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ABSTRACT In Part I of this presentation, we have formulated single and multitask quadratic optimization
problems, where agents are subject to quadratic, smoothing constraints over a graph. We have focused
particularly on single task designs, whereby node uncertainties and their strength relative to un-regularized
cost are tackled altogether by means of an adaptive penalty function. In this sequel, we readdress the multitask
problem and propose new distributed implementations for their corresponding exact leaky-RLS solutions. We
motivate a network formulation from a standalone viewpoint by capitalizing on the fact that 1) for regressors
having uncorrelated entries, the performance of an efficient O(M2) conjugate-gradient (CG) realization of the
leaky LS solution is identical to the one of an RLS filter; 2) a CG implementation does not require inversion
of the underlying sample covariance matrix. Simple arguments yield an extended network-CG algorithm
that relies on node-level recursions employing distinct step-sizes. Unlike the exponentially-weighted RLS
algorithm, which tapers off regularization over time, a persistent penalty strength conforms with the very
purpose of the equivalent network trust-region problem, while granting a well-conditioned solution. The
approach further yields another family of single-task algorithms in terms of network linearly constrained
solutions, which can be contrasted to the ones proposed in Part I. In particular, the exact linearly-constrained
network LMS implementation proposed here outperforms the adaptive relative-variance NLMS, under much
lower computational requirements.

INDEX TERMS Adaptation, combination weights, diffusion networks, fusion, least-squares, multitask,
sparsity.

I. INTRODUCTION
Regularization plays a central part in general parameter esti-
mation, serving a variety of purposes in the realm of adap-
tation and learning. The benefits range from resolving non-
uniqueness in rank-defficient risk and empirical cost formu-
lations, to countering model over-fitting and ill-conditioning
inherent to arbitrary data streaming. Ultimately, regularization
conveys a priori information on the unknown parameters, in a
way that the optimization task be restricted solely to a space
of meaningful solutions [1].

Due to their mathematical tractability, quadratically reg-
ularizers to quadratic costs have been vastly studied within
the adaptive filtering community, both in the stochastic and
deterministic settings [1]. In general, a quadratic penalty func-
tion applied to a least-squares (LS) cost leads to a leaky type
solution, whose form deviates from the un-regularized one
in proportion to the penalty strength, say, η. For example,

in the stochastic sense, a gradient-descent approach leads to
the so-called leaky-LMS algorithm [3], while in the determin-
istic scenario, the regularized solution can be expressed via
an analogous, exponentially-weighted leaky-RLS (LWRLS)
algorithm [4], [5]. These formulations come, nevertheless,
with a few well known drawbacks. First, for arbitrary ridge
strengths, the value of the least attainable cost is always larger
than the minimum value of the corresponding un-regularized
function. Second, the resulting leaky-RLS recursions are of
cubic complexity, and therefore impractical for real applica-
tions. The standard WRLS algorithm circumvents this prob-
lem by allowing the ridge factor to be of a special time-varying
form, i.e., ηi = λi+1, in terms of a forgetting factor λ. This
is what renders the WRLS algorithm of O(M2) complex-
ity per iteration, which is reasonable for modern applica-
tions with powerful DSP capabilities [6]. Unfortunately, this
particular choice of ηi has a decaying strength, i.e.,
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regularization dies out over time. Such assumption can be
highly undesirable in situations where data streaming halts,
becomes ill-conditioned, or simply because we are interested
in a constrained solution, not attainable by the WRLS re-
cursions. In this latter respect, the optimal ridge strength is
obtained as the solution of a secular equation [7], as the result
of the Karush-Kuhn-Tucker (KKT) multiplier method applied
to the original constrained problem.

A. RELATED WORK
There have been some relevant works addressing the choice
of the ridge factor and the implementation of persistently reg-
ularized RLS iterations, yet for different purposes. One of the
earliest techniques concerning uniqueness and conditioning of
the Ricatti variable was proposed in [8], a method referred to
as dithering. Since the solution to the regularized stochastic
problem can be interpreted as the addition of uncorrelated
noise signal to the input [see (10) and (51) further ahead], the
idea is to add a low power white noise directly to the input se-
quence, so that the sample covariance matrix becomes positive
definite in the MSE sense. Although useful in its own right, the
process leads to degraded performance compared to the leaky
solution in the LMS sense, considering i.i.d. signals [9]. Other
methods towards better conditioning which preserve O(M2)
complexity have been pursued indirectly in [10], [11], and
more recently in [12], where the positive-definiteness of the
sample covariance is assured on average. In this sense, the
leaky-RLS algorithm aforementioned provides a numerically
stable solution compared to the WRLS recursions with a fixed
ridge strength. This, however, consists in O(M3) complex-
ity recursions, since they still require inversion of a non-
structured sample covariance matrix. This complexity issue
can be tackled in practice, e.g., via a dichotomous coordinate
descent (DCD) algorithm [13], as inverstigated in several in-
stances for quadratic and non-smooth regularizers [14]. The
importance of having a variable regularization has been ear-
lier recognized in other scenarios where the excitation power
drops significantly [15], and in adaptive beamforming appli-
cations [16], where the sample covariance is naturally rank
defficient. Recently, the DCD mechanism has been deployed
for setting a varying-strength regularizer in the context of
echo cancellation [17]. In this same respect, the reweighted LS
problem is another example where time-varying regularization
has been tackled instead via conjugate gradient techniques [2],
addressed, e.g., in [18], [19]. Obviously, all the issues that
arise regarding regularization in autonomous scenarios also
exist in a network formulation; this justifies further analysis
and proper extensions, which depend on the objective one is
mainly concerned with.

