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ABSTRACT The problem of detecting a sinusoidal signal with randomly varying frequency has a long his-
tory. It is one of the core problems in signal processing, arising in many applications including, for example,
underwater acoustic frequency line tracking, demodulation of FM radio communications, laser phase drift in
optical communications and, recently, continuous gravitational wave astronomy. In this paper we describe a
Markov Chain Monte Carlo based procedure to compute a specific detection posterior density. We demon-
strate via simulation that our approach results in an up to 25 percent higher detection rate than Hidden Markov
Model based solutions, which are generally considered to be the leading techniques for these problems.

INDEX TERMS Bayesian detector, Hidden Markov Model, Markov Chain Monte Carlo, posterior distribu-
tion, randomly varying frequency.

I. INTRODUCTION
The problem of detecting a sinusoidal signal with randomly
varying frequency, measured in additive noise, is encountered
in numerous applications. Our interest derives from attempts
to detect the presence of as yet undiscovered gravitational
waves hypothesized to emanate from rotating astronomical
objects like neutron stars [1], [2], whose frequency wan-
ders slowly and randomly [3]. Attempts to develop optimal
and good sub-optimal solutions have occupied many signal
processing researchers for at least 50 years, including more
recent work in [4]–[7]. In essence, the problem can be cat-
egorized as detection of a non-Gaussian random process in
Gaussian noise, and the forms of the optimal detector are well
known [8], [9]. However, these require the conditional-mean
estimate of the signal which, apart for a small number of cases,
is extremely difficult to characterize and compute.

Many approximate solutions have been developed includ-
ing use of an extended Kalman filter (EKF) to track the
random frequency followed by a coherent detector [10], [11].
This approach is known to be far from optimal because of
the simple linearization used in the EKF. Another commonly

used approximation is to assume a quadratic detector struc-
ture [12] and optimize a relevant performance cost, typically
the deflection ratio. This approach leads to the use of the
covariance of the random signal in the quadratic detector, but
this is not optimal for a non-Gaussian random signal. One
class of approximate methods relies on Hidden Markov Mod-
els (HMMs) and the Viterbi algorithm [13]–[15] to rapidly
compute the maximum a posterior (MAP) estimate using the
short-time discrete Fourier transform (DFT). The detector is
then formed by substituting in the MAP estimate. These meth-
ods rely on a Markov assumption for the wandering frequency
dynamics between time blocks. An extension of this method
enforces phase continuity between time blocks [16], resulting
in a further improvement. Attempts to replace the short-
time DFT with more sophisticated time-frequency analysis
methods, such as the Wigner-Ville distribution, appear to offer
no performance advantage over a standard Viterbi approach
in terms of frequency tracking accuracy or detection perfor-
mance [17].

In this paper we form the detection statistic by directly
computing a specified posterior density using Markov Chain
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Monte Carlo (MCMC) [18] methods. The essential idea
behind MCMC is to construct a Markov chain of which the in-
variant distribution is the desired posterior distribution. When
the Markov chain converges to its equilibrium, the samples
generated by the chain are essentially samples from the pos-
terior distribution of interest [18]. To construct the detector,
we introduce a time-invariant binary random variable k that
indicates whether a signal is present in the data or not. Thus,
under the null hypothesis H0, (k = 0), the signal of interest
is absent and under the alternative hypothesis H1, (k = 1),
the signal is present, with unknown amplitude and wandering
frequency. The detection statistic is then set to be the posterior
distribution of k, given observations y, denoted by Pr(k|y).
This posterior involves two distinct terms, Pr(k = 0|y) and∫
�

Pr(k = 1, θ |y)dθ , with θ being a parameter in the space
� of unknown amplitude, wandering frequency and phase of
the signal under k = 1. We show, in order to evaluate Pr(k|y),
we have to estimate θ as well. A closely related idea is used
in [19], where the signal is modelled as a superposition of
several single frequency sinusoids; in that case the number of
sinusoids as well as their corresponding (constant) frequen-
cies is estimated. We differ from previous work in that we
focus on detecting one wandering frequency line, modelled
as a high dimensional unknown parameter vector. The gen-
eralization to multiple signals is straightforward, albeit at the
price of increased computational complexity.

In this work we follow an important extension to the
basic MCMC method, called reversible jump MCMC (RJM-
CMC) [20], which allows samples to jump between multiple
spaces with different dimensions while maintaining overall
equilibrium. We first derive the posterior distribution Pr(k|y)
and proceed to build it with RJMCMC. We then introduce a
new method for efficiently proposing a candidate frequency
path while maintaining a reasonable acceptance ratio. We
develop a parametrized model of frequency dynamics with
varying parameter dimension, where we track the frequency
at coarsely spaced time samples (“knots”) while interpolating
between knots with quadratic polynomials. The time between
two adjacent knots is referred to here as a “block”. The num-
ber of knots in this scheme is equal to the number of blocks.
We show significant saving of computational resources with
a reduced numbers of knots, sufficient to capture the dy-
namics of the underlying frequency. This characteristic is
valuable since real life applications usually deal with very
large amounts of data (e.g. observation data of gravitational
waves typically involves a scalar amplitude channel sampled
∼ 1011 times over an observation period lasting one year [2]).
We also illustrate how to choose the number of blocks for
HMM and MCMC respectively. In the end, we perform
numerical simulations that demonstrate higher estimation
accuracy and detection probability of MCMC, compared with
HMM based methods.

The remainder of this paper is organized as follows. In
Section II, a parameterized signal model is presented. In
Section III, the HMM-based method is briefly explained.
In Section IV, the posterior distribution for detection is

formally derived. The complete RJMCMC procedure is
developed and described in Section V, followed by novel
methods of generating a new sample path and producing a
proposal sample path for a single MCMC birth and update
step, detailed in Algorithms 1–7. Numerical results are
described in Section VI, where the detection performance of
the algorithm is quantified by receiver operating characteristic
(ROC) curves. The extra information provided by estimating
frequency paths is presented as part of the detection algorithm,
with root mean square error (RMSE) recorded. The MCMC
and the HMM methods are compared in terms of these
performance measures.

