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ABSTRACT Resting-state functional magnetic resonance imaging (R-fMRI) applications can entail a higher
temporal-sampling rate that trades off spatial resolution, thereby challenging effective scientific studies. To
enable higher spatial resolution, current schemes speedup per-timeframe scanning by reconstruction from
simultaneous multislice (SMS) magnetic resonance imaging (MRI) with k-space undersampling (sometimes
temporal undersampling), while using prior models on the signal. We propose a novel algorithmic framework
to reconstruct R-fMRI (SMS with controlled aliasing) that has, both, k-space undersampling and temporal
undersampling. We propose a coupled spatiotemporal sparse model, incorporating (i) a robust spatially-
regularized temporal-dictionary prior and (ii) a spatiotemporal wavelet prior, which we fit efficiently using
variational Bayesian expectation maximization with nested minorization (VBEMNM). We show that our
framework has the potential to enable higher spatial resolution without increasing scan time in R-fMRI that
has inherently weak signals and is therefore prone to large physiological fluctuations, acquisition noise,
and imaging artifacts. Qualitative and quantitative evaluation on retrospectively undersampled brain R-fMRI
shows that estimates of resting-state networks from our framework and the boost in temporal stability given
by our framework compares favourably to existing methods for R-fMRI reconstruction.

INDEX TERMS R-fMRI, reconstruction, SMS with CAIPI, joint k-t undersampling, coupled dictionary and
wavelets, robust, variational Bayesian EM, nested minorization.

I. INTRODUCTION
Functional magnetic resonance imaging (fMRI) acquires a
4D spatiotemporal image to assess the functional areas in
the cerebral cortex, unlike structural MRI that acquires a 3D
spatial volume to assess structural aspects, e.g., injuries or
tumors. Brain fMRI acquisition is performed as a collection
of transaxial slices, stackable as a spatial volume, at each
timeframe. To speedup acquisition, multiple transaxial slices
can be acquired simultaneously as a linear combination. This
is known as simultaneous multislice (SMS) imaging. In this
case, the fMRI scanner acquires the undersampled Fourier-
transform of the linear combination of multiple transaxial
slices. This imaging in the frequency domain is also known as
imaging in k-space. We describe the explicit forward model
for fMRI acquisition later in Section III.

In task-based fMRI, at voxels within the brain areas ac-
tivated by the task, the blood oxygenation level dependent
(BOLD) signals exhibit temporal correlations. Thus, task-
based fMRI aids in determining whether the task-appropriate
functional area is activated. In some cases, task-based fMRI
faces limitations when patients are unable to cooperate with
the prescribed tasks because of age (young children, elderly,
etc.) or because of some neuropsychiatric disorder. Also, a
task-based fMRI scan highlights only the task-specific func-
tional area of the brain and may be unable to assess the
overall functional health of the brain. In contrast, resting-state
fMRI (R-fMRI) [1] can overcome some of these challenges by
imaging the subject during a wakeful resting state or during
sedation. R-fMRI leverages the fact that, within voxels in
functionally connected areas or resting-state networks (RSN),
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the BOLD time-series exhibit correlations even when the sub-
ject is in resting state [1]. Such correlations are consistent
across subjects within a homogeneous cohort, despite signifi-
cant variability across subjects’ BOLD time-series [1], [2].

There are certain practical limitations that hamper the util-
ity of R-fMRI. The BOLD signal underlying R-fMRI com-
prises low frequencies that are typically less than 0.1 Hz.
Further, because the imaging is in resting state, the R-fMRI
signal is typically weak and thereby prone to degradations in
the form of large physiological fluctuations, acquisition noise,
and imaging artifacts leading to outliers [3], [4]. Reducing the
effects of the degradations requires a trade-off between tem-
poral sampling rates and spatial resolution. Higher temporal
sampling rates limit the acquisition duration for each time-
frame and, thereby, the spatial resolution. Higher spatial reso-
lution limits the temporal sampling rate risking aliasing from
the high-frequency components in the degradations. Typical
R-fMRI employs temporal sampling rates that are about an
order of magnitude higher than 0.1 Hz [2], limiting the spatial
resolution to 8–64 mm3 voxels and affecting the studies of the
cerebral cortex that is typically 3–4 mm thick.

Typical applications of R-fMRI can benefit greatly from
higher spatiotemporal resolution through improved signal
sensitivity and scientific-study reliability. However, current
commercial imaging systems need a trade-off between high
temporal resolution and high spatial resolution. The need to
reduce this trade-off motivates the speeding up of the per-
timeframe R-fMRI acquisition, which currently uses recon-
struction methods relying on (i) SMS imaging with k-space
undersampling [5], [6] or (ii) only k-space (and sometimes
time) undersampling with priors on the signal [7]–[9].

This paper makes novel contributions. We propose an al-
gorithmic framework to reconstruct SMS R-fMRI (with con-
trolled aliasing) that is undersampled in both k-space and
time. This can potentially enable a 3× improvement in resolu-
tion along each voxel dimension (i.e., 27× reduced voxel vol-
ume), without increasing the total scan time. The framework
alleviates the effects of large degradations by leveraging a ro-
bust sparse model that couples a spatially-regularized tempo-
ral dictionary model with a spatiotemporal wavelet model. We
propose a reconstruction method using variational Bayesian
expectation maximization with nested minorization (VBE-
MNM) that leads to efficient parameter updates within each it-
eration. Thus, we refer to our framework as DW+VBEMNM.
Qualitative and quantitative evaluation on retrospectively un-
dersampled brain R-fMRI shows that estimates of resting-
state networks from our framework and the boost in tempo-
ral stability given by our framework compares favourably to
existing methods for R-fMRI reconstruction.

II. RELATED WORK
R-fMRI image analysis for general clinical applications [2]
uses many methods including seed-based analysis, indepen-
dent component analysis, graph-based analysis [2], and deep
learning [10]. To reconstruct undersampled R-fMRI, one class
of methods uses complex pulse sequences like multiplexed

echo planar imaging, SMS imaging, or parallel imaging us-
ing multiple coils coupled with k-space undersampling [5],
[6]. Reconstructing parallel MRI typically leverages vari-
ants/combinations of two very popular techniques: sensitiv-
ity encoding (SENSE) [11] and generalized auto-calibrating
partially parallel acquisitions (GRAPPA) [12]. SENSE solves
the linear inverse problem in SMS imaging using estimates of
coil-sensitivity profiles. GRAPPA first learns a linear kernel
from reference k-space data, i.e., the auto-calibration signal
(ACS), to fill-in missing k-space lines, for each coil, then
uses per-coil inverse Fourier transforms with root-sum-of-
squares scheme [13] to give the reconstructed image. SMS
MRI reduces scan time by a factor equal to the number of
slices imaged simultaneously. To reduce the ill-posed nature
of the inverse problem in the reconstruction of SMS MRI,
slice-specific spatial shifts are implicitly introduced through
explicit slice-specific phase shifts in k-space. This is known
as controlled aliasing in parallel imaging (CAIPI) [14]. Other
methods based on SENSE [15], sometimes using CAIPI [16],
and GRAPPA [17], [18] or a combination of both are also
used. Another class of methods speedup R-fMRI without us-
ing SMS imaging, but by reconstructing k-space undersam-
pled (and sometimes temporally-undersampled) data using
priors on the R-fMRI signal, e.g., low-rank models in the
k-space× time space [8], [19], [20], sparse models in wavelet
domain [9], or dictionary-based models [21]. In contrast, our
framework can speedup R-fMRI acquisition by a larger factor
by combining SMS imaging (with CAIPI) with undersam-
pling in both k-space and time using a robust sparse spatially-
regularized coupled dictionary+wavelet model.