In the context of distributed learning, regularization en-
forces a desired structure on the tasks performed by agents
over a graph. For example, it can reflect a measure of prox-
imity among the target parameters in a multitask setting,
and/or a desired level of spatial sparsity imposed on the
agents across the network. In Part I of this work, we have
formulated such problems in terms of an extended vector

parameter W = col {w1,w2, . . . ,wN } reflecting the structure
of a strongly-connected network of N agents, subject to local
linear models. More specifically, we assume that each agent
k receives streaming data {dk (i), uk,i}, related via a linear
regression model of the form dk (i) = uk,iw

o
k + vk (i), where

i is the time index, wo
k is an unknown local parameter of

size M × 1, uk,i is a regression (row) vector of size 1×M,
and vk (i) is an additive zero-mean white noise, which is time
and spatially uncorrelated with other data. A global linear
model for the agents is then formed by means of the following
extended definitions :

Wo = col {wo
1,w

o
2, . . . ,w

o
N } (1)

d i = col {d1(i), d2(i), . . . , dN (i)} (2)

U i = bdiag
{
u1,i, u2,i, . . . , uN,i

}
(3)

vi = col {v1(i), v2(i), . . . , vN (i)} (4)

so that

d i = UiWo + vi (5)

The goal in a multitask problem is to solve

min
W
{J (W ) + ρ(W )} (6)

where J(W) is some aggregate risk or empirical cost function,
and ρ(W) is a regularizer whose purpose is to enforce a de-
sired structure on the extended quantitiy W. For example, a
quadratic ρ(W) has been considered in [20] for analysis of dif-
fusion adaptation via a stochastic gradient-descent algorithms,
considering general costs J(W).

B. MAIN RESULTS
In this paper, we revisit the leaky-RLS problem from the view-
point of its equivalent constrained risk formulation, whose
optimal ridge factor is well defined. We motivate the idea
by first considering a standalone setting, which may include
non-smooth regularizers cast into approximate re-weighted
LS formulations (see, e.g., [21] and the references therein).
These problems motivate analogous conjugate-gradient (CG)
implementations at the network level, and become particularly
convenient for the following reasons: 1) First, the network
CG recursions do not require covariance matrix inversions,
but only multiplications by a block-sparse matrix, induced
by the network topology. This will readily suggest a dis-
tributed structure for the solution with reduced comptational
requirements. Note that because normally nodes make use of
independent signals, correlation is only due to cooperation;
2) second, the increasing strength of the penalty term in this
scenario is suitable to a CG implementation of reduced com-
plexity, while mantaining the desired RLS convergence speed.

The CG algorithm suggests a feasible implemetation for the
exact multitask problem, and yields alternative solutions to
the single task LS problem that can be contrasted to the main
algorithms proposed in Part I. More specifically, the following
results complement the accompanying article:
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1) A network leaky-RLS solution to the multitask scenario,
based on an extended CG formulation (Table 2);

2) A network linearly constrained RLS solution to the
single-task scenario, based on an extended CG formu-
lation (Table 3);

3) A network linearly constrained LMS solution to the
single-task scenario, based on an extended CG formu-
lation (Table 4);

The proposed network linearly constrained LMS algorithm
outperforms the relative variance NLMS proposed in Part I,
regardless of the type of signals used by the agents. We high-
light that the block-sparse matrix involvolved in the extended
CG algorithm can be made as simple as one having two unity
elements per node, leading to one addition per node as a
combination strategy. Simulations verify the accuracy of the
proposed recursions.

