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ABSTRACT One of the challenges faced by many video providers is the heterogeneity of network specifica-
tions, user requirements, and content compression performance. The universal solution of a fixed bitrate
ladder is inadequate in ensuring a high quality of user experience without re-buffering or introducing
annoying compression artifacts. However, a content-tailored solution, based on extensively encoding across
all resolutions and over a wide quality range is highly expensive in terms of computational, financial, and
energy costs. Inspired by this, we propose an approach that exploits machine learning to predict a content-
optimized bitrate ladder for on-demand video services. The method extracts spatio-temporal features from the
uncompressed content, trains machine-learning models to predict the Pareto front parameters and, based on
that, builds the ladder within a defined bitrate range. The method has the benefit of significantly reducing the
number of encodes required per sequence. The presented results, based on 100 HEVC-encoded sequences,
demonstrate a reduction in the number of encodes required when compared to an exhaustive search and
an interpolation-based method, by 89.06% and 61.46%, respectively, at the cost of an average Bjgntegaard
Delta Rate difference of 1.78% compared to the exhaustive approach. Finally, a hybrid method is introduced
that selects either the proposed or the interpolation-based method depending on the sequence features. This
results in an overall 83.83% reduction of required encodings at the cost of an average Bjgntegaard Delta Rate
difference of 1.26%.

INDEX TERMS Bitrate ladder, adaptive video streaming, rate-quality curves, video compression, HEVC.

I. INTRODUCTION

In recent reports on internet traffic volumes [1], the share
occupied by video data is predicted to reach 80% by 2023 with
anticipation of further rises subsequently. Due to the recent
pandemic and the associated major shift towards remote work-
ing (work from home schemes, online education, etc) [2], this
figure is now expected to be reached even sooner. Although
mobile users are exchanging more and more of the content
they generate, the major share of the video networking index
relates to on-demand video services, such as those provided
by Netflix, Hulu, Amazon Prime, and others. Many video
service providers invest a significant amount of resource into
optimizing video compression parameters prior to transmis-
sion [3]-[5]. This enables them to increase user satisfaction
- meeting varying end-user constraints while maintaining the
highest possible level of delivered video quality.

The display quality of the delivered content may vary from
device to device, and may be affected by a variety of factors
such as location, terminal equipment type and available band-
width. For example, a given mobile phone is likely to receive
a different encoded version of the same source video on a 5G
network than it would on a 4G network. These encodes may
vary in terms of both compression ratio and spatial resolution.
It also means that an end-user’s device might receive content
compressed at lower resolutions that is then upscaled to a
device’s native resolution prior to display.

One of the first adopted solutions to video encoding ladder
configuration was introduced by Apple in Tech Note TN2224,
which was superseded by the HLS Authoring Specification for
Apple devices [6], [7]. Many of the video service providers
adopt HTTP Adaptive Streaming (HAS) through Dynamic
Adaptive Streaming over HTTP (DASH), which is the
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standard solution introduced by MPEG [8]. In DASH, videos
are encoded with a different set of parameters (resolution,
quantization parameter, etc.) to allow for the adaptation of the
delivered video content to the heterogeneous network condi-
tions (available bandwidth, device characteristics, etc) so as
to ensure high quality of experience. The traditional approach
has been to construct (at the server side) a bitrate ladder, which
constitutes a set of bitrate-resolution pairs. This type of bitrate
ladder is often referred to as “one-size-fits-all”. In early exam-
ples, two bitrate points were used for 1080p: 4300 kbps and
5800 kbps regardless of the title! [9]. In later advances, dif-
ferentiation was introduced based on the genre of the content,
e.g. [10]. For example, higher bitrates were used for sports
content with rapid motion and fast scene changes. These solu-
tions, however, ignored the dependency of the video compres-
sion performance on specific content characteristics, resulting
in noticeable blocking and other visual artifacts in some cases
and thus, in a degraded viewing experience.

Recently, content-customised solutions have been devel-
oped and adopted by industry, such as those used by Net-
flix [9], [11], [12]. The key task here is to invest in pre-
processing where each video title is split into shorter clips or
chunks, usually associated with shots. Each short video chunk
is encoded using optimized parameters, i.e. resolution, quan-
tization level, intra-period, etc, with the aim of building the
Pareto Front (PF) across all Rate-Quality (RQ) curves. After
that, a set of target bitrates is used to find the best encoded
bitstreams. Given the extensive parameter space (compres-
sion levels, spatial and temporal resolution, codec type etc.)
and taking into account the fact that this process must be
repeated for each video chunk, the amount of computation
needed is massive. As a consequence, the industry heavily
relies on cloud computing services for pre-processing, and
this naturally comes with a high cost in financial, time and
environmental terms.

Considering the above, in this paper we propose a content-
gnostic method of estimating a close-to-optimal bitrate ladder
for adaptive video streaming for on-demand video services.
The proposed method is based on extracting low-level con-
tent features from the uncompressed videos at their native
spatial resolution and on training machine-learning models to
predict the PF parameters of the rate-distortion curves across
different resolutions. Based on the estimated PF parameters,
a set of equations that model the quantization parameters to
the bitrate is defined. With this set of equations and taking
into account the available bitrate range, a suitable bitrate lad-
der is constructed per video sequence. A clear benefit of the
proposed method compared to previous approaches is that
it significantly reduces the amount of computation required.
Furthermore, since the bitrate ladder is constructed using the
RQ PF, the number of steps on the ladder is not fixed and
might be reduced for certain videos compared to other bitrate
ladder solutions. This further reduces the storage requirements
for the resulting encodes.

!Here, title refers to a specific movie or episode of a series.
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A. CONTRIBUTION

In our previous work [13], we proposed a content-gnostic
method that predicts the cross-over points of RQ curves across
three spatial resolutions (2160p, 1080p, and 720p) for each
video chunk based on Peak Signal-to-Noise Ratio (PSNR).
Our method had the unique characteristic of predicting the
Quantization Parameters (QPs) associated with the curve in-
tersection point without requiring any encodings. The encod-
ings were performed only to estimate the bitrates correspond-
ing to the switching of resolutions.

In this paper, we build upon this previous work and propose
an extension to it. The new framework extends beyond the pre-
diction of the RQ intersection points across spatial resolutions
by introducing the following:

® A new content-driven process to predict the bitrate lad-
der is introduced that takes into account both bitrate and
quality constraints. This method models the relationship
between rate and quantization parameters across reso-
Iutions and utilises this for the estimation of the bitrate
ladder.

e Further to the feature-based method, a hybrid methodol-
ogy is proposed. This method selects either the content
driven method or an interpolation-based method for an
input sequence as a solution that can balance the accu-
racy of prediction to the relative complexity trade-off.

® The test case presented is based on an extended set of
resolutions from 2160p down to 540p, i.e. 3840x2160,
1920x 1080, 1280x720, 960%x540, and on a bitrate
range typical for video streaming at these resolutions
(from 150kbps to 25 Mbps).

B. PAPER ORGANIZATION

The rest of this paper has the following structure. Firstly,
Section II outlines state-of-the-art research and industrial
technologies. In Section III, the proposed framework is in-
troduced. The dataset employed together with its low-level
features are described in Section IV. In the same section,
the modules that contribute to the construction of the bitrate
ladder are detailed. Next, in Section V, the extracted spatio-
temporal features and the machine learning techniques used
for the prediction of the bitrate ladder are reported. Moreover,
this section presents results on the predicted ladder and dis-
cusses the methods’ relative complexity. Finally, conclusions
and future work are summarised in Section VI.