Non-Cartesian k-space sampling trajectories [19], [20],
[22]–[25] can enable higher undersampling factors but might
lead to artifacts and might be non-trivial to implement on
typical commercial scanners. In contrast, we employ Carte-
sian undersampling in k-space that is easily implementable on
typical commercial scanners. Some methods employ matrix
recovery [26], [27] and blind compressive sensing [28] for
general dynamic MRI, but they undersample only in k-space.
Undersampling jointly in the k-space domain as well as the
temporal domain (involving a smaller temporal sampling rate)
can enable higher undersampling factors. In such scenarios of
temporal undersampling, with missing timeframes, it can be
non-trivial to extend approaches based on matrix recovery or
blind compressive sensing.

In medical image analysis, estimating per-voxel uncer-
tainty/confidence in reconstructed images can be useful to de-
termine the reliability of the reconstructions and in subsequent
image analysis [29], [30]. However, attention to uncertainty
estimation has been limited in medical image reconstruc-
tion [31]–[34], in general, and in R-fMRI reconstruction [29].
We estimate the per-voxel uncertainty in reconstructed images
to potentially identify regions that were difficult to reconstruct
reliably, for many possible reasons.

Some of the basic methods used for cleaning the fMRI sig-
nal during preprocessing include nuisance regression [35] and
ICA-based methods like FIX [36]. However, the preprocessed
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signal may still contain large physiological fluctuations which
can be reduced using standard denoising methods like dic-
tionary learning and sparse coding (DLSC) [37] or temporal
non-local means (tNLM) [38]. A recent method uses deep
learning [39] for denoising task-based fMRI, but is not appli-
cable to R-fMRI. In contrast, we use a robust sparse spatially-
regularized dictionary model coupled with a spatiotemporal
wavelet model for reconstruction with denoising capability.

This paper significantly extends our preliminary work on
k-t undersampled SMS-CAIPI R-fMRI reconstruction in [7].
While [7] proposes k-t undersampled SMS-CAIPI R-fMRI
using a subject-invariant spatially-regularized dictionary prior
model, this paper proposes several improvements over [7].
First, while [7] used the dictionary model alone, our frame-
work in this paper couples the dictionary model with a 3D
spatiotemporal wavelet model for additional spatiotemporal
regularization. Second, while [7] used simple projected gradi-
ent ascent with adaptive learning rate for optimization, our
framework in this paper uses the more sophisticated VBE-
MNM [40] optimization scheme. We show that both these
improvements result in better RSNs than those in [7]. Third,
our framework in this paper is able to generate per-voxel
maps showing the uncertainty of reconstruction, unlike [7].
Fourth, while [7] shows results for only two RSNs, this paper
shows results for four RSNs. Fifth, this paper shows empirical
evaluation on a larger cohort.

III. METHODS
We describe our novel framework for reconstructing R-fMRI
from SMS-CAIPI acquisitions with joint k-t undersampling.
We describe our robust image model coupling a spatially-
regularized temporal dictionary and a spatiotemporal wavelet
frame. We describe our optimization algorithm to handle the
non-concavity of our robust model using nested minorization
within VBEM, giving efficient parameter updates within each
iteration of EM.

A. COUPLED ROBUST DICTIONARY+WAVELET PRIOR
MODEL
Notation. Let the Markov random field (MRF) X model
the 4D spatiotemporal complex-valued R-fMRI BOLD-signal
image having L slices, V voxels in each slice and T time-
frames. Let X(l,v) ∈ CT be the time-series at voxel (l, v). Let
Xt ∈ CLV be the 3D spatial image at timeframe t . Let N X :=
{N X

(t,(l,v)) : l ∈ [1, L], v ∈ [1,V ], t ∈ [1, T ]} be a neighbor-
hood system, where, for voxel (l, v) at time t , neighborhood
N X

(t,(l,v)) := {(t ′, (l ′, v′)) : t ′ �= t, l ′ = l, v′ = v} includes all
timeframes (t ′, (l, v)) in the time-series at voxel (l, v), ex-
cluding (t, (l, v)) itself. Let X(l,v) ∈ RT

≥0 be the magnitude of
BOLD-signal time-series X(l,v) at voxel (l, v).

Dictionary+Wavelet Model. We propose a robust model
for the BOLD signal using a dictionary D with J unit-norm
atoms for the per-voxel time-series X(l,v) ( j-th atom d j ∈ RT

≡ j-th column of D), coupled with a 2D+t spatiotemporal
dual-tree-complex (overcomplete) wavelet [41] frame W . Our

robust dictionary model provides a strong temporal prior on
the R-fMRI signal, along with some spatial regularization.
The dictionary model is learned from a limited amount of
R-fMRI data that is known to have lower signal-to-noise ratio
(SNR) than task-based fMRI. On the other hand, the wavelet
model provides a rich analytically-designed spatiotemporal
model with nice theoretical properties. Thus, we propose a
coupled modeling approach to leverage the benefits of both
models.

Dictionary Model. Associated with the dictionary D, let A
be the coefficient matrix where the the column corresponding
to the voxel (l, v) is the coefficient vector a(l,v) ∈ RJ . Let
N A

(l,v) comprise the 26 neighbours of the voxel (l, v) in a
3×3×3 neighborhood. We model, as detailed in [7], the time-
series X(l,v) at voxel (l, v) as �(l,v)(RDa(l,v) + d0a0(l,v) ),
where (i) �(l,v) is a T × T complex-valued diagonal matrix
that incorporates the complex phase of the time-series, (ii) the
coefficients a0(l,v) and a(l,v), respectively, correspond to the
constant atom d0 := 1 and the other J atoms in D, and (iii) R
is a T × T rotation-transform matrix.

RSNs characterized by high normalized-cross-correlations
within networks are quite consistent across the population of
healthy subjects in spite of the inter-session and inter-subject
variability in the underlying time-series X(l,v). This consis-
tency in normalized-cross-correlations is modeled using the
similarity transform on the time-series where the scaling is
handled by the dictionary coefficients a(l,v), shifts by the mean
value d0a0(l,v), and the rotation by R. To motivate this further,
we observe that, if we transform two time-series, modeled as
vectors, using two associated similarity transforms involving
the same rotation, then the normalized cross-correlation be-
tween the original time-series is the same as that between
the transformed time-series. Thus, our proposed use of the
similarity transform adapts the dictionary to an arbitrary ses-
sion/subject (to give good temporal-signal fits) while main-
taining the consistency of the normalized-cross-correlation
maps across sessions and subjects.

Our framework models heavy-tailed distributions [42] on
the residual (X(l,v) −�(l,v)(RDa(l,v) + d0a0(l,v) )), at all vox-
els (l, v). The prior model [7] on the dictionary coefficients
A, enforcing sparsity to prevent overfitting and spatial regu-
larization for smooth discontinuity-adaptive RSNs, is

P(A) ∝ exp

(
−

L∑
l=1

V∑
v=1

α‖a(l,v)‖qq,ε

−
L∑

l=1

V∑
v=1

J∑
j=1

∑
(l ′,v′ )∈N A

(l,v)

βω(l,v),(l ′,v′ )Hγ (a j
(l,v) − a j

(l ′,v′ ) )

)
,

(1)

where we define ‖z‖qq,ε :=∑
i(z

2
i + ε)q/2; α ∈ R+, β ∈

R+, γ ∈ R+, q ∈ (0, 1) are free parameters; q controls
the sparsity on the dictionary fits; the Huber loss func-
tion Hγ (a j

(l,v) − a j
(l ′,v′ ) ) equals 0.5(a j

(l,v) − a j
(l ′,v′,v′ ) )

2 when
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|a j
(l,v) − a j

(l ′,v′ )| � γ , and equals γ |a j
(l,v) − a j

(l ′,v′ )| − 0.5γ 2

when |a j
(l,v) − a j

(l ′,v′ )| > γ ; and the weights ω(l,v),(l ′,v′ ) model
a Gaussian decay with increasing spatial distance between
the voxels (l, v) and (l ′, v′). While the quasi-norm enforces
sparsity on the dictionary coefficients, the Huber loss en-
forces discontinuity-adaptive spatial regularization by enforc-
ing sparsity on the differences between the dictionary coeffi-
cients within spatial neighborhoods.