II. MOTIVATION
We shall carry the same mathematical notation of Part I in the
sequel. We start from a standalone formulation, since it will
be the basis for our extensions to the cooperative scenario and
is useful in its own right. Under the assumptions previously
stated for the general model (5), we consider a scenario based
on streaming data {d (i), ui}, related via the linear regression,

d (i) = uiw
o + v(i) (7)

Let ν be a bound on the quadratic norm of the meaninful
solutions of the following constrained MSE risk:

min
w

E |d (i)− uiw|2 s.t. ‖w‖2� ≤ ν (8)

where � is some weighting matrix. By virtue of the KKT mul-
tiplier method, this constrained formulation becomes equiva-
lent to the unconstrained problem,

min
w

E |d (i)− uiw|2 + ηo‖w‖2� (9)

The so-called leaky solution of (9) is given by

wηo = (ηo�+ Ru)−1Rdu (10)

where Ru = E (u�
i ui ), Rdu = E [u�

i d (i)], and ηo is the positive
solution of the secular equation

‖wηo‖2� = ν (11)

Now, under ergodicity arguments, and for a large data set,
it is common to replace (9) by its empirical counterpart, say,

min
w

1

i
‖yi −H iw‖2 s.t. ‖w‖2� ≤ ν (12)

where we collect realizations up to time i into the quantities

H i = col{u1, u2, . . . , ui} (13)

yi = col{d (1), d (2), . . . , d (i)}. (14)

This is also equivalent to a ridge regression formulation:

min
w

1

i
‖yi −H iw‖2 + η′i‖w‖2� (15)

FIGURE 1. MSD of wη,i relative to the stochastic solution.

where for arbitrary i (i.e., not large), the optimal strength η′i
must be allowed to be data dependent. Of course, we should

expect that η′i → ηo when i→∞. By defining ηi
�= iη′i, we

can express (15) more compactly as

min
w
‖yi −H iw‖2�i

+ ηi‖w‖2� (16)

where we have further introduced the diagonal weighting
matrix �i = diag{λi−1, . . . , λ, 1}, with 0� λ ≤ 1 denoting
a forgetting factor, in order to account for possible non-
stationarity in Ru. The solution is given by

wηi,i = PiH�
i �iyi, with (17)

Pi = (ηi�+H�
i �iH i )

−1 (18)

where similarly to (11), the optimal ridge factor satisfies

‖wηo
i ,i
‖2� = ν. (19)

This relation shows that we should pursue the exact strength
adaptively so as to satisfy the trust-region set in (8) in the MSE
sense. This is expected, since for i→∞, in a typical sce-
nario we have P−1

i →∞, meaning that for a fixed, arbitrary
η, after having learned the solution wη,i to a certain extent,
the strength of P−1

i will excel η, so that the un-regularized
solution will be weighted more heavily. Fig. 1 illustrates this
fact via the mean-square-deviation (MSD) of wη,i relative to
wηo

in (10), and given by

MSD = E‖wη,i − wηo‖2 (20)

Now, in general, the solution to (19) requires iterative meth-
ods, which may become impractical given that it must be
computed at every iteration. For large i, however, the approx-
imation (12) suggests that we can roughly set ηo

i ≈ ηi = iηo,
considering that �i = I.

The above reasoning can be used to accomodate non-
smooth regularizers as well. This becomes convenient for the
identification of sparse systems, such as acoustic echo paths,
or digital-TV channels, which consist of a few large coeffi-
cients within a long span of negligible samples. For example,
consider the �1-norm constraint in

min
w

E |d (i)− uiw|2 s.t. ‖w‖1 ≤ ν (21)
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which leads to the equivalent regularized formulation,

min
w

E |d (i)− uiw|2 + ηo‖w‖1 (22)

as well as to its LS counterpart:

min
w
‖yi −Hiw‖2�i

+ ηi‖w‖1 (23)

Note that we can rework (23) into a weighted LS problem as

min
w
‖yi −Hiw‖2�i

+ ηi‖w‖2� (24)

with � = diag{1/|w0|, 1/|w1|, . . . 1/|wM−1|}. Given a suf-
ficiently small positive scalar δ, these weights are normally
replaced by ones in terms of the most recent estimate, i.e.,

�← �1,i = diag

{
1

|w0,i−1| + δ
, . . . ,

1

|wM−1,i−1| + δ

}

(25)
leading to an iteratively weighted LS scheme. This corre-
sponds to replacing the original constraint by a time-varying
one, i.e., ‖w‖2�i

≤ νi, where νi is an estimate for the true
bound ν.

In the same vein, we can consider the �0-norm regularizer

min
w

E |d (i)− uiw|2 s.t. ‖w‖0 ≤ ν (26)

where here ν is given by the number of non-zero entries of
w. Similar reasoning (see [21] and its references) allows us to
interpret (26) as a weighted �1-norm problem

min
w

E |d (i)− uiw|2 s.t. ‖w‖1,� ≤ ν (27)

which is equivalent to a weighted version of (22), with �

given by (25). This in turn can be expressed as a quadratically
regularized problem, viz.,

min
w

E |d (i)− uiw|2 s.t. ‖w‖2� ≤ ν (28)

which, again, leads to a weighted LS formulation of the form
(24) with1

�← �2,i = diag

{
1

|w0,i−1|2 + δ
, . . . ,

1

|wM−1,i−1|2 + δ

}
.