II. RELATED WORK
As explained in the Introduction, the traditional approach em-
ployed builds a fixed “bitrate ladder” that yields recommended
spatial resolution for the available bitrate. The bitrate ladder is
either content-agnostic, with fixed bitrate ranges allocated per
resolution, e.g. [14], or employs a limited number of bitrate
ladders based on genre, e.g. [10].

More advanced methods that move beyond the fixed “bi-
trate ladder” approach have been proposed recently by both
academic [15]-[17] and industry stakeholders [4], [S], [11],
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[12], [18]-[24]. All of these solutions rely on encoding statis-
tics collected either by performing a massive number of en-
codings [11], [12], [18] or by using a selective number of
encodes to predict the bitrate ladders using probabilistic [15],
[21], [22] or pre-trained machine learning models [4], [19],
[20].

Most of these recently introduced methods were based on a
per-title optimization framework. Netflix [9], [11], [18] have
reported that they obtain the RQ curves per title at different
resolutions and at different bitrates by running several trial en-
codings at different quantization levels. Then, this information
is used to construct the Pareto-optimal front (often referred to
in the adaptive streaming literature as a convex hull) of the
RQ curves using both scaled PSNR [11] and scaled VMAF
in [18] and hence to obtain the optimal parameters for a de-
fined bitrate range. An alternative approach, presented in [15],
uses measurements on the actual usage of millions of video
clips to create probability distributions of available bandwidth
and viewport sizes. These probability distributions feed an
optimization process that ensures video quality preservation
while reducing the required bitrate compared with existing
techniques. Other per-title-encoding approaches have been
developed by Bitmovin [4], MUX [19], CAMBRIA [20] and
others [5]. The Bitmovin [4] and CAMBRIA [20] solutions
include computation of the encoding complexity. According
to the former [4], a complexity analysis is performed on each
incoming video, and a variety of measurements are processed
by a machine-trained model to adjust the encoding profile
to match the content. The CAMBRIA solution estimates the
encoding complexity by running a fast constant rate encod-
ing [20]. MUX [19] introduced a deep-learning based ap-
proach that takes, as input, the vectorized video frames and
predicts the bitrate ladder. The aforementioned approaches are
compared in [5]. A further approach that uses trial encodes to
collect coding statistics at low resolutions and utilizes them
within a probabilistic framework to speed up the encoding
decisions at higher resolutions is presented in [22].

Recent work has presented a per scene optimization method
which aims to either maximize the quality or minimize the bi-
trate of each encoded representation in video on demand HAS
scenarios [23]. The method relies on building a quantized
convex hull by encoding the sequences across a set of spatial
resolutions. Furthermore, Netflix [12] has updated its dynamic
optimization method by building a bitrate ladder after com-
plexity analysis and by further tuning of pre-defined encoding
parameters. Another interesting approach that takes into ac-
count both quality constraints and bitrate network statistics
was proposed by Brightcove [21], [25]. The quality metric
used in this case was the Structural Similarity Index Measure
(SSIM) and bitrate constraints were based on probabilistic
models. Another recent approach, the iSize solution [26], uses
pre-encodes within a deep learning framework to decide on
the optimal set of encoding parameters and resolution at a
block level. Lastly, content-driven optimisation for adaptive
streaming has been explored for more immersive video for-
mats, for example in [24].
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While all of the above solutions are significant and have
contributed in the enhancement of video services, it is not
possible to make direct detailed comparisons. Firstly, they are
proprietary, meaning that they are designed to satisfy differing
business requirements and that their full details may not be
public [27]. Moreover, some of the methods are using dif-
ferent metrics in their bitrate adaptation process that are not
always shared. One area of improvement for these methods is
to reduce their complexity, as most of the aforementioned so-
lutions rely on large numbers of encodes (in many cases mas-
sive). Hence the computational and financial costs are high,
since cloud encoding services are usually employed [28].

In the above context, our aim here is to build a methodol-
ogy that can predict a close to optimal content-gnostic bitrate
ladder at a reduced computational cost compared to traditional
methods. The proposed methodology is outlined in the follow-
ing section.

IIl. OUTLINE OF THE PROPOSED FRAMEWORK

The proposed framework, as shown in Fig. 1, is structured
in two processes that use common functionalities; the train-
ing and testing processes. Different line patterns are used
to denote the information flow for the training and testing
processes. During the training process, we first downscale
the uncompressed sequences to create different spatial res-
olution versions (“Downscale Resolution” block). We also
extract low-level content features from the native resolution
sequences (“Content Features Extraction” block). Then, we
encode and decode the native and downscaled sequences for
a wide range of QPs (“Video Codec”). After decoding, we
rescale all versions in order to compute quality metrics at the
native resolution and construct the reference Pareto Front (PF)
of the sequence (“Upscale Resolution to Native”). From the
decoded upscaled videos, we record the intersection points
of the RQ curves across resolutions and the PF points, that
is, the bitrate, quality (“Quality Metrics Computation”), QP,
and resolution. The QP values at the intersection points be-
tween each resolution are henceforth called cross-over QPs.
Using these RQ points we compute the reference bitrate ladder
(“Compute the Reference Bitrate Ladder”) that will serve as
a benchmark, as follows: firstly we reduce the bitrate range
within practical limits for streaming; secondly, this trimmed
PF is subsampled across the quality and bitrate dimensions,
as detailed in Section IV-E.

The QP values represent the independent variable in the
encoding process (rate and quality are the dependent vari-
ables), and assume discrete values. Thus, our first step is to
predict these QP values as a basis for determining the RQ
points at which the resolution switches to the next one on the
PF. The cross-over QPs resolutions of the reference PF repre-
sent the ground truth for our predictions. Using the extracted
spatio-temporal features, the ground truth cross-over points
and the associated PFs, we train supervised machine learning
models to perform regression and predict the cross-over points
(“Machine Learning-based Resgression”).
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FIGURE 1. Diagrammatic overview of the proposed framework. Blue blocks indicate off-the-shelf technologies/tools, yellow the methodologies
employed in our previous work [13], and green blocks the new processes introduced in this paper.

The testing process is similar, but simpler than the train-
ing process. We first extract the spatio-temporal features that
were selected during the training process from the uncom-
pressed test sequences at the native resolution (“Content Fea-
tures Extraction”). Then, we use the trained models to predict
the cross-over QPs (“Machine Learning-based Resgression”).
Next, we perform a small number of encodes across resolu-
tions at the cross-over QPs (“Video Codec”). The next step
involves defining the parameters of the set of equations that
relate the QP to the bitrate (“Compute the Predicted Bitrate
Ladder”). These equations will indicate the resolution and
QP at the target bitrate ladder rungs. The final step involves
encoding the sequence at the predicted resolution and QPs for
each ladder rung so as to derive the predicted content-aware
bitrate ladder.

While the proposed methodology has been implemented
and demonstrated using the High Efficiency Video Codec
(HEVC) codec [29], it is extendable to any video codec.
However, since different codecs will result in different com-
pression performance, exhibiting differing RQs and PFs per
content, the models that predict the estimated ladder must be
re-trained in order to make accurate predictions. Furthermore,
in this paper, we selected PSNR as the basis for constructing
the bitrate ladder. PSNR remains the most commonly used
quality metric despite the fact that other quality metrics have
been shown to offer a better correlation with perceived quality.
Nevertheless, the method is adaptable to other quality metrics.