II. PROBLEM STATEMENT
Without loss of generality, we assume the observed real sig-
nals with real additive noise are first converted into complex
signals via the Hilbert transform. Throughout this paper, all
derivations and simulations are based on complex data. Let
y = {y(tn)}n=1,...,N be the complex-valued data sequence, ob-
served at N equally spaced instants, t1 ≤ . . . ≤ tN , with t1 = 0

and T
�= tn − tn−1 for all n. Let k ∈ {0, 1} be a statistic con-

stant during the whole observation period, taking values 0
or 1, denoting whether the data is composed of pure noise
(k = 0) or signal plus noise (k = 1). Observations y, which
can have been generated either under hypothesis H0 or hy-
pothesis H1, are given by

H0 : y(tn) = z(tn), for k = 0, (1a)

H1 : y(tn) = a exp(2π jφ(tn) + ψ0) + z(tn) (1b)

= ã exp(2π jφ(tn)) + z(tn), for k = 1, (1c)

for n = 1, 2, . . .N , where ψ0 in (1b) is the unknown initial
phase and, for simplicity, we incorporate it into ã in (1c)

where ã
�= a exp( jψ0) indicates the unknown complex-valued

random amplitude. This allows us to assume that the phase
path starts from φ(t1) = 0. In our context, ã and ψ0 are
treated as nuisance parameters. The noise, z(tn) ∼ CN (0, σ 2)
is distributed as a complex Gaussian with variance σ 2. The
unknown signal yc = {yc(tn)}n=1,...,N is modelled by

yc(tn) = ã exp(2π jφ(tn)), n = 1 . . .N. (2)

Assuming that the continuous time-varying frequency is a
Wiener process with zero drift and diffusion constant γ , we
have {

φ(t ) = ∫ t
0 f (s)ds

df (t ) = γ dB(t )
, (3)

where B(t ) is the standard Wiener process with E [B(s)B(t )] =
min(s, t ). Then the discretized counterpart with sampling in-
terval T is{

φ(tn+1) = φ(tn) + f (tn)T + w1(tn)
f (tn+1) = f (tn) + w2(tn)

, (4)

for n = 1, 2 . . . ,N − 1, with w1(tn) and w2(tn) representing
the instantaneous phase and frequency noise, which are both
zero mean Gaussian random variables.
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Introduction of the state variable x(tn) = [φ(tn), f (tn)]T ,
allows us to write (4) in matrix form as

x(tn+1) =
[

1 T

0 1

]
x(tn) + w(tn); n = 1, 2 . . . ,N − 1. (5)

The covariance matrix of w(tn) = [w1(tn) w2(tn)]T is as-
sumed to be time invariant and can be represented as [16]

E
[
wwT ] =

[
T 3/3 T 2/2
T 2/2 T

]
γ 2. (6)

The derivation of (6) is given in Appendix A.
For the rest of the paper the state path is denoted by x =

{x(tn)}n=1,...,N , the frequency path by f = { f (tn)}n=1,...,N , and
the phase path by φ = {φ(tn)}n=1,...,N . Given observations y,
our decision of either H0 or H1 is based on the posterior
distribution Pr(k|y).

III. HIDDEN MARKOV MODEL (HMM)
Before deriving Pr(k|y), we give a brief review of the widely
accepted HMM-based Viterbi algorithm. In this method, the
hidden state variable is the frequency, discretized into fre-
quency bins, while the observations are divided into time
blocks. The state dynamics capture the frequency wandering
between the blocks into the transition probability matrix. A
good choice for the transition probability in this context is

Pr(Fk|Fk−1) = 1/3, |Fk − Fk−1| ≤ frequency bin width,
(7)

and zero elsewhere. Here Fk and Fk−1 denote the bin-
discretized frequencies at neighbouring time blocks. The
emission probability matrix is constructed by computing the
absolute value of the DFTs for each time block. The method
relies on the assumption that the frequency is contained in
one frequency bin within each block and jumps only occur
between blocks. Hence, the size of the block is determined
by the dynamics of the underlying wandering frequency, as
explained in Section VI-D1. The hidden states are then esti-
mated using the Viterbi algorithm and the detection statistics
are determined by the “Viterbi score”. A detailed analysis can
be found in [16]. Unlike the HMM-based technique, where
detection follows the estimation of the hidden frequency path,
in our approach we form the detection statistic directly by
computing Pr(k|y) using Bayes formula. This analysis is done
in the next section.

IV. DETECTION STATISTICS BASED ON POSTERIOR
DISTRIBUTION
In this section, we derive the expression of the posterior dis-
tribution Pr(k|y) of the detection statistic. In order to evaluate
Pr(k|y), the term Pr(ã, x, k = 1|y) has to be computed, which
provides us additional information about parameters other
than k. In other words, the two distinct objectives, estimation
and detection, normally done sequentially (as in the HMM
described in Section III), are integrated naturally into one
single term through this posterior distribution.

A. STRUCTURE OF THE DETECTION STATISTIC Pr(k|y)
Using the law of total probability and Bayes’ Rule, we write

Pr(k = 0|y) ∝ Pr(y|k = 0) Pr(k = 0) (8a)

Pr(k = 1|y) =
∫
D

∫
C

Pr(ã, x, k = 1|y)dãdx, (8b)

where C denotes the complex numbers and D denotes the
domain for x. Marginalizing out the parameters in (8b) is non-
trivial since x is high dimensional. Hence, we have to evaluate
the integrand Pr(ã, x, k = 1|y) by computing the posterior
estimate for the parameters in H1 space.

B. PRIOR DISTRIBUTIONS
For later use, we specify the prior distributions for all pa-
rameters used in the algorithm. The prior for k is assumed
to be Bernoulli distributed with a tunable parameter 1 − α,
that of ã under k = 1, i.e., when the signal exists, is chosen
to be a complex Gaussian distribution, with mean 0 and vari-
ance 
, i.e., ã ∼ CN (0,
). Usually we set 
 to be a large
number compared to σ 2 to reflect our initial uncertainty. As
stated earlier φ(t1) = 0 and f (t1) is chosen to be uniformly
distributed on the frequency interval (0,U ), i.e., U ∼ U (0,U )
with 0 < U ≤ 1/T , where U denotes the bandwidth of yc and
1/T is the sampling rate. The bandwidth is either known, or,
as here, assumed to be equal to the Nyquist frequency, so that
U = 1/T , although this is not very critical.1

C. MAIN RESULT
The main result of this work is the following theorem.

Theorem IV.1: The posterior for k is

Pr(k = 0|y) ∝ αW0 (9a)

Pr(k = 1|y) ∝ (1 − α)W0

∫
D

∫
C

Wf Wãdãdx (9b)

Pr(ã, x, k = 1|y) ∝ (1 − α)W0Wf Wã, (9c)

with

W0 = 1(πσ 2)N

exp

(
− 1

σ 2
yH y

)
, (10)

H denotes conjugate transpose,

Wf =
(

qσ 2

U


)
exp[η(x)], f (t1) ∈ (0,U ), (11)

and

Wã = 1

πσ 2q
exp

[
− 1

σ 2q
|ã − ā|2

]
, (12)

1In gravitational wave applications, U is usually much smaller than the
sampling rate. A typical continuous wave search is conducted over sub-bands
of ∼ 1 Hz to facilitate handling the large volume of data involved, compared
to the sampling frequency � 1 kHz. Continuous wave signals from neutron
stars are expected to be quasimonochromatic, with intrinsic frequency bin
width � 10−6 Hz [2].
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where

q = (N + σ 2/
)−1 (13a)

ā = qDH
f y (13b)

D f = exp( j2πφ) (13c)

η(x) = q

σ 2
(DH

f y)H (DH
f y) = |ā|2

σ 2q
. (13d)

Proof: The likelihood W0 is

W0
�= Pr(y|k = 0) = 1

(πσ 2)N
exp

(
− 1

σ 2
yH y

)
. (14)

As we show later, our algorithm does not require numerical
computation of W0 because it cancels out.