(30)

A. ADAPTIVE LEAKY-RLS
Consider now the WLS problem (16) with ηi�←− �i. We
may write (18) equivalently as

P′−1
i = λP′−1

i−1 + u�
i ui (31)

P−1
i = �i + P′−1

i (32)

In general, efficient propagation of Pi is hindered by the fact
that �i is arbitrary [4], [5]. Yet, there are some useful situa-
tions where an O(M2) leaky-RLS recursion can be obtained.

1Of course, mixed �-norms can be considered for the trust-region problems.
For example, it may take the more general form

ρ(w) = ηo [
(1− β )‖w‖2� + β‖w‖p

]
(29)

where p can be, e.g., the �0 or �1 norm.

A relevant scenario arises when the entries of the regressor
are uncorrelated, or even independent. In this case, an efficient
condition number dependent algorithm such as the conjugate-
gradient (CG) algorithm is highly motivated.

Note that we can compute the solution to (16) iteratively in
terms of

si = H�
i �iyi = λsi−1 + u�

i d (i) (33)

by solving

P−1
i wηi,i = si. (34)

An O(M2) solution to (34) can be attained by relying on a
CG algorithm, with initial guess taken as wηi,i−1 [2]. The CG
algorithm derives from the conjugate direction (CD) method,
originally applied to a quadratic cost function. The goal is to
minimize a cost along a direction pn−1 via successive updates
of the form

xn = xn−1 + an−1 pn−1 (35)

In the case of cost (16), the stepsize an−1 is selected so as
to minimize its value at xn, which has the form of a WLS
solution:

αn−1 =
p�

n−1P−1
i (xn−1 − xo)

p�
n−1P−1

i pn−1

. (36)

The idea motivates the computation of a set of conjugate
basis vectors with respect to P−1

i , by relying on the represen-
tation of (16) in terms of such basis. The coefficients of this
representation are obtained by enforcing conjugation between
the referred directions with respect to P−1

i , which in turn are
generated by a set of M basis vectors as subsequent gradients
of (16). Table 1 lists the basic CG recursions in its original
form.

The CG algorithm is further motivated by the fact that, in
our context, the ridge strength provides persistent regularizar-
ion, which happens to increase in time since ηi = iηo. This
leads to well conditioned recursions, while relying on low
complexity iterations. That is, let �i = iηo�. The complex-
ity of the CG algorithm is known to be upper bounded by
O(κiM2) per iteration, where κi is the condition number of
the coefficient matrix P−1

i :

κi =
iηo+ σ 2

max(�1/2
i Hi�

−1/2)

iηo+ σ 2
min(�1/2

i Hi�−1/2)
(50)

in terms of the extreme singular values of �
1/2
i H i�

−1/2.
Hence, one can minimize the maximum number of inner it-
erations Nmax based on the evolution of κi. In particular, we
can set Nmax = 1 assuming that κi → 1 quickly. Moreover,
since non-smooth regularizers can be estimated according to
a reweighted formulation, we may simply set �i accordingly,
e.g., via (25) or (30), in the CG recursions.

B. DECOUPLED RECURSIONS
The computation of the stepsize αn in (45) requires infor-
mation from all entries of {ri,n, pi,n}, and is used in turn to
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TABLE 1 Leaky-Reweighted WRLS With Variable Strength ηi via CG
Algorithm

update all their entries in (46) and (47). This can be motivated
from the fact that P−1

i reflects correlation, either among the
individual entries of ui, or through � itself. Without such
dependency, each bin wi(m) could make use of its own step-
size, say, αm,n−1, m = 1, . . . , M−1 according to individual
optimal criteria. More generally, we could have posed the
problem in a way that each entry of wi is updated via αm,n−1,
computed from a subset of direction vectors corresponding to
the correlated entries. This can be achieved, e.g., by replacing
(34) by

DmP−1
i wηi,i = Dmsi (51)

where Dk is a diagonal matrix of ones and zeros, defined in
terms of the elements of the m-th row of � where correla-
tion exists, denoted by �m. As a result, with the identifica-
tions P−1

i ←− DmP−1
i and si ←− Dmsi in (40) relative to the

αm,n−1, we obtain

αm,n−1 = ‖Dmri,n−1‖2
p�

i,n−1Dmki,n−1
. (52)

This is equivalent to subsampling the inner-products that
define αn differently for every entry of αn:

αm,n−1 =
∑

�∈Nm
|ri,n−1(�)|2∑

�∈Nm
p�

i,n−1(�)ki,n−1(�)
, m = 1, . . . , M−1.

(53)
where we denote by ri,n−1(�) the �-th entry of ri,n−1, and
similarly for {pi,n−1(�), ki,n−1(�)}. The set Nm is the set of
indexes used in the computation of αm,n−1. We can proceed
in the same manner regarding the computation of the ratio

in (48). The above arguments can be easily adapted to the
extended network formulation, as we discuss next.

III. DISTRIBUTED MULTITASK FORMULATIONS
We now return to the extended cost formulation (6) and argue
similarly to the above standalone scenario. This will lead to
quadratic and non-smooth regularized, distributed counter-
parts of the CG-based recursions of Table 1.