IV. CONSTRUCTING THE REFERENCE BITRATE LADDER
This section focuses on the exploration of the RQ space across
resolutions, the definition and modelling of the reference
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TABLE 1 List of Notations

Notation | Description

- denotes estimated parameters via fitting

- denotes predicted parameters

* denotes optimal values

Il denotes cardinality of a set

a, parameters of log(R)-QP Ist order polynomial
level {low, high} range of quantization parameter

log logarithm to the base 2

L bitrate ladder

C Pareto front

p, P,P,P index, parameter, vector, set of quantization levels
Psub subsampled quantization range

Q,Q,Q parameter, vector of video quality

QPfgevd cross-over QP

R, R, R parameter,vector, set of bitrates

Ry, bitrate ladder rung

s,5,8,8 index, parameter, vector, set of spatial resolutions
v, Vg, v, Uy native, downscaled, decoded, upscaled video sequence

Pareto surface, and the construction of the sequence-specific
reference bitrate ladder. To assist the reader, Table 1 includes
a list of the notation used in the remainder of this paper.

A. DESCRIPTION OF THE DATASET

For any content-driven video processing framework, it is es-
sential to have a large video dataset [30] that covers a variety
of scenes. Therefore, we employed a dataset of 100 publicly
available UHD video sequences from different sources: Net-
flix Chimera [31], Ultra Video Group [32], Harmonic [33],
SJTU [34] and AWS Elemental [35]. The same dataset was
also used as a training dataset in [36]. Example frames from
the dataset are depicted in Fig. 2. Many of the sequences have
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FIGURE 2. Sample frames of the considered dataset [36].

25

@
8

No of Videos
= i N
= @ S
No of Videos
[
s & 8 &

@
@

°
o

100 200 300 400 500 600 700 800 0 20 40 60 80 100 120
sl ul

(a) SI histogram. (b) TI histogram.

N
3
N
3

@
@

No of Videos
s

No of Videos
3

) " 1 ol L | ] . ;
0 05 1 15 2 1.16 147 1.18 119 12 121
MV CF e

(c) MV histogram. (d) CF histogram

FIGURE 3. Distributions of SI, TI, MV, and CF descriptors of the considered
dataset.

a native resolution of 4096x2160 and were spatially cropped
to 3840%x2160 and converted to a 4:2:0 chroma subsampled
format (if originally otherwise). Each sequence contains a sin-
gle scene (no scene cuts) and the scenes are representative of
different objects/regions of interest, camera motions, colors,
and spatial activity. The majority of the test sequences have
a frame rate of 60 fps> and a bit depth of 10 bits per sample.
Finally, the sequences were temporally cropped to 64 frames.

We illustrate in Fig. 3 the four basic descriptors of our
dataset: Spatial Information (SI), Temporal Information (TI),
average Motion Vectors (MV) magnitude and Colorfulness
(CF) [37]. These four distributions highlight the variety of
its video content. SI is an indicator of edge energy; TI is an
indicator of temporal variance; MV is another expression of
how fast the motion in successive frames might be; and CF
is an indication of the color distribution. All features show
a wide coverage of the spatio-temporal domain with most of
the sequences in the range of 150-250 for SI and 10-50 for
TI. The histograms also reveal some of the outlying video

2Two of the sequences were temporally downsampled from 120 to 60 fps
in order to match the majority frame rate of 60 fps.
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FIGURE 4. Example of intersecting RQ curves at (2160p, 1080p, and 720p),
feasible objective space and cross-over points for the sequence Marathon.

sequences, such as TunnelFlag (sample frame in row 10 and
column 1 of Fig. 2) and Wood (row 10 and column 9) that
contain very dense edges. Video sequence Jockey (row 3,
column 6) also differs from others because of its high motion.

B. THE REFERENCE PARETO-OPTIMAL FRONT

Each RQ curve at a resolution S € S can be defined as the
set of vectors; bitrate R = (R, Ry, ..., R|p|)T, video qual-
ity Q = (01, 02, ...,Q‘p|)T, and quantization points P =
P, P, ..., P|p|)T. As P represents the independent param-
eter QP that is given as input parameter to the video codec,
R, Q depend on P.

Each RQ curve expresses the tradeoff between quality Q
and bitrate R at a resolution S over the independent parameter
P. The sets of the independent variables S, P form a deci-
sion variable space that is mapped to an objective function
space that contains the resulting R;, Q; points. Our aim is
to determine the optimal (P7, S¥) that result to the highest
quality Q7 at the lowest possible R}. These tuples of optimal
points {(R?, OF, P*, S7)} form the PF. Every point on the PF
is dominant over every other point in the objective function
space. To put it simply, the PF, C, in our work is defined as a
set of tuples, i.e.

C:= (R, QF, P, ) (1)

where R > R | with R; € R™* and Rmin < R; < Rmax,
QFf > QF | with Q; € R™*, Px; < P* | with P, € IN*, Sx; >
§* ;» and |C| expressing the cardinality and varying per con-
tent. Depending on the shape of the RQ curves across resolu-
tions and their intersection points, the PF shape and cardinal-
ity may differ per sequence.

In Fig. 4(a), an example of the Rate-PSNR points across
three resolutions, i.e. {2160p, 1080p, 720p}, and the respec-
tive feasible objective space is depicted. Next, in Fig. 4(b), the
PF is illustrated with the grey dashed line.

Furthermore, it is important to define the intersection points
between the RQ curves of the same video across resolutions.
The intersection points signal the switching of resolutions and
are defined by pairs of QPs, called cross-over QPs, that are
mathematically represented as follows

level ; level;_
P J , P J )7
(oPi™, ors"
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with
Sij#Sj-1,
level; # levelj_y,
where S;, j €{1,2,...,|S|} are resolutions of the inter-

secting curves of the same video sequence and level €
{high, low} defines the range of QPs. The total number of
cross-over QPs depends of course on the number of resolu-
tions and equals to 2 x (|S| — 1). This was used in order to
make more distinct the intersection QPs of the same resolu-
tion. So, level is an indication of whether the intersection is
happening at high or low range of QP values. The resolution
and level cannot be the same for both QPs in a pair. For
example, the pair (QP2h ll‘gol - QPfgg’O p) indicates that the 2160p
curve is intersecting with the 1080p curve at a considerably
high value for 2160p and at a low for 1080p. Figure 4(b)
illustrates an example of cross-over QPs and how the notation
is used for the three intersecting curves.

C. CONSTRUCTING THE REFERENCE PARETO SURFACE

We first construct the ground truth PF and determine the in-
tersection points of the RQ curves between different spatial
resolutions. These intersection points mark the limits of the
range for which encoding at the given resolution yields the
best quality. When encoding at a lower resolution, all met-
rics are computed on the rescaled version (see Fig. 1): all
sequences are first downscaled, then encoded, decoded and
finally upscaled prior to metric computation.

We spatially downscaled all sequences in our dataset
(see Fig. 1) using a Lanczos-3 filter [38], as imple-
mented by FFmpeg [39], at four different resolutions, S =
{2160p, 1080p, 720p, 540p}. Then, we encoded all ver-
sions of the sequences with the HEVC reference software,
HM16.20 [29], using the Random Access profile, a 64-frame
intra period, a length of group of pictures equal to 16 frames,
and a fixed QP range for all resolutions: P = {15, ..., 45}.
The range of QPs selected was sufficiently wide to ensure that
the RQ curves across resolutions intersect. As can be seen in
Fig. 1, after decoding the sequences, we upscale them to the
native resolution using the same filter. All quality metrics are
computed at the display resolution (2160p), as recommended
also in [3].

