assumption
‖A‖∞ ≤ 1. As a result, a solution to the optimization problem
in (310) fulfills:

‖ÂR̂0 − R̂1‖max ≤ ‖AR̂0 − R̂1‖max

= ‖AR̂0 − AR0 + R1 − R̂1‖max

≤ ‖A‖∞ ‖R̂0 − R0‖max + ‖R1 − R̂1‖max.

(312)

On the other hand, we can write:

‖Â − A‖max = ‖(ÂR0 − R1)R−1
0 ‖max

≤ ‖R−1
0 ‖1 ‖ÂR0 − R1‖max

= ‖R−1
0 ‖1 ‖ÂR0 − ÂR̂0

+ ÂR̂0 − R̂1 + R̂1 − R1‖max

≤ ‖R−1
0 ‖1 ‖Â‖∞ ‖R̂0 − R0‖max

+ ‖R−1
0 ‖1 ‖ÂR̂0 − R̂1‖max

+ ‖R−1
0 ‖1 ‖R̂1 − R1‖max, (313)

and the claim in (311) follows from (312). �
Proof of Theorem 3: Examining the proof of Theorem 1,

and in particular (262), we see that the sample complexity of
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ÂS,n can be determined by finding, for a sufficiently small ε >

0, a law n(N ) that ensures:

lim
N→∞

P

[
‖ÂS,n(N ) − ÂS‖max >

ε

N pN

]
= 0. (314)

Let us consider the regularized sample Granger estimator
defined by (51). First we show that the limiting Granger esti-
mator obeys the following bound:

‖Â
(Gra)
S ‖∞ ≤ 1. (315)

In view of (35) we can write:

Â
(Gra)
S = AS + E(Gra) = AS + AS,S′ H[A2]S′S︸ ︷︷ ︸

F

, (316)

where we remark that the matrix F is nonnegative by con-
struction. Exploiting (316) we have:∑

j∈S
â(Gra)

i j =
∑
j∈S

ai j +
∑
�∈S′

ai�

∑
j∈S

f � j ≤ ρ ≤ 1, (317)

where the last inequality follows since from (75) in [19] we
know that: ∑

j∈S
f � j ≤ 1. (318)

Equation (317) reveals that (315) holds true. Accordingly, we
can call upon Lemma 11 and use (311) to write:

‖Â
(reGra)
S,n − Â

(Gra)
S ‖max

≤ 2‖([R0]S)−1‖1
(‖[R̂0,n]S − [R0]S‖max

+ ‖[R̂1,n]S − [R1]S‖max
)
. (319)

We conclude that the scaling law in (298) will be suffi-
cient for the regularized Granger estimator if we show that
‖([R0]S)−1‖1 is bounded by some constant. To this end, let

Z = I − A2

σ 2
⇔ R0 = Z−1. (320)

From one of the block matrix representations for the inverse
matrix we have that [96, p. 18]:

([R0]S)−1 = ZS − ZSS′ (ZS′ )−1ZS′S

= IS − [A2]S − [A2]SS′H[A2]S′S
σ 2

= IS − [A2]S − [A2]SS′F
σ 2

. (321)

Since A is nonnegative with ‖A2‖∞ = ρ2, while F is nonneg-
ative and fulfills (318), we conclude that:

‖[A2]S + [A2]SS′F‖∞ ≤ ρ2, (322)

which, in view of (321) and the symmetry of R0, yields:

‖ ([R0]S)−1 ‖1 ≤ 1 + ρ2

σ 2
, (323)

which completes the proof for the regularized Granger esti-
mator.

Let us finally prove that in the dense case where pN → p >

0, the convergence in (314) with the scaling law in (54) holds
for the non-regularized Granger estimator in (50). To this end,
we expand [R̂0,n]S as:

[R̂0,n]S = [R0]S + ([R̂0,n]S − [R0]S
)

= [R0]S

⎛⎜⎝IS + ([R0]S)−1 ([R̂0,n]S − [R0]S)︸ ︷︷ ︸
D

⎞⎟⎠ .

(324)

Now we observe that:

‖D‖1 ≤ ‖([R0]S)−1‖1 ‖([R̂0,n]S − [R0]S)‖1

≤ 1 + ρ2

σ 2
S ‖([R̂0,n]S − [R0]S)‖max

= 1 + ρ2

σ 2 pN

S

N

(
N pN ‖([R̂0,n]S − [R0]S)‖max

)
≤
(

(1 + ρ2)ξ

σ 2 p
+ ε

)
ε = ε′, (325)

where: i) in the second-to-last inequality we used (323) and
the fact that for an S × S matrix the ‖ · ‖1 norm is upper
bounded by S times the ‖ · ‖max norm; ii) we used the fact
that S/N → ξ and pN → p > 0 as N → ∞; and iii) in view
of Corollary 2, the last inequality holds (and, hence, [R̂0,n]S
is invertible) with probability converging to 1 as N → ∞. Fi-
nally, applying matrix inversion to (324), and upper bounding
the norm of (IS + D)−1 as in [96, p. 301], we get:

‖([R̂0,n]S)−1‖1 ≤ ‖([R0]S)−1‖1 ‖(IS + D)−1‖1

≤ (1 + ρ2)(1 − ‖D‖1)−1

σ 2

≤ 1 + ρ2

σ 2(1 − ε′)
, (326)

and (314) follows by using (326) and Corollary 2 in
Lemma 10. �
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