Wavelet Model. Let F be the coefficient matrix for the
wavelet frame W , where the the column corresponding to
the slice l is the coefficient vector fl . We model the signal
Xl at slice l as W fl . The wavelet model employs a Gaussian
distribution for the residual Xl −W fl for all slices l . The prior
model on the wavelet coefficients F that enforces sparsity to
prevent overfitting, is modeled as

P(F ) ∝ exp

(
−

L∑
l=1

ρ‖ fl‖11,ε

)
, (2)

where ρ ∈ R+ is a free parameter.
Coupled Model. Combining the dictionary and wavelet

models leads to the prior on X as

P(X |R, A,�, F ;D,W ) ∝

exp

(
−

L∑
l=1

V∑
v=1

δ‖X(l,v) −�(l,v)(RDa(l,v) + d0a0(l,v) )‖p
2,ε

−
L∑

l=1

η‖Xl −W fl‖22,ε

)
, (3)

where we define ‖z‖p
2,ε

:= (‖z‖22 + ε)p/2 and δ, η and p ∈
(0, 2) are free parameters. p controls the heaviness of the tail
of the robust dictionary model. Thus, we propose the genera-
tive dictionary+wavelet prior model on the R-fMRI image as
P(X |R, A,�, F ;D,W )P(A)P(F ).

Dictionary Learning. We learn the dictionary D from
the temporally-filtered (to retain only the R-fMRI fre-
quencies less than 0.1 Hz) R-fMRI data X of just one
subject, by maximizing the generative dictionary+wavelet
prior P(X |R, A,�, F ;D,W )P(A)P(F ) with respect to D
and A, where R is fixed to the T × T identity matrix and
�(l,v) are fixed to the phase values of X(l,v). We initial-
ize (i) the atoms d j to the centroids obtained through k-
means on all X(l,v) which are further normalized to have
zero mean and unit norm, and (ii) the coefficients a j

(l,v) to

the fractions a j
(l,v) := ‖X(l,v)‖2 exp(−σA‖(X(l,v)/‖X(l,v)‖2)−

d j‖22)/ maxk exp(−σA‖(X(l,v)/‖X(l,v)‖2)− dk‖22), where σA ∈
R+ is a free parameter. We maximize the log-prior using
projected gradient ascent with adaptive learning rate, with the
dictionary atoms d j projected onto the subspace of unit-norm
atoms after each update. We find that the data of only one
subject is sufficient to learn the dictionary, because the simi-
larity transform enables the dictionary D to adapt to different
subjects while maintaining the consistency in RSNs.

B. LIKELIHOOD MODEL
Let K be the number of coils, where �k

l is the coil sensitivity
profile for coil k and slice l . Let M consecutive slices be
imaged simultaneously for SMS with CAIPI [14], and let
Cl model the implicit spatial shift underlying CAIPI. Let N
be the number of sets of M simultaneously-imaged slices in
whole-brain imaging. Let Y be the k-space representation of
the underlying R-fMRI image X , where Y (k,t )

n is the k-space
representation of X corresponding to coil k for slice-set n at
time t . Y (k,t )

n comprises (i) the observed/acquired k-t under-
sampled SMS-CAIPI data Y (k,t )

O,n and (ii) the missing k-space

values Y (k,t )
M,n . For each coil, we model the acquisition noise

in k-space as independent and identically distributed (i.i.d.)
additive complex Gaussian, having zero mean and variance σ 2

in the real and imaginary parts. We estimate σ 2 by computing
the variance in the background of a fully-sampled R-fMRI
acquisition. Let F be the Fourier transform operator. Let St

O,n
and St

M,n represent sampling operators for slice-set n at time
t that select the k-space values at the observed and missing
frequencies, respectively. St

O,n and St
M,n also model temporal

undersampling with St
O,n selecting a null set of k-space values

and St
M,n selecting all the k-space values for the missing time-

frames. Thus, the forward model for observed/acquired k-t
undersampled SMS-CAIPI R-fMRI data for coil k, slice-set
n at time t is

Y (k,t )
O,n = St

O,nF
nM∑

l=1+(n−1)M

Cl�
k
l X t

l + ξ, (4)

where ξ is i.i.d. complex-Gaussian noise, having zero mean
and variance σ 2 in the real and imaginary parts.

Thus, the likelihood of the observed k-t undersampled
SMS-CAIPI k-space data YO is

P(YO|X ) ∝ exp

(
−

K∑
k=1

N∑
n=1

T∑
t=1

(0.5/σ 2)

‖Y (k,t )
O,n − St

O,nF
nM∑

l=1+(n−1)M

Cl�
k
l X t

l ‖22
)

. (5)

C. EXPECTATION MAXIMIZATION (EM) FRAMEWORK FOR
INFERENCE
Given the observed k-space data YO, we employ the
generalized EM framework for inference. We choose X
as the latent random variable and θ := {YM, R, A,�, F }
as the set of parameters. EM aims to maximize the
incomplete-data log-posterior log(ζP(YO, θ )), with ζ as the
normalizing constant. The incomplete-data log-posterior is
log(ζ

∫
X P(YO, X, θ;D,W )dX ). Because of the conditional

independence arising from the design of our likelihood and
prior models, we get the complete-data statistical model as

P(YO, X, θ;D,W )

:= P(YO,YM, X, R, A,�, F ;D,W )
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∝ P(YO,YM, X, A, F |R,�;D,W )

= P(YO|X )P(YM|X )P(X |R, A,�, F ;D,W )P(A)P(F ). (6)

The k-t undersampling is equivalent to projecting the full
k-space data from a higher-dimensional space to a lower-
dimensional subspace. A natural model for the missing k-
space values YM is i.i.d. Gaussian, like the observed k-space
data YO, having the same acquisition noise variance σ 2. This
model is also motivated by the principle of maximum entropy
and least prior information [43] when the variance σ 2 of
acquisition noise is specified. Thus,

P(YM|X ) ∝ exp

(
−

K∑
k=1

N∑
n=1

T∑
t=1

(0.5/σ 2)

‖Y (k,t )
M,n − St

M,nF
nM∑

l=1+(n−1)M

Cl�
k
l X t

l ‖22
)

. (7)

E Step: Nested Minorization of Incomplete-Data Log-
Posterior. Let θ i be the parameter estimate at iteration i. The E
step minorizes the incomplete-data log-posterior using the mi-
norizer Q(θ; θ i ) := EP(X |YO,θ i;D,W )[log P(YO, X, θ;D,W )].
The M step later maximizes Q(θ; θ i ) giving θ (i+1). The non-
concavity of Q(θ; θ i ) makes its maximization intractable.
We propose nested minorization [40] to further minorize
Q(θ; θ i ) by minorizing its expectand log P(YO, X, θ;D,W )=
log P(YO,YM, X |R, A,�, F ;D,W ) + log(P(A)P(F )) using
tractable concave minorizers for these two terms as derived
in Appendix A and Appendix B, respectively as