In Fig. 5(a), we illustrate a subset of log,(Rate)-PSNR
curves from the considered dataset across four spatial res-
olutions for the same range of quantization levels (log, is
henceforth simplified as log). From these figures, we observe
that the wide range of content features is reflected by the
high diversity in the RQ curves. For example, the sequence
ToddlerFountain (row 5, column 7, Fig. 2) that exhibits dy-
namic texture (fountains) has a smoother slope, compared
to a more static sequence such as HoneyBee (row 7, col-
umn 8, Fig. 2) that exhibits a steeper slope. Furthermore,
there is a shift of the RQ curves toward lower quality and
bitrate associated with downscaled spatial resolutions. The
lower resolution sequences saturate at lower quality values.
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FIGURE 5. Examples of a subset of the considered dataset RQ curves at
four different spatial resolutions. Examples of curves for two sequences
are colored: the curves that correspond to HoneyBee are colored with
magenda and those that correspond to Toddlerfontain with green.
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However, sequences at lower resolutions demonstrate higher
quality values at lower bitrates. Also, the intersection points
differ significantly according to sequence characteristics (see
Section V-B, Fig. 8). In Fig. 5(b), we illustrate the resulting
Pareto surfaces for our dataset across the four spatial resolu-
tions. As expected, the composition of these curves varies for
the different sequences. The PFs are composed by a different
number of points across resolutions. This figure emphasizes
the requirement for content-aware bitrate ladder construction.
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TABLE 2 Cross-Correlation Values (LCC, SROCC) Between Cross-Over QPs

SNR

l high l
QP'?gg)p QP?QOp QPSZg)p

o, ari,
QPYE, (0.9908, 0.9901)  (0.8974, 0.8638)
QP1gko, - (0.8842, 0.8521)
QPlh(;LSQ(?p - -

!
QP35 - -

high
QP?ZOp - -

(0.9108, 0.8825)
(0.9040, 0.8812)  (0.7700, 0.7318)
(0.9895, 0.9825)  (0.9123, 0.8865)

- (0.9000, 0.8728)

(0.7908, 0.7414)  (0.8378, 0.8073)
(0.8149, 0.7971)
(0.9140, 0.8690)
(0.9182, 0.8760)

(0.9563, 0.9160)

After computing quality metrics on all versions of upscaled
decoded sequences, we construct the PF for each sequence.
This is referred to as the reference PF and will be considered
as the ground truth. We assume that two curves across resolu-
tions can only intersect once, and in a monotonically descend-
ing manner: 2160p with 1080p, 1080p with 720p, etc. Hence,
if the resulting PF reveals more than one intersection between
pairs of resolutions, we record the one with the highest bitrate.

D. CROSS-OVER QPS AND THEIR RELATIONSHIPS
In this paper, we consider four spatial resolutions
S = {2160p, 1080p, 720p, 540p}, so we have three
intersections that correspond to three pairs of cross-over
QPs, namely (QPyiEy,. OPitky,). (QPigio,» QPISH,). and
(QP;';%Z, QPlegp). A typical example of intersecting RQ
curves is drawn in Fig. 4(b). We can see that the RQ curves
across resolutions reside in very close proximity, appearing
to overlap across a wide range of bitrates. Such occurrences
are common and very often the quality values differ only
marginally across resolutions for certain bitrate ranges.
Moreover, many of the cross-over QPs are highly correlated
across different resolutions. Table 2 reports the Pearson Linear
Correlation Coefficient (LCC) and Spearman Rank Correla-
tion Coefficient (SROCC) for the cross-over QPs. Almost all
QPs are highly correlated. These observations are useful, indi-
cating that previously predicted cross-over QPs could be used
as features. The linear relationship between pairs of cross-over
QPs can be verified from the example scatter plots in Fig. 6,
where two examples of pairs of cross-over QPs are given. It
can be seen that the cross-over points show a close-to-linear
shift across resolutions. After fitting a first order polynomial
on these data, this linear relationship between cross-over QPs
is given below:

OP's0, = 1.020P)8  —5.17, )
QP = 1.O3QPIgY —2.30, 3)

where the estimated QP values are rounded to the nearest
integer. In this case, LCC is 0.9908 and SROCC 0.9901 for the
(Qchl"g}(;p, QPfggop) pair and 0.9563 and 0.9160 for the other
pair, respectively.

E. THE REFERENCE BITRATE LADDER
After constructing the Pareto-optimal front, the next step is
to build the bitrate ladder. We define the bitrate ladder as an
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ordered set Ry = {Ry 1,Rr 2, ..., Ry ||}, where L] is the
cardinality of Ry and Ry | < Rp2 < --- < Rp . The bitrate
ladder is fully defined as a set of tuples £ that comprise bitrate
values R, the associated set of quality values Q, a set of QP
values P, and a set of resolutions S, i.e.

L= {(Re.i. Qri. Pri. Sl 4)

In order to construct the bitrate ladder, we follow three
steps. First, we define the range of bitrates that will be used
for streaming, and trim our PF to lie between the lower Ry,
and upper Ry« bitrate values. Next, we perform subsampling
of the trimmed front across bitrate and quality.

Constraints across the quality dimension depend on the
metric employed. From Fig. 5(b), we observe that, for some
sequences, the PF saturates after reaching a certain bitrate
value. Allocating bits beyond this value would not improve
video quality. A shorter bitrate ladder, that takes into account
the saturation for these sequences can therefore be used. In
general, as mentioned in Section I, the length of the ladder will
depend on the video content and its compression performance
across the different resolutions.

Next, we follow common practise by selecting points on the
PF such that each ladder point Ry ; is approximately twice the
bitrate of the previous point, i.e.

Ri; >~ 2Ry -1, &)

where Ry ; € (Rmin, Rmax) and i € IN. This expression trans-
lated into the log, domain can be written as

log(Ry;) >~ 1 4+ log(Ry;—1) (6)

‘We use approximation in the above equation because, in prac-
tice the curves are not continuous, but instead finite sets of
discrete points as a consequence of using integer QP values.

We next subsample the PF considering restrictions across
the quality dimension. Put formally, we find the rate points on
the ladder Ry, ; for which:

OLi(RLi) < Omax, @)
dQr,;
ﬁ > €, (8)

where Qmax 1S the maximum value that can be assumed by
normalised metrics and € € R, € — 0. As a consequence of
the above constraint, the length of the ladder might vary. The
use of different ladder lengths, dependent on compression
complexity was also suggested in [21]. The basic steps to
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Algorithm 1: Reference Bitrate Ladder Construction.

Input: video sequence, set of resolutions S, set of
quantization points P
Output: Reference bitrate ladder £ per video sequence

1 % Stepl: Extract RQ Points

2 for each s € S do

3 Downscale sequence at s using Lanczos-3 filter;

4 for each p € P do

5 Encode sequence at QP= p with RA profile,
intraPeriod= 64, GoPlength= 16;

6 Compute Bitrate, R,,;

7 Decode sequence;

8 Upscale decoded sequence to native resolution;

9 Compute quality metrics @);

10 end

11 RQ curve at s, {log(R), Q, P, S}

12 end

13 return RQ curves across all resolutions,
{log(R),Q, P, S}

14 % Step2: Compute the Reference PF

15 Find the RQ points that compose the PF;

16 Find the intersection points of the RQ curves;
17 return Reference PF:

Crer + {(log(Ry), Qi, P, Si)}C.

18 % Step3: Compute the Reference Bitrate Ladder

19 Trim the logarithmic bitrate range:
log(R)min S log(R)L,i S log(R)max 5

20 Prune the trimmed C across bitrate dimension using
Eq.(6), — C’;

21 Prune C’ across the quality dimension according to
Eqs.(7)-(8) ;

22 return Reference Bitrate Ladder , as in Eq.(4):
c
L+ {(log(R)L,i, Qr.is PLJ‘,SL,D}L :

construct the reference bitrate ladder explained above are
briefly outlined in Algorithm 1.

V. CONTENT-DRIVEN PREDICTION OF THE BITRATE
LADDER

This section outlines the processes linked to the prediction
of the PF, including feature extraction, feature selection,
prediction of the cross-over points using machine learning
models, estimation of the PF parameters and the assessment
and evaluation of the results. A description of the proposed
methodology for content-aware ladder prediction is given in
Algorithm 2. Furthermore, this section includes a discussion
of the results with respect to the optimality of the predicted
bitrate ladders and the computational cost in terms of required
encodings.