We have

Pr(ã, x, k = 1|y) ∝ Pr(ã, x, k = 1) Pr(y|ã, x, k = 1), (15)

where the likelihood term Pr(y|ã, x, k = 1) is rewritten as

1

(πσ 2)N
exp

[
− 1

σ 2
(y − ãD f )H (y − ãD f )

]
, (16)

with

D f = exp( j2πφ). (17)

The other factor Pr(ã, x, k = 1) is further expanded to

Pr(ã, x, k = 1) = Pr(k = 1) Pr(ã, x|k = 1), (18)

where Pr(ã, x|k = 1) denotes the prior distribution for ã and x
under the model k = 1. As for the prior distribution of x, given
an initial state of the path x(t1), the statistical representation of
the whole state path x is determined by the model according
to (5). Based on the above analysis and the prior distributions,
we rewrite (15) as

Pr(ã, x, k = 1|y) ∝ 1 − α

Uπ
(πσ 2)N
exp

(−ãH ã/

)

× exp
[
− 1

σ 2
(y − ãD f )H (y − ãD f )

]
.

(19)

To assist MCMC sampling we now expand the quadratic form
in (19) and after some algebraic manipulations, rewrite it in
the following way

exp
[
− 1

σ 2
(y − ãD f )H (y − ãD f )

]
exp

(
−ãH ã/


)
= exp

[
− 1

σ 2q
(ã − ā)H (ã − ā))

]
exp

(
− 1

σ 2
yH y

)
× exp

[ q

σ 2
(DH

f y)H (DH
f y)

]
,

(20)

with

q = (DH
f D f + σ 2/
)−1 = (N + σ 2/
)−1 (21a)

ā = qDH
f y. (21b)

Notice that ā is simply the least squares solution of ã in (1c)
for a given D f . We now define

Wã
�= Pr(ã|D f , y, k = 1) = 1

πσ 2q
exp

[
− 1

σ 2q
|ã − ā|2

]
(22)

as the normal distribution of ã given a specific draw D f ,
with mean ā and variance σ 2q. (12) reflects our uncertainty
of ã relative to ā in consequence of the observation noise.
Combining the remaining terms of (19) and (20), we obtain

Wf
�= qσ 2

U

exp

[ q

σ 2
(DH

f y)H (DH
f y)

]

= qσ 2

U

exp

( |ā|2
σ 2q

)

= qσ 2

U

exp η(x). (23)

Specifically, η(x) can be interpreted as the signal-to-noise ra-
tio (SNR) evaluated along a sampled state path x. Combining
(19) (22) and (23), we obtain the formulae for Pr(k = 0|y) and
Pr(k = 1|y) as given in (9b) (9c). �

Corollary IV.1.1: The posterior distribution for k is approx-
imated by

Pr(k|y) =
{

α
α+(1−α)W , k = 0

(1−α)W
α+(1−α)W , k = 1

(24)

with

W ≈
( σ 2

N


)1/2
exp

[
max

x
[η(x)]

]
. (25)

Proof: To further evaluate the integral term defined in (9b),
we define

W
�=

∫
C

Wãdã
∫
D

Wf dx (26a)

≈
( σ 2

N


)1/2
exp

[
max

x
[η(x)]

]
. (26b)

The first integral in (26a) is equal to unity. Evaluation of the
second integral uses the Laplace approximation, based on the
assumption that the integrand is strongly and singly peaked.
The expression maxx[η(x)] in (26b) is easy to evaluate for
constant frequency signals through the Fourier transform
F (y), i.e.,

η(x) = |F (y)|2/σ 2, (27)

but to compute (26a) for a wandering path, we resort to the
MCMC algorithm in V. �

V. MCMC ALGORITHM
A. BASIC PRINCIPLE
Formally, the posterior probability of a parameter μ, given
data D is given by

Pr(μ|D) = Pr(D|μ) Pr(μ)∫
μ∈S Pr(D|μ) Pr(μ)dμ

(28)
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FIGURE 1. Diagram of the finite state machine to generate MCMC
proposals.

where S is the domain of the parameters and Pr(μ) and
Pr(D|μ) are the prior probability and likelihood probabil-
ity, respectively. (28) is often hard to compute analytically
because of the potentially high dimensional integration ap-
pearing in the denominator.

MCMC provides a way to compute (28) without evaluating
the denominator by the construction of a Markov chain with
equilibrium distribution as in (28). After MCMC converges,
samples drawn from the Markov chain can be treated as
random samples drawn from the true posterior distribution.
The Maximum a Posteriori (MAP) estimate or other statistical
quantities can then be approximated using these ensemble
samples.

Specific algorithms designed for our scenario are described
in detail in the following sections.

B. SAMPLING RULES
In this section, based on (9), we construct the specific MCMC
algorithm for computing Pr(k|y). We use (·)i to denote the
value at the ith iteration and (·)′ to denote the proposed value.
Firstly, we specify a recipe for proposals to either switch
between different hypotheses (“birth”/ “death”) or explore
parameter space (“update”) under hypothesis H1(or k = 1).
That is, we build a finite state machine (Fig. 1) of which the
output returns the instruction for the next move. Specifically,
we introduce a new random Boolean variable si. It evolves as
a Markov chain with a given transition matrix �, as defined in
Table 4. The value of si combined with the previous k value
ki−1 gives the instruction to either jump between H0 and H1

or search within H1. Algorithms 2–7 in Appendix B describe
the implementation of MCMC as well as “birth,” “death” and
“update” in more detail. From (9), the acceptance ratio for
traversing between “birth,” “death” and “update” proposals at
the ith iteration are, respectively,

rbirth
�=

(1 − α)W ′
f W

′
ã

α
(29a)

rdeath
�= α

(1 − α)W i−1
f W i−1

ã

(29b)

rupdate
�=

W ′
f W

′
ã

W i−1
f W i−1

ã

, (29c)

where W ′
f and W ′

ã are evaluated at the proposed (perhaps
rejected) sample values x′ and ã′ at the current iteration, ac-
cording to (11) and (12), and W i−1

f and W i−1
ã are obtained

from previous values xi−1 and ãi−1. The acceptance probabil-
ities are then

Abirth
�= min(1, rbirth) (30a)

Adeath
�= min(1, rdeath) (30b)

Aupdate
�= min(1, rupdate). (30c)

