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ABSTRACT In low light condition, color (RGB) images captured by visible sensors suffer from severe noise
causing loss of colors and textures. However, near infrared (NIR) images captured by NIR sensors are robust
to noise even in low light condition without color. Since RGB and NIR images are complementary in low light
condition, the multispectral fusion of RGB and NIR images provides a viable solution to low light imaging.
In this paper, we propose multispectral fusion of RGB and NIR images using weighted least squares (WLS)
and convolution neural networks (CNNs). We combine traditional WLS filtering for layer decomposition
and denoising with latest deep learning for image enhancement and texture transfer into the multispectral
fusion to take both advantages. We build two networks based on CNN: image enhancement network (IEN)
for image enhancement and texture transfer network (TTN) for NIR texture transfer. First, we perform RGB
image denoising based on WLS filtering and generate the base layer. We use both RGB and NIR images for
WLS filtering as weights to filter out noise in low light RGB images. Second, we conduct IEN to enhance
contrast of the base layer. Third, we perform TTN to deliver NIR details completely and naturally to the
fusion result. The combination of WLS, TTN and IEN leads to noise reduction, contrast enhancement, and
detail preservation in fusion. Experimental results show that the proposed method achieves good performance
in both noise reduction and detail transfer as well as outperforms state-of-the-art methods in terms of visual
quality and quantitative measurements.

INDEX TERMS Image fusion, convolution neural networks, multispectral, near-infrared, sensor fusion,
weighted least squares.

I. INTRODUCTION
The quality of RGB images depends on the shooting environ-
ment. Under the proper shooting environment, the captured
RGB image is of excellent quality, which is suitable for human
visual perception. However, when the shooting environment
of RGB images is poor like low light condition, the quality
of RGB images is degraded by noise or other artifacts. To
improve the imaging quality of RGB images in low light
condition, many studies have been done. One solution is to
enhance the color and luminance of low light images through
data-driven approach [5], [24] and illumination adjustment
approach [1], [9], [41]. As image acquisition of different types
of sensors becomes more and more convenient, improving the

quality of RGB images through multi-sensor image fusion has
received increasing attention. Fusion of RGB and NIR images
is able to improve imaging quality in low light condition [38],
[40], [47]. In low light condition, RGB images are degraded
by much noise causing loss of detail and color by increasing
camera ISO. Fortunately, NIR images captured at the same
scene have high resolution and clear texture, which are robust
to noise. However, compared with RGB images, the most sig-
nificant disadvantage of NIR images is no color information.
Thus, as RGB and NIR images are more and more easily
accessible, their fusion becomes a possible solution to the
low light imaging. In the fusion of RGB and NIR images,
the most prominent problem is the inconsistency of the
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FIGURE 1. Entire framework of the proposed fusion method for RGB and
NIR images. WLS: Weighted least squares. IEN: Image enhancement
network. TTN: Texture transfer network.

luminance channels of RGB images and the contrast of NIR
images. Directly using NIR images as luminance channel re-
sults in color distortion and structural loss.

In this paper, we propose multispectral fusion of RGB and
NIR images using weighted least squares (WLS) and con-
volution neural networks (CNNs). As shown in Fig. 1, we
divide the fusion task of RGB and NIR images into three
modules: RGB image denoising, image enhancement and NIR
detail transfer. For RGB image denoising, we adopt WLS to
remove the noise in RGB images through joint guidance and
generate the base layer. For image enhancement, we build an
image enhancement network (IEN) based on CNN to enhance
contrast of the base layer. For NIR detail transfer, we design
a texture transfer network (TTN) based on CNN to transfer
NIR details to the fusion result. Based on the three modules,
the proposed method combines multispectral advantages of
RGB and NIR images, and generates a fusion image with
noise reduction, contrast enhancement, and detail preserva-
tion. We perform IEN first and then TTN to achieve natural
looking fusion results. Fig. 2 shows the fusion results of RGB
and NIR images by different methods. We capture the pair
of RGB and NIR images at night by JAI AD-130 GE cam-
era. This camera is able to simultaneously capture RGB and
NIR images through the same optical path with two CCDs.
As shown in the figure, the proposed method successfully
removes noise and produces details in fusion, especially in
the background regions (see the trees and road). However,
Yan et al.’s method [47] produces an oversmoothed fusion
image in the background regions, thus not natural-looking.
DIF-Net [13] and DenseFuse [17] change the color tone of
the person’s clothe affected by the NIR image.