A. SPATIO-TEMPORAL FEATURES

In this subsection, we discuss the spatio-temporal feature
extraction, which is the first step for the prediction of the
content-gnostic bitrate ladder, as described in Algorithm 2.
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Algorithm 2: Prediction of the Bitrate Ladder.

e e 9 &

10

11
12
13

14

15
16
17

19
20
21
22

23

24
25

26
27
28
29
30
31

32
33
34
35
36
37
38

39
40

42

Input: test video sequence v at native resolution
Output: Predicted bitrate ladder L per video sequence
% Stepl: Extract Features
for each frame i € {1,2,..., NoFrames} do
Compute GLCM contrast, homogeneity,
correlation, energy, entropy on frame i;
if 7 > 1 then
Compute TC mean, standard deviation,
skewness, kurtosis and entropy between
frames (7 — 1,1);
else if < = 1 then
Compute RsMSE;
end

end
Compute the mean GLCM descriptors, the mean and
standard deviation of TC statistics over all frames;
% Step2: Predict Cross-Over QPs
for each QP! do
Select a subset of features using RFE;

——level

Predict QP, ;
——level

Update the set of features with the QP,
end
% Step3: Estimate the QP-log(R) Eq. Parameters
for each v do
for each s € S do
if s # |S| then
if s > 1 then
Downscale sequence vy at resolution s
using Lanczos-3 filter;

end
——— high
Encode sequence vg at QP = ;

else
‘ ——low

Encode sequence v at QP ;
end
Compute Bitrate, R,;
Decode sequence v';
if s > 1 then
Upscale sequence v at native resolution
using Lanczos-3 filter — v, ;

end
Compute quality metrics @, between (v, v);

end
Estimate Eq.(9) parameters for video v,, for all s;

end

% Step4: Compute the Bitrate Ladder

Average the IR, points of cross-over QPs to define the
resolution switching bitrate.

Repeat Lines 20-21 from Algorithm 1 for each v,;

% Step5: Validate Monotonicity and Concavity

Order non-monotonic points and remove concave
points.

return Predicted Bitrate Ladder:

Z — {<10g(R)L,i7 @L,i7 ﬁL,ia §L,Z>}![/|
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Observing the RQ curves, their intersection points and their
PFs, it is evident that there are strong dependencies on, and
correlation with, content characteristics. For example, in the
case of the Marathon sequence, whose PSNR-log(R) curves
are depicted in Fig. 4, we observe that the PF comprises many
2160p resolution points. This can be attributed to the density
of small moving structures (runners) within the scene. On
the other hand, for other more static sequences that include
out of focus background (e.g. Barscene), the 1080p curve
intersect with the 2160p occurs at a much lower QP value.
The challenge is to find suitable spatio-temporal features that
reflect such content characteristics.

The literature is rich with various spatio-temporal features
used to characterise the relationship between video content
and compression performance [40]-[47]. The spatio-temporal
features employed in this work have been carefully selected
through extensive evaluation of a large variety of features,
modifying some so that they better represent the basic char-
acteristics of video texture that relate to encoding diffi-
culty, i.e. spatial diversity, coarseness and motion, as shown
in [48].

We adopt those features that have been successfully used
in our previous compression-related research [36], [48]-[50].
Particularly, for the representation of spatial information,
and specifically to express the variability of intensity con-
trast between neighboring pixels, we employ the Gray Level
Co-occurrence Matrix (GLCM) [41] and extracted its ba-
sic descriptors (contrast; correlation; homogeneity; energy;
entropy) along with its mean and standard deviation across
frames, as described in [48]. Another low-cost feature adopted
is the Mean Squared Error of the spatial Rescaling (RsMSE)
of the first frame, similarly to a feature suggested in [36].
This feature captures the distortions that result from spatial
sub/upsampling. Furthermore, in order to combine both spa-
tial and temporal characteristics, we employ Temporal Co-
herence (TC) [49] with its interframe statistics: mean; stan-
dard deviation; skewness; kurtosis; and entropy, as well as
the mean and standard deviation across all frames. Table 4
reports the full set of features and their statistics, biasing those
with the lowest computational complexity and those that were
selected via feature selection methods as described in Sec-
tion V. Besides those referred to above, we have tested other
features, including the normalised Laplacian pyramid [51], the
normalised cross-correlation across successive frames [49],
[52], the average frame difference, the optical flow [53], and
more.

In Fig. 8, we illustrate examples of the ground truth cross-
over Qchllé}ép against the temporal mean GLCM entropy,
meanGLCMcy, and the mean of the temporal coherence
skewness, meanTCgyy,, extracted from the video sequences at
their native resolution. The higher the value of meanGLCMgp,
the higher the spatial variability of the sequence. This is, in
most cases, related to a high cross-over value for the Qlefg’0 >
which means that the PF comprises more points from the
2160p resolution. In the case of meanTCgyy, high values
(positive skewness) indicate a temporally coherent sequence
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TABLE 4 List of Features and Their Notations

Feature | Notations

Grey-Level Co- F1.meanGLCMcon, F6.stdGLCMcon,

occurrence Matrix F2.meanGLCMco;, F7.stdGLCMcor,

(GLCM) [41] F3.meanGLCMy,oy,, F8.stdGLCMpom,
F4.meanGLCMepr, F9.stdGLCMey,
F5.meanGLCMep, F10.stdGLCMgp¢

Temporal  Coherence F11.meanTCean, F16.5tdTCean,

(TC) [49] F12.meanTCgyy, F17.stdTCyyq,

F13.meanTCgyy, F18.stdTCgyy,
F14.meanTCyy,, F19.stdTCyy;,
F15.meanTCepr, F20.5tdTCentr

F21.RsMSEjgqp (from 2160p to
1080p), F22.RsMSE73q, (from 2160p
to 720p), F23.RsMSE73,, (from 2160p
to 720p)

~ _low

MSE from Rescaling
using Lanczos filter
(RsMSE) [36]

~low

Predicted  cross-over F24.QP3160p, F25.QP1os0p>
Ps ~ high ~low
Q S F26QP}]O8?LP’ F27.QP720,
 hig
F28.Q P75y

where switching to a lower resolution is likely to happen at a
lower QP value.

It is also worth highlighting that, in the last row of Ta-
ble 4, the predicted cross-over QPs are listed as features. As
explained in Section IV-D, there is a strong relationship be-
tween cross-over QPs. There inclusion has resulted in higher
prediction accuracy. More details on this follow in the next
subsection.

B. PREDICTING THE CROSS-OVER QP VALUES

The latest version of HEVC reference software, HM16.20,
was employed in this study. The Random Access profile was
used according to the Common Testing Conditions [29], [54],
namely a 64-frame Intra Period and a Group of Pictures (GoP)
length of 16 frames. After encoding, decoding, and upscaling
the spatial resolution to 2160p, we computed the quality met-
rics and bitrate at a GoP level. Computing the RQ curves at a
GoP level enabled a larger coverage of the RQ space.

Prior to prediction of each cross-over QP value, we applied
feature selection, using recursive feature elimination [55], on
the set of spatio-temporal features. We followed a sequential
prediction of the cross-over QPs starting from the highest
resolution down to the lowest. Despite the fact that for the
QPf.’I‘%h prediction we only relied on spatio-temporal features
extracted from the uncompressed 2160p videos, for the rest of
the cross-over QPs, we made use of their identified relations
as explained earlier.

