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ABSTRACT This paper addresses the problem of multitarget tracking using a network of sensing agents
with unknown positions. Agents have to both localize themselves in the sensor network and, at the same
time, perform multitarget tracking in the presence of clutter and miss detection. These two problems are
jointly resolved using a holistic and centralized approach where graph theory is used to describe the statistical
relationships among agent states, target states, and observations. A scalable message passing scheme, based
on the sum-product algorithm, enables to efficiently approximate the marginal posterior distributions of both
agent and target states. The proposed method is general enough to accommodate a full multistatic network
configuration, with multiple transmitters and receivers. Numerical simulations show superior performance
of the proposed joint approach with respect to the case in which cooperative self-localization and multitarget
tracking are performed separately, as the former manages to extract valuable information from targets. Lastly,
data acquired in 2018 by the NATO Science and Technology Organization (STO) Centre for Maritime
Research and Experimentation (CMRE) through a network of autonomous underwater vehicles demonstrates
the effectiveness of the approach in a practical application.

INDEX TERMS Belief propagation, factor graph, maritime surveillance, message passing, probabilistic data
association.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Detecting unknown targets, understanding their intentions,
and taking reactive countermeasures are common tasks in
situational awareness (SA) applications [1]–[7]. Depending
on the specific use case, different types of sensors (acoustic,
radio frequency, optical, etc. [8]) may be used to sense the
environment and provide the desired information. Most of
SA applications use multiple cooperative sensors, rather than

a single one, to infer the presence and kinematics of targets.
Indeed, cooperation dramatically increases the perception
capabilities of an SA system, as it relies on a larger dataset of
observations (or measurements) of the targets [9]–[13].
Examples can be found in several domains such as
underwater surveillance networks [14]–[17], connected
vehicles [18]–[20], and Internet of Things (IoT) [21]–[24].
Mobility of sensors can further improve the performance of
target detection and localization by fusing spatial sensing
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under different geometries, also enabling the design of
optimized sensor trajectories [25]. However, this requires
the sensors to localize themselves continuously. Cooperative
self-localization techniques based on belief propagation, also
known as the sum-product algorithm (SPA) [26], [27], have
been recently proposed, with computational complexity that
linearly scales with the number of cooperative sensors [28]–
[34]. Additional advantages of SPA methods include the
ability to address non-linear and non-Gaussian models and to
cope with unknown and time-varying hyperparameters [35].

The advanced capability of a surveillance system to firstly
detect and localize, and then track over time a number of
hypothesized targets which behave as non-cooperative enti-
ties (i.e., that do not deliberately share information with the
surveillance system) is referred to as multitarget tracking.
Usually, the presence of these targets represents a dangerous
situation or a potential threat; e.g., targets can be vulnerable
road users in a vehicular scene, intruding ships in the maritime
domain, intruding aircraft in the aerospace domain, or thieves
in an IoT surveillance system. It follows that the development
of robust, reliable, scalable and efficient multitarget tracking
algorithms becomes of paramount importance, as safety issues
are involved. Abundant literature on multitarget tracking is
available, starting from the pioneering works in [36]–[39]
through very recent studies such as [40]–[48]. Approaches
based on SPA have been proposed as well, both with sta-
tionary sensors — whose location is either known [35], [49]
or unknown [50] — and with mobile ones [18], [51]–[53].
However, not all of them handle typical multitarget tracking
challenges like the presence of clutter-generated measure-
ments (i.e., false alarms), missed detections, and measure-
ment origin uncertainty [54], i.e., the problem of unknown
association between targets and measurements. Focusing on
multitarget tracking algorithms with mobile sensors, the cited
works are affected by the following limitations: in [51] sensors
do not localize themselves cooperatively; in [52] the maxi-
mum number of targets that can be tracked simultaneously
is limited and needs to be set a priori; in [18] and [53] the
number of targets is time-invariant and known, and, in addi-
tion, in [18] neither false alarms nor missed detections are
considered, and in [53] the association between targets and
measurements is assumed known. Random finite sets (RFSs)
constitute an alternative framework for the development of
multitarget tracking methods1 both with stationary [40], [41],
[48] and mobile sensors [45]. In particular, in [45] the au-
thors develop a Poisson multi-Bernoulli multitarget tracking
filter that jointly estimates the uncertain mobile sensor states
and target states using two types of measurements: sensor
state measurements, e.g., global navigation satellite system
(GNSS) measurements, and target measurements. However,
this algorithm, as well as those cited above, are not suitable for
a full multistatic network configuration, and do not consider

1For the interested reader, similarities and differences between the SPA-
based and the RFS-based derivation of multitarget tracking algorithms are
described in [49].

the case of signal reflections from mobile sensors, thus easing
the data association problem.

The above issues have been partially addressed in [55], that
indeed represents the preliminary study at the basis of this
research; it is purpose of this paper to further extend that work
as detailed in the next subsection.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
The method we present here is based on a general framework
where the concept of agents, rather than sensors, is introduced
to address the SA task. An agent is a device with sensing
and communication functionalities (i.e., transmitting and/or
receiving acoustic, radio, or optical signals), along with mo-
tion and navigation capabilities. The connectivity is used to
set up a cooperative and centralized processing platform. We
propose a SPA-based technique that extends the state-of-the-
art methods by combining cooperative self-localization and
multitarget tracking in a unified centralized framework. In par-
ticular, moving agents, whose states are unknown, are capable
of jointly localizing themselves by continuously estimating
their states and, at the same time, detecting and tracking an
unknown, arbitrary, and time-varying number of targets by
exploiting multiple types of measurements and in presence
of clutter, miss detection and association uncertainty. A fully
distributed approach based on consensus strategies [52], [56]–
[60] can be adopted and customized for the proposed scheme;
this study is not included here and left to future work. We
focus the attention on a holistic and centralized approach for
cooperative self-localization and multitarget tracking, vali-
dated by real world experiments. The main contributions of
this paper, which advances the work in [55] where an ad-hoc
scenario with defined roles for transmitter and receiver agents
is considered, are the following:
� a more general formulation is provided in which moving

agents can both sense the environment, thus producing
multiple types of measurements, and communicate with
each other;

� all objects, i.e., both agents and targets, whose states are
unknown and need to be estimated, can reflect signals
transmitted by a certain agent and thus produce mea-
surements. Therefore, the data association problem is not
limited to targets only as in [18], [51]–[53], [55], but it
involves agents as well;

� the factor graph underlying the stochastic problem for-
mulation is carefully derived and all the SPA messages
are detailed;

� the proposed algorithm is validated in a real underwa-
ter scenario using data acquired by a network of au-
tonomous vehicles.

The proposed SPA-based cooperative self-localization and
multitarget tracking algorithm inherits the low computational
complexity of the SPA-based multitarget tracking algorithm
developed in [49], that scales linearly in the number of sen-
sors and quadratically in the number of targets; the difference
with [49] is that the number of sensors is here the number of
transmitter-receiver pairs.
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The remainder of the paper is organized as follows. Sec-
tion II describes the scenario we are considering, the related
mathematical representation, and the connection with prac-
tical use cases. The joint cooperative self-localization and
multitarget tracking problem is formulated in Section III. Sec-
tion IV details the proposed SPA-based algorithm, which is
assessed using simulated and real data in Section V. Finally,
concluding remarks are drawn in Section VI.

C. NOTATION
Throughout this paper, column vectors are denoted by bold-
face lower-case letters (e.g., a) and matrices by boldface
upper-case letters (e.g., A). I and 0 denote the identity ma-
trix and the vector of all zeros, respectively, with the size
determined by the subscript or from the context. We write
diag(a1, . . . , aN ) for an N × N diagonal matrix with diagonal
entries a1, . . . , aN . The transpose of a matrix A is written
as AT. The Euclidean norm of vector a is denoted by ‖a‖.
For a two-dimensional (2D) vector a, ∠a is the angle defined
clockwise and such that ∠a=0 for a = [0 1]T. Sets are de-
noted by calligraphic letters (e.g., A ) and |A | indicates the
cardinality of the set. The symbol ∝ denotes equality up to a
constant factor. The Dirac delta function is denoted with δ(·);
the Kronecker delta is denoted with δa,b, and is equal to 1 if
a = b, and 0 otherwise.

II. PROBLEM DESCRIPTION AND SYSTEM MODEL
Hereafter, we provide a high-level description of the scenario
under consideration. Let us suppose to have a set of agents
and that each agent is equipped with an on-board device that
provides noisy (and possibly incomplete) observations of the
agent’s own state, referred to as navigation data, and with a
transmitter and/or a receiver. For convenience, we will refer
to an agent equipped with a transmitter as a Tx-agent, and
to an agent equipped with a receiver as an Rx-agent; if an
agent is equipped with both a transmitter and a receiver (i.e.,
a transceiver), we will use Tx-agent or Rx-agent depending
on its role in each specific context. The transmitter is used to
broadcast a signal as, for example, an acoustic signal used in
sonar, or an electromagnetic signal used in radar; we assume
that each agent is aware of the signal transmitted by any
other agent and that all these signals are orthogonal in some
domain (time, frequency, or code) so that interferences can be
neglected.

The signal broadcast by a Tx-agent and received by an
Rx-agent can be used by the latter to extract a noisy and
incomplete observation of the state of the Tx-agent; this type
of measurement is referred to as inter-agent measurement. It
is out of the scope of this paper to describe how this measure-
ment is obtained, however we here provide few examples: the
information about the Tx-agent state can be directly encoded
into the transmitted signal and retrieved by the Rx-agent; or
the Rx-agent can compute the time-of-arrival (ToA) or the
angle-of-arrival (AoA) of the received signal, thus obtaining
an observation of the Tx-agent state.

FIGURE 1. Exemplary illustration of the considered scenario. Agents are
depicted as squares, targets as circles. Agent A (purple square) is equipped
with a transceiver; agents B and C (white squares) are equipped with
receivers only. Dashed lines represent inter-agent measurements; solid
lines represent MOT measurements, either monostatic or bistatic; solid
zig-zag lines represent clutter-generated MOT measurements.

The signal broadcast by a Tx-agent may also reach an Rx-
agent after being reflected by a target or another agent present
in the scene; in this case, the received signal can be used by
the Rx-agent to extract a noisy and incomplete observation of
the object (i.e., either target or agent) that caused the reflec-
tion. This type of measurement is referred to as multi-object
tracking (MOT) measurement; as before, this can be obtained
by computing, for example, the ToA or the AoA of the re-
ceived signal. If Tx-agent and Rx-agent coincide, then this
MOT measurement is acquired in a monostatic configuration;
otherwise, if Tx-agent and Rx-agent are different, the MOT
measurement is acquired in a bistatic configuration. Note that
an MOT measurement can be clutter-generated if not caused
by the reflection from an object; finally, we here assume that
an Rx-agent is able to distinguish between inter-agent and
MOT measurements, however it is not able to distinguish if
an MOT measurement is originated by a target, an agent, or
clutter.

Fig. 1 illustrates an exemplary scenario with three agents
A, B, and C, depicted as squares, and two targets X and Y,
depicted as circles. Agent A is equipped with a transceiver,
and agents B and C are equipped with a receiver only. Tx-
agent A informs Rx-agent B of its own location by an inter-
agent measurement, represented by means of a dashed line;
as mentioned before, the information on A’s position might
be encoded within the signal, or extracted from the signal by
B. Moreover, the signal transmitted by Tx-agent A bounces off
target Y and agent C, and is received by Rx-agent B. Therefore,
B has available an inter-agent and two bistatic MOT mea-
surements — each sketched as a solid line labeled as “bi”
— due to the signal transmitted by Tx-agent A. However,
agent B is unable to a priori associate the two MOT mea-
surements to Y and C, respectively; this measurement origin
uncertainty needs to be handled. Finally, we observe that the
signal reflected by target Y also generates a bistatic MOT
measurement at Rx-agent C, and that the signal that bounces
off target X is reflected back to Rx-agent A, thus generating a
monostatic MOT measurement, pictured as a solid line labeled
as “mono”. Note that Fig. 1 depicts one possible instance of
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inter-agent and MOT measurements produced in this configu-
ration of agents and targets, and that many others are possible.

A first objective of this paper is to show that the challenging
bistatic geometry can be fruitfully exploited to enhance the
localization of agents along with the detection and tracking
of targets. This requires a mathematical representation of the
agents, the targets, and the available observations, as detailed
in the following subsections.

A. AGENT STATE VECTOR, AGENT PAIRS, AND POTENTIAL
TARGETS
Let A � {1, . . . ,A} be the set of agents, whose cardinality A is
known and time-invariant.2 The state (e.g., position, velocity,
heading) of agent a∈A at time step t = 1, 2, . . . is represented
by the vector sa,t whose evolution in time is given by the
following kinematic model

sa,t = εa
(
sa,t−1,ua,t

)
, (1)

where ua,t is a process noise independent across a and t that
accounts for the motion uncertainty of the agent [54, Sec. 1.5].
The function εa(·) and the statistics of ua,t define the agent
state transition pdf τa(sa,t |sa,t−1). We denote the joint agent
state vector at time t as st � [sT

1,t , . . . , sT
A,t ]

T, and the joint

agent state vector at all times as s1:t � [sT
1 , . . . , sT

t ]T.
We indicate with T ⊆ A the set of Tx-agents, and with R ⊆

A the set of Rx-agents. Note that T ∪R=A, and that T ∩R
represents the set of agents equipped with both a transmitter
and a receiver. When |T | = 1 and |R| ≥ 1 the network config-
uration is referred to as bistatic, otherwise when |T | > 1 and
|R| ≥ 1 the network is referred to as multistatic. We formally
consider the Cartesian product set R× T of all the possible
pairs ( j1, j2) such that j1∈R and j2∈T.
We observe that agents j1 and j2 might also coincide. To
establish an (arbitrary) order among the agent pairs, we in-
troduce the index set J � {1, . . . , J}, with J = |R||T |, and
define an indexing function φ : J→ R× T, such that φ( j)
represents the j-th agent pair ( j1, j2). This order, though arbi-
trary, is used to sequentially process the MOT measurements
collected by the agent pairs as described later.

