
Received 9 October 2020; revised 23 February 2021; accepted 18 March 2021. Date of publication 29 March 2021;
date of current version 28 April 2021. The review of this article was arranged by Associate Editor Prof. Laura Balzano.

Digital Object Identifier 10.1109/OJSP.2021.3069373

Optimal Recovery of Missing Values for
Non-Negative Matrix Factorization

REBECCA CHEN DEAN AND LAV R. VARSHNEY (Senior Member, IEEE)
Coordinated Science Laboratory and the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

CORRESPONDING AUTHOR: REBECCA DEAN (e-mail: rebtchen@gmail.com)

This work was presented in part at the 2019 IEEE Data Science Workshop [1], and was supported in part by Air Force STTR under Grant FA8650-16-M-1819, and
in part by Grant no. 2018-182794 from the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley Community Foundation.

ABSTRACT Missing values imputation is often evaluated on some similarity measure between actual and
imputed data. However, it may be more meaningful to evaluate downstream algorithm performance after
imputation than the imputation itself. We describe a straightforward unsupervised imputation algorithm, a
minimax approach based on optimal recovery, and derive probabilistic error bounds on downstream non-
negative matrix factorization (NMF). Under certain geometric conditions, we prove upper bounds on NMF
relative error, which is the first bound of this type for missing values. We also give probabilistic bounds for
the same geometric assumptions. Experiments on image data and biological data show that this theoretically-
grounded technique performs as well as or better than other imputation techniques that account for local
structure. We also comment on imputation fairness.

INDEX TERMS Clustering, error bound, missing values, non-negative matrix factorization.

I. INTRODUCTION
Performance of missing values imputation is typically mea-
sured by how similar imputed data is to original data, but
Tuikkala et al. argue “the success of preprocessing methods
should ideally be evaluated also in other terms, for example,
based on clustering results and their biological interpreta-
tion, that are of more practical importance for the biologist”
[2]. Several groups have evaluated downstream impacts of
different imputation methods on clustering, regression, and
classification [3]–[6]. Missing values for non-negative matrix
factorization (NMF) have been studied for the application of
stock price prediction, but previous approaches lack theoreti-
cal guarantees [7].

In the first presentation of this work [1], we extended Liu
and Tan’s NMF worst-case error bound [8] to account for
simple minimax imputation, which experimentally showed
competitive performance with more complicated imputation
techniques. Additionally, in this long version, we find several
probabilistic error bounds which better characterize experi-
mental results and serve as useful benchmarks for algorithms.
We make no statistical assumptions on the missingness pattern
for the worst-case bound [9], except that there is at least one
fully observed data point per cluster. We assume samples are

missing completely at random (MCAR) for our probabilistic
bounds. Such theoretical bounds on downstream algorithms
after imputation have not been previously found. Finally, we
introduce new discussions on how our minimax approach
aligns with certain notions of fairness.

Data often exhibits local structure, e.g., different groups of
cells follow different gene expression patterns. Information
about local structure can be used to improve imputation. We
introduce a new imputation method based on optimal recov-
ery, an approximation-theoretic approach for estimating linear
functionals of a signal [10]–[12] previously applied in signal
and image interpolation [13]–[15], to perform matrix imputa-
tion of clustered data. (Note that optimal recovery is simply
the name of the minimax optimization method.) Theoretically
characterizing optimal recovery for missing value imputation
requires a new geometric analysis technique. Previous work
on missing values take a statistical approach rather than a
geometric one.

Our contributions include:
� A simple imputation algorithm that performs as well

as or better than other imputation methods, as demon-
strated on hyperspectral remote sensing data and biolog-
ical data;
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� A worst-case upper bound on the relative error of down-
stream analysis by NMF. This is the first such error
bound for settings with missing values; and

� A probabilistic bound on NMF error after imputation
that is predictive of algorithmic performance in typical
settings.