C. KNOT-INTERPOLATION SCHEME TO REDUCE
PARAMETER DIMENSION
High dimensionality of the parameter space may cause con-
vergence problems for MCMC [21]. To alleviate this problem.
for both the HMM and MCMC approaches, the time series
y (of length N and sampled at time intervals of length T ) is
partitioned into consecutive blocks of equal time duration, Tb,
though the chosen lengths of these blocks will differ between
the two approaches. The endpoints of these blocks, at intervals
of time length Tb are called the knots. The number of blocks
is Nb, so that NT = NbTb. As described in Section III, the
HMM-based method requires calculation of the DFT of each
block to produce the emission probabilities, whereas in the
MCMC approach a quadratic interpolation between the knots
is used to approximate the time series and reduce dimension-
ality, as we only sample x’s at the knots. The interpolation
between the knots is performed in the following way⎧⎨

⎩
φ̃(tMm+1+�) = φ(tMm+1) + f (tMm+1)T �

+ 1
2 bm

1 (T �)2 + 1
3 bm

2 (T �)3

f̃ (tMm+1+�) = f (tMm+1) + bm
1 T �+ bm

2 (T �)2,

(31)

where M = N/Nb and � = 0, . . . ,M − 1 denote time epochs
within the mth block and Tb = MT is the time duration of one
block, as mentioned above. Notice that the resulting interpo-
lated path {φ̃(tn), f̃ (tn)}n=1,...,N is of length N . The continuity
of the interpolated path is ensured by solving (31) for bm

1 and
bm

2 using the values at the knots.
Denoted by the function “Interp,” this procedure is de-

scribed in Appendix B Algorithm 1. The dynamics between
the knots is identical to the dynamics in (5) with T replaced
by Tb. The rationale for choosing Tb (or equivalently, Nb) is
discussed in Section VI-D2.

From now we focus on generating the sequence of values,
xNb , of the path at the knots, in “birth” and “update” scenarios.
For simplicity of notation, we indicate the elements of xNb by
xNb ( j) for j = 1, . . . ,Nb.

D. GENERATING A SAMPLE PATH x′
Nb

(“BIRTH”)
For the MCMC “birth” procedure, we generate a random path
x′

Nb
with length Nb and individual elements

x′
Nb

( j + 1) =
[

1 Tb

0 1

]
x′

Nb
( j) + w( j). (32)
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The noise term w( j) is calculated in the same way as in (6),
with T replaced by Tb. Here we define

C
�= E

[
w( j)w( j)T ] = γ 2

[
T 3

b /3 T 2
b /2

T 2
b /2 Tb

]
, (33)

for j = 1, 2 . . . ,Nb − 1.

E. UPDATING A PROPOSAL PATH x′
Nb

FROM PREVIOUS
PATH xi−1

Nb

It is important in the MCMC algorithm to formulate a good
update proposal that specifies the probability of moving to a
new point in parameter space — a stochastic path x′

Nb
, given

previous location xi−1
Nb

. In this work, we developed a unique
approach to this problem, to be described here. The desired
new path x′

Nb
should possess the following properties:

1) it should obey the state dynamics model in (32).
2) it should be “close” to the previous path to avoid a large

chance of rejection. This is especially critical when the
samples are near the peak of the posterior probability
density function;

3) the distance between paths should be controllable, to fa-
cilitate a flexible sampling scheme such as, for example,
to be able to increase the convergence rate or to escape
from local extrema.

Consequently, we want to control the Euclidean distance
||x′

Nb
− xi−1

Nb
||. To achieve this, we expand (32) as

⎡
⎢⎢⎢⎢⎣

x′
Nb

(1)

x′
Nb

(2)
...

x′
Nb

(Nb)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

I2 0 . . . 0

F I2 . . . 0
...

...
. . .

...

FNb−1 FNb−2 . . . I2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x′
Nb

(1)

w(1)
...

w(Nb − 1)

⎤
⎥⎥⎥⎥⎦

(34)
with w( j) ∼ N (0,C), F = [ 1 Tb

0 1 ]. To generate a new path,
each w( j) is replaces by a new random vector Lq( j),
where LLT = C is the Cholesky decomposition, and q( j) ∼
N (0, I2) is a bivariate normal vector with unit covariance
matrix. Now (34) for the new path becomes⎡
⎢⎢⎢⎢⎣

x′
Nb

(1)

x′
Nb

(2)
...

x′
Nb

(Nb)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

I2 0 . . . 0

F I2 . . . 0
...

...
. . .

...

FNb−1 FNb−2 . . . I2

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

LL−1x′
Nb

(1)

Lq(1)

. . .

Lq(Nb − 1)

⎤
⎥⎥⎥⎦

(35a)

=

⎡
⎢⎢⎢⎢⎣

L 0 . . . 0

FL L . . . 0
...

...
. . .

...

FNb−1L FNb−2L . . . L

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M2

⎡
⎢⎢⎢⎢⎣

L−1x′
Nb

(1)

q(1)
...

q(Nb − 1)

⎤
⎥⎥⎥⎥⎦

(35b)

= M2

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

L−1x′
Nb

(1)

0
...

0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

q(0)

q(1)
...

q(Nb − 1)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(35c)

=

⎡
⎢⎢⎢⎢⎣

I2

F
...

FNb−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M1

x′
Nb

(1) + M2

⎡
⎢⎢⎢⎢⎣

q(0)

q(1)
...

q(Nb − 1)

⎤
⎥⎥⎥⎥⎦ ,

(35d)

with q(0) = [0, 0]T and q( j) ∼ N (0, I2) for j =
1, . . . ,Nb − 1. From (35d), we observe that a stochas-
tic state path x′

Nb
depends purely on the random

starting point x′
Nb

(1) and the random noise sequence

q = [qT (0), . . . ,qT (Nb − 1)]T since matrices M1 and M2

are deterministic. In our approach we keep x′
Nb

(1) = xi−1
Nb

(1)
and only perturb the random noise sequence q. Under the
requirement (i) above, the mean and variance of the perturbed
noise sequence need to be retained. Specifically, the steps
for perturbing the noise sequence at the ith iteration are:
given a previous path xi−1

Nb
, first extract the random part:

qi−1 = xi−1
Nb

− M1xi−1
Nb

(1); then generate a white noise

perturbation sequence q′ = [qT (0) . . . ,qT (Nb − 1)], with
q(0) = [0, 0]T and random vector q( j) with zero mean
and unit covariance cov(q( j)) = I2 for j = 1, . . . ,Nb − 1.
The perturbation sequence q′ is independent of qi−1, that is
E [q′(qi−1)T ] = 0. We introduce a parameter β and compute
the new noise sequence as qi = qi−1 cosβ + q′ sin β. This
perturbation scheme ensures that the new noise sequence
has the required mean and variance, because of the identity
cos2 β + sin2 β = 1. It is also apparent that cosβ is the
correlation coefficient between each old qi−1( j) and new
qi( j) for j = 1, . . .Nb − 1, thus the tunable parameter β
helps control the “closeness” between the old and the new
sequence, i.e., for smaller β, the correlation is greater, hence
the perturbation is smaller.