M(YO,YM, X |R, A,�, F ;D,W ) :=

−
K∑

k=1

N∑
n=1

T∑
t=1

‖Y (k,t )
n − F ∑nM

l=1+(n−1)M Cl�
k
l X t

l ‖22
2σ 2

−
L∑

l=1

V∑
v=1

δb(l,v)‖X(l,v) −�(l,v)(RDa(l,v) + d0a0(l,v) )‖22

−
L∑

l=1

η‖Xl −W fl‖22 + log-normalizing-constant; (8)

M(A, F ) := −
L∑

l=1

V∑
v=1

J∑
j=1

αc j
(l,v)(a

j
(l,v) )

2

−
L∑

l=1

V∑
v=1

J∑
j=1

∑
(l ′,v′ )∈N A

(l,v)

βh j
(l,v),(l ′,v′ )(a

j
(l,v) − a j

(l ′,v′ ) )
2

−
L∑

l=1

ρ‖ fl‖11,ε + log-normalizing-constant, (9)

with nested-minorization-related constants

b(l,v) := p

2
(‖X̂ i

(l,v) - �i
(l,v)(R

iDai
(l,v) + d0ai

0(l,v) )‖22 + ε)
p
2−1;
(10)

c j
(l,v) := q

2
((a ji

(l,v) )
2 + ε)

q
2−1; (11)

h j
(l,v),(l ′,v′ ) = 0.5ω(l,v),(l ′,v′ ) when |a ji

(l,v) − a ji

(l ′,v′ )| � γ ,

(12)

h j
(l,v),(l ′,v′ ) =

γω(l,v),(l ′,v′ )

(2((a ji

(l,v) − a ji

(l ′,v′ ) )
2 + ε)0.5)

otherwise. (13)

Thus, the nested minorizer of the incomplete-
data log-posterior is Q′(θ; θ i ) := EP(X |YO,θ i;D,W )
[M(YO,YM, X |R, A,�, F ;D,W )+M(A, F )]. The first
minorizer Q(θ; θ i ) and the nested minorizer Q′(θ; θ i ) both
minorize the incomplete-data log posterior. Hence, the
minorization-maximization using the nested minorizer also
leads to a stationary point.

E Step: Variational Bayesian Modeling. The nested
minorization makes the expectand in Q(θ; θ i ) concave,
but the expectation as a whole in the nested minorizer
Q′(θ; θ i ) remains cumbersome because of the form of
the posterior P(X |YO, θ;D,W ) of the latent variable X .
Thus, we use the variational Bayesian (VB) strategy [44]
to first factorize the posterior model P(X |YO, θ;D,W ) by
P̂(X |YO, θ i;D,W ) :=∏

(l,v),t ϒ t
(l,v)(X

t
(l,v) ), and then propose

an (approximate) closed-form representation of the fac-
tors by leveraging the concavity of our nested-minorizers
of the incomplete-data log-posterior. Our nested minorizer
M(YO,YM, X |R, A,�, F ;D,W ) can be written as a sum of
concave quadratics in X as

M(YO,YM, X |R, A,�, F ;D,W ) =

−
K∑

k=1

L∑
l=1

V∑
v=1

T∑
t=1

κk
l ‖Xt

(l,v) − m(k,t )
(l,v)‖22

−
L∑

l=1

V∑
v=1

T∑
t=1

δb(l,v)‖Xt
(l,v) − gt

(l,v)‖22

−
L∑

l=1

V∑
v=1

T∑
t=1

η‖Xt
(l,v) − wt

(l,v)‖22

+ log-normalizing-constant, (14)

where κk
l := 0.5�k	

l �k
l /σ 2, m(k,t )

l := �k−1

l (F∗Y (k,t )
n −∑

l ′ �=l Cl ′�
k
l ′X

t
l ′ ), g(l,v) := �(l,v)(RDa(l,v) + d0a0(l,v) ) and

wl =W fl . Because of the quadratic nature of the nested
minorizer M(YO,YM, X |R, A,�, F ;D,W ), the individual
VB factors become Gaussian to give ϒ t

(l,v)(X
t
(l,v) ) ≈

N
(

Xt
(l,v);

∑K
k=1 κk

l m(k,t )
(l,v) + δb(l,v)gt

(l,v) + ηwt
(l,v)∑K

k=1 κk
l + δb(l,v) + η

,

0.5∑K
k=1 κk

l + δb(l,v) + η

)
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= N
(

Xt
(l,v);μt

(l,v), (σ t
(l,v) )

2
)

, (15)

where N(X ;μ, σ 2) denotes a Gaussian distribution
on X with mean μ and variance σ 2. Thus, the VB
model for the nested minorizer of the incomplete-
data log-posterior is Q′′(θ; θ i ) = EP̂(X |YO,θ i;D,W )
[M(YO,YM, X |R, A,�, F ;D,W )+M(A, F )].

M Step: Parameter Optimization. We estimate parame-
ters θ (i+1), for iteration i + 1, which maximize the approxi-
mate nested minorizer Q′′(θ; θ i ) by alternately estimating �,
YM, R, A and F iteratively. The optimal phase �(l,v), ∀(l, v),
is the T × T unitary diagonal matrix where the diagonals are
the complex phases of μ(l,v). We compute the optimal YM by
solving the equation ∇YMQ′′(θ; θ i ) = 0 as

(Y (k,t )
M,n )(i+1) = St

M,nF
nM∑

l=1+(n−1)M

Cl�
k
l (μt

l )
(i+1). (16)

We compute the optimal R by maximizing Q′′(θ; θn) using
projected gradient ascent with adaptive learning rate. We com-
pute the optimal A by solving the equation ∇AQ′′(θ; θ i ) = 0.
We estimate the optimal F using ADMM-LASSO [45] opti-
mization on Q′′(θ; θ i ).

D. SUMMARY OF ALGORITHM FOR R-fMRI IMAGE
RECONSTRUCTION
We summarize the algorithm for implementation of our pro-
posed DW+VBEMNM framework for inference of the recon-
structed R-fMRI and its uncertainty of reconstruction.

Initialization. We initialize the variables in two stages.
In the first stage, we initialize: (i) the missing k-space
values Y (k,τ )

M,n for the set τ of acquired timeframes, using

GRAPPA [12] on Y (k,τ )
O,n ; (ii) X τ for the acquired timeframes

by using SENSE-CAIPI [16] on the multicoil data F∗Y (k,t )

∀k, and using linear interpolation on X τ for the timeframes
t /∈ τ ; (iii) R← I; (iv) a j

(l,v) as done for dictionary learning;

(v) a0(l,v) =
∑T

t=1 |Xt
(l,v)|/T ; (vi) �(l,v) as the T × T unitary

diagonal matrix where the diagonals are the complex phases
of X(l,v). In the second stage, we re-initialize: (i) X by fitting
only the dictionary D to it (without wavelets) using gradient
ascent with adaptive learning rate as in [7], with {R, A} kept
constant; (ii) Y (k,t )

M,n by using the sampling operator St
M,n on

the k-space SMS-CAIPI image of corresponding slices in the
new estimates of X ; (iii) a j

(l,v), a0(l,v) and �(l,v) as in the first
stage using the new estimates of X ; (iv) fl =W ∗Xl .

Parameter Estimation: E Step and M Step. We repeat the
following procedure till convergence.