Assume that our objective is to promote proximity among
agents, while optimizing a quadratic risk function. In Part I of
our presentation, we argued that this can be motivated as the
solution to the following trust-region problem:

min
W

E‖d i − U iW‖2 s.t. ‖W‖2B��B ≤ ν (54)

where d i and U i are defined in (2)–(3). This is the network
analogue of (8). Here, however, the role of � in (8) is replaced
by B��B, where � is NM × NM, of the form

� = bdiag {�1,�2, . . . ,�N } (55)

and B is an NM × NM combination matrix satisfying BW = 0,
� /∈ Nk . For example, we can select B = L = L⊗ IN in terms
of the Laplacian rule L. This problem is equivalent to

min
W

E‖d i − U iW‖2 + ηo‖W‖2B��B (56)

whose leaky solution is given by

Wηo = (ηoB��B+ RU )−1RdU . (57)

Instantaneous gradient approximations lead to a network
leaky-LMS (N-LLMS) algorithm

Wηo

i = (I − μηoB��B)Wηo

i−1 + μU�
i (d i − U iW

ηo

i−1)
(58)

that executes a multitask recursion. Now, define

Hk,i = col{uk,1, uk,2, . . . , uk,i} (59)

yk,i = col{dk (1), dk (2), . . . , dk (i)} (60)

yi = col {y1,i, y2,i, . . . , yN,i} (61)

Hi = bdiag
{
H1,i, H2,i, . . . , HN,i

}
(62)

�i = bdiag
{
�1,i,�2,i, . . . ,�N,i

}
(63)

Following the same reasoning carried out in the standalone
scenario, for large i, the first term in (50) can be approximated
by ‖yi −HiW‖2�i

/i, so that one may solve instead

min
W

1

i

∥∥yi −HiW
∥∥2

�i
s.t. ‖W‖2B��B ≤ ν (64)

or, equivalently,

min
W

{∥∥yi −HiW
∥∥2

�i
+ ηi‖W‖2B��B

}
(65)

with ν = ‖Wη′i,i
‖2

B��B, and where ηi
�= iη′i. Again, this suggests

that we can set ηo
i ≈ iηo, such the solution to (59) is given by

Pi = (ηo
i B��B+H�

i �iHi )
−1 (66)

Wηo
i ,i = PiH�

i �iyi. (67)
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For the sake of generality we can formulate �0 and �1

network problems just like in (21), (26), and (28), by resorting
to their extended formulation, given some mixed-norm def-
inition. Note that the goal in (48) is to shrink the �2-block
norm of the extended vector W by promoting closeness among
its vector entries in the quadratic sense. One can similarly
promote proximity by relying on a weighted �p-block norm
constraint, and more generally, starting from the already �2-
norm constrained problem (50), by adding another layer of an
�p-block norm constraint:

min
W

E‖d i − U iW‖2 + ηo‖BW‖2� s.t. ‖QW‖g,p,� < ζ

(68)
where we define the group norm ‖W‖g,p in terms of the
weighted �2-norm of the vector entries wk , via the weighting
matrix �. This can also be useful to promote spatial sparse-
ness of the agents across the network in a non-cooperative
mode of operation by setting B = I, prior to posing any coop-
erative formulation. After recognizing the equivalence to the
unconstrained formulation, a reweighted LS solution would
then follow by selecting an adaptive block diagonal weigthing
matrix as

�2−p,i =

⎡
⎢⎢⎣

�1

‖Q1W i−1‖2−p + δ

. . .
�M

‖QNW i−1‖2−p + δ

⎤
⎥⎥⎦ (69)

where we denote by Qk the k-th M × NM block row of Q.
Similarly to (61), this results in

Pi = (ηo
i B��B+ τ o

i �2−p,i +H�
i �iHi )

−1 (70)

Wηo
i ,τo

i ,i = PiH�
i �iyi (71)

where τ o
i satisfies ‖Wηo

i ,τo
i ,i‖g,p = ζ . Again, we can set τ o

i = τi =
iτ o, which approaches the optimal value when i→∞.

At this point, we can simply map the standalone definitions
of the previous section onto the extended quantities given in
(1)–(4) and (59)–(63), say, Pi −→ Pi, si −→ S i, and etc. For
example, without a constraint, recursions for ri,0 and ki,n−1 in
Table 1 become

rk,i,0 = sk,i − P−1
k,i wk,i−1 − iηo

∑
�∈Nk

Tk�,iw�,i−1 (72)

kk,i,n−1 = P−1
k,i pk,i,n−1 + iηo

∑
�∈Nk

Tk�,i p�,i,n−1 (73)

where we have denoted by Tk�,i the (k, �)-block element of
Ti = B��2−p,iB, with �2−p,i given by (63). More generally,
Table 2 lists the node recursions obtained after decoupling
node variables from the extended definitions, via independent
stepsizes αk,n−1 similarly to (47). We refer to these recursions
as diffusion CG Reweighted Leaky-RLS (CG-RLRLS). Ob-
serve that we can drop edges in B such that the product with Ti

is simplified, and given by a single matrix multiplication with
an extended quantity. That is, consider the quadratic case, and
let � = I. Note that the product of B�B with any extended
quantity is realized in a distributed way. For example, we can

TABLE 2 Diffusion CG-Based Reweighted Leaky-RLS

set B�B = L, where L is the Laplacian matrix, with entries
denoted by Lk�.