We trained and tested several machine-learning regression
methods, including Support Vector Machines with different
kernels (polynomial and Gaussian) and Random Forests. We
also evaluated deep-learning based regression with dense se-
quential layers (rectified unit activation and Adam optimiser).
However, the Gaussian Processes (GP) regression, with a 5/2
Matérn covariance kernel [56], [57], performed best for this
work, as also shown in [13]. A reason why GPs worked better
compared to Dense Sequential layers is the size of the dataset.

VOLUME 2, 2021



2y IEEE Open Journal of
Signal Processing

TABLE 5 Selected Features & Validation Metrics of Predicted Cross-Over QPs for PSNR-log(R) Curves

QP | Selected Features | LCC SROCC R? MAE RMSE
QP59 | F2. Fa. Fs F11, F12, Fl4 | 9350 9164 91 141 196
QP | F2, Fa, F5 Fl1, F12, F14, F24 | 9442 9206 90 135 1.96
QP | F2, Fa, Fs, FlL, Fl2, Fl4, F25 | 9536 9076 91 95 136
QPv | F2 R4 Fs FII F12, F14, F21, F25.F26 | 9531 8751 92 76 1.15
QPLS" | F2. Fa, Fs, F12, FI3, Fl4 | 9316 8334 88 97 144
QPyY | F2. Fa. Fs F11-FI5 | 9210 8535 89 117 159

Although, for video coding related simulations, a set of 100
sequences provides sufficient coverage in terms of content
characterisation, this size is considered small for training of
deep models. In addition, one advantage of GPs is that their
hyper-parameters are easier to optimize (such as the weight
decay and the spread of a Gaussian kernel) compared to deep
networks, and this often results in a good trade-off between
fitting the data and smoothing. On small datasets, GPs are
known to perform well and are computationally tractable [58].

To avoid overfitting, we deployed a ten-fold random cross-
validation process. The results in Table 5 report the outcome
of the ten-fold cross-validation with the accuracy of prediction
metrics averaged over the ten folds. The table also lists the
selected features and accuracy of prediction for each predicted
cross-over QP. Regarding the selected features subsets, we
observe that there are similarities for all predicted cross-over
QPs. Additionally, the previously predicted QPs were also
selected as features, as explained earlier. The two tables report
high values of R2, around 0.9. Moreover, the cross-correlation
metrics LCC and SROCC between the predicted and the
ground truth QPs are also high.> Also, the Mean Absolute
Error (MAE) and the Root Mean Squared Error (RMSE) are
considerably low and comparable for all predicted cross-over
QPs. It is important to point out that the effectiveness of the
method cannot be fully assessed by these results; the predicted
cross-over QPs will be utilised to estimate the resolution
switching bitrates and define models to estimate the bitrate
ladder. Hence, the comparison of the predicted bitrate ladder
to the reference will provide the full assessment of this frame-
work.

C. MODELLING QP-LOG(RATE) TO ESTIMATE THE BITRATE
LADDER

In the construction of the bitrate ladder after predicting the
cross-over points, we need to know which resolution to pick
for each rung of the ladder and which QP corresponds to the
respective bitrate. In order to predict the QP that corresponds
to each bitrate ladder rung, we explored the QP-log(R) rela-
tion. An example of QP-log(R) points across three resolutions

3We have to note that the predicted values were rounded to the nearest in-
teger and clipped to the range of QP values, before computing the correlation
metrics.
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FIGURE 9. Exploring the QP-log(R) model parameters across resolutions.

is illustrated in Fig. 9(a). As indicated, we confirmed that there
is a strong linear correlation with an average LCC equal to:
—0.9891 for 2160p, —0.9931 for 1080p, —0.9955 for 720p,
and —0.9952 for 540p. Thus, by defining a set of log(R)-QP
linear equations (one per resolution), we can estimate the P
Put formally:

OP, = a;10g(R) + Bs, )

where «y, B € R with s € S. So, each ﬁL,i at Ry ; can be
estimated by this equation. We explored whether the oy, s
parameters for the set of resolutions are correlated and noticed
that there is a strong correlation between the « values, partic-
ularly in the lower resolutions, between 720p and 540p with
LCC equal to 0.9890 and SROCC equal to 0.9858. This can
be observed in Fig. 9(b)—(d). Moreover, by fitting a first order
polynomial, we noticed that o720, & a540,. This means that
only one set of (QP, log(R)) values is required to determine
the Bs40p model parameter for 540p resolution. The same
cannot be applied on the higher resolutions, as the deviation
of the estimated « value is significant.

In the considered example, where |S| =4, we need to
perform two encodes in one of the four resolutions and one
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encode for the remainder in order to fully define the RQ
relations across resolutions. Naturally, it is more efficient to
perform the two encodes at lower resolutions.

D. COMPARED METHODS

Ideally, we would validate our proposed method against those
state-of-the-art technologies described in Section II. However,
as those are proprietary, with no publicly available imple-
mentations, we instead have benchmarked using the following
methods.

® Reference Ladder (RL): This exhaustive search approach
was used to construct our reference Pareto surface, as de-
scribed in Section IV-C and Algorithm 1. To summarise,
we encoded each sequence at different resolutions for
a wide range of QP values, computed the cross-over
QP’s, constructed the PF, and the bitrate ladders. This
method creates the optimal bitrate ladders and requires
the highest number of encodings.

e [nterpolation-based Ladder (IL): This method is based
on encoding using only a subset of QP values per reso-
lution. Specifically, after encoding using a subset of QPs
per resolution, we then use a piece-wise cubic Hermite
interpolation [59] to find the RQ coordinates for the
interim QP values. Based on these encodings and and
the interpolated RQs, the PF is extracted as in the RL
method explained above. This method produces a subop-
timal solution, whose accuracy depends on the number
of encodes performed per resolution. The added benefit
of this method is that it significantly reduces the number
of encodings required compared to the RL.

e [Feature-based Predicted Ladder (FL): This is the pro-
posed method described earlier in Algorithm 2, where
spatio-temporal features are extracted first to predict the
RQ cross-over points that are on the PF. Then encodings
at the cross-over QPs are used to define the bitrates,
where resolution switches, and to estimate the parame-
ters of Eq. (9). After the estimation of the parameters, the
equations are utilised along with the switching bitrates to
estimate the QP values and the resolution for the bitrate
ladder rungs.

® Hybrid Ladder (HL): This method combines the best
performing method per content, either FL or IL.
A method selection module is introduced after the
spatio-temporal feature extraction. Using the extracted
spatio-temporal features, a classifier selects for each
input sequence which method, IL or FL, is expected to
more accurately estimate the bitrate ladder.

E. BITRATE LADDER PREDICTION RESULTS

As described in Algorithm 2, after predicting the cross-over
QPs, we perform encodings at the defined cross-over points
in order to estimate the two parameters of Eq. (9) at each
resolution. After defining the parameters, the bitrate ladders
for the considered fitted models are constructed following
the approach described in Section IV-E. In order to assess
the predicted bitrate ladder against the two benchmarks, we
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TABLE 6 BD Metrics for the Predicted Ladders With the Proposed Methods
and Percentage of Points on the PF

Method | [mean,mad] BD-Rate | [mean,mad] BD-PSNR | PF-hits
IL-7 vs RL 0.80%, 1.71% -0.004dB, 0.001dB | 87.50%
IL-4 vs RL 1.28%, 1.79% -0.01dB, 0.02dB | 79.26%
FL vs RL 1.78%, 2.27% -0.04dB, 0.05dB 80.48%
HL vs RL 1.26%, 1.91% -0.02dB, 0.04dB 83.86%
I <2
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(a) BD-Rate. (b) BD-PSNR.