1) E Step: We update the mean and variance of the latent
variables Xt

(l,v) as (μt
(l,v) )

(i+1) := (
∑K

k=1 κk
l m(k,t )

(l,v) +
δb(l,v)gt

(l,v) + ηwt
(l,v) )/(

∑K
k=1 κk

l + δb(l,v) + η)

and ((σ t
(l,v) )

2)(i+1) := 0.5/(
∑K

k=1 κk
l + δb(l,v) + η)

respectively, to get the MAP estimate (X̂ t
(l,v) )

(i+1) :=

(μt
(l,v) )

(n+1). Because the value of ((σ t
(l,v) )

2) is

independent of t , we denote it simply by σ 2
(l,v).

2) M step: We update parameters YM, R, A, � and F as
described before, by alternately optimizing Q′′.

Inferring Reconstructed Image and Uncertainty from
Latent-Variable Distribution. When the VBEMNM con-
verges to the optimal parameters θ∗, we infer (i) the underly-
ing reconstructed R-fMRI image X as the posterior mode μ∗,
and (ii) the per-voxel uncertainty of reconstruction, for each
voxel v and time t , through the posterior standard deviation
σ(l,v).

IV. RESULTS AND DISCUSSION
We evaluate the performance of our reconstruction framework
on brain R-fMRI data. We compare our DW+VBEMNM
framework with other methods of reconstructing R-fMRI
from undersampled SMS-CAIPI data when the coil sensitivi-
ties and CAIPI shifts are known (or can be reliably estimated)
(i) W+GA: uses wavelet (W) models akin to those in [9],
[46] and optimizes using gradient ascent (GA) with adaptive
learning rate; (ii) GRP+SENSE: uses GRAPPA (GRP) [12]
to estimate the missing SMS k-space data per coil, fol-
lowed by SENSE+CAIPI [16] to reconstruct individual slices;
(iii) LR+SENSE: uses a low-rank (LR) model akin to [8]
to estimate the full SMS per-coil k-space matrix from the
undersampled data (the sampled k-space data is replaced after
estimation as in [8] to improve the quality of reconstruction)
and SENSE+CAIPI [16] to reconstruct individual slices.

Because GRAPPA and the low-rank modeling methods do
not have explicit mechanisms for temporal regularization, un-
like the temporal dictionary in our DW+VBEMNM or the
spatiotemporal wavelet in our DW+VBEMNM and W+GA,
GRP+SENSE and LR+SENSE cannot be used to reconstruct
from temporally-undersampled data. Thus, we extend them
to (i) GRP+SENSE-T: uses GRP+SENSE to first fill-in the
missing k-space data, then reconstruct individual slices for
all the timeframes for which some data was acquired, and fi-
nally uses cubic interpolation to reconstruct the missing time-
frames; (ii) LR+SENSE-T: uses LR+SENSE to first fill-in
the missing k-space data, then reconstruct individual slices
for all the timeframes for which some data was acquired,
and finally uses cubic interpolation to reconstruct the missing
timeframes. We measure the performance in terms of (i) the
mean structural similarity (mSSIM) [47] between the ground
truth and the reconstructed RSNs, and (ii) GM-tSNR of the
reconstructed image, where we extend the tSNR measure
in [48] (typically used for R-fMRI; measures the average over
all gray-matter voxels of the ratio of mean of time-series to
the standard deviation of the time-series) to be applicable to
complex-valued images, by replacing the mean of the time-
series with its root-mean-square. We estimate the RSNs using
standard seed-based normalized cross-correlations.

A. RESULTS ON BRAIN R-fMRI DATA
We compare the performance of all methods on high-quality
brain R-fMRI data from the Human Connectome Project
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FIGURE 1. Results on Brain R-fMRI Data. DMN estimated from (T1) original data; from reconstructions of k-t undersampled SMS-CAIPI data obtained by
(A1) our DW+VBEMNM: mSSIM 0.97; (B1) W+GA: mSSIM 0.92; (C1) GRP+SENSE-T: mSSIM 0.93; (D1) LR+SENSE-T: mSSIM 0.92; (E1) GRP+SENSE: mSSIM
0.94; (F1) LR+SENSE: mSSIM 0.90. ECN estimated from (T2) original data; from reconstructions of k-t undersampled SMS-CAIPI data obtained by (A2) our
DW+VBEMNM: mSSIM 0.96; (B2) W+GA: mSSIM 0.92; (C2) GRP+SENSE-T: mSSIM 0.93; (D2) LR+SENSE-T: mSSIM 0.92; (E2) GRP+SENSE: mSSIM 0.85;
(F2) LR+SENSE: mSSIM 0.84. DAN estimated from (T3) original data; from reconstructions of k-t undersampled SMS-CAIPI data obtained by (A3) our
DW+VBEMNM: mSSIM 0.97; (B3) W+GA: mSSIM 0.94; (C3) GRP+SENSE-T: mSSIM 0.95; (D3) LR+SENSE-T: mSSIM 0.94; (E3) GRP+SENSE: mSSIM 0.90;
(F3) LR+SENSE: mSSIM 0.90. VN estimated from (T4) original data; from reconstructions of k-t undersampled SMS-CAIPI data obtained by (A4) our
DW+VBEMNM: mSSIM 0.96; (B4) W+GA: mSSIM 0.78; (C4) GRP+SENSE-T: mSSIM 0.89; (D4) LR+SENSE-T: mSSIM 0.78; (E4) GRP+SENSE: mSSIM 0.94;
(F4) LR+SENSE: mSSIM 0.93.

(HCP). The HCP data has 2×2×2 mm3 voxels, approximately
1.4 Hz temporal sampling rate and 1200 timeframes (approx-
imately 15 minutes scan), which is much higher than the ideal
Nyquist rate of 0.2 Hz for R-fMRI time-series. We use the
dictionary learned from the fully-sampled, non-SMS ground
truth data of one subject to reconstruct R-fMRI of 50 other
evaluation subjects from their corrupted k-t undersampled
SMS-CAIPI data. The ground truth data has a GM-tSNR of
about 76.1, averaged across all evaluation subjects.

We use coil sensitivity profiles obtained from a Siemens
mMR scanner to generate multicoil SMS data for 32 coils
with 5× SMS and CAIPI. We retrospectively undersample the
data 1.5× in k-space and 4× in time to give 6× k-t under-
sampling for our DW+VBEMNM, W+GA, GRP+SENSE-T,
and LR+SENSE-T. Because GRP+SENSE and LR+SENSE
do not have explicit mechanisms for temporal regularization,
we retrospectively undersample the data purely in k-space.
However, we maintain the total undersampling factor by un-
dersampling 6× in k-space for GRP+SENSE and LR+SENSE
for a fair comparison in terms of the speedup factor. Our
k-space undersampling pattern can be easily implemented on
commercial scanners by sampling line encodes densely near
the k-space center and equidistantly elsewhere. Our frame-
work can be extended to 3D k-space undersampling by mod-
ifying the likelihood term with the same priors. We introduce
i.i.d. additive complex-Gaussian noise, with a small standard
deviation, to the undersampled k-space data.

For the ACS for GRP+SENSE-T and GRP+SENSE, we
use the fully-sampled first 50 SMS-CAIPI timeframes of the
evaluation subject being reconstructed. We set p = 0.5 and
q = 0.9 for our DW+VBEMNM, and tune free parameters for
all methods using cross-validation on a validation set (separate
from the training subject and evaluation dataset) to give the
best reconstructions on the entire evaluation set. We evaluate
all methods based on the mSSIM between the ground-truth
RSNs (obtained from the fully-sampled R-fMRI data) and the
reconstructed RSNs for the default mode network (DMN),
executive control network (ECN) and the dorsal attentive net-
work (DAN) and visual network (VN).