Compared with existing methods, the main contributions of
this paper are as follows:
� We combine traditional WLS filtering with latest deep

learning to take both advantages in fusion. We use WLS
filtering for layer decomposition and denoising, while
we utilize deep learning for image enhancement and
texture transfer.

� We build IEN for image enhancement and TTN for NIR
texture transfer based on CNNs. IEN enhances the base
layer obtained by WLS, thus it does not amplify noise
nor change color tone after contrast enhancement. TTN
effectively transfers NIR details to the fusion thanks to
the feature extraction and fusion by CNN.

� The combination of WLS, TTN, and IEN leads to noise
reduction, contrast enhancement, and detail preserva-
tion in fusion. The proposed method is beyond simple

combination of existing techniques, and provides a vi-
able solution to low light imaging using multiple sensors.

II. RELATED WORK
Up to the present, many outstanding studies have been
done for the fusion of different types of images. Similar to
RGB/NIR fusion, there is flash/no-flash image fusion among
them. In low light condition, no-flash images contains a lot of
noise and detail loss, while flash images include details with
little noise. Thus, flash images provide details for no-flash
image similar to NIR images. However, flash images cause
some unnecessary shadows and contain specular highlights.
Eisemann et al. [4] proposed a flash/no-flash fusion method
that decomposed flash and no-flash images into large scale
image structures and small scale details. Petschnigg et al. [34]
proposed a flash/no-flash fusion method based on bilateral
filtering. As a general fusion method, He et al. [10] pro-
posed guided image filtering (GF) based on a local linear
model. Another type of image fusion is fusion of infrared and
RGB images. Infrared images distinguish the target from their
backgrounds based on radiation difference, and perform well
for imaging in bad weather and night conditions. NIR and
infrared images are very similar since they have strong anti-
interference performance against difficult surroundings. How-
ever, infrared images typically have low resolution and poor
textures. The previous work of RGB/infrared image fusion
are mainly divided into seven categories according to their
adopted theories, i.e. multi-scale transform [20], [33], [53],
sparse representation [21], [42], neural network [16], [44],
subspace methods [2], [15], and saliency-based methods [26],
[52], [54], hybrid models [23], [30], and other methods [25],
[55]. Compared with flash images, NIR images provide better
details with high resolution in night vision. Thus, the fusion of
RGB and NIR images is able to produce high quality fusion
results especially in low light condition. However, luminance
channel of RGB images has contrast and structural differ-
ences from NIR images. The direct use of NIR images as the
luminance channel will cause color distortion and structural
loss. To solve the contrast difference, Son et al. [38] proposed
low light color image denoising based on contrast conversion
between NIR images and luminance channels. Son et al. [40]
further proposed an NIR coloring method using a contrast-
preserving mapping model. To successfully preserve struc-
tural information of RGB and NIR images, Shibata et al. [37]
proposed a fusion method based on high visibility area se-
lection. Son et al. [39] proposed a layer-based approach for
image pair fusion. Zhuo et al. [58] constructed a framework
for the fusion of RGB and NIR. Yan et al. [47] explicitly
modelled derivative-level confidence and proposed cross field
joint image fusion by optimizing a scale map.

So far, deep learning-based RGB and NIR image fusion
methods are relatively few. As a new research direction, deep
learning-based RGB/NIR image fusion is of significant im-
portance. Traditional fusion methods often fail to produce
satisfactory natural-looking fusion results due to the fact that
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FIGURE 2. RGB-NIR image fusion results. Left to right: Input RGB image, input NIR image, Yan et al.’s method [47], DIF-Net [13], DenseFuse [17], and the
proposed method (WLS+TTN). We capture them at night by JAI AD-130 GE camera which is able to simultaneously capture RGB and NIR images through
the same optical path with two CCDs.