FIGURE 10. Mean BDRate and confidence intervals of the IL over the RL
against the number of encodes required.
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FIGURE 11. BD metric histograms for the compared methods in Table 6.

computed the BD metrics [60], BD-Rate and BD-PSNR per
sequence. For the comparison of the methods, we report the
mean values and the mean absolute deviation of both metrics
in Table 6. As an additional measure of optimality, this Table
also reports the average percentage of the predicted RQ points
that belong to the PF (PF-hits). We selected the mean abso-
lute deviation (mad) instead of standard deviation because, as
easily observed in the histograms of Fig. 11, the distributions
are not normal. The distributions are skewed due to the fact
that the BD metrics against the RL bitrate ladders that are
constructed from points on the PF. The juxtaposed methods
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FIGURE 13. Examples of predicted ladders for different sequences with
the BD-Rate reported per tested method.

are potentially composed by a mixture of points that either
belong to the PF or to a suboptimal set of points. Moreover,
in Fig. 13, we provide examples of predicted ladders using all
methods for different sequences.

1) IL METHOD
We first investigated the accuracy of the IL method by com-
puting the BD metrics for varying QP samples |Pg,p| per
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resolution, namely from 4 to 8. Figure 10 plots the mean
BD-Ratep and BD-PSNR with their mean absolute deviation
for the different |Py,;| encodes per resolution. As can be seen
from this figure, as the number of encodes increases the mean
BD-Rate drops resulting to a very good approximation of the
RL, as also verified by the results reported in Table 6. The
variations in the results are mainly attributed to the sensitivity
of the interpolation method and the different number of steps.
The BD statistics start converging for |Py,;| > 6 with the best
results achieved for |Py,,| = 7.

From this point onward, we will use two versions of IL to
compare with the other methods: IL with four QP samples
(IL-4) and IL with seven QP samples (IL-7) per resolution.

As reported in Table 6 and shown in Fig. 11, for IL-7,
the mean BD-Rate is 0.80% with a mean absolute deviation
of 1.71%, while the BD-PSNR is —0.004 dB with a mean
absolute deviation of 0.001 dB. Besides this, the IL-7 method
results in ladders composed with 87.5% RQ points from the
PF. This is a strong indication of the optimality of the pre-
dicted ladder. On the other hand, IL-4 yields to a higher mean
BD-Rate and to a lower PF-hits statistics. As justified by
Table 6 and shown in Fig. 11, IL-7 is the best performing
version, while IL-4 offers a comparable average BD-Rate to
HL, namely, |BD-Rate|=1.28%.

The histograms of BD-Rate and BD-PSNR for seven QP
samples per resolution are plotted in Fig. 11(a) and (b). As
can be seen, the distributions are tightly clustered around the
mean values, while it can also be observed that, for a small
number of sequences, the [BD-Rate|>5%.

2) FL METHOD

For the FL method, we first performed a number of initial
encodes required to determine the parameters of Eqgs.(9) that
will lead to the QP that corresponds to the rung bitrate. The

. ~high = ~high =
predicted cross-over QPs, {QOP5 %5, OP'0s0» OPcko» QP70
~high = - .
OP-5', OPsy,), are used for the initial encodes. With the

. — Jow <3 high
RQ points at QP g, OPg0» the @1080p, B10s0p are defined.

= low

The RQ points resulting from the QP,, @3%%]1 encodes are
utilised to determine the a720p, B720p parameters and the Bs40,
parameter, as well. Additionally to the above six initial en-
codes, one more encode for the 2160p resolution is used. The
QP value selection for the extra encode is decided based on
@Dgﬁ%ho value: if it is towards the lower end a higher QP is
selected, and vice versa. The additional encode in 2160p helps
to improve the predictions towards the higher bitrates because,
as shown in Fig. 9, the az160p, @1080p values deviate. Also,
after the bitrate ladder construction with the FL method, we
performed a monotonicity and concavity check, as indicated
in Step 5 of Algorithm 2. According to this, if non-monotonic
points are detected, we sort them. Also, if a bitrate ladder point
results in a concave RQ curve, we remove this point, as this
most likely is a suboptimal point.

Inspecting the histograms of FL. BD-Rate and BD-PSNR in
Fig. 11(c) and (d) we observe that, compared to IL-7, these
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distributions have heavier tails, which is verified by the higher
mean absolute deviation values. Table 6 reports the mean and
mean absolute deviation of the BD metrics of the proposed
FL method. The mean BD-Rate is 0.98% higher compared
to IL-7, while the mean absolute deviation is increased by
0.5%. Despite these increased figures, the PF-hits percentage
remains high, over 80%.

3) HL METHOD

We investigated the effectiveness of a hybrid approach that
combines the IL and FL methods. In many cases, IL-7
and FL construct almost identical ladders leading to a very
similar BD-Rate when compared to the RL. Therefore, the
rule that we apply is that the IL-7 method should be cho-
sen only for those cases, where it will improve the FL
BD-Rate at least by a threshold 7. We explored the im-
pact of this threshold by selecting a set of values, T €
{0%, 0.5%, 1.5%, 2.5%, 3.5%, 4.5%, 5.5%} and by estimat-
ing the best BDRate that could be achieved if the selection of
the method was performed with a 100% accuracy. In Fig. 12,
we illustrate the effect of this threshold on the mean BD-Rate
and the maximum expected average number of encodes per
sequence. As clearly illustrated, the increase of the 7' value
results in an increase of the mean BD-Rate while decreasing
the average required number of encodings. From the BD-Rate
to the average number of encodes tradeoff, we selected T =
0.5% as it appears as an optimal threshold.

After defining the threshold, we proceeded to the method
selection step. To this end, before predicting the cross-over
QPs, we implemented a binary classifier. If the IL-7 method is
selected for a sequence, then we proceed as described above.
If the FL method is selected, we proceed with the cross-over
QPs prediction to apply the FL method. The classifier was
built using Ensemble Trees utilizing the set of spatio-temporal
features F1-F20 and a ten-fold cross-validation was performed
to avoid overfitting. The resulting accuracy of classification
was 68%. As aresult, for 70% of the sequences the FL. method
was selected, while for 30% of the sequences the IL-7 method
was predicted to be more accurate.

The resulting BD statistics from this hybrid method, after
the method selection process, are illustrated in Fig. 11(e) and
(f). Although the classification accuracy was not very high,
it is evident that these results show significant improvements
compared to the FL results with statistics closer to those
from IL-7 in (a) and (b). The mean BD-Rate value is. 52%
lower than that of FL and 0.46% higher of IL, while the
mean absolute deviation is almost equal to of IL-7. What is
further significant is that the PF-hits value for HL slightly
drops (only 3.64%), indicating the optimality of the predicted
ladders.

F. RELATIVE COMPLEXITY

The proposed method FL and its hybrid combination with IL-
7, HL, both offer a close-to-optimal prediction of the bitrate
ladder, while achieving a significant reduction in the number
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of encodings required to build the ladder for any new video
sequence. In Table 7, the numbers of encodings required for
the compared methods are reported. As explained earlier, the
exhaustive-search method produces the optimal PF but this
comes at the cost of |S| x |P| encodings needed to derive it.
In the considered test case, the number of encodings needed
is 132.

For the IL-7 method, based on the results of Fig. 10, seven
encodes per resolution were selected. This means that a total
number of |S| x 7 = 28 encodes is required per sequence
in order to find the rate points where resolution switches
and build the PF. In this case, an additional number of en-
codes E,eq, with E,., € {0,1,...,|L]}, is required to build
the bitrate ladder. This varies for each sequence as it de-
pends from the length of its ladder. The average recorded
number of encodes for the considered dataset was 35.21. This
method brings a significant reduction of 71.60% compared to
the RL method in the presented test case. Moreover, if we
consider the case of IL-4, the average recorded number of
encodes for the considered dataset was 23.84, which reduces
by 80.77% the average number of encodes required compared
to RL.