RSNs reconstructed using our DW+VBEMNM
(Fig. 1(A1)–(A4)) are qualitatively and quantitatively
much closer to the ground truth (Fig. 1(T1)–(T4)) RSNs
in terms of the structure, lumination, and contrast that
are the key components underlying the mSSIM measure
(Table 1). They show high structural similarity and negligible
artifacts. Reconstructions from W+GA (Fig. 1(B1)–(B4)),
GRP+SENSE-T (Fig. 1(C1)–(C4)), and LR+SENSE-T
(Fig. 1(D1)–(D4)) are prone to artifacts in the form of
spurious high correlations in regions outside those indicate by
the ground-truth RSNs. Reconstructions from GRP+SENSE
(Fig. 1(E1)–(E4)) and LR+SENSE (Fig. 1(F1)–(F4)) lead to
RSNs that show significant deviation from the ground truth
RSNs, as expected. Hence, we exclude them from further
analysis.
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TABLE 1. Results on Brain R-fMRI Data. Average mSSIM (and Standard Deviation) of RSNs for k-t Undersampled SMS-CAIPI Data Over 50 Evaluation
Subjects.

TABLE 2. Results on Brain R-fMRI Data. Average GM-tSNR and Standard
Deviation for Reconstructions from k-t Undersampled SMS-CAIPI Data
Over 50 Evaluation Subjects.

Comparing the results from GRP+SENSE and LR+SENSE
to those from GRP+SENSE-T and LR+SENSE-T respec-
tively, we observe that although these methods primarily fo-
cus on k-space filling, their performance is better when the
k-space undersampling factor is lower than the temporal un-
dersampling factor, while maintaining the total (product) k-t
undersampling factor. Because our DW+VBEMNM recon-
struction framework employs a rich temporal prior model
(dictionary) on the BOLD time-series, it is able to leverage
larger temporal undersampling factors, instead of larger k-
space undersampling factors. Similarly, because W+GA em-
ploys a spatiotemporal wavelet model as a prior, and does not
learn an explicit mechanism for k-space filling, it also works
best when the k-space undersampling factor is low. Thus, for
a specified speedup factor, all methods considered for further
analysis, i.e., DW+VBEMNM, W+GA, GRP+SENSE-T, and
LR+SENSE-T, perform best when the k-space undersampling
factors are lower allowing higher temporal undersampling
factors. Thus, we propose undersampling in k-space by 1.5×
and in time by 4×.

B. TEMPORAL STABILITY OF RECONSTRUCTED IMAGES
Apart from giving better RSNs than other methods,
DW+VBEMNM reconstructions are also significantly supe-
rior in terms of the average GM-tSNR that is a standard
measure of temporal stability [49]. All methods for recon-
struction from k-t undersampled SMS-CAIPI data lead to
reconstructed images having higher average GM-tSNR than
the ground truth (Table 2). At the existing voxel sizes in
the ground truth, our DW+VBEMNM more than doubles the
average GM-tSNR over the ground truth to 172.7. Because
GM-tSNR reduces with smaller voxel sizes [50], this ability of
our DW+VBEMNM makes it a suitable framework for recon-
struction with the aim of imaging at higher spatial resolution.
Reconstructions from other methods have very low average
GM-tSNR, compared to our DW+VBEMNM (Table 2).

FIGURE 2. Uncertainty Maps Corresponding to Orientation of Acquired
Slices. Uncertainty in reconstruction within: (a) DMN region, (b) ECN
region, (c) DAN region, and (d) VN region.

C. UNCERTAINTY ESTIMATION
Unlike other methods, in addition to the reconstructed 4D
spatiotemporal image, our DW+VBEMNM is able to provide
per-voxel uncertainty associated with the reconstructed im-
age. We define the uncertainty of reconstruction at a given
voxel to be the ratio of the standard deviation σ(l,v) of re-
constructed time-series as obtained in Section III to the norm
of the reconstructed R-fMRI time-series at voxel (l, v). This
definition of uncertainty helps to interpret the standard devia-
tion at a given voxel in the context of its time-series. We find
that the spatial pattern of uncertainty indicates higher values at
regions consistent with the pattern of undersampling artifacts
associated with the k-space undersampling in the transaxial
plane and at the pial surface of the cortex (Fig. 2).

D. ENABLING HIGHER SPATIAL RESOLUTION
Our framework proposes a 30× speedup through a 5×
speedup stemming from SMS imaging coupled with 6×
speedup from k-t undersampling (i.e., 1.5× k-space under-
sampling and 4× time undersampling). This speedup can
potentially allow a 3× reduction in voxel width along each
of the three spatial dimensions, specially since the 4× lower
temporal sampling rate is still above the ideal Nyquist rate
of 0.2 Hz, without increasing the total scan time and, conse-
quently, discomfort for the patient. Further, the ability of our
framework to significantly boost the GM-tSNR can help to
counter the effects of higher noise at higher spatial resolutions.

We demonstrate the benefits of the potential spatial reso-
lution improvement using our framework through an equiv-
alent experiment. Consider a fully-sampled ground-truth R-
fMRI acquisition with (large) 6×6×6 mm3 voxels and 1.4 Hz
temporal sampling rate that utilizes full 15 minutes of total
scan time. Because of the larger voxel size, this low-spatial-
resolution acquisition has a lower noise level with an average
GM-tSNR of 125.6 with a standard deviation of 11.6 over
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TABLE 3. Ablation Study. Average mSSIM (and Standard Deviation) of RSNs for k-t Undersampled SMS-CAIPI Data Over 50 Evaluation Subjects.

FIGURE 3. Enabling Higher Spatial Resolution. DMN estimated from
(A1) reconstructions of k-t undersampled SMS-CAIPI data using our
DW+VBEMNM; (L1) 27× low spatial resolution original data. ECN
estimated from (A2) reconstructions of k-t undersampled SMS-CAIPI data
using our DW+VBEMNM; (L2) 27× low spatial resolution original data.
DAN estimated from (A3) reconstructions of k-t undersampled SMS-CAIPI
data using our DW+VBEMNM; (L3) 27× low spatial resolution original
data. VN estimated from (A4) reconstructions of k-t undersampled
SMS-CAIPI data using our DW+VBEMNM; (L4) 27× low spatial resolution
original data. Ground Truth RSNs same as in Fig. 1.

all evaluation subjects. We reduce the number of acquired
measurements through 5× SMS imaging, 1.5× kspace un-
dersampling, and 4× time undersampling. If we keep the
total scan duration unchanged (i.e., 15 minutes), then we can
utilize the freed-up time (because of the reduced number of
measurements) to increase spatial resolution as follows. We
propose to increase the spatial resolution by 27× (3× along
each spatial dimension) to 2×2×2 mm3 and reconstruct the
fully-sampled high spatiotemporal resolution signal. Such an
acquisition can be practically feasible considering all time
constraints. For reconstruction frameworks other than our
DW+VBEMNM, this high spatial resolution reconstruction
would have (i) lower GM-tSNR, because of the small voxel
size [50], as indicated by the GM-tSNR values of reconstruc-
tions from these other methods in Section IV-B, and (ii) poorer
RSNs as shown in Section IV-A. Nevertheless, despite the
higher spatial resolution, our DW+VBEMNM can still main-
tain a high GM-tSNR, as seen in Section IV-B, beyond the
GM-tSNR of the lower spatial resolution ground truth. This
ability of our DW+VBEMNM, coupled with the ability to
improve RSN estimation, makes it a better framework for
enabling higher spatial resolution. We compare the RSNs es-
timated from the low spatial resolution acquisition and our
high spatial resolution reconstruction. RSNs estimated from