the extraction and fusion of details are not accurate and nat-
ural enough. Considering the powerful feature extraction and
representation capabilities of convolutional neural networks
(CNN), deep learning-based RGB/NIR fusion is an effective
way of yielding more natural and higher quality fusion im-
ages. However, the biggest obstacle to deep learning-based
RGB/NIR image fusion is the acquisition of training data. Un-
like the restoration of degraded images such as image super-
resolution and image enhancement, the goal of image fusion is
not to recover the lost information but to fuse different types of
image information to obtain a natural-looking fusion image.
Therefore, compared to the image restoration task, the ground
truth of the image fusion task is almost impossible to obtain.
For RGB/NIR image pairs in low light condition, one way to
obtain the ground truth is to capture daytime RGB images in
the same scene. Such approach is costly and difficult to imple-
ment in practice. Jung et al. [12] proposed multispectral fusion
of RGB and NIR images using two stage convolutional neural
networks (CNNs), called FusionNet. They synthesized noisy
RGB images for training data by adding noise in clean RGB
images, and use the clean RGB images as ground truth. Jung
et al. [13] proposed an unsupervised deep learning framework
for image fusion with structure tensor representations, called
DIF-Net. They provided an unsupervised loss function using
the structure tensor representation of the multi-channel image
contrasts. The loss function was minimized by a stochastic
deep learning solver, thus directly producing a fusion image
without iterations. In the deep learning-based image fusion,
the most similar task is the fusion of visible and infrared (IR)
images. Ren et al. [36] proposed an IR and visible image fu-
sion method based on convolutional neural networks (CNN).
Li et al. [19] proposed a deep learning framework for the
fusion of infrared and visible image. They used VGG19 to
extract features of IR and visible images. Li et al. [17] further
proposed an encoder-decoder network structure for the fusion
of IR and visible images, called DenseFuse. Li et al. [18] then

proposed a visible and IR fusion method based on ResNet
and zero-phase component analysis. Liu et al. [22] proposed
a fusion method based on CNN and saliency detection. As a
very similar study, Prabhakar et al. [35] proposed a deep unsu-
pervised approach for exposure fusion with extreme exposure
image pairs, called DeepFuse. Ma et al. [28] adopted a gener-
ative adversarial network (GAN) for the fusion of visible and
IR images, called FusionGAN. They further achieved fusion
methods of visible and IR images such as DcGAN, GANMcC,
STDFusionNet, U2Fusion, and SDNet [26], [27], [29], [45],
[48], [49]. In our previous work [56], [57], we built a fusion
framework of RGB and NIR images based on WLS. This
framework is fully based on WLS that is one of traditional
filtering methods, and provides alternating guidance for fusion
based on it. In this work, we combine traditional filtering
(WLS) and latest deep learning (CNN) into the fusion of RGB
and NIR images to take advantage of both approaches. We
use WLS to achieve good denoising performance in low light
condition, while we adopt CNN to transfer NIR details and
enhance RGB images, thus resulting in natural-looking fusion
images.

III. PROPOSED METHOD
A. RGB IMAGE DENOISING BY WLS
To remove noise in the RGB image, we adopt WLS to denoise
through the joint guidance of luminance channel of RGB im-
age and NIR image. WLS is a globally optimized image filter
with data and smoothing terms [31], which can smooth images
effectively. Given an input image f and a guidance image g,
an output image u is obtained by minimizing the following
WLS energy function as follows:

ε(u) =
∑

p

(
up − fp

)2 + λ
∑

p

∑
q∈N (p)

ωp,q(g)
(
up − uq

)2
(1)

where N (p) represents a set of four adjacent pixels of P; λ

controls the balance between data and smoothing terms, and
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increasing λ results in smoothing output; and ωp,q(g) is the
weight calculated from the guidance image f and measure
the similarity between pixels p and q. ωp,q(g) is defined as
follows:

ωp,q(g) = exp(− ∥∥gp − gq
∥∥ /σ ) (2)

where σ is a range parameter. The energy function in Eq. (1)
is transformed into a vector form as follows:

ε(u) = (u − v)T(u − v) + λuTAgu (3)

where u and v denote S × 1 column vectors containing values
of u and v, respectively, and S is the total number of pixels; T
denotes the transposition, and Ag is S × S Laplacian matrix as
follows [8]:

Ag(m, n) =

⎧⎪⎨
⎪⎩

∑
l∈N (m)

ωm,l (g) n = m

−ωm,n(g) n ∈ N (m)
0 otherwise

(4)

Based on a large sparse matrix, this energy function can be
solved through a linear system as follows:

(I + λAg)u = v (5)

However, solving it by matrix inversion is of high computa-
tional complexity. By fast global smoothing of WLS, the time
complexity reaches O(N ). First, we consider one-dimensional
(1D) case assuming that WLS energy function works on a 1D
horizontal input signal f h and a 1D guiding signal gh along x
dimension (x = 0, . . .,W − 1). The energy function of the 1D
signal is as follows:

∑
x

((uh
x − f h

x )
2 + λt

∑
i∈Nh(x)

ωx,i(g
h)(uh

x − uh
i )

2
) (6)

where Nh(x) represents two neighbors of x. This energy func-
tion is minimized by the following linear equation:

(Ih + λt Ah) uh = fh (7)

where Ih is an identity matrix with a size of W × W ; uh and
fh represent the vector notations of uh and fh, respectively; Ah

is a three-point Laplacian matrix with a size of W × W . The
linear system in Eq. (7) is written as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

b0 c0 0 · · · 0
. . .

. . .
. . . 0 0

0 ax bx cx 0

0 0
. . .

. . .
. . .

0 · · · 0 aW −1 bW −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

uh
0
...

uh
x
...

uh
W −1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

f h
0
...
f h
x
...

f h
W −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

where uh
x and f h

x are the xth elements of uh and fh, respec-
tively; ax, bx , and cx represent three nonzero elements in the
xth row of (Ih + λt Ah). In boundary condition, a0 = 0 and
cW −1 = 0. ax , bx and cx are written as:

ax = λt Ah (x, x − 1) = −λtωx,x−1

bx = 1 + λt Ah(x, x) = 1 + λt
(
ωx,x−1 + ωx,x+1

)

FIGURE 3. RGB image denoising module based on WLS. FWMF: Fast
weighted median filtering. ⊕: Pixel-wise addition operator.

cx = λt Ah (x, x + 1) = −λtωx,x+1 (9)

Matrix (Ih + λt Ah) is a tridiagonal matrix whose nonzero
elements exist only in the left and right diagonals. By Gaus-
sian elimination, it can reach O(N ) complexity. In Gaussian
elimination algorithm, intermediate c̃x and f̃ h

x are computed
as follows:

c̃x = cx/ (bx − c̃x−1ax )

f̃ h
x =

(
f h
x − f̃ h

x−1ax

)
/ (bx − c̃x−1ax ) , (x = 1, . . . ,W − 1)

(10)

where c̃0 = c0/b0 and f̃ h
0 = f h

0 /b0. Then, output uh
x is ob-

tained by:

uh
x = f̃ h

x − c̃xuh
x+1, (x = W − 2, . . . , 0) (11)

with uh
W −1 = f̃ h

W −1. To process a two-dimensional (2D) image
signal by using 1D solver, we perform 1D global smoothing
operations along each dimension of 2D signal. To prevent the
streaking artifact which commonly appears in separable algo-
rithms [7], we perform 2D smoothing by applying sequential
1D global smoothing to a multiple number of iterations [31].
In this scheme, λt in each iteration is computed as follows:

λt = 3

2

4T −t

4T − 1
λ (12)

where T represents the total number of iterations along each
dimension. In each iteration, we perform 1D solver with pa-
rameter λt along x dimension and y dimension of 2D images
continuously.

Based on WLS, a framework for denoising RGB images
was designed. Fig. 3 shows the denoising module for RGB
image. Firstly, we transfer the RGB image to YUV space and
take out the luminance channel YI . Then, we utilize WLS and
FWMF [51] to remove noise in luminance channel YI to get Yn.
Here, Yn becomes very blurry although the noise is removed.
However, using the joint guidance of Yn and NIR image NI

to denoise the input RGB image CB can maintain the edge
information of the image while denoising. The base layer CB

is obtained by minimizing the following energy function:

ε (CB) = (CB − CI )T (CB − CI ) + λCB
T AGn CB (13)

where CI represents column vectors containing values of CI ;
AGn denotes Laplacian matrix defined by Yn + NI ; and range
parameter is σ .
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FIGURE 4. RGB denoising comparison between several strategies. Top-left:
Noisy RGB image. Top-right: Guided by CI . Bottom-left: Guided by NI .
Bottom-right: Guided by Yn + NI .

FIGURE 5. Network structure of the image enhancement network (IEN).
IEN is based on CNN, which consists of four residual blocks.

FIGURE 6. Samples of training data for IEN. In this dataset, iPhone images
are of low quality used as input, and Canon images are of high quality
used as ground truth.