IV. SINGLE-TASK SOLUTIONS
In theory, a single-task solution can be attained from the above
multitask formulation by setting the ridge strength to ηo→
∞. In practice, however, this is not possible either by using
(58) or (61), since at one point the increase of ηo will lead
to numerical difficulties (see Fig. 5 in our simulations). One
possible solution to this problem is to rely on a reweighted
regularization as proposed in Part I of this work, where the
regularization strength grows adaptively. A second approach,
is to resort to the exact solutions to the constrained LMS or
LS problems, by making use of the above distributed CG
recursions, as we explain next.

A. CONSTRAINED CG-RLS
Recall from Part I, that in the deterministic case, we posed the
exact single-task problem as

min
W

∥∥yi −HiW
∥∥2

�i
s.t. CW = 0 (74)

where C is a fat constraint matrix which enforces consensus
among the individual agents. It is obtained by removing one
redundant block row from B. The solution, restated here for
convenience, is given by

Wc
i = ���Wi −

���PiC�(C
���PiC�)−1C

���Wi (75)

in terms of the local LS solutions

���
wk,i =

���

Pk,iH
�
k,i� k,iyk,i, with (76)

���

Pk,i = (εI +H�
k,i� k,iHk,i )

−1. (77)
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The form of (69) readily suggests that it can be written as

Wc
i = ���Wi −

���PiC�Z i (78)

where

Z i = col{z1,i, z2,i, . . . , zN,i} (79)

is the solution to the linear system

(C
���PiC�)Z i = C

���Wi (80)

and which can be obtained indirectly via CG recursions. Let
Ck� denote the (k, �) entry of C. Note that assuming Nmax = 1,
and using Z i−1 as the initial guess at the begining of every CG
iteration, we can eliminate the recursion for the residue rk,i,n.
The new distributed single-task algorithm is referred to as a
network constrained CG-based RLS (C-CG-RLS), and listed
in Table 3.

B. CONSTRAINED CG-LMS
The above reasoning can be similarly adopted in the solution
of a linearly constrained LMS problem:

min
W

E‖d i − U iW‖2 s.t. CW = 0 (81)

which leads to the adaptive extended recursion

Wu
i = Wcl

i−1 + μU�
i ei (82)

Wcl
i =AiWu

i (83)

where

Ai = I−C�(CC�)−1C (84)

for a step-size μ, where ei = d i −U iWcl
i−1, and Wu

i is the uncon-
strained LMS solution. We arrive at a distributed implementa-
tion by replacing (77) by

Wcl
i = Wu

i + C�Z i (85)

in terms of the solution to the linear system

CC�Z i = CWu
i (86)

via CG recursions. Table 4 lists the resulting algorithm, for
Nmax = 1, and using Z i−1 as the initial guess at the begining
of every CG iteration. The vector entries of Wcl

i are denoted by
wk,i. We refer to it as a network linearly constrained CG-based
LMS (C-CG-LMS).

A special case of (62) is obtained by setting B = Q and by
replacing the inequality constraint by ‖BW‖g,p,� = 0, in which
case the main unregularized risk is not altered. This formula-
tion led to the so-called EXTRA algorithm proposed in [25],
albeit derived as a gradient descent recursion from general
costs, and with B replaced by the symmetric square-root V1/2

of the matrix c(INM −B∗B) = V�/2V1/2, for some scalar c,
and with B = B⊗ IM , for an N × N combination matrix B.
As a result, for small step sizes, the algorithm derived in this
manner seeks the exact constrained solution.

In contrast, the algorithms proposed here rely on exact
constrained adaptive implementations, whose challenge in the

TABLE 3 Network Linearly-Constrained CG-Based RLS

TABLE 4 Network Linearly-Constrained CG-Based LMS

extended network scenario lies instead on the realization of
the involved inverses. For example, observe that Ai in (78) is a
combination matrix whose structure extrapolates the network
node distribution. That is, it can be easily verified, using the
contraint CW = 0 along with the matrix inversion lemma, that

Ai = 1

N
111111T (87)

which shows that effectively, each node takes the average of
estimates of all agents of the network, and not only locally.
The social learning in this case corresponds to two consecu-
tive combination operations necessary for the computation of
{pk,i, kk,i} in Table 4. The same two-step operation holds in
the RLS case, in Table 3.