The remainder of the paper is organized as follows. In
Section II, we give background on missing data mechanisms,
imputation algorithms, and NMF. In Section III, we introduce
optimal recovery and apply it to NMF. In Section IV, we
present an algorithm for optimal recovery imputation of clus-
tered data and give a deterministic upper bound on algorithm
performance. In Section V we give a probabilistic bound on
the performance of our algorithm. In Section VI we give
experimental results for both synthetic and real data, and we
conclude in Section VII.

II. BACKGROUND
In this section, we describe the relationships between miss-
ingness patterns and the underlying data, which are referred
to as missing data mechanisms. We then discuss prior work
on imputation algorithms, and we present NMF, which is
commonly performed after imputation in biological settings.

A. MISSINGNESS MECHANISMS
Rubin originally described three mechanisms that may ac-
count for missing values in data: missing completely at ran-
dom (MCAR), missing at random (MAR), and missing not at
random (MNAR) [16]. When data is MCAR, the missing data
is a random subset of all data, and the missing and observed
values have similar distributions [17]. When data is MAR, the
distribution of missing data is dependent on the observed data.
For example, in medical records, patients with normal blood
pressure levels are more likely to have missing values for
glucose levels than patients with high blood pressure. When
data is MNAR, the distribution of missing data is dependent
on the unobserved (missing) data. For example, people with
very high incomes may be less likely to report their incomes.

It is important to understand the missingness mechanism
when analyzing data. When data is MCAR, the statistics
(e.g. mean, variance, covariance) of the complete cases (data
points with no missing observations) will represent the statis-
tics of the entire dataset, but the sample size will be much
smaller [18]. If data is MAR or MNAR, the complete cases
may be a biased representation of the dataset. Although some
research has been done on MNAR imputation, this is generally
a difficult problem, and most imputation methods assume the
MAR or MCAR model.

B. BASIC IMPUTATION ALGORITHMS
Imputation is often necessary before specific downstream
analysis, such as clustering or manifold-finding for classifica-
tion. Two main categories of imputation are single imputation,
in which missing values are imputed once, and multiple im-
putation, in which missing values are imputed multiple times
with some built-in randomness.

One of the simplest single imputation techniques is mean
imputation. Missing values of each variable are imputed with
the mean value of that variable. In regression imputation, a
variable of interest is regressed on the other variables using the
complete cases. Imputation puts points with missing values di-
rectly on the regression line. Bayesian imputation approaches
also exist, including Bayesian PCA [19] and maximum like-
lihood imputation [20]. Bayesian methods are theoretically
sound and assume that data samples are generated from some
underlying joint distribution. In practice, these methods re-
quire numerical algorithms such as the Markov chain Monte
Carlo method, which may be prohibitively time-consuming
for large datasets. Another prevalent approach to data impu-
tation uses matrix completion methods under the assumption
that data is low-rank [21], [22].

Multiple imputation attempts to preserve the vari-
ance/covariance matrix of the data. Several imputations are
randomly generated, resulting in multiple complete datasets.
One popular algorithm for multiple imputation is multiple
imputation by chained equations (MICE) [23]. While MICE
does not have the theoretical backing that maximum likeli-
hood imputation has, MICE is flexible and can accommo-
date known interactions and independencies of real-world
datasets [24].

C. IMPUTATION WITH CLUSTERED DATA
When the underlying data is clustered, a data point should
be imputed based on its cluster membership. Local im-
putation approaches outperform global ones when there is
local structure in data. Global approaches generally per-
form some form of regression or mean matching across all
samples [9], [23], whereas local approaches group subsets
of similar samples. Popular imputation algorithms that uti-
lize local structure include k-nearest neighbors (kNN), local
least squares (LLSimpute), and bicluster Bayesian component
analysis (biBPCA) [25]–[27]. The kNN imputation method
finds the k closest neighbors of a sample with missing val-
ues (measured by some distance function) and fills in the
missing values using an average of its neighbors. LLSim-
pute uses a multiple regression model to impute the miss-
ing values from k nearest neighbors. Rather than regressing
on all variables, biBPCA performs linear regression using
biclusters of a lower-dimensional space, i.e. coherent clus-
ters consisting of correlated variables under correlated exper-
imental conditions. Delalleau et al. develop an algorithm to
train Gaussian mixtures with missing data using expectation-
maximization (EM) [28]. By itself, MICE does not address
clusters, but cluster-specific (group-wise) regression can be
performed [29].