Furthermore, as done in [49], we account for a time-varying
unknown number of targets by introducing the concept of
potential target (PT). The set of PTs at time t is Kt � {1,
. . . ,Kt }; the existence of PT k ∈ Kt at time t is indicated by
the binary variable rk,t ∈ {0, 1}, i.e., rk,t =1 if the PT exists
and rk,t =0 otherwise, and the state (e.g., position and veloc-
ity) of PT k ∈ Kt is denoted as xk,t , and is formally considered
also if rk,t =0. We combine the state and existence variables
of PT k into the augmented state vector yk,t � [xT

k,t , rk,t ]T,

and define the joint vector of all the PTs at time t as yt �
[yT

1,t , . . . , yT
Kt ,t

]T. We observe that the states xk,t of nonex-
isting PTs (i.e., for which rk,t = 0) are obviously irrelevant;

2Note that the number A of agents may also be modeled as being time-
variant — yet, known —, however this would not change the overall theoret-
ical framework.

thus, all the pdfs defined for the PT augmented states, i.e.,
f (yk,t ) = f (xk,t , rk,t ), are such that

f (xk,t , rk,t = 0) = fk,t fD(xk,t ),

where fk,t ∈ [0, 1] is a constant, and fD(xk,t ) is an arbitrary
“dummy pdf”.

B. OBSERVATIONS
As stated above, at any time t an agent a ∈ A might collect
navigation data from an on-board device, and produce two
kinds of measurements: inter-agent and MOT measurements.

1) NAVIGATION DATA
The navigation data ga,t collected by agent a∈A at time t is an
observation made by a of its own state, e.g., acquired with an
on-board system, such as GNSS or inertial navigation system
(INS). It is modeled as

ga,t = θa
(
sa,t ,na,t

)
, (2)

where na,t is a noise term, independent across a and t , mod-
eling the finite accuracy of the on-board system. Note that
also the measurement model θa(·) depends on the agent a,
since agents may be equipped with different types of on-board
systems (e.g., GNSS or INS). The function θa(·) and the
statistics of na,t define the likelihood function ga(ga,t |sa,t ). We
indicate with Ag

t ⊆ A the set of agents that have navigation
data available at time t , and we define the stacked vector of all
navigation data from all agents at time t as gt , and the stacked
vector of all navigation data from all agents at all times as
g1:t � [gT

1 , . . . , gT
t ]T.

2) INTER-AGENT MEASUREMENTS
The inter-agent measurement produced at time t by Rx-agent
a∈R using the signal transmitted by Tx-agent a′ ∈T \ {a} is
modeled as

ρ
(a,a′ )
t = ϑ

(
sa,t , sa′,t ,w

(a,a′ )
t

)
, (3)

where w
(a,a′ )
t is an inter-agent measurement noise term inde-

pendent across a, a′, and t . The function ϑ(·) and the statistics
of w

(a,a′ )
t define the likelihood function d(ρ(a,a′ )

t |sa,t , sa′,t ).
We indicate with R(a)

t ⊆R \ {a} the set of Rx-agents that
produce an inter-agent measurement using the signal trans-
mitted by Tx-agent a at time t , and with T (a)

t ⊆T \ {a} the
set of Tx-agents that provide an inter-agent measurement to
Rx-agent a at time t . Moreover, we define the stacked vector
of all inter-agent measurements acquired by Rx-agent a at
time t as ρ

(a)
t , the stacked vector of all inter-agent measure-

ments acquired by all Rx-agents at time t as ρt , and the vector
of all inter-agent measurements acquired by all Rx-agents at
all times as ρ1:t � [ρT

1 , . . . , ρ
T
t ]T. We remark that, since the

Rx-agent a is aware of the signal transmitted by the Tx-agent
a′, there is no uncertainty on the origin of the inter-agent
measurement ρ

(a,a′ )
t , thus no data association is required.
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3) MOT MEASUREMENTS
Let us consider the j-th agent pair ( j1, j2), with j ∈ J,
j1 ∈ R, and j2 ∈ T, such that3 φ( j) = ( j1, j2), and assume
that Rx-agent j1 produces M ( j)

t MOT measurements from the
signal broadcast by the Tx-agent j2; we indicate with z( j)

m,t ,

m ∈M( j)
t � {1, . . . ,M ( j)

t }, the m-th MOT measurement pro-
duced by the j-th agent pair at time t . We recall that an MOT
measurement can be generated by the signal transmitted by
Tx-agent j2 reflecting off either an existing PT (i.e., for which
rk,t = 1) or another agent (i.e., other than j1 and j2), or it can
be generated by clutter; and that it can be either bistatic, if
j1 �= j2, or monostatic, if j1 = j2. An MOT measurement z( j)

m,t
generated by PT k is modeled as

z( j)
m,t = γmono

(
xk,t , s j1,t , v

( j)
m,t

)
(4)

if acquired in a monostatic configuration; and modeled as

z( j)
m,t = γbi

(
xk,t , s j1,t , s j2,t , v

( j)
m,t

)
(5)

if acquired in a bistatic configuration, where v
( j)
m,t is a noise

term independent across j, m and t . The functions γmono(·)
and γbi(·), and the statistics of v

( j)
m,t define the likelihood

functions fmono(z( j)
m,t

∣∣xk,t , s j1,t ) and fbi(z( j)
m,t

∣∣xk,t , s j1,t , s j2,t ),

respectively. In case the MOT measurement z( j)
m,t is generated

by an agent j′ �= j1, j2, the models in (4)–(5) still apply as
long as xk,t is replaced by s j′,t .

For convenience, we stack all MOT measurements pro-
duced at agent pair j at time t into the vector z( j)

t � [z( j)T
1,t , . . . ,

z( j)T

M ( j)
t ,t

]T, all MOT measurements produced at all agent pairs at

time t into the vector zt � [z(1)T
t , . . . , z(J )T

t ]T, and all MOT
measurements produced at all agent pairs at all times into the
vector z1:t � [zT

1 , . . . , zT
t ]T. Furthermore, we define the vec-

tor of numbers of MOT measurements produced at all agent
pairs at time t as mt = [M (1)

t , . . . ,M (J )
t ]T, and the vector of

numbers of MOT measurements produced at all agent pairs at
all times as m1:t � [mT

1 , . . . ,mT
t ]T. Finally, we recall that the

MOT measurements, unlike inter-agent measurements, have
unknown origins, i.e., it is unknown if a given MOT measure-
ment is generated by an object — either target or agent — and
by which object.

C. LEGACY PTS AND NEW PTS
Following [49, Sec. VIII-B], each PT at time t and agent pair
j is either a “legacy” PT or a “new” PT. A legacy PT is a PT
that has already been introduced in the past, either at current
time t at any previous agent pair j′ < j, or at any previous
time t ′ < t . We denote with L( j)

t � {1, . . . ,L( j)
t } the set of

L( j)
t legacy PTs at time t at agent pair j, and indicate with

y( j)
�,t � [x( j)T

�,t , r( j)
�,t ]T the augmented state of legacy PT �∈L( j)

t ,

3Note that, in the remainder of the paper, we will be referring to a specific
agent pair with “ j” and “( j1, j2)” interchangeably, without using the indexing
function φ(·).

and with y( j)
t

� [y( j)T
1,t

, . . . , y( j)T

L( j)
t ,t

]T the joint legacy PT aug-

mented state vector.
New PTs model those targets that are detected for the first

time by agent pair j at time t . Each new PT corresponds to an
MOT measurement z( j)

m,t ; therefore, the number of new PTs at

time t at agent pair j is M ( j)
t . The augmented state of a new PT

is denoted by y( j)
m,t � [x( j)T

m,t , r( j)
m,t ]

T, m∈M( j)
t , and r( j)

m,t=1 thus
means that MOT measurement m was generated by a target
that was never detected before, namely, a newly detected
target. We define the joint augmented state vector of all new
PTs at time t at agent pair j as y( j)

t � [y( j)T
1,t , . . . , y( j)T

M ( j)
t ,t

]T, and

the joint augmented state vector of all new PTs introduced at
time t as yt � [y(1)T

t , . . . , y(J )T
t ]T.

Legacy PTs and new PTs at time t at agent pair j, become
legacy PTs at the next agent pair j + 1, if j < J , or at the first
agent pair at the next time step t + 1, if j = J; in the latter
case, this operation also implies performing the prediction
from t − 1 to t of the PT states. It then follows that the
number of legacy PTs grows as L( j)

t = L( j−1)
t +M ( j−1)

t ,
where L(1)

t = Kt−1, i.e., the number of legacy PTs at time
t at the first agent pair j = 1 is equal to the number of
PTs at time t − 1. Analogously, we can reinterpret the
vector y( j)

t
of all the legacy PT augmented states at time

t at agent pair j, as the vector stacking all the legacy PT
augmented states at time t at the previous agent pair j − 1,
and the new PT augmented states introduced at time t at the
previous agent pair j − 1, that is, y( j)

t
= [y( j−1)T

t
, y( j−1)T

t ]T.
This correspondence between legacy and new PTs at agent
pair j − 1, and legacy PTs at agent pair j, will hereafter
be referred to as “PT mapping”. Given the sequential
construction of the joint legacy PT augmented state vector
y( j)

t
shown above, the vector yt of all the PT augmented states

at time t introduced in Section II-A can now be formally
defined as yt � [y(1)T

t
, y(1)T

t , y(2)T
t , . . . , y(J )T

t ]T = [y(2)T
t

,

y(2)T
t , . . . , y(J )T

t ]T = · · · = [y(J )T
t

, y(J )T
t ]T. The number of PTs

at time t , after all the MOT measurements are incorporated,
is therefore Kt = L(1)

t +
∑J

j=1 M ( j)
t = L(J )

t +M (J )
t . Note that

the set of PTs at time t = 0 is assumed to be empty, i.e.,
K0 = 0, and so is the set of legacy PTs at time t = 1 at the
first agent pair j = 1, i.e., L(1)

1 = K0 = 0.
We now provide a brief example that, with the support

of Fig. 2, shows how new PTs are introduced and how the
PT mapping works. Let us consider one Tx-agent a′, i.e.,
T = {a′}, and two Rx-agents, i.e., R = {1, 2}; thus
we have J = {1, 2}, and we assume that the first
agent pair j = 1 is (1, a′), and the second agent pair
j = 2 is (2, a′). Note that this choice is arbitrary.
Furthermore, we assume that at time t − 1 the num-
ber of PTs is Kt−1 = 3, i.e., yt−1 = [yT

1,t−1, yT
2,t−1,

yT
3,t−1]T, represented as green circles in the first row of

Fig. 2, and that at time t the number of MOT measurements
at the agent pair j = 1 is M (1)

t = 4, and the number of MOT
measurements at agent pair j = 2 is M (2)

t = 2. The PTs at
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FIGURE 2. Illustration that describes the introduction of new PTs and the
PT mapping between times t − 1 and t , and between agent pairs j − 1 and
j. Green circles represent PTs at previous time t − 1; red circles represent
legacy PTs at time t at agent pair j; blue circles represent new PTs
introduced at time t at agent pair j.

previous time t − 1 become — once PTs’ states prediction is
performed — legacy PTs at time t at agent pair j = 1, and
are represented as red circles in the second row of Fig. 2;
therefore, L(1)

t = Kt−1 = 3 and we formally have that the
first PT at time t − 1 becomes the first legacy PT at time t
at agent pair j = 1, i.e., y(1)

1,t
← y1,t−1, and so forth for the

other PTs, i.e., y(1)
2,t
← y2,t−1 and y(1)

3,t
← y3,t−1. Moreover,

since the number of MOT measurements at agent pair j = 1
is M (1)

t = 4, four new PTs are introduced at this stage, i.e.,
y(1)

1,t , y(1)
2,t , y(1)

3,t , and y(1)
4,t , represented as blue circles in the

second row of Fig. 2. Then, legacy PTs and new PTs at
agent pair j = 1 become legacy PTs at agent pair j = 2,
represented as red circles in the third row of Fig. 2. Therefore,
L(2)

t = L(1)
t +M (1)

t = 3+ 4 = 7, and we formally have that
the first legacy PT at agent pair j = 1 becomes the first
legacy PT at agent pair j = 2, i.e., y(2)

1,t
← y(1)

1,t
, and so forth

for the other legacy PTs at agent pair j = 1, and that the
first new PT at agent pair j = 1 becomes the fourth legacy
PT at agent pair j = 2, i.e., y(2)

4,t
← y(1)

1,t , and so forth for
the other new PTs at agent pair j = 1. The vector of all the
legacy PT augmented states at time t and agent pair j = 2
is thus y(2)

t
= [y(1)T

1,t
, . . . , y(1)T

3,t
, y(1)T

1,t , . . . , y(1)T
4,t ]T. This is an

example of PT mapping from agent pair j − 1 to agent pair
j. Moreover, since the number of MOT measurements at
agent pair j = 2 is M (2)

t = 2, two new PTs are introduced
at this stage, i.e., y(2)

1,t and y(2)
2,t , represented as blue circles

in the third row of Fig. 2. The number of PTs at time t is
thus Kt = L(2)

t +M (2)
t = 7+ 2 = 9; these nine PTs will then

become legacy PTs at time t + 1 at agent pair j = 1.
Note that using this mechanism the number of PTs grows

indefinitely over time. To keep a tractable number of PTs,
a sub-optimal pruning step is performed once all the MOT
measurements at time t are processed; details are provided in
Section IV-B6. Finally, for the reader’s convenience, the main
sets introduced in this section are summarized in Table 1.