In low light condition, the RGB image contains severe noise
causing destruction of image structure due to low SNR. Since
some details of the RGB image are lost by WLS filtering,
we adopt the joint guidance of luminance channel of RGB
image and NIR image in WLS filtering to retain details in
the RGB image while removing noise. By adopting this joint

FIGURE 7. Network structure of the texture transfer network (TTN).

FIGURE 8. Training data generation for TTN. We use the L0 smoothing to
synthesize texture lost images for training.

guidance strategy, the base layer obtained by the denoising
module achieves a good denoising effect and maintains edge
information. To verify the effectiveness of joint guidance,
we perform a comparison of several denoising methods. As
shown in Fig. 4, the guidance of CI is not able to produce
satisfactory denoising performance. When using NIR image
only as guidance, the contrast difference between RGB and
NIR images would cause serious blurs in edges (see the red
boxes). Guided by Yn + NI , the denoising module successfully
removes noise while preserving the structure of RGB image.

B. IMAGE ENHANCEMENT BY IEN
Since the contrast of RGB images taken in low light condi-
tion is low with a dark tone, we build an image enhance-
ment network (IEN) for contrast enhancement. The network
structure of IEN is shown in Fig. 5. IEN is based on CNN,
which consists of four residual blocks. Each residual block
has two convolutional layers, two BN layers, and one ReLU
layer. This network is trained from the pairs of low quality
images by smartphone camera and high quality images by
digital single-lens reflex (DSLR) camera. We use MSE loss,
SSIM loss and perceptual loss to form the total loss func-
tion. For IEN, the contrast change degrades color distortion
in the fusion image, and thus we constrain MSE and SSIM
by adding a new term of perceptual loss. The perceptual loss
is calculated by the pre-trained VGG19. Since our task pays
more attention to the color information of the image, we adopt
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FIGURE 9. Samples of training data. Left: Input RGB image. Middle: Input NIR image. Right: Ground truth.

several shallower layers in VGG19 to calculate the perceptual
loss. The total loss function for IEN, Ltotal1, is as follows:

Ltotal1 = λ1LMSE + λ2LSSIM + λ3Lperceptual (14)

where λ1, λ2 and λ3 represent the weight of each loss.
We adopt the DPED dataset [11] for network training as

shown in Fig. 6. In the dataset, iPhone images are of low
quality and used as input, and Canon images are of high
quality and used as ground truth.

C. NIR DETAIL TRANSFER BY TTN
Since NIR image has good detail information, it is required
to extract the details of NIR image and transfer them to the
fusion image. To achieve this, we build a texture transfer
network (TTN) that transfers the details of the NIR image to
the fusion image. The network structure of TTN is shown in
Fig. 7. As shown in the figure, TTN consists of two pathways
(RGB and NIR) and their fusion module. The four layers in
two pathways have a series of filters 32, 64, 64 and 1 with
kernel size 3 × 3. The four layers in the fusion module has
a series of filters 32, 32, 64 and 1 with kernel size 5 × 5,
while the last layer in the fusion module is filter 1 with kernel
size 5 × 5. First, the features of the RGB (IEN result) and
NIR images are extracted through two pathways separately.
We perform ResNet model as the network backbone and ex-
tract features from RGB and NIR images to estimate residual.
Then, the information extracted by the two pathways is added
at the pixel level in the fusion module. Finally, the information
is fused through a convolution channel in the fusion mod-
ule. The input RGB image is connected with the end of the
network to get the fusion image. The loss functions used in
TTN are MSE loss and SSIM loss [43], which are defined as
follows:

LSSIM = 1

N

N∑
i=1

(1 − SSIMi ) (15)

LMSE = 1

N

X∑
x=1

Y∑
y=1

∥∥Ig(x, y) − Io(x, y)
∥∥2

2 (16)

where N is the number of images, x and y represent pixel
coordinates, Io is the output image of TTN, and Ig is ground
truth. The total loss function for TTN, Ltotal2, is defined as

follows:

Ltotal2 = λ4LMSE (Ig, Io) + λ5LSSIM (NI , Io)

+ λ6LSSIM (Ig, Io) (17)

where λ4, λ5 and λ6 represent the weight of each loss.
Since there is no suitable dataset for the fusion task of RGB

and NIR images, we synthesize training data based on the
dataset [3]. Fig. 8 illustrates the training data generation for
TTN. We adopt the L0 smoothing in the training data gen-
eration [46] to synthesize texture lost images by smoothing.
Samples of the synthesized training data are shown in Fig. 9.
The input RGB image is synthesized from the ground truth by
the L0 smoothing.