FIGURE 4. Ablation Study. DMN estimated from reconstructions of k-t
undersampled SMS-CAIPI data using (A1) DW+VBEMNM: mSSIM 0.97;
(G1) D+VBEMNM: mSSIM 0.95; (H1) D+PGA: mSSIM 0.93;
(I1) BDW+VBEMNM: mSSIM 0.97. ECN estimated from reconstructions of
k-t undersampled SMS-CAIPI data using (A2) DW+VBEMNM: mSSIM 0.96;
(G2) D+VBEMNM: mSSIM 0.95; (H2) D+PGA: mSSIM 0.93;
(I2) BDW+VBEMNM: mSSIM 0.96. DAN estimated from reconstructions of
k-t undersampled SMS-CAIPI data using (A3) DW+VBEMNM: mSSIM 0.97;
(G3) D+VBEMNM: mSSIM 0.95; (H3) D+PGA: mSSIM 0.95;
(I3) BDW+VBEMNM: mSSIM 0.97. VN estimated from reconstructions of k-t
undersampled SMS-CAIPI data using (A4) DW+VBEMNM: mSSIM 0.96;
(G4) D+VBEMNM: mSSIM 0.85; (H4) D+PGA: mSSIM 0.88;
(I4) BDW+VBEMNM: mSSIM 0.96. Ground Truth RSNs same as in Fig. 1.

DW+VBEMNM are clearly better than those from the low-
spatial-resolution acquisition (Fig. 3). Analogous to this ex-
periment, we can potentially improve the spatial resolution
from the current voxel size of 2×2×2 mm3 voxels to a voxel
size of 0.67×0.67×0.67 mm3.

E. ABLATION STUDY
To justify the contributions of the novel features of joint dic-
tionary+wavelet modeling and the VBEMNM optimization
strategy (Fig. 4(A1)–(A4), Table 3, Table 4) to our recon-
struction framework, we compare the performance of our pro-
posed DW+VBEMNM framework with its ablated prior vari-
ants. We find that our dictionary-based methods outperform
other methods. Within our dictionary-based methods, our
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TABLE 4. Ablation Study. Average GM-tSNR and Standard Deviation for
Reconstructions From k-t Undersampled SMS-CAIPI Data Over 50
Evaluation Subjects.

DW+VBEMNM performs better than others. Reconstructed
RSNs using only our dictionary model (without wavelets)
with VBEMNM optimization (i.e., D+VBEMNM), which is
similar to our work in [40], leads to qualitatively and quan-
titatively poorer RSNs (Fig. 4(G1)–(G4), Table 3). Specially,
unlike our DW+VBEMNM, the D+VBEMNM reconstruction
is unable to boost the GM-tSNR significantly (Table 4). This
might reduce its utility for enabling higher spatial resolu-
tion because the temporal stability measured in terms of the
GM-tSNR reduces significantly at higher spatial resolutions
as demonstrated in Section IV-D. Further, replacing the VBE-
MNM optimization strategy with projected-gradient-ascent
(PGA) optimization for our dictionary model (i.e., D+PGA),
as presented in our work in [7], leads to some spurious high
correlations in the RSNs (Fig. 4(H1)–(H4),Table 3) and a
lower GM-tSNR (Table 4). We further justify the adaptabil-
ity of our dictionary learned from one training subject to
other evaluation subjects using similarity transforms through
blind DW+VBEMNM (BDW+VBEMNM). We reconstruct
RSNs using our dictionary+wavelet model and VBEMNM
optimization where the dictionary D is also updated in the
VBEMNM optimization. We find that updating the dictionary
does not lead to any observable difference in the RSNs and
reconstruction quality (Fig. 4(I1)–(I4),Table 3, Table 4) which
indicates that our similarity transform is enough to adapt the
dictionary to the evaluation subject, and approaches like blind
compressive sensing [28] are not required.

F. EVALUATING SENSITIVITY TO SELECTION OF TRAINING
DATA
We learn three more dictionaries from the fully-sampled non-
SMS ground truth data of three different subjects that are
distinct from the first training subject and the evaluation sub-
jects. We compare RSNs estimated from reconstructions ob-
tained using each of these dictionaries in our DW+VBEMNM
framework. We find negligible qualitative difference (Fig. 5)
in the RSNs estimated from reconstructions obtained using
different dictionaries. The change in average mSSIM over all
evaluation subjects is also insignificant (Table 5).

G. EVALUATING SENSITIVITY TO HEAD MOTION AND TIME
LAG
We evaluate the performance of all methods in the presence
of practical complications like artifacts arising due to (i) head
motion and (ii) time lag in the acquisition of slices arising due
to reduced temporal sampling rate.

FIGURE 5. Evaluating Sensitivity to Training Data. DMN estimated from
reconstructions of k-t undersampled SMS- CAIPI data via our
DW+VBEMNM with (A1a) Dictionary 1: mSSIM 0.967,
(A1b) Dictionary 2: mSSIM 0.972, (A1c) Dictionary 3: mSSIM 0.966,
(A1d) Dictionary 4: mSSIM 0.969. ECN estimated from reconstructions of
k-t undersampled SMS- CAIPI data via our DW+VBEMNM withh
(A2a) Dictionary 1: mSSIM 0.961,
(A2b) Dictionary 2: mSSIM 0.966, (A2c) Dictionary 3: mSSIM 0.952,
(A2d) Dictionary 4: mSSIM 0.964. DAN estimated from reconstructions of
k-t undersampled SMS- CAIPI data via our DW+VBEMNM with
(A3a) Dictionary 1: mSSIM 0.970,
(A3b) Dictionary 2: mSSIM 0.971, (A3c) Dictionary 3: mSSIM 0.962,
(A3d) Dictionary 4: mSSIM 0.971. VN estimated from reconstructions of k-t
undersampled SMS- CAIPI data via our DW+VBEMNM with
(A4a) Dictionary 1: mSSIM 0.959,
(A4b) Dictionary 2: mSSIM 0.978, (A4c) Dictionary 3: mSSIM 0.961,
(A4d) Dictionary 4: mSSIM 0.964.

We mimic head motion in the evaluation data based on the
process detailed in [51], where the head rotates about the spine
(transverse axis). The head oscillates from θangle to the left to
θangle to the right every two minutes in the 15-minute scan.
The angle θangle is selected to mimic realistic head motion
as suggested in [51]. We generate SMS-CAIPI data from this
motion-induced data, undersample in k-space, and introduce
noise as described in Section IV-A.

We propose to increase the spatial resolution in R-fMRI
acquisition through SMS-CAIPI imaging and k-t undersam-
pling. Specifically, in this paper, we propose 4× undersam-
pling in time by reducing the temporal sampling rate by 4×.
This means that one timeframe of the R-fMRI should be ac-
quired over 4× the current time interval between consecutive
timeframes. This would lead to an increase in the time lag as
acquisition proceeds from slices in the superior to the slices in
the inferior region of the brain. We incorporate this time lag
into the data as follows. Assuming that, in the ground truth,
each entire (thicker) slice is acquired at a specific timepoint,
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TABLE 5. Evaluating Sensitivity to Selection of Training Data. Average mSSIM (and Standard Deviation) of RSNs for k-t Undersampled SMS-CAIPI Data
Reconstructed Using Dictionaries Learned From Different Subjects and our DW+VBEMNM Framework.