D. PRACTICAL USE CASES
This section links the concepts of agents, targets, and
observations introduced so far to practical use cases. The

TABLE I Summary of the Sets Introduced in Section II

intention is to ground the reader in the contextualization and
identification of potential applications. In this regard, we
provide three examples in popular areas of interest.
� Maritime situational awareness: in an acoustic under-

water wireless sensor network, agents can be nearly sta-
tionary communication gateways (either anchored on the
seabed or floating), and underwater or surface mobile
vehicles (either manned or unmanned) with communi-
cation capabilities that form a multistatic active sonar
system: one of these vehicles is equipped with a sonar
source, while the others act as receivers and use arrays
of hydrophones [14]. Agent state sa,t includes position
and possibly other kinematic parameters, such as veloc-
ity and acceleration; in case of 2D position ša,t , veloc-
ity ˙̌sa,t , and acceleration ¨̌sa,t , the agent state becomes
sa,t = [šT

a,t ,
˙̌sT
a,t ,

¨̌sT
a,t ]

T ∈ R6. For surface agents, naviga-
tion data ga,t can be obtained through GNSS, in which
case the noise-free navigation data can be ga,t = ša,t ;
whereas for underwater agents, the noise-free naviga-
tion data can be provided in terms of acceleration by
the INS, in which case ga,t = ¨̌sa,t . Mobile vehicles pro-
duce inter-agent measurements through different local-
ization techniques [61], with which the range between
two agents can be determined; furthermore, using the
array of hydrophones the bearing can also be obtained. In
such a case, the noise-free inter-agent measurement pro-
duced by agent pair (a, a′) is ρ

(a,a′ )
t = [‖ša,t − ša′,t‖,∠

(ša′,t − ša,t )]T. Similarly, the MOT measurement pro-
duced by agent a acting as receiver due to the signal
transmitted by the sonar source a′ that reflects off a
target (e.g., submarine) whose 2D position is x̌k,t , gen-
erally consists of range and bearing information, that is,
z(a,a′ )

m,t = [‖ša,t − x̌k,t‖ + ‖ša′,t − x̌k,t‖,∠(x̌k,t − ša,t )]T.
� Cooperative intelligent transportation system: in this

scenario, agents are mobile land vehicles and road in-
frastructure nodes equipped with sensing and commu-
nication systems. Common devices used for sensing in-
clude radar, lidar, camera and ultrasound technologies,
while the communication among the agents is achieved
through ITS-G5/DSRC4 or C-V2X5 [62]. GNSS is the
most widely adopted technology to obtain navigation

4Dedicated Short-Range Communications
5Cellular-Vehicle-to-Everything
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data, often combined with INS for the identification of
abrupt kinematic events. Inter-agent measurements can
rely on V2X communications to collect range and bear-
ing (if antenna arrays are used) information, and multi-
path signals can be used to detect the presence of scat-
tering targets (e.g., pedestrians, cyclists, other vehicles)
in the environment.

� Drone swarm: agents are flying drones equipped with a
GNSS receiver, INS, ultra wideband (UWB) technology,
and a camera. Navigation data from GNSS and INS is
paired with UWB ranging for a cooperative localization
of the agents, while targets are detected by cameras with
overlapping fields of view. Targets can vary from one ap-
plication to another, as drone swarms are used in a vari-
ety of areas, e.g., smart cities, agriculture, environmental
monitoring or mapping, military operations, search and
rescue.

These use cases represent only a subset of applications in
which the proposed cooperative self-localization and multi-
target tracking algorithm can be employed.

III. STOCHASTIC PROBLEM FORMULATION
This section describes the detection and state estimation of a
PT at time t , the state estimation of an agent, the MOT mea-
surement model and data association problem (caused by the
MOT measurement-origin uncertainty), and summarizes the
assumptions used in the proposed formulation. Then, a factor-
ization of the joint posterior pdf of the PT augmented states,
agent states, and data association variables (introduced in the
next section) is provided; this factorization is eventually used
to compute the marginal posterior pdfs f (sa,t |g1:t , ρ1:t , z1:t )
and f (xk,t , rk,t |g1:t , ρ1:t , z1:t ).

A. AGENT SELF-LOCALIZATION AND TARGET TRACKING
The objective of this work is the cooperative self-localization
of agents, jointly with the detection and localization of PTs.
This task is performed with a Bayesian approach based on
navigation data g1:t , inter-agent measurements ρ1:t , and MOT
measurements z1:t , that boils down to the computation of
the marginal posterior pdfs f (sa,t |g1:t , ρ1:t , z1:t ), ∀a ∈ A, and
f (xk,t , rk,t |g1:t , ρ1:t , z1:t ), ∀k ∈ Kt .

The detection and state estimation of a PT at time t is per-
formed once all the MOT measurements are processed. The
detection of a PT k ∈ Kt amounts to calculating the marginal
posterior existence probability f (rk,t=1|g1:t , ρ1:t , z1:t )=∫

f (xk,t , rk,t = 1|g1:t , ρ1:t , z1:t )dxk,t , and comparing it with
a suitably chosen threshold Pex; that is, if f (rk,t=1|g1:t ,

ρ1:t , z1:t )>Pex, the existence of PT k is confirmed. Then, for
each detected PT k, an estimate of its state xk,t is provided by
the minimum mean square error (MMSE) estimator

x̂MMSE
k,t �

∫
xk,t f (xk,t |rk,t =1, g1:t , ρ1:t , z1:t )dxk,t ,

where f (xk,t |rk,t = 1, g1:t , ρ1:t , z1:t ) = f (xk,t , rk,t = 1|g1:t ,

ρ1:t , z1:t )/ f (rk,t = 1|g1:t , ρ1:t , z1:t ). Likewise, an estimate
of the agent state sa,t , a ∈ A, is provided by the MMSE

estimator

ŝMMSE
a,t �

∫
sa,t f (sa,t |g1:t , ρ1:t , z1:t )dsa,t .

B. MOT MEASUREMENT MODEL AND DATA ASSOCIATION
As mentioned above (cf. Section II-B3), the MOT measure-
ments z( j)

m,t , m∈M( j)
t , produced at time t at agent pair j, have

unknown origins. Specifically, we make the assumption —
known as point-target assumption — that each MOT measure-
ment z( j)

m,t , m ∈M( j)
t , at time t at agent pair j, originates either

from a legacy PT or agent, hereafter aggregated under the term
legacy object, or from a new PT (i.e., a PT never detected
before), or from clutter (i.e., a false alarm), and it cannot
originate from more than one source (legacy object, new PT,
or clutter) simultaneously. Conversely, each legacy object or
new PT can generate at most one MOT measurement at time
t at agent pair j [54]. To handle this uncertainty, firstly we in-
troduce the joint legacy object state vector o( j)

t � [o( j)T
1,t , . . . ,

o( j)T

O( j)
t ,t

]T, with O( j)
t � L( j)

t + A, as the vector stacking at

time t the legacy PT states at agent pair j, and the agent
states. That is, o( j)

i,t = x( j)
�,t if i = � and �∈L( j)

t , and o( j)
i,t = sa,t

if i = L( j)
t + a and a∈A. We observe that the vector o( j)

t
includes the state vectors of the Rx-agent and the Tx-agent
at i = L( j)

t + j1 and i = L( j)
t + j2, respectively, which

cannot generate any MOT measurement at agent pair j.
Therefore, we assume that a legacy object i ∈ O( j)

t � {1, . . . ,
O( j)

t } is “detected” by the agent pair j — i.e., it
generates a measurement z( j)

m,t at the agent pair j — with

probability P( j)
d (o( j)

i,t , s j1,t , s j2,t ), defined for i �= L( j)
t + j1 and

i �= L( j)
t + j2 as

P( j)
d

(
o( j)

i,t , s j1,t , s j2,t

)
�

⎧⎪⎨
⎪⎩

P( j)
d,mono

(
o( j)

i,t , s j1,t

)
j1 = j2,

P( j)
d,bi

(
o( j)

i,t , s j1,t , s j2,t

)
j1 �= j2,

(6)

and for i = L( j)
t + j1 or i = L( j)

t + j2 as

P( j)
d

(
o( j)

i,t , s j1,t , s j2,t

)
= 0, (7)

where P( j)
d,mono(·) is the monostatic detection probability of

agent j1 = j2, and P( j)
d,bi(·) is the bistatic detection probability

of the agent pair j, with j1 �= j2. Secondly, following [49], we
introduce: (i) the set N ( j)

t of MOT measurements generated
by new PTs at time t at agent pair j, that is, N ( j)

t � {m ∈
M( j)

t : r( j)
m,t = 1}; (ii) the legacy object-oriented association

vector α
( j)
t � [α( j)

1,t , . . . , α
( j)

O( j)
t ,t

]T; and (iii) the MOT

measurement-oriented association vector β
( j)
t � [β ( j)

1,t , . . . ,

β
( j)

M ( j)
t ,t

]T. Here, α( j)
i,t , i ∈ O( j)

t , is defined as m ∈M( j)
t if

legacy object i generates MOT measurement m, and 0 if
legacy object i does not generate any MOT measurement;
and β ( j)

m,t , m ∈M( j)
t , is defined as i if MOT measurement m
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originates from legacy object i, and 0 if MOT measurement
m does not originate from any legacy object. The point-target
assumption can therefore be expressed by the indicator
function �(α( j)

t ,β
( j)
t ), defined as

�
(
α

( j)
t ,β

( j)
t

)
� 	

(
α

( j)
t ,β

( j)
t

) ∏
m∈N ( j)

t



(
β

( j)
m,t

)
, (8)

where



(
β

( j)
m,t

)
�

⎧⎨
⎩

0 β
( j)
m,t ∈ O( j)

t ,

1 β
( j)
m,t = 0,

(9)

and

	
(
α

( j)
t ,β

( j)
t

)
�

∏
i∈O( j)

t

∏
m∈M( j)

t

ψ
(
α

( j)
i,t , β

( j)
m,t

)
, (10)

with

ψ (α( j)
i,t , β

( j)
m,t ) �

⎧⎪⎨
⎪⎩

0 α
( j)
i,t = m and β ( j)

m,t �= i ,

or α( j)
i,t �= m and β ( j)

m,t = i ,

1 otherwise .

(We observe that, since the product in (8) is over the set N ( j)
t ,

the indicator function �(α( j)
t ,β

( j)
t ) formally depends also on

the existence variables r( j)
m,t , m ∈M( j)

t ). Stated differently,

valid associations described by α
( j)
t and β

( j)
t are those for

which �(α( j)
t ,β

( j)
t ) = 1; and we note that 	(α( j)

t ,β
( j)
t ) is

0 if an MOT measurement is associated with two or more
legacy objects (and, vice versa, if a legacy object is associated
with two or more MOT measurements), and 1 otherwise;
and that the product over m ∈ N ( j)

t of 
(β ( j)
m,t ) is 0 if any

MOT measurement generated by a new PT is also associated
with a legacy object, and 1 otherwise. For convenience,
we also define the vectors αt � [α(1)T

t , . . . ,α
(J )T
t ]T and

βt � [β(1)T
t , . . . ,β

(J )T
t ]T, as well as α1:t � [αT

1 , . . . ,α
T
t ]T and

β1:t � [βT
1 , . . . ,β

T
t ]T.

Finally, if the MOT measurement m is generated by legacy
object i (i �= L( j)

t + j1 and i �= L( j)
t + j2), the statistical de-

pendence of z( j)
m,t on the legacy object state o( j)

i,t , the Rx-agent
state s j1,t , and the Tx-agent state s j2,t , is given by

f
(

o( j)
i,t , s j1,t , s j2,t ; z( j)

m,t

)

�

⎧⎨
⎩ fmono

(
z( j)

m,t

∣∣o( j)
i,t , s j1,t

)
j1 = j2,

fbi
(

z( j)
m,t

∣∣o( j)
i,t , s j1,t , s j2,t

)
j1 �= j2,

(11)

where the likelihoods fmono(z( j)
m,t

∣∣o( j)
i,t , s j1,t ) and fbi(z( j)

m,t

∣∣
o( j)

i,t , s j1,t , s j2,t ) were introduced in Section II-B3. If the MOT
measurement m is generated by a new PT, the statistical de-
pendence of z( j)

m,t on the new PT state x( j)
m,t , Rx-agent state s j1,t ,

and Tx-agent state s j2,t , is still described by the likelihoods in

(11) in which the legacy object state o( j)
i,t is replaced by the

new PT state x( j)
m,t .

C. ASSUMPTIONS
The assumptions underlying the proposed stochastic formu-
lation — besides the point-target assumption — are here
summarized: some are basic assumptions commonly used in
multisensor multitarget tracking [54], while others belong to
the specific formulation borrowed from [49], [53].

A1) The joint agent state vector st evolves over time
according to a first-order Markov model, and
each agent state vector sa,t , evolves indepen-
dently [54]; therefore, the joint agent state transition
pdf f (st |st−1) factorizes as

f (st |st−1) =
∏
a∈A

τa(sa,t |sa,t−1) , (12)

where τa(sa,t |sa,t−1) is a known state-transition pdf
(cf. Section II-A).

A2) The joint PT augmented state vector yt evolves over
time according to a first-order Markov model, and
each PT augmented state vector yk,t evolves indepen-
dently [54]. Recalling that for each PT augmented
state yk,t−1, k ∈ Kt−1, at time t − 1, there is one
legacy PT augmented state y(1)

�,t
, � ∈ L(1)

t , at the first

agent pair at time t (in other words, L(1)
t = Kt−1),

the joint PT augmented state transition pdf is given
by

f
(

y(1)
t

∣∣yt−1

)
=

∏
k∈Kt−1

f
(

x(1)
k,t , r(1)

k,t

∣∣xk,t−1, rk,t−1

)
. (13)

Let us recall from Section II-C that the set of PTs at
time t = 0 is empty, i.e., K0 = ∅, and so is the set of
legacy PTs at time t=1 at the first agent pair j = 1,
i.e., L(1)

1 =∅. Therefore, the state transition pdf in
(13) cannot be performed at time t = 1, and we
formally introduce f (y(1)

1
|y0)= 1 for future use. An

expression of f (x(1)
k,t , r(1)

k,t | xk,t−1, rk,t−1) is provided
in [49, Sec. VIII-C], and is here reported for com-
pleteness. If PT k does not exist at time t − 1, i.e., if
rk,t−1 = 0, it cannot exist as legacy PT at time t , i.e,
r(1)

k,t = 0, and thus its state pdf is fD(x(1)
k,t ). That is,

f
(

x(1)
k,t , r(1)

k,t

∣∣xk,t−1, rk,t−1 = 0
)

=
{

fD

(
x(1)

k,t

)
r(1)

k,t = 0 ,

0 r(1)
k,t = 1 .