The FL method requires initially only 2 x |S| — 1 = 7 en-
codes to define the rate points, where resolution switches,
and to compute the parameters of Eq. (9) for each sequence.
Then, similarly to IL, E,,, number of encodes are required
to hit the target bitrates at each ladder rung. In the pre-
sented test case, 13.57 encodings were required on average
for FL. Clearly, FL outperforms both RL and IL approaches
in terms of number of encodes, requiring from 89.06%
fewer encodings compared to the RL method, about 61.46%
less encodes compared to IL-7 and about 43.08% compared
to IL-4.

The hybrid method HL offers an important improvement in
terms of required number of encodings per sequence while
producing a very close to optimal ladder. This depends of
course on the number of sequences and how often IL-7 or
FL is invoked. For the presented test case, where for 70%
of the sequences the FL. method was selected for the ladder
construction, an average of 20.05 encodes was performed
resulting to a 83.83% reduction compared to RL, to a 43.06%
reduction compared to IL-7 and to a 15.90% compared to
IL-4. Compared to pure FL, HL performed on average 6.48
more encodes.

Although FL achieves an important reduction in the number
of encodings required, it also introduces an overhead associ-
ated with the computation of the extracted features and with
the cross-over QP prediction. The cost of the the construction
of the bitrate ladder is similar for IL and FL methods. The
ratio of the average feature extraction time for a sequence at
2160p resolution to the average 2160p encoding time for a
sequence at one QP is 0.18.* The cross-over QP prediction
time is negligible compared to encoding time. Considering

4The feature extraction is implemented in Matlab, while for the encodings
the HM reference software was used.
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TABLE 7 Comparison of the Number of Encodings and the Average Execution Time Per Method for a Sequence

Method | # Encodings |  Test Case (|S|=4) | Average # Encodings | Average Execution Time
RL | |S| x |P] | 4x31 | 124 | 30.58 hours
IL-7 | |S| X |Psub| + Ereq. with Eyeq € {0,1,...,|L[} |  28+(from O up to [£]) | 35.21 | 7.83 hours
IL-4 | |S| X |Psub| + Ereq. with Eyreq € {0,1,...,|L[} |  16+(from O up to [£]) | 23.74 | 5.24 hours
FL | (2% |S] = 1) + Ereq |  7+(@rom Oupto [£]) | 13.57 | 2.83 hours
HL | |S] X [Psub| | (2% |S] —=1)+ Ereq | (2817)+(from 0 up to |£]) | 20.05 | 4.33 hours

this, FL's complexity is still significantly lower from that of
the IL method.

To better quantify the effect of the different number of
encodes and to reflect the different encoding times across res-
olutions, we also included, in Table 7, the average execution
time (in hours) per sequence as recorded on an Intel Core 13 at
2.6 GHz with 12GB memory. For both FL and HL, the feature
extraction has been included in the reported time. The average
execution time values confirm that that FL and HL have the
lowest complexity compared to the other methods. The high
execution time for IL is attributed to the encodes at evenly
spaced QPs within the considered range. Additionally, for IL
methods, a higher number of encodes performed at the highest
resolution occurs by default.

G. DISCUSSION

From the results discussed above, the FL and HL methods
offer a significant reduction in the required number of encodes
compared to RL or IL for only a small BDRate cost. FL and
HL solutions are close to optimal with over 80% of the bitrate
ladder points produced belonging to the PF. Generally, IL,
FL, and HL offer very similar solutions and produce bitrate
ladders with a high percentage of points on the PF. Suboptimal
points of lower or higher target bitrate, could potentially be
improved with an additional round of encodes at an incre-
mental QP to result in an attempt to hit the bitrate closer to
the target.

Regarding the distributions of the BD statistics, we ob-
served two kinds of outliers. On one hand, negative BD-
Rate values are observed in all three methods against the
expectation of only positive BD-Rate values. The negative
BD-Rates are attributed to the fact that in many cases the
bitrate ladder might be composed of points on the PF that
are shifted towards higher bitrates and PSNR. Thus, in curved
PSNR-log(R) ladders those segments create a raised PF. An
example of this is provide in Fig. 13(e). On the other hand, we
noticed that for all tested methods, IL, FL, and HL, there are
outliers of [BD-Rate|>5% which generally is considered an
important deviation from the reference. Examples of those are
given in Fig. 13(f)—(h). These statistics are either caused by
suboptimal points or by not matching all the ladder rungs. For
example in Fig. 13(g), most of the points are not the PF for all
methods (PF-hits: 2/7 for IL-7 and 3/7 for FL). This specific
sequence produces RQs with an unusual short range of PSNR,
39-41.5 dB within the wide range of [500kbps,25Mbps]. This
means that although the BD-Rate might be considerable the
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impact on the resulting quality is insignificant. Other outliers,
such as Fig. 13(h), that are observed in the FL and HL. method
are attributed to incorrect predictions of the cross-over QPs
that subsequently lead to an incorrect bitrate for the resolution
switching. Thus, the predicted ladder is suboptimal.

The other examples of RQs in Fig. 13(a)—(d), indicate cases
of successful prediction of both IL and FL methods with a
high PF-hits percentage (over 75%). Also, they indicate cases
for HL, when the correctly better method was selected through
the classification step or cases where it failed. In most cases
though the BD-Rate difference is small.

VI. CONCLUSION

In this paper we have proposed a reduced complexity, content-
customised, solution that can predict the bitrate ladder for
adaptive streaming, based on spatio-temporal features ex-
tracted from uncompressed video at its native resolution. Our
method predicts the intersection points of the RQ curves
across spatial resolutions with a small number of video encod-
ings and then parameterises a set of equations that predict the
PF RQ points at the target bitrate ladder rungs. This enables
construction of the bitrate ladder via constrained sampling of
the quality and bitrate set of values. The proposed method
was compared against two benchmarks, an exhaustive-search
method (which produces the most accurate PF) and a more
conventional interpolation-based method. When compared to
the exhaustive search, the results show a mean BD-Rate loss
of only 1.78% and a mean BD-PSNR of 0.04 dB, but with a
reduction on average of 89.06% in the number of encodings
needed. Although the BD statistics of the interpolation based
method are better than those of the feature-based method, the
latter provides a significant reduction of encodes, 61.46% on
average, to build the bitrate ladder. A hybrid method as a
combination of the feature-based and the interpolation-based
is examined resulting to a 1.26% mean BD-Rate for only an
additional 32.32% number of encodings on average. Both FL.
and HL result in bitrate ladders that are composed on average
over 80% by Pareto optimal points. Adopting FL or HL could
result in significant savings in processing time and energy
consumption.

Future work will focus on testing the effectiveness
of the method across codecs. Firstly, as explained, the
proposed method was developed for and tested on an HEVC
codec. However, if the regression models were trained with
data derived from a different codec, then we expect the
performance gains to be comparable. Additional gains may
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however be possible by exploiting the correlation between
content features and rate-distortion characteristics across
different codecs. This could lead to even higher efficiency
in estimating the bitrate ladder and in the overall content
delivery. Furthermore, the advantage of the learning-based
method is that correlation within titles could be exploited
and further reduce the number of encodings required to build
the build the bitrate ladder for shots within the same title.
Another potential use case for the proposed method is to
consider the temporal variation of spatio-temporal features
in order to quickly estimate the ladder for time-constrained
applications such as live video content delivery. Furthermore,
as video providers are using other quality metrics, e.g. VMAF
or SSIM, to construct the bitrate ladders, we will test the
proposed method on an extended set of quality metrics.
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