V. COMPUTATIONAL COMPLEXITY
Table 5 lists the approximate order of complexity per agent
in terms of the operations involved in each of the proposed
algorithms in this work. For the sake of comparison, we also
include the complexity of the reweighted, single-task algo-
rithms derived in Part I.

134 VOLUME 3, 2022



TABLE 5 Computational Complexity of All Recursions

We highlight that the constructions considered herein imply
very low complex solutions to the single-task problems when
the constraint matrix is limited to its simplest form. That is,
consider for example the network of Fig. 2, and the corre-
sponding constraint with γ = 1, given by (23) in Part I of
this paper. This corresponds to the M(N − 1)× NM matrix
C = C ⊗ IM where each row of C has at most 2 entries, either
1 ou −1. This results in very simple RLS and LMS network
recursions, where only two agents are combined in Nk via
addition. We shall see in our experiments, that depending on
the level of correlation of the streaming data, the performance
of the algorithm in this case can be quite similar to the one
where cooperation takes place among all available agents at
each neighborhood (see Fig. 5). We also bring attention to
the fact that the performance of the constrained LMS algo-
rithm (C-CG-LMS) proposed here outperforms the one of
the NLMS-RV, which instead makes use of a time-varying,
optimized combination matrix.

Also, the above arguments can also be extended to a more
general network affine projection algorithm (APA). The APA
in this context is given by

wi = Ai

[
wi−1 + μH̄�

i

(
εI + H̄iAiH̄�

i

)−1 ei

]
(88)

where H̄i = bdiag{H1,i, H2,i, . . . , HN,i} is in terms of the
data matrix Hk,i = col{uk,i−L+1, uk,i−L+2, . . . , uk,i}. Thus,
one can envision a CG based algorithm that will deal with the
innermost inverses in (82) as well, obviously, with additional
computation effort. Moreover, further gains in complexity and
performance can be achieved for tap-delay-line models, when
implemented in the subband domain, using a reasoning simi-
lar to the one followed in Part I.

VI. SIMULATIONS
We assess the performance of the proposed recursions in mul-
titask and single tasks settings, considering the same network
of N = 20 agents in the experiments of Part I, illustrated in
Fig. 2. The extended vector parameter Wo is generated as a
Gaussian vector sequence, and with the same power profiles
σ 2

u,kI and σ 2
v,kI for its M = 10-length entries considered be-

fore. We set the forgetting factor λ to one in all scenarios and
consider adaptation initially without preconditioning.

FIGURE 2. Network of N = 20 agents.

FIGURE 3. MSD for the exact LRLS and the corresponding CG recursions.

� Scenario 1 (Multitask scenario under quadratic reg-
ularization): We illustrate the evolution of the ensemble-
average learning curves according to the network counterpart
of (83),

MSD = 1

N
E‖Wη,i −Wηo‖2 (89)

where Wηo is the solution to (48), given by (51), with ηo = 10
and white noise inputs. The performance is compared in Fig. 3
among the (i) the non-cooperative NLMS-based algorithm;
(ii) the network leaky-LMS algorithm, and (iii) the network
CG-L-RLS considering two forms of computation of the step-
size αk,n, namely, (47) and by using the information of node
k alone, in the context of the extended network formulation.
The exact WLS algorithm is also illustrated for comparison,
and appear on top of the latter two. We perceive a similar
performance in these cases regardless of how the step-size
αk,n is computed.
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FIGURE 4. MSD for the exact LRLS and the corresponding CG recursions.

To highlight the importance of relying on correlated entries,
we reassess the performance considering a less uniform input
power profile, say, for the set of input power nodes σ 2

u ∈
{−12 −10.4 −12.5 11 10 12.6 22.4 12.3 12.4 11.5 11.7
1.3 −12.6 12.5 12.5 10.3 11.5 12.1 −10.5 12.2} dB. As
depicted in Fig. 4, we see that while the algorithm employing
the extended counterpart of (47) diverges, the proposed CG
that computes αk,n via cooperation still follows the exact
L-RLS learning curve.
� Scenario 2 (Single task scenario under quadratic reg-

ularization): The goal in this experiment is to contrast the
performance of the proposed constrained LMS and leaky-
LS CG-based recursions with existing algorithms, in partic-
ular, with the reweighted regularization methods developed in
Part I. We shall consider two scenarios, namely, under white
noise input signals for the agents, and arbitrarily correlated
signals, as specified in the first experiment of Part I, and for
the same input power profile of the previous experiment.