Conversely, if PT k exists at time t − 1, i.e., if
rk,t−1 = 1, it survives as legacy PT with probability
ps(xk,t−1), and its state x(1)

k,t is distributed according

to the state transition pdf f (x(1)
k,t |xk,t−1). Thus,

f
(

x(1)
k,t , r(1)

k,t

∣∣xk,t−1, rk,t−1 = 1
)
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=
⎧⎨
⎩

(
1− ps(xk,t−1)

)
fD

(
x(1)

k,t

)
r(1)

k,t = 0 ,

ps(xk,t−1) f
(

x(1)
k,t

∣∣xk,t−1

)
r(1)

k,t = 1 .

The state transition pdf is defined by the PT
kinematic model, that is,

x(1)
k,t = ς

(
xk,t−1, ek,t

)
, (14)

and by the statistics of the process noise ek,t .
A3) The joint agent state vector st and the joint PT aug-

mented state vector yt evolve independently over
time [53], [54].

A4) The states of legacy PTs and new PTs at time t at
agent pair j are independent [49].

A5) The number of new PTs at time t at agent pair j
is a priori (i.e., before the MOT measurements are
observed) Poisson distributed with mean μ( j)

n . The
states of new PTs are independent and identically
distributed according to the prior pdf fn(x( j)

m,t ) [49].
A6) Given the agent states and PT augmented states at

time t − 1, the observations (navigation data, inter-
agent and MOT measurements), association vari-
ables, agent states, and PT augmented states at time t ,
are conditionally independent of all the past (t ′ < t)
variables [49], [53].

A7) Given the agent states and legacy PT augmented
states at time t , the new PT augmented states, obser-
vations, and association variables at time t , are con-
ditionally independent of all the past (t ′ < t) agent
states and PT augmented states [49], [53].

A8) Similarly, given the agent states at time t , and the
legacy PT augmented states at time t at agent pair
j, the new PT augmented states, observations, and
association variables at time t at current and future
agent pairs, are conditionally independent of all the
past ( j′ < j) variables [49], [53].

A9) The navigation data and the inter-agent measure-
ments are conditionally independent of each other,
and of all the other variables, given the joint agent
state vector st [54]. Then, recalling their measure-
ment models (cf. (2) and (3)), and in particular that
the noise terms are independent across agent states
and agent pairs, respectively, it follows that the joint
navigation data likelihood f (gt |st ) factorizes as

f (gt |st ) =
∏

a∈Ag
t

ga(ga,t |sa,t ), (15)

and that the joint likelihood f (ρt |st ) factorizes as

f (ρt |st ) =
∏
a∈R

∏
a′∈T (a)

t

d
(
ρ

(a,a′ )
t |sa,t , sa′,t

)
. (16)

A10) The number of false alarm MOT measurements at
time t at agent pair j is Poisson distributed with mean

μ
( j)
c . False alarm MOT measurements are indepen-

dent and identically distributed according to the pdf
f ( j)
c (z( j)

m,t ) [49], [54].
A11) The agent-originated and PT-originated MOT mea-

surements at time t at agent pair j, are condition-
ally independent of each other, and conditionally
independent of the false alarm MOT measurements,
given the agent states s j1,t and s j2,t , PT augmented
states, and association variables [49], [53].

D. JOINT POSTERIOR PDF
The posterior pdfs f (yk,t |g1:t , ρ1:t , z1:t ), k ∈ Kt , and
f (sa,t | g1:t , ρ1:t , z1:t ), a ∈ A, introduced in Section III-
A, are marginal densities of the joint posterior pdf
f (y1:t , s0:t ,α1:t ,β1:t |g1:t , ρ1:t , z1:t ). By using assumptions
(A3), (A6), (A7), (A8), and (A9), this joint posterior pdf can
be factorized as (details are provided in the Appendix)

f
(
y1:t , s0:t ,α1:t ,β1:t

∣∣g1:t , ρ1:t , z1:t
) ∝ f (s0)

×
t∏

t ′=1

f
(
st ′

∣∣st ′−1
)

f
(

y(1)
t ′

∣∣yt ′−1

)
f
(
gt ′

∣∣st ′
)

f
(
ρt ′

∣∣st ′
)

×
J∏

j=1

f
(

y( j)
t ′ ,α

( j)
t ′ ,β

( j)
t ′ , z( j)

t ′ ,M ( j)
t ′

∣∣y( j)
t ′ , st ′

)
, (17)

for some prior pdf f (s0), where we recall that f (y(1)
1
|y0) = 1

(see assumption (A2)). Then, observing that the description
of the data association given by α

( j)
t and β

( j)
t is redundant

once M ( j)
t is observed — indeed, α

( j)
t can be derived from

β
( j)
t , and vice versa, when M ( j)

t is known [49] —, each factor
f (y( j)

t ,α
( j)
t ,β

( j)
t , z( j)

t ,M ( j)
t |y( j)

t
, st ) can be further expressed

as

f
(

y( j)
t , α

( j)
t ,β

( j)
t , z( j)

t ,M ( j)
t

∣∣y( j)
t
, st

)
= f

(
z( j)

t

∣∣y( j)
t ,α

( j)
t ,β

( j)
t ,M ( j)

t , y( j)
t
, st

)
× f

(
y( j)

t ,α
( j)
t ,β

( j)
t ,M ( j)

t

∣∣y( j)
t
, st

)
= f

(
z( j)

t

∣∣y( j)
t ,α

( j)
t ,M ( j)

t , y( j)
t
, st

)
× f

(
y( j)

t ,α
( j)
t ,β

( j)
t ,M ( j)

t

∣∣y( j)
t
, st

)
. (18)

Hereafter, following the derivations in [49], we pro-
vide expressions for the prior data association pdf
f (y( j)

t ,α
( j)
t ,β

( j)
t ,M ( j)

t |y( j)
t
, st ), and the joint MOT

measurements likelihood f (z( j)
t |y( j)

t ,α
( j)
t ,M ( j)

t , y( j)
t
, st ).

1) PRIOR DATA ASSOCIATION PDF
By using assumptions (A4), (A5), (A10), and the point-target
assumption, the pdf f (y( j)

t ,α
( j)
t ,β

( j)
t ,M ( j)

t |y( j)
t
, st ) can be ex-

pressed as

f
(

y( j)
t ,α

( j)
t ,β

( j)
t ,M ( j)

t

∣∣y( j)
t
, st

)
= C

(
M ( j)

t

)
	

(
α

( j)
t ,β

( j)
t

)
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×
∏
�∈L( j)

t

q1

(
y( j)
�,t
, α

( j)
�,t , s j1,t , s j2,t ;M ( j)

t

)

×
∏
a∈A

h1

(
sa,t , α

( j)
L+a,t , s j1,t , s j2,t ;M ( j)

t

)

×
∏

m∈M( j)
t

υ1

(
y( j)

m,t , β
( j)
m,t

)
. (19)

Here, C(M ( j)
t ) is a normalization factor that depends only on

the number of MOT measurements M ( j)
t (see [49], [63] for de-

tails), 	(α( j)
t ,β

( j)
t ) is defined in (10), and the functions q1(·),

h1(·), and υ1(·) represent the contributions to the prior data
association pdf of the legacy PTs, the agents, and the new PTs,
respectively. The derivation of the pdf in (19) closely follows
the derivation of the pdf in [49, Eq. (60)] and is thus omitted.
The main difference is given by the product over the agents
a ∈ A of the function h1(·), that is a direct consequence of the
involvement of the agents in the data association procedure.
Next we provide detailed definitions of the functions q1(·),
h1(·), and υ1(·). The function q1(y( j)

�,t , α
( j)
�,t , s j1,t , s j2,t ;M ( j)

t ) =
q1(x( j)

�,t , r( j)
�,t , α

( j)
�,t , s j1,t , s j2,t ;M ( j)

t ) is defined for r( j)
�,t = 1 as

q1

(
x( j)
�,t , r( j)

�,t = 1, α( j)
�,t , s j1,t , s j2,t ;M ( j)

t

)

�

⎧⎪⎪⎨
⎪⎪⎩

P( j)
d (x( j)

�,t , s j1,t , s j2,t )

μ
( j)
c

α
( j)
�,t ∈M( j)

t ,

1− P( j)
d (x( j)

�,t , s j1,t , s j2,t ) α
( j)
�,t = 0,

(20)

and for r( j)
�,t = 0 as

q1

(
x( j)
�,t , r( j)

�,t = 0, α( j)
�,t , s j1,t , s j2,t ;M ( j)

t

)
� δ

α
( j)
�,t ,0

. (21)

The function h1(sa,t , α
( j)
L+a,t , s j1,t , s j2,t ;M ( j)

t ) is similarly de-
fined as

h1

(
sa,t , α

( j)
L+a,t , s j1,t , s j2,t ;M ( j)

t

)

�

⎧⎪⎪⎨
⎪⎪⎩

P( j)
d (sa,t , s j1,t , s j2,t )

μ
( j)
c

α
( j)
L+a,t ∈M( j)

t ,

1− P( j)
d (sa,t , s j1,t , s j2,t ) α

( j)
L+a,t = 0,

(22)

where, with an abuse of notation, the number of legacy PTs at
time t at agent pair j, i.e., L( j)

t , is simply referred to as L. We
observe that if agent a ∈ A is either the Rx-agent j1, or the Tx-
agent j2, that is, a = j1 or a = j2, according to (7) it follows
that h1(sa,t , α

( j)
L+a,t , s j1,t , s j2,t ;M ( j)

t ) = δ
α

( j)
L+a,t ,0

, which intu-

itively means that no MOT measurements can be associated
to the Rx-agent and the Tx-agent. Finally, υ1(y( j)

m,t , β
( j)
m,t ) =

υ1(x( j)
m,t , r( j)

m,t , β
( j)
m,t ) is defined for r( j)

m,t = 1 as

υ1

(
x( j)

m,t , r( j)
m,t = 1, β ( j)

m,t

)
� 


(
β

( j)
m,t

) μ( j)
n

μ
( j)
c

fn(x( j)
m,t )

=

⎧⎪⎪⎨
⎪⎪⎩

0 β
( j)
m,t ∈ O( j)

t ,

μ
( j)
n

μ
( j)
c

fn(x( j)
m,t ) β

( j)
m,t = 0,

and for r( j)
m,t = 0 as

υ
( j)
1

(
x( j)

m,t , r( j)
m,t = 0, β ( j)

m,t

)
� fD(x( j)

m,t ).

Note that the function υ1(·) incorporates the indicator function

(·) defined in (9); and that the combined use in (19) of the
functions	(·) and υ1(·) describes the point-target assumption
as done by the indicator function �(·) defined in (8).

2) JOINT MOT MEASUREMENTS LIKELIHOOD
By using assumptions (A10), (A11), and the point-
target assumption, the joint MOT measurements likelihood
f (z( j)

t |y( j)
t ,α

( j)
t ,M ( j)

t , y( j)
t
, st ) can be expressed as

f
(

z( j)
t

∣∣y( j)
t ,α

( j)
t ,M ( j)

t , y( j)
t
, st

)
= C

(
z( j)

t

)
×

∏
�∈L( j)

t

q2

(
y( j)
�,t
, α

( j)
�,t , s j1,t , s j2,t ; z( j)

t

)

×
∏
a∈A

h2

(
sa,t , α

( j)
L+a,t , s j1,t , s j2,t ; z( j)

t

)

×
∏

m∈M( j)
t

υ2

(
y( j)

m,t , s j1,t , s j2,t ; z( j)
m,t

)
. (23)

Here, C(z( j)
t ) is a normalization factor that depends only on

the MOT measurements vector z( j)
t (see [49], [63] for de-

tails), and the functions q2(·), h2(·), and υ2(·) embed the
MOT measurement likelihoods related to the legacy PTs,
the agents, and the new PTs, respectively. The derivation of
the likelihood in (23) closely follows the derivation of the
likelihood in [49, Eq. (64)] and is thus omitted. The main
difference is given by the product over the agents a ∈ A
of the function h2(·), that represents the likelihoods of the
MOT measurements when these are generated by the agents.
Next we provide detailed definitions of the functions q2(·),
h2(·), and υ2(·). The function q2(y( j)

�,t , α
( j)
�,t , s j1,t , s j2,t ; z( j)

t ) =
q2(x( j)

�,t , r( j)
�,t , α

( j)
�,t , s j1,t , s j2,t ; z( j)

t ) is defined for r( j)
�,t = 1 as

q2

(
x( j)
�,t , r( j)

�,t = 1, α( j)
�,t , s j1,t , s j2,t ; z( j)

t

)

�

⎧⎪⎪⎨
⎪⎪⎩
f(x( j)

�,t , s j1,t , s j2,t ; z( j)
m,t )

f ( j)
c

(
z( j)

m,t

) α
( j)
�,t ∈M( j)

t ,

1 α
( j)
�,t = 0,

(24)
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and for r( j)
�,t = 0 as

q2

(
x( j)
�,t , r( j)

�,t = 0, α( j)
�,t , s j1,t , s j2,t ; z( j)

t

)
� 1 . (25)

The function h2(sa,t , α
( j)
L+a,t , s j1,t , s j2,t ; z( j)

t ) is similarly de-
fined for a �= j1 and a �= j2 as

h2

(
sa,t , α

( j)
L+a,t , s j1,t , s j2,t ; z( j)

t

)

�

⎧⎪⎪⎨
⎪⎪⎩
f(sa,t , s j1,t , s j2,t ; z( j)

m,t )

f ( j)
c

(
z( j)

m,t

) α
( j)
L+a,t ∈M( j)

t ,

1 α
( j)
L+a,t = 0,

(26)

and for a = j1 or a = j2 as

h2

(
sa,t , α

( j)
L+a,t , s j1,t , s j2,t ; z( j)

t

)
� 1. (27)

Finally, υ2(y( j)
m,t , s j1,t , s j2,t ; z( j)

m,t )=υ2(x( j)
m,t , r( j)

m,t , s j1,t , s j2,t ; z( j)
m,t )

is defined as

υ2

(
x( j)

m,t , r( j)
m,t , s j1,t , s j2,t ; z( j)

m,t

)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f
(

x( j)
m,t , s j1,t , s j2,t ; z( j)

m,t

)
f ( j)
c

(
z( j)

m,t

) r( j)
m,t = 1 ,

1 r( j)
m,t = 0 .