This scheme has one problem related to the lower triangular
shape of the matrix M2. The noise in the new path M2qi tends
to accumulate along the path, meaning that ||cov(qi(n))|| >
||cov(qi(m))|| for n > m as the iteration number i increases.
Our ad hoc solution to this problem is the following. Instead
of setting x′

Nb
(1) = xi−1

Nb
(1), we start from a random position

l ∈ {1, . . . ,Nb} and let x′
Nb

(l ) = xi−1
Nb

(l ); the sequence is then
split into two, with one part propagating backward all the way
to x′

Nb
(1) and the other part propagating forward until x′

Nb
(Nb).

This is achieved by replacing matrices M1 and M2 by M′
1 and

M′
2 as follows:

M′
1 =

[
F−(l−1) F−(l−2) . . . I2 F . . . FNb−l

]T
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TABLE 1 Parameters for Generating Synthetic Test Data

M′
2 =

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L F−1L . . . F−(l−1)L 0 . . . 0

0 L . . . F−(l−2)L 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . L F−1L 0 . . . 0

0 . . . 0 L 0 . . . 0

0 . . . 0 FL L . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 FNb−l L FNb−l−1L . . . L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

Notice that when l = 1, we recover M′
1 = M1 and M′

2 = M2.
This still causes noise accumulation in x′

Nb
for elements away

from l in both directions, but the random choice of l at each
iteration mitigates the effect in the long run.

The correlation between previous and proposed paths is

xi−1
Nb

= M′
1xi−1

Nb
(l ) + M′

2qi−1;
x′

Nb
= M′

1xi−1
Nb

(l ) + M′
2qi−1 cosβ + M′

2q′ sin β;
cov(xi−1

Nb
, x′

Nb
) = E [M′

2qi−1(M′
2qi−1 cosβ + M′

2q′ sin β )T ]

= (M′
2)2 cosβE [qi−1(qi−1)T ]

= (M′
2)2 cosβI2×Nb,

(37)
where we use E [qi−1(qi−1)T ] = I2×Nb , E [qi−1q′T ] = 0 and
E (xi−1

Nb
) = E (x′

Nb
) = M′

1xi−1
Nb

(l ). (37) indicates how the cor-
relation of previous and proposed paths can be tuned by β.

For completeness, the distance between neighbouring paths
in the L2 norm is bounded by

||xi−1
Nb

− x′
Nb

|| = ||M′
2qi−1(cosβ − 1) + M′

2q′ sin β||
≤ σM′

2

√
2Nb(cosβ + sin β − 1), (38)

where σM′
2

is the largest singular value of M′
2. The pseu-

docode of the method is provided in Appendix B, Algorithm
7.

VI. NUMERICAL VALIDATION
A. DESCRIPTION OF SYNTHETIC DATA
To test our MCMC algorithm, a synthetic data sequence
with length N is generated according to (1c), (5) and (6).
Parameters for synthetic data are given in Table 1. The

TABLE 2 Prior Distribution of x1, ã, K, W j

TABLE 3 Values of Prior Distribution Parameters

TABLE 4 Parameters Appearing in Algorithm 2–7

TABLE 5 Runtime as a Function of Number of Blocks and Number
of Iterations

starting frequency f (t1) is chosen randomly from (0,U )
with U = 1. The true path sequence xsyn = {xsyn(tn)}n=1,...,N ,
with xsyn(tn) = [φsyn(tn), fsyn(tn)]T , is randomly synthesised
according to the dynamics given in (5) and (6); the complex-
valued amplitude ã = |ã| exp( jψ0) is also chosen randomly
from the distribution CN (0,
), with ψ0 ∼ U (0, 2π ). The
signal-to-noise ratio is SNR = |ã|

σ
. This SNR differs from the

SNR along a path defined in (13d): η(x).2

B. DESCRIPTION OF MCMC PARAMETERS
Prior distributions of unknown parameters and specific values
are given in Table 2 and Table 3 respectively. The number of
blocks, Nb, is chosen from the set {5, 20, 200, 500, 1000}
to investigate how it affects the runtime and detection per-
formance. Tb is determined according to TbNb = T N . The
parameters used in the implementation of the algorithms are
given in Table 4. The factor β = 0.1 is chosen experimentally
to ensure a reasonable MCMC acceptance rate.

C. MCMC-POSTERIOR DISTRIBUTIONS
In Section IV and V, we show that, to compute the posterior
Pr(k|y), we have to sample from Pr(k = 1, ã, x|y) as well as
Pr(k = 0|y). Hence, as a part of the detection algorithm, we
approximate the MCMC-posterior for the state path x as well,
which is achieved by simply collecting all of the sampled state
paths under k = 1. The MCMC-MAP estimate is achieved by

2We differentiate γsyn from γ , the first one is used in generating synthetic
data, and the second one is the parameter of MCMC algorithms. The cho-
sen value of γsyn is to reflect the degree of randomness of the wandering
frequency.
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FIGURE 2. Upper panel: Relative entropy between full dynamic matrix MH
2

and reduced matrices M2 as a function of Nb. The entropy associated with
Nb = 20 is circled in red, indicating 10 percent information reduction.
Lower panel: Absolute value of error caused by block approximation, i.e.
coarse-graining error of the state path x versus block size, where the error
is ε = | exp[η(xsyn)] − exp[η(x̃)]|.

calculating the mode of these paths. Since the HMM algo-
rithm also estimates x, it is of interest to compare these two
algorithms in terms of the estimated paths.

The MCMC-posterior for k: Pr(k|y) is approximated by
counting the number of occurrences of k = 1 and k = 0 re-
spectively. A Neyman-Pearson type detector is constructed by
comparing Pr(k|y) with a pre-defined threshold to determine
detection.

In the following sections, we compute the MCMC-posterior
distributions for x and k, respectively. Related performance
criteria like estimation error and ROC curves are also pre-
sented.

D. RATIONALE FOR CHOOSING THE NUMBER OF
BLOCKS (KNOTS)
In this section we discuss the reasoning behind the differences
in the selection of the number of blocks for the HMM and
MCMC methods.

1) FOR HMM
In HMM, within one block, we perform an M-point DFT,
resulting in frequency bins of width
 f = U/M, where U and

FIGURE 3. MCMC convergence for k = 1 and SNR = 0.15. First panel: Trace
plot of f (t5). Second panel: MCMC-posterior distribution Pr(f (t5)|y). Third
panel: Trace plot of φ(t5). Fourth panel: MCMC-osterior distribution
Pr(φ(t5)|y), where y is generated from model k = 1. Injected parameters of
synthetic data: fsyn(t5) = 0.8914 Hz, φsyn(t5) = 178.2324 rad/2π,
SNR = 0.15.