1) WHITE INPUTS
Fig. 5 depicts the MSD evolution of all algorithms which
are fairly smooth. For the leaky-type recursions, we have set
the ridge strength to ηo = 100. At this level, the network
leaky-LMS approximately reaches the theoretical bound of
the diffusion LMS. Further increase in ηo will eventually lead
to numerical difficulties. In order to attain the correspond-
ing strength ηo = ∞, we implement the network linear con-
strained LMS via CG recursions of Table 4 with C given by
(23) defined in Part I of this paper. Note that the accuracy of
the proposed algorithm surpasses the one of the NLMS-RV,
considering that their rate of convergence is similar during
most of the initial iterations. Further improvement over these
recursions is obtained via the CG leaky recursions, labeled
as CG-LRLS 1 and CG-LRLS 2. to illustrate the necessity
of cooperation in determining the step sizes αk,n, the latter

FIGURE 5. MSD for the various single-task algorithms, white noise input
signals.

was implemented assuming that these are computed without
information from the neighbors. The zoomed picture shows
divergence in this case, unlike the former, which makes use
of full cooperation. Again, further increase in regularization
leads to instability. The limit ηo = ∞ is reached via the C-CG-
RLS algorithm, which is superior to the previous recursions.
Still, the AAF algorithm developed in Part I is superior, in
both exact and simplified forms (SAAF).

2) HIGHLY CORRELATED INPUTS
We consider again a rather hash scenario of highly correlated
input sources, ranging from small pole first order AR pro-
cesses, to music signals, specified from node k = 1 to k = 20
via the set

{S, S, S, S f1, S f2 , S f3 , 0.1, −0.2, S, S, S

0.3, 0.05, 0.999, −0.999, 0.1, −0.3, 0.1, −0.3, 0.999}
where S refers to a music segment obtained from the Matlab
example file “hade” (a 9s segment from the Hallelujah Chorus
of Handel’s Messiah), S fm are filtered versions of it through
AR filters with poles at 0.999, 0.3, and 0.5, respectively and
the remaining values refer to poles rk of AR processes gen-
erated from uniformly distributed sources. Identical music
segments are used in six nodes, which renders these signals
correlated in both time and space.

For comparison, we have included the multidelay adaptive
filter based relative variance and simplified AAF algorithms,
namely, MDF-NLMS-RV and MDF-SAAF, proposed in Part
I, for models of length M = 16 and transmitted block sized
L = 16. The CG-LRLS 1 can be contrasted with its exact non-
distributed, leaky-RLS solution, which is followed closely by
the former in the long run. The superiority of the AAF and
SAAF algorithms is clear. Note, however, that in this scenario,
the CG implementation of the constrained RLS algorithm
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FIGURE 6. MSD for the various single-task algorithms, arbitrary correlated
input signals.

FIGURE 7. MSE for the various single-task algorithms, arbitrary correlated
input signals.

becomes more sensitive to the various spatially correlated
signals. This was not the case when independent sources are
used by the agents.

3) MSE PERFORMANCE
Of course there exists a natural tradeoff between MSE and
MSD performance for the various algorithms considered in
this paper. We first illustrate this fact considering the above
scenario in Fig. 7 considering the MSE curves correspond-
ing to the MSD of Fig. 6. In this setting, the CG-L-RLS
Algorithm 1 and the C-CG-RLS achieve the best compromise
between MSE and MSD performance.

To further verify the behavior of these algorithms, we re-
place the music signals by AR processes, and repeat the exper-
iment. We consider this time two distinct implementations of
the constrained algorithms. Fig. 8 depicts the MSD and MSE

FIGURE 8. (Top) MSD and (bottom) MSE for the various single-task
algorithms, considering only AR input signals.

learning curves averaged over 100 runs of every algorithm de-
rived. We may highlight that there is a much more reasonable
tradeoff between these measures for the AAF and the SAAF
algorithms. Moreover, the learning curves for the CG-LRLS 2
algorithm diverge in this case.

VII. CONCLUSION
In this paper, we proposed new distributed recursions to the
exact multitask problem formulated in Part I, by means of
an extended network version of the CG algorithm. The ap-
proach can also be applied to single-task solutions, which are
adaptively computed via a network linearly-constrained algo-
rithms. These in turn can be compared with the reweighted
formulation proposed in Part I for same objective. The result-
ing recursions have similar complexity and can rely on simple
constraint matrices in order to enforce consensus among the
agents’ solutions. In particular, the exact network constrained
LMS algorithm outperforms the normalized relative-variance
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adaptive recursions derived in Part I. This is also the case
for the network constrained RLS algorithm considering well-
conditioned data. For highly ill-conditioned signals, the MSD
evolution of the C-CG-RLS degrades, which can be restored
simply by implementing a leaky-RLS solution. The largest the
ridge strength in this case, the closer to the exact AAF perfor-
mance it performs. The latter turned out to exhibit the lead-
ing performance among all algorithms derived in this work.
Overall, in the single-task scenario, the reweighted recursions
of Part I are more robust, fast coverging and accurate in the
MSD sense.

We remark that further simplification of these recursions
can be attained by assuming uncorrelated node signals, sim-
ilarly to the simplified recursions derived in Part I. This mo-
tivates frequency-domain, subband implementations to both
multitask and single-task problems, in the form of MDF
recursions. These variants will be subject of future work
elsewhere.
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