(28)

The final factorization of the joint posterior pdf f (y1:t , s0:t ,

α1:t ,β1:t |g1:t , ρ1:t , z1:t ) is obtained by inserting (19) and (23)
into (18), and (12)–(13), (15)–(16), (18), into (17). Its expres-
sion is reported in (29), shown at the bottom of this page,
where the equality L(1)

t = Kt−1 has been used (see assump-
tion (A2)), and where q(·) � q1(·)q2(·), h(·) � h1(·)h2(·), and
υ(·) � υ1(·)υ2(·). For the reader’s convenience, we summa-
rize in Table 2 all the variables involved in this factorization.

TABLE II Summary of the Variables Used in (29)

IV. THE PROPOSED ALGORITHM
Direct marginalization of the joint posterior pdf f (y1:t , s0:t ,

α1:t ,β1:t |g1:t , ρ1:t , z1:t ) for the computation of the marginal
posterior pdfs f (yk,t |g1:t , ρ1:t , z1:t ) and f (sa,t |g1:t , ρ1:t , z1:t )
is generally infeasible, as it requires high-dimensional inte-
gration and summation. Approximations of these marginal
posterior pdfs, called beliefs, can be efficiently obtained by
applying the SPA on a factor graph [26], [27] carefully devised
from the factorization in (29).

A. SUM-PRODUCT ALGORITHM: OVERVIEW AND
NOTATION
Here, we briefly review factor graphs and the SPA. Let us
consider the generic problem of estimating D parameter vec-
tors λd , d ∈ {1, . . . ,D}, from a vector of observations π. In
the Bayesian setting, these vectors are random, and the es-
timation of λd is based on the posterior pdf f (λd |π). This
pdf is a marginal pdf of the joint posterior pdf f (λ|π), where
λ � [λT

1 , . . . ,λ
T
D]T. The joint posterior pdf is assumed to be

the product of certain lower-dimensional factors, i.e.,

f (λ|π) ∝
∏
�

κ�

(
λ(�);π

)
, (30)

f
(
y1:t , s0:t ,α1:t ,β1:t

∣∣g1:t , ρ1:t , z1:t
)

∝ f (s0)
t∏

t ′=1

( ∏
a∈A

τa
(
sa,t ′

∣∣sa,t ′−1
) )

︸ ︷︷ ︸
Agents’ States Prediction

( ∏
a∈Ag

t ′

ga
(
ga,t ′

∣∣sa,t ′
) )( ∏

a∈R

∏
a′∈T (a)

t ′

d
(
ρ

(a,a′ )
t ′

∣∣sa,t ′ , sa′,t ′
))

︸ ︷︷ ︸
Agents’ Cooperative Self-Localization

×
( ∏
�∈L(1)

t ′

f
(

y(1)
�,t ′

∣∣y�,t ′−1

))
︸ ︷︷ ︸

PTs’ Augmented States Prediction

J∏
j=1

( ∏
�∈L( j)

t ′

q
(

y( j)
�,t ′ , α

( j)
�,t ′ , s j1,t ′ , s j2,t ′ ; z( j)

t ′
) ∏

m∈M( j)
t ′

ψ
(
α

( j)
�,t ′ , β

( j)
m,t ′

) )
︸ ︷︷ ︸

MOT Measurements Evaluation and Data Association

×
( ∏

a∈A
h

(
sa,t ′ , α

( j)
L+a,t ′ , s j1,t ′ , s j2,t ′ ; z( j)

t ′
) ∏

m∈M( j)
t ′

ψ
(
α

( j)
L+a,t ′ , β

( j)
m,t ′

) ) ∏
m∈M( j)

t ′

υ
(

y( j)
m,t ′ , β

( j)
m,t ′ , s j1,t ′ , s j2,t ′ ; z( j)

m,t ′
)

︸ ︷︷ ︸
MOT Measurements Evaluation and Data Association (continued)

(29)
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where each argument λ(�) comprises certain parameter vectors
λd , and each λd can appear in several λ(�). The factorization
(30) can be represented by a factor graph, which is constructed
as follows: each parameter variable λd is represented by a
variable node; each factor κ�(·) is represented by a factor
node; and variable node “λd ” and factor node “κ�” are adja-
cent, i.e., connected by an edge, if λd is an argument of κ�(·).

The SPA algorithm aims at computing the marginal poste-
rior pdfs f (λd |π) in an efficient way, and is based on the factor
graph representing the factorization of f (λ|π) in (30). For
each node in the factor graph, certain messages are calculated,
each of which is then passed to one of the adjacent nodes.
Let V� denote the set of indices d of all those variable nodes
“λd ” that are adjacent to factor node “κ�”. Then, factor node
“κ�” passes the following message to variable node “λd ” with
d ∈V�:

ζκ�→λd (λd ) =
∫
κ�

(
λ(�);π

)∏
d ′∈V�
d ′ �=d

ηλd ′→κ� (λd ′ ) dλ−d . (31)

Here,
∫
. . . dλ−d denotes integration with respect to all λd ′ ,

d ′ ∈V�, except λd , and the messages ηλd→κ� (λd ) are calcu-
lated as described later. If the factorization (30) involves (also)
discrete variables, then the respective integrations in (31) have
to be replaced with summations. Furthermore, let Fd be the
set of the indices � of all those factors nodes “κ�” that are
adjacent to variable node “λd ”. Then, variable node “λd ”
passes the following message to factor node “κ�” with �∈Fd :

ηλd→κ� (λd ) =
∏
�′∈Fd
�′ �=�

ζκ�′→λd (λd ).

For a factor graph with loops, the calculation of the mes-
sages is usually repeated in an iterative manner. There is no
unique order — or schedule — of message calculation, and
different orders may lead to different results. Finally, for each
variable node “λd ,” a belief f̃ (λd ) is calculated by multiplying
all the incoming messages (passed from all the adjacent factor
nodes) and normalizing the resulting product function such
that

∫
f̃ (λd )dλd = 1. The belief f̃ (λd ) provides the desired

approximation of the marginal posterior pdf f (λd |π).

B. SPA-BASED JOINT LOCALIZATION AND TRACKING
The factor graph derived from the factorization (29) contains
loops; therefore, a message calculation schedule needs to be
selected. The proposed algorithm is based of the following
rules: (i) messages are not sent backward in time; (ii) MOT
measurements produced by the agent pairs are processed se-
quentially according to the arbitrary order established by the
indexing function φ(·), from agent pair j = 1 through agent
pair j = J; and (iii) iterative message passing is only per-
formed for agents’ cooperative self-localization, and MOT
measurements data association within each agent pair j. Note
that, similarly to the order of the SPA messages, different
orders of the agent pairs may lead to different outcomes of

the SPA-based algorithm. Within the proposed framework, the
order selection is further complicated by the bistatic geometry
of some agent pairs; indeed, a bistatic agent pair might have
a favorable geometry to observe a particular target, but not
necessarily all the targets. The selection of the optimal agent
pair order is still an open problem and needs to be tailored
according to the specific application and, in particular, to the
system’s architecture and specifications. These aspects are not
addressed in this paper. Finally, we observe that a parallel im-
plementation, suitable for a distributed approach, is however
possible as similarly done in [49, Sec. IX-B].

Fig. 3 shows a block diagram that provides an intuitive
representation of the proposed method. First, the predictions
of the joint agent state vector st−1 and the joint PT augmented
state vector yt−1 from t − 1 to t are performed; these oper-
ations are described by the red boxes “agents’ states predic-
tion” and “PTs’ augmented states prediction,” respectively.
The predicted agent states are then updated by using the navi-
gation data gt and the inter-agent measurements ρt through the
“agents’ cooperative self-localization”. Next, the MOT mea-
surements z( j)

t produced at agent pair j are processed through
the “MOT measurements evaluation and DA” box using the
updated agent states st and the legacy PT augmented states
y( j)

t
; this is performed sequentially, from agent pair j = 1 to

agent pair j = J . Once the MOT measurements at agent pair
j are processed, the beliefs of the PT states (both legacy and
new) and the agent states are updated before the MOT mea-
surements of the next agent pair j + 1 are processed. All these
operations, represented by the red boxes in Fig. 3, correspond
to macro-factors in the factorization of the joint posterior pdf
in (29). The green boxes refer to the PT mapping operation (cf.
Section II-C) that is carried out between any two consecutive
agent pairs, i.e., j − 1 and j, at current time t .

Combining the rules for the message schedule stated above,
and the generic SPA rules for calculating messages and beliefs
described in Section IV-A, we provide the expressions of the
SPA messages for each of these operations in what follows;
for clarity, the titles of the next four subsections recall the
operations described by the red boxes in Fig. 3. The SPA
messages are exchanged on the factor graphs in Fig. 4, Fig. 5,
and Fig. 6; the first one relates to the agents’ states prediction
and cooperative self-localization, the second one to the PTs’
augmented states prediction, and the last one to the MOT
measurements evaluation and data association. We observe
that the agent state variable nodes at time t in Fig. 4, i.e.,
variable nodes “sa,” coincide with the agent state variable
nodes in Fig. 6; analogously, the legacy PT augmented state
variable nodes at time t in Fig. 5, i.e., variable nodes “y

�
,”

coincide with the legacy PT augmented state variable nodes
in Fig. 6 when j = 1. The structure of the factor graph in
Fig. 4 changes according to the availability, at time t , of the
navigation data and the inter-agent measurements; a general
case is there illustrated, in which all the agents have navigation
data, and inter-agent measurements between any two agents
are available. Similarly, the structure of the factor graph in
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FIGURE 3. Block diagram providing the sequence of operations performed by the proposed method at time t . The red boxes represent the operations
performed by the SPA-based algorithm as stated by the factorization of the joint posterior pdf in (29); the green boxes represent the PT mapping
operations carried out between two consecutive agent pairs. The nodes represent random vectors: in particular, brown nodes are observations (i.e.,
navigation data, inter-agent and MOT measurements), and yellow nodes indicate random vectors whose beliefs are updated through observations,
following either the ”agents’ cooperative self-localization” or the ”MOT measurements evaluation and DA” operations. The arrows link the random
vectors to the operations that involve them.

FIGURE 4. Factor graph representing the agents’ states prediction and
agents’ cooperative self-localization portions of the factorization in (29)
for one time step t . Grey circles are variable nodes, and green squares are
factor nodes. The following short notations are used: s−a � sa,t−1; sa � sa,t ;

ga � ga (ga,t |sa,t ); τa � τa(sa,t |sa,t−1 ); and da,a′ � d(ρ(a,a′ )
t |sa,t , sa′ ,t ).

Fig. 6 changes, at each time t and agent pair j, according to the
number of legacy PTs and number of MOT measurements, as
well as to the kind of MOT measurements, that is, monostatic,

if j1 = j2, or bistatic, if j1 �= j2; the latter is there illustrated,
with two separate variable nodes for the Rx-agent, i.e., “s j1 ,”
and the Tx-agent, i.e., “s j2 ”.

1) AGENTS’ STATES PREDICTION
The prediction of the state of agent a ∈ A is performed by
computing the message ζτa→sa (sa,t ) from factor node “τa” to
variable node “sa” in Fig. 4. The expression of this message is
as follows

ζτa→sa (sa,t ) =
∫
τa(sa,t |sa,t−1) f̃J (sa,t−1) dsa,t−1,

where f̃J (sa,t−1) is the belief of the agent state at previous
time t − 1, computed at the last agent pair J; its expression is
provided later in Section IV-B5.

2) AGENTS’ COOPERATIVE SELF-LOCALIZATION
The variable nodes “sa,” and factor nodes “da,a′” and “da′,a”
in Fig. 4 define a loopy graph. Therefore, the messages re-
lated to the agents’ cooperative self-localization are iteratively
computed as follows. At each iteration n = 1, . . . ,NSL of
the agents’ cooperative self-localization loop, the messages
η

(n)
sa→da,a′

(sa,t ) and η(n)
sa→da′,a

(sa,t ) are calculated as

η
(n)
sa→da,a′

(
sa,t

) = ζτa→sa

(
sa,t

)
ζga→sa

(
sa,t

)
×

( ∏
a′′∈T (a)

t
a′′ �=a′

ζ
(n−1)
da,a′′→sa

(
sa,t

) )

×
( ∏

a′′∈R(a)
t

ζ
(n−1)
da′′,a→sa

(
sa,t

) )
, (32)
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FIGURE 5. Factor graph representing the PTs’ augmented states prediction
portion of the factorization in (29) for one time step t . Grey circles are
variable nodes, and green squares are factor nodes. The following short
notations are used: L � L(1)

t ; y−� � y�,t−1; y
�
� y(1)

�,t
; and f� � f (y(1)

�,t
|y�,t−1 ).

and

η
(n)
sa→da′,a

(
sa,t

) = ζτa→sa

(
sa,t

)
ζga→sa

(
sa,t

)
×

( ∏
a′′∈T (a)

t

ζ
(n−1)
da,a′′→sa

(
sa,t

) )

×
( ∏

a′′∈R(a)
t

a′′ �=a′

ζ
(n−1)
da′′,a→sa

(
sa,t

) )
. (33)

We observe that the factor node da,a′ refers to the likelihood

of the inter-agent measurement ρ
(a,a′ )
t produced by Rx-agent

a using the signal transmitted by Tx-agent a′; vice versa, the
factor node da′,a refers to the likelihood of the inter-agent

measurement ρ
(a′,a)
t produced by Rx-agent a′ using the signal

transmitted by Tx-agent a. Therefore, the agent state sa,t acts
as Rx-agent for the message η(n)

sa→da,a′
, and as Tx-agent for

the message η(n)
sa→da′,a

. In both (32) and (33), the message

ζga→sa (sa,t ), that is passed from factor node “ga” to variable
node “sa,” is computed as

ζga→sa

(
sa,t

) = {
ga

(
ga,t

∣∣sa,t
)

a ∈ Ag
t ,

1 a /∈ Ag
t ,

and messages ζ (n)
da,a′→sa

(sa,t ) and ζ (n)
da′,a→sa

(sa,t ) are calculated
as

ζ
(n)
da,a′→sa

(
sa,t

)
=

∫
d
(
ρ

(a,a′ )
t

∣∣sa,t , sa′,t
)
η

(n)
sa′→da,a′

(
sa′,t

)
dsa′,t , (34)

and

ζ
(n)
da′,a→sa

(
sa,t

)
=

∫
d
(
ρ

(a′,a)
t

∣∣sa,t , sa′,t
)
η

(n)
sa′→da′,a

(
sa′,t

)
dsa′,t . (35)

The iteration constituted by (32)–(35) is initialized by
ζ

(0)
da,a′→sa

(sa,t ) = 1 and ζ (0)
da′,a→sa

(sa,t ) = 1. Eventually, at it-

eration n = NSL, the belief of each agent state a ∈ A after

cooperative self-localization is calculated as:

f̃0(sa,t ) = 1

C(0)
a,t

ζτa→sa

(
sa,t

)
ζga→sa

(
sa,t

)
×

( ∏
a′∈R(a)

t

ζ
(NSL)
da′,a→sa

(
sa,t

) )( ∏
a′∈T (a)

t

ζ
(NSL)
da,a′→sa

(
sa,t

) )
,

(36)

where C(0)
a,t is a normalization constant defined such that∫

f̃0(sa,t ) dsa,t = 1.