M, as in MCMC, denote the bandwidth of the signal and block
size, respectively. The number of blocks Nb, or equivalently,
M is chosen such that

Pr

(∫ Tb

0
df (s) ≥ 
 f

)
< κ, (39)

where Tb = T M is the time duration within one block and κ
is restricted to be a small number. With f (t ) undergoing the
dynamics in (3), the integral in (39) is∫ Tb

0
df (s) = γ (B(Tb) − B(0)) ∼ N (0, γ 2Tb), (40)

where B(t ) denotes the Wiener process at time t .
We set the frequency bin width to be twice the standard

deviation in (40), i.e., 
 f = 2γ
√

Tb. Combining the relation
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FIGURE 4. MAP frequency estimate f∗
MCMC for Nb = 5 (blue), 20 (red), 200

(yellow) and 1000 (purple) of the MCMC and Nb = 5 (green) of the HMM at
SNR = 0.15. The wandering dynamics of the frequency is captured even
with Nb = 5 knots.

FIGURE 5. RMSE of MCMC estimate as a function of number of blocks and
number of iterations for Nb = 5 (blue), 20 (red), 200 (yellow) and 1000
(purple) and Nb = 5 (green) of HMM at SNR = 0.15. Among all, MCMC with
Nb = 20 achieves the lowest mean error.

that 
 f = U/M and setting γ = 1 × 10−4 (Table 1), we fi-
nally choose Nb = N/M = 5 for the HMM in the following
experiments.

2) FOR MCMC
To implement our MCMC algorithm, Nb needs to be chosen
beforehand. The optimum Nb, could be computed by max-
imizing the likelihood ratio or deflection ratio, as in [22].
In this section we describe an alternative, intuitive reasoning
behind our choice of Nb for the MCMC.

Consider the two matrices defined in (35), one of which is
the full 2N × 2N matrix M2 and the other is the 2Nb × 2Nb

matrix Mb
2. By design, Mb

2 is constructed from M2 by keeping

FIGURE 6. Trace plot and histogram (posterior distribution) of k. Upper
panel: Trace plot of k with synthetic data k = 0. Second panel: Posterior
distribution Pr(k = 0|y) with synthetic data k = 0. Third panel: Trace plot of
k with synthetic data k = 1 and SNR = 0.15. Lower panel: Posterior
distribution Pr(k = 1|y) with synthetic data k = 1 and SNR = 0.15.

the rows and columns at the knots and removing the rest.
The difference in “information” between these two matrices is
captured by the difference between the information theoretic
“Shannon entropy” H (N ) and H (Nb) of the singular values of
M2 and Mb

2 respectively. For any Mb
2 we write

H (Nb) = −
∑

i

ξb
i log(ξb

i ), (41)

where ξb
i = σi/

∑2Nb
j=1 σ

b
j and σ b

j is the jth largest non-zero

singular value of Mb
2. The entropy H (N ) is computed for

the full matrix M2. This entropy is effectively the same as
the von Neumann entropy [23] in the context of symmetric
matrices. Accordingly, for a chosen set of parameters, we
compute the entropy for a given Nb relative to H (N ) of the full
matrix. The result is shown on the left hand panel in Fig. 2.

To strengthen the entropy claim, we also directly evaluate
exp[η(xsyn)] ((13d)). This is the dominant term contributing to
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FIGURE 7. ROC curves at SNR = 0.15 for MCMC with
Nb = 20 (red), 200 (yellow), 500 (purple) and HMM with Nb = 5 (green).
The upper panel shows ROC curves for γ = 10−4 Hz sec−1/2, and lower
panel for γ = 10−5 Hz sec−1/2. The HMM detector yields worse
performance when Pf > 10−3. The omniscient detector (blue curve)
provides an upper bound.

the Bayesian evidence (9)–(11). Undoubtedly, if MCMC con-
verges, there will be a high density of MCMC samples near
the posterior probability, i.e., regions with larger exp[η(xsyn)].
By probing how exp[η(xsyn)] varies as Nb changes, we have
a better understanding of the effect of the choice of Nb on the
accuracy of the posterior distribution estimation. In particular,
while decreasing Nb, we measure the difference introduced
by using exp[η(x̃)] compared to exp[η(xsyn)], where x̃ again
denotes the interpolated path from Nb knots extracted from
xsyn. We first calculate the true value

exp[η(xsyn)]
�= exp

[ q

σ 2
(DH

syny)H (DH
syny)

]
(42)

using noisy synthetic data y and Dsyn
�= exp( j2πφsyn), where

φsyn stands for the synthetic phase path. This value provides

FIGURE 8. ROC curves at SNR = 0.1 for MCMC with
Nb = 20 (red), 200 (yellow), 500 (purple) and HMM with Nb = 5 (green).
The upper panel shows ROC curves for γ = 10−4 Hz sec−1/2, and lower
panel for γ = 10−5 Hz sec−1/2. The HMM detector yields the worst
performance. The omniscient detector (blue) provides an upper bound.

an upper bound. Then we compute

exp[η(x̃)]
�= exp

[ q

σ 2
(D̃H y)H (D̃H y)

]
, (43)

where D̃ = exp( j2π φ̃). Here φ̃ is related to φsyn by

φ̃(tn)=
{

φsyn(tn), (n − 1)/M ∈ Z,

Interp
(
φsyn

(
tM� n−1

M �+1

)
,φsyn

(
tM n−1

M �+1

))
,else

(44)

for n = 1, . . . ,N with M = N/Nb. The coarse-grained abso-
lute value of the error in calculating Bayesian evidence as
a result of interpolation is reflected in ε = | exp[η(xsyn)] −
exp[η(x̃)]|. The error ε versus Nb is plotted in the lower
panel of Fig. 2. Observe that for e.g., Nb = 20 (red circle),
almost 90% of the information is retained in the reduced Mb

2
with ε < 10−3. We believe that computing the entropy in
(41) provides us an alternative way to select Nb. However,
further investigation is required to justify the claim. In the
following sections, we show in simulations that the choices
of, for example, Nb = 20, maintains MCMC performance in
both estimation and detection, while saving computational
resources significantly. This is reflected in Table 5, where
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FIGURE 9. ROC curves at SNR = 0.2 for MCMC with
Nb = 20 (red), 200 (yellow), 500 (purple) and HMM with Nb = 5 (green).
The upper panel shows ROC curves for γ = 10−4 Hz sec−1/2, and lower
panel for γ = 10−5 Hz sec−1/2. Overall, the MCMC detector has overall
better performance. The omniscient detector (blue) provides an upper
bound.

MCMC runtime averages over 103 experiments for differ-
ent Nb’s with different number of iterations are reported,
specifically for Niteration = 5 × 103, 104, 5 × 104, 105. The
runtimes are computed on a 2.4 GHz central processing unit
(CPU).

E. ESTIMATION PERFORMANCE
Throughout this and the next section, we fix Nb = 5 for the
HMM (explained in Section VI-D1), and vary Nb for the
MCMC.

1) MCMC-POSTERIOR FOR THE STATE PATH: Pr(x|y)
In Fig. 3, a cross-section of the MCMC-posterior Pr(x|y) at
time instant t5 for SNR = 0.15 and Nb = 20 is shown. The
performance at other epochs is similar.