TABLE 6. Evaluating Sensitivity to Head Motion and Time Lag. Average mSSIM (and Standard Deviation) of RSNs for k-t Undersampled SMS-CAIPI Data
With Head Motion and Time Lag Over 50 Evaluation Subjects.

FIGURE 6. Evaluating Sensitivity to Head Motion and Time Lag. DMN
estimated from reconstructions of k-t undersampled SMS-CAIPI data with
head motion and time lag artifacts, obtained by (A1) DW+VBEMNM:
mSSIM 0.94; (B1) W+GA: mSSIM 0.89; (C1) GRP+SENSE-T: mSSIM 0.91;
(D1) LR+SENSE-T: mSSIM 0.89. ECN estimated from reconstructions of k-t
undersampled SMS-CAIPI data with head motion and time lag artifacts,
obtained by (A2) DW+VBEMNM: mSSIM 0.94; (B2) W+GA: mSSIM 0.87;
(C2) GRP+SENSE-T: mSSIM 0.91; (D2) LR+SENSE-T: mSSIM 0.87. DAN
estimated from reconstructions of k-t undersampled SMS-CAIPI data with
head motion and time lag artifacts, obtained by (A3) DW+VBEMNM:
mSSIM 0.93; (B3) W+GA: mSSIM 0.87; (C3) GRP+SENSE-T: mSSIM 0.87;
(D3) LR+SENSE-T: mSSIM 0.87. VN estimated from reconstructions of k-t
undersampled SMS-CAIPI data with head motion and time lag artifacts,
obtained by (A4) DW+VBEMNM: mSSIM 0.89; (B4) W+GA: mSSIM 0.85;
(C4) GRP+SENSE-T: mSSIM 0.87; (D4) LR+SENSE-T: mSSIM 0.85.
Ground Truth RSNs same as in Figure 1.

we simulate the intensities in each (thinner) slice in the higher-
spatial-resolution scan (that has a larger number of slices)
using linear interpolation between the thicker slices, based on
the timepoint at which the thinner slice would be acquired.

We find that our DW+VBEMNM continues to outper-
form other methods for reconstruction from k-t undersam-
pled SMS-CAIPI R-fMRI data qualitatively and quantitatively
even in the presence of head motion and time lag (Fig. 6,
Table 6).

V. CONCLUSION
We demonstrated a novel algorithmic framework to recon-
struct R-MRI from k-t undersampled SMS-CAIPI data, unlike
other methods that use only k-space undersampling and SMS.
We propose a coupled prior model, incorporating (i) a ro-
bust spatially-regularized temporal-dictionary prior and (ii) a
spatiotemporal wavelet prior, which we fit efficiently using
variational Bayesian expectation maximization with nested
minorization. We describe our optimization algorithm to han-
dle the non-concavity of our robust model using nested mi-
norization within VBEM, giving efficient parameter updates
within each iteration of EM. Our framework enables uncer-
tainty estimation, and we find that the spatial pattern of un-
certainty indicates higher values at regions consistent with the
pattern of undersampling artifacts associated with the k-space
undersampling and at the pial surface of the cortex. RSN
estimates, from 5× SMS 6× k-t undersampled data (total 30×
speedup), from our framework, compare favourably to those
from existing methods for R-fMRI reconstruction. Further,
our framework significantly boosts the GM-tSNR of the re-
construction. We demonstrated the insensitivity of our frame-
work to dictionary models learned from different subjects.
We also demonstrated that our framework is less sensitive
to head motion and time-lag artifacts as compared to other
methods. In these ways, our framework can potentially enable
3× isotropic improvement in spatial resolution (total 27×
higher spatial resolution) in R-fMRI, even after accounting for
practical setup and acquisition times in R-fMRI acquisition,
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without increasing the current typical scan time. The current
framework may be limited in its ability to handle severe mo-
tion artifacts. To address this issue, the current framework
can be extended with sophisticated head-motion modeling in
future work.

APPENDIX A
DERIVATION FOR NESTED MINORIZER
M(YO,YM, X |R, A, �, F ; D,W )
We have

log P(YO,YM, X |R, A,�, F ;D,W ) :=

−
K∑

k=1

N∑
n=1

T∑
t=1

‖Y (k,t )
n − F ∑nM

l=1+(n−1)M Cl�
k
l X t

l ‖22
2σ 2

−
L∑

l=1

V∑
v=1

δ‖X(l,v) −�(l,v)(RDa(l,v) + d0a0(l,v) )‖p
2,ε

−
L∑

l=1

η‖Xl −W fl‖22 + log-normalizing-constant. (17)

We choose the previous i-th iteration (X̂ i, Ri, Ai,�i )
estimate as the point where the minorizer
M(YO,YM , X |R, A,�, F ;D,W ) touches the original function
log P(YO,YM , X |R, A,�, F ;D,W ). We design the minorizer
to be of concave quadratic nature as

M(YO,YM, X |R, A,�, F ;D,W ) :=

−
K∑

k=1

N∑
n=1

T∑
t=1

‖Y (k,t )
n − F ∑nM

l=1+(n−1)M Cl�
k
l X t

l ‖22
2σ 2

−
L∑

l=1

V∑
v=1

δb(l,v)‖X(l,v) −�(l,v)(RDa(l,v) + d0a0(l,v) )‖22

−
L∑

l=1

η‖Xl −W fl‖22 + log-normalizing-constant. (18)

We equate the values and gradients of log P(YO,YM , X |R,

A,�, F ;D,W ) and M(YO,YM , X |R, A,�, F ;D,W ) at the
touching point (X̂ i, Ri, Ai,�i ) to get

b(l,v) := p

2
(‖X̂ i

(l,v) - �i
(l,v)(R

iDai
(l,v) + d0ai

0(l,v) )‖22 + ε)
p
2−1.

(19)

and the constant b′(l,v). However, b′(l,v) is absorbed into the
log-normalizing-constant, because it is an additive constant,
and therefore need not be optimized.

APPENDIX B
DERIVATION FOR NESTED MINORIZER M(A, F )
We have

log P(A, F ) := −
L∑

l=1

V∑
v=1

α‖a(l,v)‖qq,ε

−
L∑

l=1

V∑
v=1
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(l ′,v′ )∈N A

(l,v)

βω(l,v),(l ′,v′ )Hγ (a j
(l,v) − a j

(l ′,v′ ) )

−
L∑

l=1

ρ‖ fl‖11,ε + log-normalizing-constant. (20)

We choose the previous i-th iteration (Ai, F i ) estimate as the
point where the minorizer M(A, F ) touches the original func-
tion log P(A, F ). We design the minorizer to be of concave
nature as

M(A, F ) := −
L∑

l=1

V∑
v=1

J∑
j=1

c j
(l,v)(a

j
(l,v) )

2

−
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βh j
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(l ′,v′ ) )
2
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We equate the values and gradients of log P(A, F ) and
M(A, F ) at the touching point (Ai, F i ) to get

c j
(l,v) := q

2
((a ji

(l,v) )
2 + ε)

q
2−1; (22)

h j
(l,v),(l ′,v′ ) = 0.5ω(l,v),(l ′,v′ when |a ji

(l,v) − a ji
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(23)

h j
(l,v),(l ′,v′ ) =

γω(l,v),(l ′,v′ )

(2((a ji

(l,v) − a ji

(l ′,v′ ) )
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otherwise, (24)

and the constants c′(l,v) and h′ j
(l,v),(l ′,v′ ). However, c′(l,v) and

h′ j
(l,v),(l ′,v′ ) are absorbed into the log-normalizing-constants,

because they are an additive constants, and therefore need not
be optimized.
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