3) PTS’ AUGMENTED STATES PREDICTION
Let us recall that for each PT augmented state y�,t−1, � ∈
Kt−1, at time t − 1, there is one legacy PT augmented state
y(1)
�,t

, � ∈ L(1)
t , at the first agent pair at time t . The prediction

of PT � is performed by computing the message ζ f�→y
�
(y(1)
�,t

)
from factor node “ f�” to variable node “y

�
” in Fig. 5 as

ζ f�→y
�

(
y(1)
�,t

)
= ζ f�→y

�

(
x(1)
�,t , r(1)

�,t

)
=

∑
r�,t−1∈{0,1}

∫
f
(

x(1)
�,t , r(1)

�,t

∣∣x�,t−1, r�,t−1

)
× f̃J

(
x�,t−1, r�,t−1

)
dx�,t−1, (37)

where f̃J (x�,t−1, r�,t−1) is the belief of the PT augmented state
at previous time t − 1 computed at the last agent pair J; the
computation of this belief is detailed in the Section IV-B5.
Note that, from (37) and the fact that f̃J (x�,t−1, r�,t−1) is
normalized, it follows that ζ f�→y

�
(x(1)
�,t , r(1)

�,t ) is normalized too,

i.e.,
∑

r(1)
�,t ∈{0,1}

∫
ζ f�→y

�
(x(1)
�,t , r(1)

�,t )dx(1)
�,t = 1.

4) MOT MEASUREMENTS EVALUATION AND DATA
ASSOCIATION
The MOT measurements evaluation and data association steps
are performed at each agent pair j, sequentially from j = 1
to j = J . With reference to Fig. 6, the MOT measurements
evaluation step consists in computing the following mes-
sages: from factor nodes “q�” to variable nodes “α�,” i.e.,
ζq�→α� (α

( j)
�,t ); from factor nodes “ha” to variable nodes “α�a,”

i.e., ζha→α�a (α( j)
L+a); and from factor nodes “υm” to variable

nodes “βm,” i.e., ζυm→βm (β ( j)
m,t ). We recall that the MOT mea-

surements can be either monostatic, if j1 = j2, or bistatic, if
j1 �= j2; next, we provide expressions of these messages for
both cases by using the Dirac delta and the Kronecker delta.

The message ζq�→α� (α
( j)
�,t ) is computed as

ζq�→α�
(
α

( j)
�,t

)
=

∑
r( j)
�,t ∈{0,1}

∫∫∫
q

(
x( j)
�,t , r( j)

�,t , α
( j)
�,t , s j1,t , s j2,t ; z( j)

t

)

× f̃ j−1

(
x( j)
�,t , r( j)

�,t

)
f̃ j−1

(
s j1,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

× (
δ
(
s j2,t

))δ j1, j2 dx( j)
�,t ds j1,t ds j2,t . (38)
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FIGURE 6. Factor graph representing the MOT measurements evaluation and data association portion of the factorization in (29) for one time step t and
agent pair j. Grey circles are variable nodes, and green squares are factor nodes. The following short notations are used: L � L( j)

t ; y
�
� y( j)

�,t
; sa � sa,t ;

q� � q(y( j)
�,t
, α

( j)
�,t , s j1 ,t , s j2 ,t ; z( j)

t ); ha � h(sa,t , α
( j)
L+a,t , s j1 ,t , s j2 ,t ; z( j)

t ); α� � α
( j)
�,t ; α�a � α

( j)
L+a,t ; M � M ( j)

t ; βm � β
( j)
m,t ; υm � υ(y( j)

m,t , β
( j)
m,t , s j1 ,t , s j2 ,t ; z( j)

m,t ); and ym � y( j)
m,t .

For monostatic MOT measurements, i.e., for j1 = j2, the
Kronecker delta δ j1, j2 is 1; moreover, according to (20)–(21)
and (6)–(7), and to (24)–(25) and (11), the function q(·) =
q1(·) q2(·) does not depend on the vector s j2,t (note that this
also applies to function h(·) = h1(·) h2(·) according to (22)
and (26)–(27), and function υ(·) according to (28) and (11)).
Therefore, the message in (38) in the case of monostatic MOT
measurements particularizes as

ζq�→α�
(
α

( j)
�,t

)
=

∑
r( j)
�,t ∈{0,1}

∫∫∫
q

(
x( j)
�,t , r( j)

�,t , α
( j)
�,t , s j1,t ; z( j)

t

)

× f̃ j−1

(
x( j)
�,t , r( j)

�,t

)
f̃ j−1

(
s j1,t

)
× δ (

s j2,t
)

dx( j)
�,t ds j1,t ds j2,t

=
∫
δ
(
s j2,t

)
ds j2,t

∑
r( j)
�,t ∈{0,1}

∫∫
q

(
x( j)
�,t , r( j)

�,t , α
( j)
�,t , s j1,t ; z( j)

t

)

× f̃ j−1

(
x( j)
�,t , r( j)

�,t

)
f̃ j−1

(
s j1,t

)
dx( j)
�,t ds j1,t

=
∑

r( j)
�,t ∈{0,1}

∫∫
q

(
x( j)
�,t , r( j)

�,t , α
( j)
�,t , s j1,t ; z( j)

t

)

× f̃ j−1

(
x( j)
�,t , r( j)

�,t

)
f̃ j−1

(
s j1,t

)
dx( j)
�,t ds j1,t ,

where we used the fact that
∫
δ(sa,t ) dsa,t = 1. For bistatic

MOT measurements, i.e., for j1 �= j2, instead, the Kronecker

delta δ j1, j2 is 0, and the message in (38) becomes

ζq�→α�
(
α

( j)
�,t

)
=

∑
r( j)
�,t ∈{0,1}

∫∫∫
q

(
x( j)
�,t , r( j)

�,t , α
( j)
�,t , s j1,t , s j2,t ; z( j)

t

)

× f̃ j−1

(
x( j)
�,t , r( j)

�,t

)
f̃ j−1

(
s j1,t

)
× f̃ j−1

(
s j2,t

)
dx( j)
�,t ds j1,t ds j2,t .

We note that the message in (38) depends on the beliefs at the
previous agent pair j − 1 of the Rx-agent and Tx-agent states,
i.e., f̃ j−1(s j1,t ) and f̃ j−1(s j2,t ), respectively, and of the legacy

PTs augmented states, i.e., f̃ j−1(x( j)
�,t , r( j)

�,t ). These beliefs are
initialized at j = 1 with the prediction messages of the agent
states and PT augmented states described in Section IV-B2
and Section IV-B3, respectively. Specifically, the agent states
beliefs are initialized with f̃0(s j1,t ) and f̃0(s j2,t ) as computed
in (36), and the PT augmented states beliefs are initialized
with f̃0(x(1)

�,t , r(1)
�,t ) = ζ f�→y

�
(x(1)
�,t , r(1)

�,t ) as computed in (37).
Finally, we recall that before processing the MOT measure-
ments at any agent pair j > 1, legacy and new PTs at agent
pair j − 1 are mapped into legacy PTs at agent pair j. The PT
mapping is formally described by the following expression

f̃ j−1

(
x( j)
�,t , r( j)

�,t

)
=

∑
r( j−1)
k,t ∈{0,1}

δ
r( j−1)
k,t ,r( j)

�,t

×
∫

f̃ j−1

(
x( j−1)

k,t , r( j−1)
k,t

)
δ
(

x( j−1)
k,t − x( j)

�,t

)
dx( j−1)

k,t ,
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where, with an abuse of notation, x( j−1)
k,t and r( j−1)

k,t represent
the state and the existence variable of either a legacy or a new
PT at agent pair j − 1.

The message ζha→α�a (α( j)
L+a) is expressed as

ζha→α�a
(
α

( j)
L+a,t

)
=

∫∫∫
h

(
sa,t , α

( j)
L+a,t , s j1,t , s j2,t ; z( j)

t

)
× f̃ j−1

(
sa,t

)
f̃ j−1

(
s j1,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

× (
δ(s j2,t )

)δ j1, j2 dsa,t ds j1,t ds j2,t .

We observe that, according to (22), (26), and (27), if agent a is
either the Rx-agent j1, or the Tx-agent j2, the function h(·) is
non-zero — specifically, equal to 1 — if and only if α( j)

L+a,t =
0. Thus, if a = j1 or a = j2, then ζha→α�a (α( j)

L+a,t ) = δ
α

( j)
L+a,t ,0

;

this follows from the fact that Rx-agent j1 and Tx-agent j2
cannot produce MOT measurements at agent pair j.

Finally, the message ζυm→βm (β ( j)
m,t ) is calculated as

ζυm→βm

(
β

( j)
m,t

)
=

∑
r( j)

m,t∈{0,1}

∫∫∫
υ

(
x( j)

m,t , r( j)
m,t , β

( j)
m,t , s j1,t , s j2,t ; z( j)

m,t

)

× f̃ j−1
(
s j1,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

× (
δ
(
s j2,t

))δ j1, j2 dx( j)
m,t ds j1,t ds j2,t .

The data association step is an iterative procedure
that converts the messages ζq�→α� (α

( j)
�,t ), ζha→α�a (α( j)

L+a,t ),

and ζυm→βm (β ( j)
m,t ), into the following messages:

ηα�→q� (α
( j)
�,t ), from variable nodes “α�” to factor nodes

“q�”; ηα�a→ha (α( j)
L+a,t ), from variable nodes “α�a” to factor

nodes “ha”; and ηβm→υm (β ( j)
m,t ), from variable nodes “βm”

to factor nodes “υm”. This iterative procedure is described
in [49, Sec. IX-A3], and expressions of the messages are
provided therein.

5) BELIEFS CALCULATION
Once the MOT measurements produced at agent pair j are
incorporated, the information they provide is used to eventu-
ally update the agent states and PT augmented states beliefs.
For the legacy PT augmented states, the following messages
are computed from factor nodes “q�” to variable nodes “y

�
,”

� ∈ L( j)
t , that is,

ζq�→y
�

(
y( j)
�,t

)
= ζq�→y

�

(
x( j)
�,t , r( j)

�,t

)
=

M ( j)
t∑

α
( j)
�,t =0

ηα�→q�

(
α

( j)
�,t

)

×
∫∫

q(x( j)
�,t , r( j)

�,t , α
( j)
�,t , s j1,t , s j2,t ; z( j)

t )

× f̃ j−1
(
s j1,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

×
(
δ
(
s j2,t

))δ j1, j2 ds j1,t ds j2,t .

Then, the updated beliefs are obtained as

f̃ j

(
x( j)
�,t , r( j)

�,t

)
= 1

C( j)
�,t

f̃ j−1

(
x( j)
�,t , r( j)

�,t

)
ζq�→y

�

(
x( j)
�,t , r( j)

�,t

)
,

where C( j)
�,t is a normalization constant defined such that∑

r( j)
�,t ∈{0,1}

∫
f̃ j (x

( j)
�,t , r( j)

�,t ) dx( j)
�,t = 1. (For clarity, we recall

that f̃0(x(1)
�,t , r(1)

�,t ) = ζ f�→y
�
(x(1)
�,t , r(1)

�,t ).) Similarly, for the new
PT augmented states, the messages from factor nodes “υm” to
variable nodes “ym” are computed as

ζυm→ym

(
y( j)

m,t

)
= ζυm→ym

(
x( j)

m,t , r( j)
m,t

)

=
L( j)

t +A∑
β

( j)
m,t=0

ηβm→υm

(
β

( j)
m,t

)

×
∫∫

υ
(

x( j)
m,t , r( j)

m,t , β
( j)
m,t , s j1,t , s j2,t ; z( j)

m,t

)
× f̃ j−1

(
s j1,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

× (
δ
(
s j2,t

))δ j1, j2 ds j1,t ds j2,t

and the updated beliefs are obtained as

f̃ j

(
x( j)

m,t , r( j)
m,t

)
= 1

C
( j)
m,t

ζυm→ym

(
x( j)

m,t , r( j)
m,t

)
,

where the normalization constant C
( j)
m,t is defined such that∑

r( j)
m,t∈{0,1}

∫
f̃ j (x

( j)
m,t , r( j)

m,t ) dx( j)
m,t = 1.