Trace plots and histograms for f (t5) and φ(t5), respectively,
are shown. By definition, trace plots show the sampled values
of a parameter over time. They reflect whether and how fast

FIGURE 10. Detection probability Pd versus SNR ranging from 0.1 to 0.25,
with false alarm rate Pf = 10−2 for MCMC with Nb = 20 (red) and HMM
with Nb = 5 (green). The upper panel shows ROC curves for
γ = 10−4 Hz sec−1/2, and lower panel for γ = 10−5 Hz sec−1/2. MCMC has
higher detection probability than HMM across the SNR range regardless of
the bias in γ .

MCMC converges in distribution. Starting from a random ini-
tial point, MCMC converges after about 103 iterations. This,
so called “burn in” period is seen in the top and third panels
in Fig. 3, compressed into the left edge of the plots. After
the “burn in” period, the samples drawn from the MCMC
have values centered around the true value, with bias less than
0.0005 Hz (0.05 percent of the bandwidth) and 0.02 rd, and
standard deviation less than 0.002 Hz and 0.5 rd for f (t5) and
φ(t5), respectively. This conclusion can also be drawn from
the histograms on the second and fourth panels in Fig. 3, the
shapes of which, by definition, resemble the true posterior
distributions Pr( f (t5)|y) and Pr(φ(t5)|y).

2) MCMC-MAP ESTIMATOR
A typical realization of the MCMC-MAP estimates of fre-
quency paths f∗

MCMC for Nb = 5, 20, 200 and 1000, com-
pared with the HMM estimated frequency path is displayed in
Fig. 4. Here we can see, that the dynamics of the wandering
frequency is captured even by Nb = 5 knots.

In Fig. 5, we plot the root-mean-square-error (RMSE)
of the MCMC-MAP estimated frequency path, normalized
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with respect to the path length N , defined to be RMSE
�=

√
E (||f∗

MCMC − fsyn||2)/N , where E (·) denotes the sample

mean over 103 experiments, and f∗
MCMC and fsyn denote the

MCMC-MAP estimated and synthetic frequency path, respec-
tively. In this example, every frequency point f ∗

MCMC(tn) and
f syn(tn) takes values in the interval [0, 1], giving the upper
bound for RMSE of 1. As shown here, Nb = 20, among all,
returns the lowest mean error and overall the MCMC-MAP
estimator provides more accurate estimation against the HMM
estimator, although at the cost of longer computing time.

F. DETECTION PERFORMANCE
1) MCMC-POSTERIOR DISTRIBUTION FOR DETECTION:
Pr(k|y)
In Fig. 6, two examples of the MCMC-posterior distribution
Pr(k|y) for an SNR = 0.15 are presented. The upper panel
shows a typical trace plot of the parameter k for when the
data contain no signal, where the value of k jumps constantly
between k = 0 and k = 1. The histogram of this k is shown in
the second panel. The third panel shows typical samples when
the signal is present; after around 3 × 103 iterations, k clearly
approaches the value 1. The lower panel depicts the histogram
of k for this case.

2) RECEIVER OPERATING CHARACTERISTIC
Receiver operating characteristic (ROC) curves for an
omniscient,3 The MCMC detector and the HMM detector are
shown in Figs. 7, 8, and 9, computed over 105 simulation runs
at SNR = 0.15, 0.1 and 0.2 respectively for synthetic signals
with frequencies wandering according to (5) and (6), with
γsyn = 10−4 Hz sec−1/2.

The upper panels are for the MCMC algorithm with pa-
rameters γ = 10−4 Hz sec−1/2, and the lower panels are for
γ = 10−5 Hz sec−1/2. The mismatch in γ and γsyn appears to
cause degradation in the MCMC detector performance. This
sensitivity to γ is an unwanted effect and requires further
investigation.

At relatively high SNR = 0.2, the plots show that the
MCMC detector outperforms the HMM detector across the
whole Pf range. For SNR = 0.1, the detection rate for the
MCMC detector, although higher than the HMM detector, is
quite low, i.e., around 0.17 at Pf = 10−2. At SNR = 0.15 both
the MCMC detector and the HMM detector demonstrate bet-
ter performance than when the SNR = 0.1 with the MCMC
outperforming the HMM. In particular, for a false alarm prob-
ability Pf = 10−2, the detection probability Pd of the MCMC
detector is around 0.8 with matched γ ’s, while dropping be-
low 0.7 with mismatched γ ’s. In Fig. 7, when SNR = 0.15,
the MCMC detector outperforms the HMM detector across
the Pf range greater than 10−2 for all choices of Nb and
γ . The HMM performs “detection after estimation,” i.e., it
calculates the most likely frequency path first, then compares

3The omniscient detector is based on the assumption that the true path xsyn
is known. It provides an upper bound for the probability of detection.

the statistics of this path with the statistics of the noise, while
the detection is directly embedded in the design of the MCMC
detector. As a result, the HMM’s detection performance is
heavily dependent on the accuracy of estimation, as opposed
to the MCMC detector, where estimation becomes a conse-
quence of detection. The degradation of performance at low
SNR, known as the “threshold effect” is a common problem
in nonlinear estimation. Even though we are not able to derive
it mathematically, we infer from the plots that the threshold
effect for MCMC detector happens between SNR = 0.15 and
SNR = 0.1.

Figs. 7, 8, and 9 also show that Nb has little effect on the
overall detection performance of the MCMC detector. The
red, yellow and purple curves overlap each other, especially
when Pf < 10−1.

In Fig. 10, we fix the false alarm probability Pf = 10−2 and
plot Pd versus SNR varying from 0.1 to 0.25 for the MCMC
detector with Nb = 20 and the HMM detector respectively.
Controlling the false alarm probability to be no more than
10−2 is typically tolerated in gravitational wave astrophysics
applications [24]. Similarly, the upper panel and lower panels
show the MCMC detector’s performance without and with
mismatch in γ , respectively. In both plots the MCMC detector
has higher detection probability than the HMM detector, even
with γ mismatched. For example when the SNR = 0.15, the
MCMC detector outperforms the HMM detector with 25%
higher detection probability.

VII. CONCLUSION
In this work a Bayesian posterior density for detecting sinu-
soidal signals with wandering frequency in noise is derived
and computed. The method is based on MCMC techniques.
As part of the algorithm, our method provides computation
of the posterior density of the signal parameters. For efficient
computation of this density we propose a knot-interpolating
technique, where we sample the signal parameters at the
coarsely spaced time knots, while the rest of the signal is
recovered by the interpolation between the knots. A proce-
dure for selecting a reasonable number Nb of knots, given
the signal dynamics is presented and justified. This procedure
relies on the computation of the (von Neumann) entropy of the
dynamics matrices. Although we cannot claim its optimality,
we illustrate by experiments how the procedure provides a
balance between the runtime and detection and estimation
accuracy.

In addition, we have developed an algorithm within MCMC
for proposing new state paths that are arbitrarily close to the
previous path. This method ensures dense selection of MCMC
samples for highly structured multi-dimensional vectors. The
full description of the algorithm is provided.