IV. EXPERIMENTAL RESULTS
To verify the effectiveness of the proposed method, we con-
duct visual and quantitative comparison of the experimental
results on synthetic image pairs (see Figs. 12–13) and real
image pairs (see Figs. 14–16). The synthetic image pairs
are indoor scenes, which are obtained by adding Gaussian
noise and salt-and-pepper noise into the clean RGB images
in a publicly available dataset [6]. The real image pairs are
outdoor scenes, which are captured by JAI AD-080GE camera
at night. This camera is able to capture RGB and NIR images
simultaneously using the same optical path with two CCDs.
We compare the proposed method with some state-of-the-art
ones: 1) Traditional methods: Yan et al. [47]; 2) Deep learning
methods: DIF-Net [13], DenseFuse [17], GANMcC [29], and
STDFusionNet [26].

A. PARAMETER SETTING
For training and testing, we use a PC with Intel Core i7-7700
CPU and GTX1080 GPU running Ubuntu 16.04, Pytorch and
C++. In RGB denoising module, excessive smoothing may
result in loss of details. To balance denoising and detail preser-
vation, we set the parameters of WLS λ = 102 and σ = 0.1.
For FWMF, we set the window radius to 5 and sigma to 150
to control the weight between two pixels. For experiments, we
train the proposed IEN and TTN using Adam optimizer [14].
The number of epochs is 50, and the batch size is 64. During
the training process, we set learning rate to 0.0001, and batch
size to 64 for hyperparameters.
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FIGURE 10. Stepwise results by the proposed method. Left to right: Input RGB image, input NIR image, WLS, IEN, and TTN.

FIGURE 11. Fusion results on real images by the proposed method. Left to
right: Input RGB images, WLS results, input NIR images, fusion results by
the proposed method (WLS+IEN+TTN). The second and fourth rows are the
zoomed images of the first and third rows, respectively.

B. PERFORMANCE EVALUATION AND ABLATION STUDY
Fig. 10 shows stepwise results (WLS, IEN, and TTN) by the
proposed method. In low light condition, the RGB images

contain much noise even destroying image textures. WLS
successfully removes noise from the input RGB images
by the joint guidance of RGB luminance channel and NIR
image, and generates the base layer. IEN enhances contrast of
the base layer, while TTN extracts the details of NIR image
and fuses them with the base layer. We provide more fusion
results on real images by the proposed method in Fig. 11.
As shown in the figures, the proposed method generates
natural-looking fusion results with noise reduction and detail
preservation. Since IEN enhances the base layers obtained
by WLS, the fusion results are enhanced and thus can not be
directly compared with the other fusion methods. Thus, we
provide the fusion results by WLS+TTN in Figs. 12–16 to see
the detail transfer effect by TTN. Then, we further provide the
fusion results by WLS+IEN+TTN in Figs. 17 and 18 to see the
image enhancement effect by IEN. As shown in Figs. 12–16,
compared with the fusion results by other methods, our fusion
results by WLS+TTN achieve outstanding denoising perfor-
mance while retaining good details in both foreground objects
and background. From the viewpoint of color, the proposed
method minimizes color distortion while transferring NIR
details to fusion. That is, our method preserves the original
color tone of the input RGB image after fusion. Moreover,
our fusion results in Figs. 13–16 do not produce edge
blurring artifacts in areas where the NIR and RGB luminance
channels are inconsistent (see the red boxes in Fig. 13 and the
background in Figs. 14–16). The proposed method produces
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FIGURE 12. Visual comparison in bowls. Top: Input RGB image, input NIR image, STDFusionNet [26], and GANMcC [29]. Bottom: Yan et al. [47],
DIF-Net [13], DenseFuse [17], the proposed method (WLS+TTN). Since IEN enhances the base layer obtained by WLS and leads to enhancement of the
fusion result, we separately provide the fusion result of the proposed method (WLS+IEN+TTN) in Fig. 17.

FIGURE 13. Visual comparison in teapot . Top: Input RGB image, input NIR image, STDFusionNet [26], and GANMcC [29]. Bottom: Yan et al. [47],
DIF-Net [13], DenseFuse [17], the proposed method (WLS+TTN). Since IEN enhances the base layer obtained by WLS and leads to enhancement of the
fusion result, we separately provide the fusion result of the proposed method (WLS+IEN+TTN) in Fig. 17.