For the agent states a ∈ A, the messages ζha→sa (sa,t )
passed from the factor nodes “ha” to the variable nodes “sa”
are calculated according to

ζha→sa

(
sa,t

) = M ( j)
t∑

α
( j)
L+a,t=0

ηα�a→ha

(
α

( j)
L+a,t

)

×
∫∫

h
(

sa,t , α
( j)
L+a,t , s j1,t , s j2,t ; z( j)

t

)
× f̃ j−1

(
s j1,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

× (
δ
(
s j2,t

))δ j1, j2 ds j1,t ds j2,t . (39)

As before, we observe that if agent a is either the Rx-agent
j1, or the Tx-agent j2, i.e., a = j1 or a = j2, the function h(·)
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is non-zero if and only if α( j)
L+a,t = 0, from which it follows

that ζha→sa (sa,t ) = ηα�a→ha (α( j)
L+a,t = 0). Additionally, for Rx-

agent j1 and Tx-agent j2 further computations are needed, as
the following messages have to be calculated: ζq�→s j1

(s j1,t )
and ζq�→s j2

(s j2,t ), from factor nodes “q�” to variable nodes
“s j1 ” and “s j2 ,” respectively; ζυm→s j1

(s j1,t ) and ζυm→s j2
(s j2,t ),

from factor nodes “υm” to variable nodes “s j1” and “s j2 ,”
respectively; and ζha→s j1

(s j1,t ) and ζha→s j2
(s j2,t ), from factor

nodes “ha” to variable nodes “s j1” and “s j2 ,” respectively.
Hereafter, we provide the expressions of these messages for
the Rx-agent j1; the messages related to the Tx-agent j2 can
be derived similarly by substituting j1 with j2 and vice versa.
The messages ζq�→s j1

(s j1,t ), � ∈ L( j)
t , are defined as

ζq�→s j1

(
s j1,t

) = M ( j)
t∑

α
( j)
�,t =0

∑
r( j)
�,t ∈{0,1}

ηα�→q�

(
α

( j)
�,t

)

×
∫∫

q
(

x( j)
�,t , r( j)

�,t , α
( j)
�,t , s j1,t , s j2,t ; z( j)

t

)
× f̃ j−1

(
x( j)
�,t , r( j)

�,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

× (
δ
(
s j2,t

))δ j1, j2 dx( j)
�,t ds j2,t ;

the messages ζυm→s j1
(s j1,t ), m ∈M( j)

t , are defined as

ζυm→s j1

(
s j1,t

) = L( j)
t +A∑
β

( j)
m,t=0

∑
r( j)

m,t∈{0,1}
ηβm→υm

(
β

( j)
m,t

)

×
∫∫

υ
(

x( j)
m,t , r( j)

m,t , β
( j)
m,t , s j1,t , s j2,t ; z( j)

m,t

)
× (

f̃ j−1
(
s j2,t

))1−δ j1, j2

× (
δ
(
s j2,t

))δ j1, j2 dx( j)
m,t ds j2,t ;

finally, the messages ζha→s j1
(s j1,t ), a ∈ A, are defined as

ζha→s j1

(
s j1,t

) = M ( j)
t∑

α
( j)
L+a,t=0

ηα�a→ha

(
α

( j)
L+a,t

)

×
∫∫

h
(

sa,t , α
( j)
L+a,t , s j1,t , s j2,t ; z( j)

t

)
× f̃ j−1

(
sa,t

) (
f̃ j−1

(
s j2,t

))1−δ j1, j2

× (
δ
(
s j2,t

))δ j1, j2 dsa,t ds j2,t . (40)

We observe that the expression of the message in (40) is
consistent with the expression in (39) in that, if a = j1, then
ζha→s j1

(s j1,t ) = ηα�a→ha (α( j)
L+a,t = 0). Eventually, the updated

belief of the Rx-agent state is computed as

f̃ j
(
s j1,t

) = 1

C( j)
j1,t

f̃ j−1
(
s j1,t

) ∏
�∈L( j)

t

ζq�→s j1

(
s j1,t

)

×
∏

m∈M( j)
t

ζυm→s j1

(
s j1,t

) ∏
a∈A

ζha→s j1

(
s j1,t

)
,

while the belief for any other agent state, i.e., a ∈ A \ { j1, j2},
is computed as

f̃ j
(
sa,t

) = 1

C( j)
a,t

f̃ j−1
(
sa,t

)
ζha→sa

(
sa,t

)
,

where the normalization constant C( j)
a,t is defined such that∫

f̃ j (sa,t ) dsa,t =1; we recall that f̃0(sa,t ) is given in (36).

6) IMPLEMENTATION DETAILS
The SPA-based joint localization and tracking algorithm de-
tailed in this section is implemented following a particle-
based approach, where each pdf is described by a set of
NP particles. This choice is particularly appropriate for non-
Gaussian settings and pdf, which intrinsically appear in data
association problems [35], [51], [55]. Although both agent
states and PT states are here unknown — unlike other SPA-
based approaches that assume perfect knowledge of the sen-
sors’ position [35], [49] — the proposed algorithm scales
quadratically with NP by virtue of a proper stacking of the
particles. Furthermore, it scales linearly with the number of
MOT measurements, number of agent pairs, and number of
iterations of the agents’ cooperative self-localization loop and
the data association loop, and quadratically with the number
of legacy PTs.

Moreover, as mentioned in Section II-C, in order to keep
a tractable number of PTs over time, a pruning step is per-
formed. Specifically, once all the MOT measurements at time
t are processed, any PT k ∈ Kt with existence probability
f (rk,t = 1|g1:t , ρ1:t , z1:t ) smaller than a threshold Ppr, is re-
moved from the set Kt and it is not carried over to the next
time t + 1 as legacy PT. Besides this pruning step, the number
Kt of PTs at time t is unbounded.

V. EXPERIMENTAL RESULTS
In this section, performance results of the proposed joint co-
operative self-localization and multitarget tracking approach
are provided. The maritime domain is considered as applica-
tion scenario, thus the kinematics of agents and targets, the
accuracy of measurements, and other parameters are chosen
accordingly. First, in Section V-A, a simulated scenario is used
to show how to take advantage of target information for the
localization of agents. Then, in Section V-B, an application to
real maritime data is presented.

A. SIMULATED SCENARIO
1) SET-UP
The simulated scenario is shown in Fig. 7. An area of
10×10 km is surveyed by A = 4 agents over 50 time steps; the
time step duration is Ts = 30 s. Agents a = 1, 2, and 3 move
counterclockwise along a circle of radius 3.5 km and center
(0,0) at a constant radial velocity of 0.69 m/s, while agent a =
4 is anchored at the center. The stationary agent is the only Tx-
agent of the considered scenario, while the moving ones are
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FIGURE 7. Illustration of the simulated scenario (the time index t is
omitted). The black circles are the agents’ positions over time: the arrows
represent the counterclockwise directions of agents a = 1, 2, and 3, while
agent a = 4 is anchored. The red circles are the targets’s positions over
time.

all Rx-agents, leading to the following sets: R = {1, 2, 3} and
T = {4}. Agents can communicate and sense over the whole
area, i.e., there is no limitation on the sensing/communication
range. The agent state sa,t = [šT

a,t ,
˙̌sT
a,t ]

T ∈ R4 comprises both
position, i.e., ša,t , and velocity, i.e., ˙̌sa,t , over a 2D space,
and its dynamics is modeled with a nearly constant veloc-
ity (NCV) model, that is (cf. (1)), sa,t = εa(sa,t−1,ua,t ) =
Asa,t−1 +W ua,t , where A ∈ R4×4 and W ∈ R4×2 are as
in [64, Sec. 6.3.2], and the process noise term ua,t is Gaussian
distributed with mean 0 and time-invariant covariance matrix
ω2

AI2, with per-component standard deviation (std) ωA = 0.1
m/s2.

The scenario also includes four mobile targets, each mov-
ing at a constant speed randomly drawn from [−1.54, 1.54]
m/s. They appear and disappear at different times, thus are
detectable respectively in the following time intervals: t ∈
[5, 35], t ∈ [10, 40], t ∈ [20, 40], and t ∈ [30, 45]. The PT
state xk,t = [x̌T

k,t ,
˙̌xT

k,t ]
T ∈ R4 comprises both position, i.e.,

x̌k,t , and velocity, i.e., ˙̌xk,t , over a 2D space, and its dynamics
(cf. (14)) follows an NCV model similar to the one adopted for
the agent states, with a per-component process noise standard
deviation of ωT = 0.1 m/s2.

The prior pdf f (s0), assuming that the states of the agents
at time t = 0 are independent, can be written as

f (s0) =
∏
a∈A

f
(
sa,0

) =∏
a∈A

f
(
ša,0

)
f
(
˙̌sa,0

)
,

where the pdf f (ša,0) is uniform over a circle of radius 150 m
around the true position, and f (˙̌sa,0) is uniform on the 2D
interval [−2.57 , 2.57]× [−2.57 , 2.57] m/s.

Agents cooperatively localize themselves by combining
navigation data ga,t and inter-agent measurements ρ

(a,a′ )
t . The

former are available at agents a = 3 and 4 at all times, i.e.,

Ag
t = Ag = {3, 4}, and provide only position information,

that is (cf. (2)), ga,t = θa(sa,t ,na,t ) = ša,t + na,t , a ∈ Ag. The
noise term na,t has a Gaussian distribution with mean 0 and
time-invariant covariance matrix σ 2

a I2, with

σa =
{

20 m a = 3 ,

5 m a = 4 .

The latter are range-bearing measurements, available at all
times and among all agents, defined as (cf. (3)):

ρ
(a,a′ )
t = ϑ

(
sa,t , sa′,t ,w

(a,a′ )
t

)

=
[

2‖ša,t − ša′,t‖
∠(ša′,t − ša,t )

]
+ w

(a,a′ )
t ,

where the noise term w
(a,a′ )
t is Gaussian distributed with mean

0 and time-invariant covariance matrix diag(ς2
ρ,r, ς

2
ρ,b), equal

for all pairs (a, a′); the standard deviations are set to ςρ,r = 20
m and ςρ,b = 1 deg. The number of iterations of the agents’
cooperative self-localization loop is set to NSL = 5.

At time t and agent pair j, agents and PTs give rise to MOT
measurements z( j)

m,t , m ∈M( j)
t , as described in Section II-B3.

We recall that an MOT measurement can be monostatic ( j1 =
j2) or bistatic ( j1 �= j2), and can derive — unless it is a false
alarm — from a reflection from a PT or from an agent (except
that from the Rx-agent j1 and the Tx-agent j2). We thus have
four possible MOT measurement models. A monostatic MOT
measurement z( j)

m,t comprises range and bearing information
and, assuming that it rises from PT k, is modeled as (cf. (4))

z( j)
m,t = γmono

(
xk,t , s j1,t , v

( j)
m,t

)

=
[

2‖š j1,t − x̌k,t‖
∠(x̌k,t − š j1,t )

]
+ v

( j)
m,t . (41)

Similarly, a bistatic MOT measurement has a bistatic range
and bearing information, with the latter representing the AoA
of the reflected signal at the Rx-agent; therefore, assuming
that it is generated by PT k, it is modeled as (cf. (5))

z( j)
m,t = γbi

(
xk,t , s j1,t , s j2,t , v

( j)
m,t

)

=
[
‖š j1,t − x̌k,t‖ + ‖š j2,t − x̌k,t‖

∠(x̌k,t − š j1,t )

]
+ v

( j)
m,t . (42)

The noise term v
( j)
m,t in both (41) and (42) is Gaussian

distributed with mean 0 and time-invariant covariance ma-
trix diag(ς2

z,r, ς
2
z,b), equal for all agent pairs j; the stan-

dard deviations are set to ςz,r = 20 m and ςz,b = 1 deg.
The analogous cases for monostatic/bistatic MOT measure-
ments originating from agent’s reflection can be easily de-
rived, thus omitted. Note that all the observations, sent to
a fusion centre, refer to a common spatial reference sys-
tem. The detection probability is assumed constant among
each agent pair, regardless of the type of MOT measure-
ment (monostatic or bistatic); moreover, it is independent of
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TABLE III Simulation Parameters

the legacy object state, Rx-agent state, and Tx-agent state,
that is, (cf. (6)) P( j)

d,mono(o( j)
i,t , s j1,t ) = P( j)

d,bi(o( j)
i,t , s j1,t , s j2,t ) =

Pd = 0.7. Furthermore, the mean number of false alarms is
μ

( j)
c = μc = 3, and the false alarm distribution f ( j)

c (z( j)
m,t ) =

fc(z( j)
m,t ) is uniform over the entire surveillance area. Fi-

nally, the new PT state x( j)
m,t related to MOT measurement

z( j)
m,t as described in Section II-C, is distributed according to

fn(x( j)
m,t ) = f (x̌

( j)
m,t ) f ( ˙̌x( j)

m,t ), with Gaussian pdf f (x̌
( j)
m,t ) cen-

tered around the Cartesian MOT measurement (converted
from the range-bearing space) and with covariance matrix
ς2

n I, with per-component standard deviation ςn = 500 m,

and uniform pdf f ( ˙̌x( j)
m,t ) on the 2D interval [−1.54 , 1.54]×

[−1.54 , 1.54] m/s; the mean number of new PTs is μ( j)
n =

μn = 0.1.
All agent and PT state pdfs are described by sets of NP =

1000 particles. Furthermore, the pruning threshold is set to
Ppr = 0.01. Table 3 summarizes the main parameters used for
the performance evaluation in the simulated scenario.

2) DISCUSSION
In this settings, we compare the performance of the proposed
algorithm that jointly performs cooperative self-localization
and multitarget tracking, with respect to the case in which the
two tasks are performed independently. To ease the notation
and for the reader’s convenience, we refer to the proposed
method as joint localization and tracking (JLT), and to the al-
ternative approach as separate localization and tracking (SLT).
The difference between SLT and JLT is that the former esti-
mates the agent states at time t only once by running the co-
operative self-localization; then, the multitarget tracking task
is performed considering the estimated agent states as true
states. This is equivalent to running the classical SPA-based
multitarget tracking algorithm described in [49] in which the

FIGURE 8. Performance comparison between JLT and SLT in terms of
agents localization error over time.

states (i.e., positions) of the sensors are assumed known.
The proposed JLT algorithm, instead, repeatedly estimates the
agent states after the MOT measurements from each agent pair
j are processed, as described in Section IV-B and shown in
Fig. 3. On the figures, JLT-related quantities are reported with
dotted lines, while SLT-related quantities with dashed lines.

It is important to emphasize that in the JLT approach tar-
gets are not only unknown objects to be localized, but they
represent a valuable information correspondingly used by the
agents to refine their own localization through the proposed
cooperative mechanism. To highlight this, in the simulation
we induce an outage condition to agents a = 1, and 2 in the
time interval t ∈ [10, 40], meaning that they do not have avail-
ability of inter-agent measurements from the Tx-agent a = 4.
In practical use cases, outage can be related to perturbations
on the communication channel due to hardware malfunction-
ing, interference, or hacking. Results are averaged over 250
Monte Carlo iterations.