The performance of the MCMC is evaluated in terms of
mean estimation errors and ROC curves and compared with
the performance of the HMM-based Viterbi algorithm. We
demonstrate that our algorithm presents both higher detection
rates and greater estimation accuracy in all of the experiments
conducted. In particular, the simulation results show that our
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method outperforms the HMM in estimation accuracy by
around 5% and improves detection rate by up to 25%.

APPENDIX A
PROOF OF (6)
We consider a more general process where continuous fre-
quency and phase path are described by

df (t ) = − 1

τ
f (t )dt + γ dB(t ) (45a)

φ(t ) =
∫ t

0
f (s)ds (45b)

where τ and γ are called the relaxation time and the diffusion
constant.

The variance and covariance of the time sampled variable
f (t + T ) and φ(t + T ) at time t + T , with time increments
T > 0 are derived in [16] to be

σ 2
1

�= var{ f (t + T )} = (γ 2τ/2)(1 − e−2T/τ ) (46a)

σ 2
2

�= var{φ(t + T )} = γ 2τ 3[T/τ − 2(1 − e−T t/τ )

+ 1

2
(1 − e−2T t/τ )] (46b)

K
�= cov{ f (t + T ), φ(t + T )}

= (γ 2τ 2/2)(1 − 2e−T/τ + e−2T/τ ) (46c)

We consider f (t ) to be a Wiener process with diffusion con-
stant γ and τ = ∞. (46) is then approximated by

σ 2
1 ≈ σ 2T (47a)

σ 2
2 ≈ σ 2T 3/3 (47b)

K ≈ σ 2T 2/2 (47c)

and we obtain the covariance matrix (6).

APPENDIX B
PSEUDOCODE

Algorithm 1: function “Interp”.
Iutput: (x(tn1 ), x(tn2 )).
Outout: {x̃(tn1 ), x̃(tn1+1), x̃(tn1+2), . . . , x̃(tn2 )}.{
φ̃(tn1+�) = φ(tn1 ) + f (tn1 )T �+ 1

2 b1(T �)2 + 1
3 b2(T �)3

f̃ (tn1+�) = f (tn1 ) + b1T �+ b2(T �)2,

(48)
with[
b1

b2

]
=

[
T 2

b /2 T 3
b /3

Tb T 2
b

]−1 [
φ(tn2 ) − φ(tn1 ) − f (tn1 )Tb

f (tn2 ) − f (tn1 )

]
(49)

for � = 0, 1, . . . , n2 − n1 with Tb = tn2 − tn1 .

Algorithm 3: “Birth” Move.

Input: x̃i−1, ãi−1, ki−1.
Output: x̃i, ãi, ki.

1: Propose a candidate state path according to Algorithm 6
(discussed in Section V-D);

2: Evaluate q (13a) and ā′ based on x̃′ obtained from Step 1
(13b);

3: Sample ã′ from distribution ã′ ∼ CN (0, σ 2q); or
(optional) let ã′ = ā for simplicity if ã is of little interest to
us4;

4: Evaluate W ′
ã and W ′

f based on ã′ and x̃′ (11)–(12);
5: Accept (x̃i, ãi, ki ) = (x̃,′ ã,′ 1) with probability Abirth (30a);

otherwise set (x̃i, ãi, ki ) = (x̃i−1, ãi−1, ki−1).

Algorithm 4: “Death Move”.

Input: x̃i−1, ãi−1, ki−1.
Output: x̃i, ãi, ki.

1: Given previous value x̃i−1 and ãi−1 (ki−1 must be 1);
2: Evaluate W i−1

ã and W i−1
f based on x̃i−1; ãi−1 (11)–(12);

3: Accept (x̃i, ãi, ki ) = (∅,∅, 0) with probability Adeath

(30b); otherwise set (x̃i, ãi, ki ) = (x̃i−1, ãi−1, ki−1).

4 In our MCMC algorithms, we do not sample ã to evaluate (22), but only
compute the MAP estimate of ã for a realization of D f , which is ā and we
simply set the amplitude proposals ã′ = ā.
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Algorithm 5: “update” Move.

Input: x̃i−1, ãi−1, ki−1.
Output: x̃i, ãi, ki.

1: Propose a candidate state path according to Algorithm 7
(described in Section V-E);

2: Evaluate q (13a) and ā′ based on x̃′ obtained from Step 1
(13b);

3: Sample ã′ from distribution ã′ ∼ CN (0, σ 2q); or
(optional) let ã′ = ā for simplicity if ã is of little interest to
us;

4: Evaluate W ′
ã and W ′

f based on ã′ and x̃′(11)–(12);
5: Accept (x̃i, ãi, ki ) = (x̃,′ ã,′ 1) with probability Aupdate

(30c); otherwise set (x̃i, ãi, ki ) = (x̃i−1, ãi−1, ki−1).

Algorithm 6: Generate a Proposal Path x′ for the “birth”
Step.

Input: ∅.
output: x̃′.

1: Initialization: x̃′(t1) = {φ̃′(t1), f̃ ′(t1)} with φ̃′(t1) = 0,
f̃ ′(t1) ∼ U (0,U );

2: Place the knots, i.e. determine the value for Nb and the
corresponding Tb,M;

3: Generate knot positioned path x′
Nb

, i.e. start from
x′

Nb
(1) = x̃′(t1) in Step 1, and follow the sampled path

model (32), with random noise w( j)
i.i.d.∼ N (0,C) with C

given in (33);
4: Call function Interp(x′

Nb
( j), x′

Nb
( j + 1)) for

j = 1, . . . ,Nb − 1 from Algorithm 1 and obtain the
proposed sample path x̃′.

Algorithm 7: Generate a Proposal Path x′ for the “update”
Step.

Input: x̃i−1

Output: x̃′.
1: Extract Nb knots along x̃i−1 and form

xi−1
Nb

(m + 1) = x̃i−1(tmM+1) for m = 0, . . . ,Nb − 1;
2: Uniformly sample an integer l ∈ {1, 2, . . . ,Nb}, and

determine the starting point xi−1
Nb

(l ) to be the lth element of
xi−1

Nb
; choose a value for β;

3: Determine the matrix M′
1 and M′

2 based on l from Step 1
(36);

4: Get previous noise sequence qi−1, which satisfies
M′

2qi−1 = xi−1
Nb

− M′
1xi−1

Nb
(l );

5: Generate a noise sequence q′ = [qT (0), . . . ,qT (Nb − 1)]T ,

where qT
n

i.i.d.∼ N (0, I2);
6: Compute new noise sequence qi via

qi = qi−1 cosβ + q′ sin β; Generate proposed sample path
x′

Nb
, where x′

Nb
= M′

1xi−1
Nb

(l ) + M′
2qi;

7: Call function Interp(x′
Nb

( j), x′
Nb

( j + 1)) for
j = 1, . . . ,Nb − 1 from Algorithm 1 and obtain the
proposed sample path x̃′.
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