FIGURE 14. Visual comparison in a real image pair. Top: Input RGB image, input NIR image, STDFusionNet [26], and GANMcC [29]. Bottom: Yan et al. [47],
DIF-Net [13], DenseFuse [17], the proposed method (WLS+TTN). Since IEN enhances the base layer obtained by WLS and leads to enhancement of the
fusion result, we separately provide the fusion result of the proposed method (WLS+IEN+TTN) in Fig. 18.
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FIGURE 15. Visual comparison in a real image pair. Top: Input RGB image, input NIR image, STDFusionNet [26], and GANMcC [29]. Bottom: Yan et al. [47],
DIF-Net [13], DenseFuse [17], the proposed method (WLS+TTN). Since IEN enhances the base layer obtained by WLS and leads to enhancement of the
fusion result, we separately provide the fusion result of the proposed method (WLS+IEN+TTN) in Fig. 18.

FIGURE 16. Visual comparison in a real image pair. Top: Input RGB image, input NIR image, STDFusionNet [26], and GANMcC [29]. Bottom: Yan et al. [47],
DIF-Net [13], DenseFuse [17], the proposed method (WLS+TTN). Since IEN enhances the base layer obtained by WLS and leads to enhancement of the
fusion result, we separately provide the fusion result of the proposed method (WLS+IEN+TTN) in Fig. 18.

natural-looking fusion results with little noise and fine details.
This is because the proposed method takes advantage of
both filtering (WLS) and deep learning (CNN) into fusion.
Figs. 14–16 show the fusion results in low light condition,
which indicates that the proposed fusion method provides a
solution to low light imaging. We compare the fusion results
without and with IEN in Figs. 17 and 18, i.e. WLS+TTN and
WLS+IEN+TTN. It can be observed that WLS+IEN+TTN
recovers more details in the fusion results than WLS+TTN
while retaining the color tone of the original images. IEN only
enhances the base layer obtained by WLS, thus it does not
amplify noise nor change color tone after contrast enhance-
ment. The ablation experiments indicate that IEN enhances

the contrast and color of the fusion images without tone
change.

C. QUANTITATIVE MEASUREMENTS
For quantitative measurements, we choose blind image quality
assessment (BIQA) [50] and natural image quality evaluator
(NIQE) [32] as evaluation metrics, which are no-reference
metric for image quality assessment. NIQE measures natu-
ralness without subjective tests based on a multivariate Gaus-
sian model. The reason for choosing BIQA and NIQE as the
evaluation metric is that neither RGB nor NIR images can
be used as reference images for the fusion task. Tables 1
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TABLE 1. BIQA Comparison Between Different Methods

Bold symbol represents the best performance, while underline symbol represents the second performance.

TABLE 2. NIQE Comparison Between Different Methods

Bold symbol represents the best performance, while underline symbol represents the second performance.

FIGURE 17. Fusion results without and with IEN. Left: WLS+TTN. Right:
WLS+IEN+TTN. Top to bottom: teapot , bowls, doll , books. IEN enhances
the contrast and color of the fusion images without tone change.

and 2 show BIQA and NIQE scores of different methods, re-
spectively. Smaller scores represent better performance. Bold
and underlined numbers indicate the best and second per-
formance, respectively. In most scenes, the proposed method

FIGURE 18. Fusion results without and with IEN. Left: WLS+TTN. Right:
WLS+IEN+TTN. Top to bottom: Fig. 2, Fig. 14, Fig. 15, Fig. 16. IEN enhances
the contrast and color of the fusion images without tone change.
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(WLS+TTN) achieves the minimum BIQA and NIQE scores,
and outperforms the others in average performance.

V. CONCLUSION
In this paper, we have proposed multispectral fusion of RGB
and NIR images using WLS and CNN. We have combined
traditional filtering (WLS) and latest deep learning (CNN)
into the fusion of RGB and NIR images to take advantage
of both approaches. The denoising module based on WLS
achieves good denoising performance by the joint guidance
strategy. IEN effectively enhances the contrast of the base
layer, thus improving the color information of the image. TTN
transfers the details of NIR image to the fusion image with the
help of feature extraction and fusion by CNN. Experimental
results demonstrate the superiority of the proposed method for
RGB/NIR image fusion in noise removal and detail transfer
over the state-of-the-art methods.
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