In Fig. 8 we provide the position error over time for each
agent individually, for both JLT and SLT. The most interesting
result is related to the agents in outage condition, i.e., a = 1,
and 2: we observe that the JLT is still able to localize them by
exploiting the target information. The SLT, instead, can only
rely on motion prediction, that leads to high position errors.
Considering practical implementation, the use of JLT might
allow, for instance, the recovery of the agent, which would be
hardly achieved in case of SLT. As a second comment, we note
that JLT outperforms SLT in the localization of agent a = 3,
while there are no benefits for the localization of agent a = 4,
since it is anchored and navigation data are extremely precise
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FIGURE 9. Zoomed reconstructed trajectory of agent a = 1. The black solid
line is the ground truth trajectory, the red dashed line indicates the SLT
estimated trajectory, and the red dotted line refers to the JLT estimated
trajectory.

by default. To show the effect of relying on motion prediction
only (SLT) with respect to a profitable use of target implicit
information (JLT), in Fig. 9 we zoom in on the reconstructed
trajectory of agent a = 1, highlighting the huge difference
between the two methodologies. Note that the effect that the
target location information supports the localization of the
agents has been previously demonstrated in [53]. However,
as mentioned in Section I-A, the algorithm proposed in [53]
is limited by the fact that the number of targets that can be
tracked is time-invariant and has to be known in advance, and
it assumes a perfect knowledge of the association between
targets and measurements.

After the analysis on agent localization, we now focus on
the capability of the proposed technique to perform multi-
target tracking. Results are given in terms of mean optimal
subpattern assignment (MOSPA) error [65] of order 1 and
cut off parameter of 5000 m in Fig. 10(a), and in terms of
estimated mean number of detected targets in Fig. 10(b); the
MOSPA error accounts for localization errors for correctly
detected targets, and errors for missed targets and false targets.
Results in Fig. 10(a) indicate superior tracking capabilities
of the JLT over the SLT, in particular after the outage that
starts at t = 10 (300 s). Indeed, the outage does not allow the
SLT to accurately estimate the positions of agents a = 1, and
2; this directly affects the multitarget tracking task, since the
MOT measurements they produce cannot be effectively used.
After t = 30 (900 s), the difference in MOSPA error between
JLT and SLT increases, because of the appearance of the last
target that is not promptly detected by the SLT. The tardiness
in target detection is also observable in Fig. 10(b), where we
report the mean number of detected PTs over time.

Results demonstrate how target information is of high im-
portance for practical application, e.g., in maritime surveil-
lance. We proved the advantages of considering a joint frame-
work for cooperative self-localization and multitarget tracking
rather than perform the two tasks independently.

FIGURE 10. Performance comparison between the multitarget tracking
capabilities of JLT and SLT in the simulated scenario in terms of (a) MOSPA
error and (b) estimated mean number of detected targets over time.

B. APPLICATION TO REAL MARITIME DATA
This section presents the performance of JLT and SLT as-
sessed in a real maritime application. We consider a hybrid,
autonomous, robotic network developed by NATO Centre for
Maritime Research and Experimentation (CMRE) for surveil-
lance applications. The network consists of mobile and fixed
gateways that form the communication infrastructure, and of
autonomous underwater vehicles (AUVs) capable of detecting
and tracking possible threats, and communicating the acquired
data to the command and control center [14], [66]. The data
we use was gathered during the littoral continuous active
sonar trial conducted off the coast of Piombino, near Livorno,
Italy, in November 2018 (LCAS18) [67]. During this trial the
network consisted of A = 6 agents, classified as follows:
� surface agents: a towed sonar source (a = 1), two sta-

tionary and co-located acoustic modems (a = 2, and 3),
and a nearly-stationary waveglider (a = 4);

� underwater agents: two AUVs (a = 5, and 6), named as
Groucho and Harpo, each towing a uniform linear array
of microphones and equipped with an acoustic modem
for communications.

The classification of Rx-agents and Tx-agents is chosen as
follows: the set of Tx-agents is constituted by all surface
and underwater agents, i.e., T = {1, 2, . . . , 6}, while the set
of Rx-agents comprises all agents but the towed sonar source,
i.e., R = {2, 3, . . . , 6}. Practically, inter-agent measurements
are available between all the Tx-agents and Rx-agents, while
MOT measurements are only produced by the AUVs, i.e.,
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FIGURE 11. MOT measurements (converted in x-y coordinates) produced
by AUVs Groucho and Harpo, respectively in orange and green, during the
LCAS18 campaign. The black solid lines are the ground truth trajectories of
the sonar source, the AUVs Groucho and Harpo, and the target; the
asterisks mark the initial positions of these trajectories.

a = 5, and 6, using the signal transmitted by the towed sonar
source, i.e., a = 1; this means that the agent pairs involved
in the sequential processing of the MOT measurements are
( j1, j2) = (5, 1) and ( j1, j2) = (6, 1), from which it then fol-
lows that J = {1, 2}. Fig. 11 shows all the MOT measure-
ments produced by Groucho and Harpo during the trial, re-
spectively in orange and green, and the ground-truth trajecto-
ries of the sonar source, the NATO research vessel Leonardo
acting as target, and the AUVs. The ground-truth position of
the former two is provided by their on-board GNSS receivers,
whereas the ground-truth of Groucho and Harpo is provided
by their INS. We note that in this real application, the ob-
servations (navigation data, inter-agent and MOT measure-
ments) are not guaranteed to be acquired at the same time,
nor they are available at all times because of the challenging
propagation conditions posed by the underwater environment.
Nevertheless, the flexibility of the proposed algorithm allows
to perform each single task (e.g., the agents’ cooperative self-
localization or the processing of the MOT measurements at a
specific agent pair) only when the relevant observations are
available.

Navigation data are available for all the surface agents by
means of on-board GNSS receivers; the standard deviation
of the position information is set to 5 m, and the standard
deviation of the velocity information (used by the towed sonar
source only) is set to 0.1 m/s. Range and bearing characterize
both inter-agent and MOT measurements. Standard deviations
of range and bearing information are set to 70 m and 7 deg, re-
spectively. Additionally, inter-agent and MOT measurements
are duplicated because of the port-starboard ambiguity, i.e.,
the inability of the AUVs to discriminate if a signal comes
from the port side or from the starboard side due to the intrin-
sic cylindrical symmetry of the towed array [15]. The other
parameters are as reported in Table 3, with the exception of the
mean number of false alarms set to μc = 9, and the number
of particles set to NP = 250.

FIGURE 12. Behavior of the JLT using the LCAS18 data set. The figures are
snapshots of the output produced by JLT after (a) 37 minutes and (b) 87
minutes since the beginning of the trial, and include MOT measurements,
estimated trajectories, and estimated current positions of agents and
target. Solid lines represent the estimated trajectory up to current time.
Dotted ellipses indicate the estimate and accuracy of agents and target
current location (note that the ellipse associated to the sonar source is
hardly visible, as its estimated position is very accurate due to the
availability of navigation data; the black arrow indicates the direction of
movement). Dotted-dashed ellipses are examples of bistatic ellipses
associated to Groucho’s and Harpo’s MOT measurements closest to the
target.

Figs. 12(a) and 12(b) are snapshots of the output produced
by JLT after 37 and 87 minutes, respectively, since the begin-
ning of the trial. The images show the estimated trajectories
of the non-stationary agents and the target, and estimate and
accuracy (i.e., 95% confidence interval) of their current po-
sitions. Examples of bistatic ellipses associated to Groucho’s
and Harpo’s MOT measurements closest to the target are also
provided. A bistatic ellipse is the locus of points in which the
sum of the distances from the sonar source and the AUV (i.e.,
the foci) is constant and equal to the bistatic range component
of the AUV’s MOT measurement (cf. (42)) [68]. Because of
the port-starboard ambiguity two actual contacts are visible on
each bistatic ellipse, one close to the target and the other along
the specular direction. These snapshots show that it is possible
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FIGURE 13. Real data experiment. Mean error on the JLT estimated
positions of the target (in blue), AUV Groucho (in orange) and AUV Harpo
(in green).

TABLE IV Real Data Experiment. Performance Comparison Between JLT
and SLT

to joint localize agents (towed sonar source and AUVs) and
target through a fusion of navigation data, inter-agent and
MOT measurements. Fig. 13 shows the position errors over
time averaged over 20 Monte Carlo iterations obtained with
JLT for the target,6 Groucho, and Harpo (the Monte Carlo
iterations only differ for the drawing of the particles). The
higher mean position error for the target is clearly due to
the fact that only MOT measurements are used to estimate
its state; moreover, the peaks occur when either the target
itself is maneuvering and/or one or both the AUVs are ma-
neuvering. Table 4 reports a comparison between JLT and
SLT in terms of time-averaged and maximum mean position
errors, and time-averaged MOSPA error with order 1 and
cutoff parameter of 1000 m. JLT outperforms SLT in terms
of time-averaged and maximum mean position errors for both
the AUVs. These results confirm the benefit of exploiting the
target location information for estimating the agents’ states.
Regarding the tracking of the target, JLT provides a slightly
higher time-averaged mean position error, but a lower maxi-
mum mean position error and a lower time-averaged MOSPA
error, that accounts for both missed targets and false targets.
Lastly, we compare in Fig. 14 the JLT estimated velocities of
the AUVs — along the two Cartesian coordinates — and the

6For each Monte Carlo iteration, the position error for the target is com-
puted as the distance between its ground-truth trajectory and the PT that is
consistently closest to it over time.

FIGURE 14. Real data experiment. Comparison between the Cartesian
components of the JLT estimated velocities of Groucho (top figures) and
Harpo (bottom figures), and their ground truth velocities provided by the
on-board INS.

velocities provided by the INS: results show a good flexibility
to abrupt heading variations and quite accurate velocity esti-
mation overall.

The assessment on real data proves the ability of the pro-
posed SPA-based algorithm to jointly perform cooperative
self-localization and multitarget tracking. The results provides
evidence of how to profitably take advantage of intrinsic target
information to perform agents localization.

VI. CONCLUSION
In this work, we developed a joint technique for cooperative
self-localization and multitarget tracking in agent networks.
The proposed algorithm is general enough to be tailored to any
multi-agent system, where agents are equipped with diverse
perception sensors and communication devices. The proposed
method performs the mandatory tasks of self-determining the
network topology (i.e., the agent network localization) and
detecting and tracking an unknown and arbitrary number of
targets, where existence probabilities are used to declare their
actual presence or to opt for their removal (pruning). The
developed technique takes advantage of target information to
update and refine the agent positions, assigning an oppor-
tunistic role to targets. This latter benefit might not be so
relevant in case of a large availability of navigation data and/or
inter-agent measurements, but it has been proven through sim-
ulations to be of utmost importance in case of malfunctioning
or outage conditions. An important aspect of the proposed
algorithm is the flexibility: the algorithm intrinsically handles
time-variant properties of agents and network topology (such
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as a connection of a new agent, or the disappearance of an
extant one) and it also admits the coexistence of different
types of observations (navigation data, inter-agent and MOT
measurements). Lastly, the extension of the data association
problem to include agents as well (and not only targets) al-
lows us to consider realistic conditions of signal propagation,
where reflections from both agents and targets are unavoid-
ably present and affect the signal processing chain.

The joint cooperative self-localization and multitarget
tracking method proposed in this article assumes a centralized
architecture of information exchange in a complex network
made by several agents. Future work will include the study
of distributed/decentralized architectures where the exchange
of local target/agent states among the agents, rather than of
observations with a centralized node, is more convenient, e.g.,
in terms of robustness. Promising paradigms for distributed
architectures are the consensus networks [52], [56], [60], [69]
and the adaptive networks [70], [71].

APPENDIX
Here we derive the factorization in (17) of the joint
posterior pdf f (y1:t , s0:t ,α1:t ,β1:t |g1:t , ρ1:t , z1:t ). Since the
MOT measurements z1:t are observed, hence known, the
joint vector of numbers of MOT measurements m1:t is
also known, that is f (y1:t , s0:t ,α1:t ,β1:t |g1:t , ρ1:t , z1:t ) =
f (y1:t , s0:t ,α1:t ,β1:t |g1:t , ρ1:t , z1:t ,m1:t ). Then, we obtain the

factorization in (46), shown at the bottom of this page, by
using assumption (A6) in the third step. Recalling from Sec-
tion II-C that yt is the vector stacking the legacy PT aug-
mented states at the first agent pair and all the new PT aug-
mented states introduced at time t , that is, yt = [y(1)T

t
, yT

t ]T,
each factor f (yt , st ,αt ,βt , gt , ρt , zt ,mt |yt−1, st−1) of the
product in (46) can be further expressed as

f
(
yt , st ,αt ,βt , gt , ρt , zt ,mt

∣∣yt−1, st−1
)

= f
(

yt ,αt ,βt , gt , ρt , zt ,mt
∣∣y(1)

t
, st , yt−1, st−1

)
× f

(
y(1)

t
, st

∣∣yt−1, st−1

)
= f

(
yt ,αt ,βt , gt , ρt , zt ,mt

∣∣y(1)
t
, st

)
× f

(
y(1)

t
, st

∣∣yt−1, st−1

)
(43)

= f (yt ,αt ,βt , gt , ρt , zt ,mt |y(1)
t
, st )

× f (y(1)
t
|yt−1) f (st |st−1) (44)

= f (yt ,αt ,βt , zt ,mt |y(1)
t
, st ) f (gt |st ) f (ρt |st )

× f (y(1)
t
|yt−1) f (st |st−1), (45)

f
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where assumption (A7) is used in (43), (A3) in (44), and (A9)
in (45). Finally, by using assumption (A8) and the fact that
new PTs at agent pairs 1, . . . , j − 1 become legacy PTs at
agent pairs j, . . . , J , the joint pdf f (yt ,αt ,βt , zt ,mt |y(1)

t
, st )

in (45) can be factorized as in (47). Eventually, by inserting
(47), shown at the bottom of previous page, into (45), and (45)
into (46), we obtain the factorization in (17).
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