Interestingly, Tuikkala et al. found that even when imputa-
tion accuracy varies across methods, clustering accuracy after
imputation does not vary that much [2]. They show that after
imputing with BPCA, LLS, and kNN, clustering results are
similar. Chiu et al. find that LLS-like algorithms performed
better than kNN-like algorithms in terms of downstream clus-
tering accuracy [3]. De Souto et al. evaluate whether the effect
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FIGURE 1. Clustered data separable by NMF.

of different imputation methods on clustering and classifica-
tion are statistically significant [4]. They remove all genes
with more than 10% missing values and after imputation, they
find that simple methods such as mean and median imputation
perform as well as weighted kNN and BPCA. However, while
downstream analysis after imputation has been studied em-
pirically, it has never been characterized theoretically. Works
that have given theoretical error bounds for data with miss-
ing values do not consider error after imputation (e.g. linear
regression error of data with missing values [5]).

D. NON-NEGATIVE MATRIX FACTORIZATION (NMF)
Matrix factorization is commonly used for clustering and
dimensionality reduction in computational biology, imaging,
and other fields. NMF is particularly favored by engineers and
biologists because non-negativity constraints preclude neg-
ative values that are difficult to interpret in biological pro-
cesses [30], [31]. A recent tutorial article highlighted the inter-
pretability and identifiability (or model uniqueness) of NMF,
both of which are valuable for practical applications [32]. Fur-
thermore, experiments demonstrate that the latent factors are
intuitive given the data [32]. In biology, NMF of gene count
matrices can discover cell groups and lower-dimensional man-
ifolds (latent factors) describing gene count ratios for different
cell types. Due to channel noise, incomplete survey data,
or biological limitations, however, data matrices are usually
incomplete and matrix imputation is often necessary before
further analysis [31]. In particular, Stein-O’Brien et al. argue
that “newer MF algorithms that model missing data are essen-
tial for [single-cell RNA sequence] data” [33].

Donoho and Stodden interpret NMF as the problem of find-
ing cones in the positive orthant which contain clouds of data
points [34], see also [35] for earlier work. Tan and Févotte
consider NMF with missing values, but they replace missing
with zeros instead of performing imputation, and they do not
provide error bounds [7]. In addition, their NMF algorithm
requires hyperparameter tuning and makes some probabilistic
assumptions on the data.

Liu and Tan show that a rank-one NMF gives a good es-
timation of near-separable data and provide an upper bound
on the relative reconstruction error [8]. Using the cone repre-
sentation previously described, a rank-one NMF can be used
to characterize data clustered in non-overlapping cones, as
shown in Fig. 1. By assuming that separation between cones
is substantial (described more precisely in Eq. 6), Liu and Tan
derive a deterministic upper bound on NMF error, as well

as a probabilistic upper bound. Given that gene and protein
expression data is often linearly separable on some manifold-
or high-dimensional space [36], the separability assumption
is valid for real data. Taking their assumptions and original
theorems (described in Section III.B), we extend their work
to characterize NMF error when data contains missing values
that are imputed. Using these existing bounds as a starting
point, we bound performance of downstream analysis of im-
putation for the first time. Our proof is based on the geometry
of NMF and is parameter-free.

III. OPTIMAL RECOVERY
In this section, we introduce our approach to imputation based
on approximation-theoretic ideas. Suppose we are given an
unknown signal v that lies in some signal class Ck . The op-
timal recovery estimate v̂∗ minimizes the maximum error be-
tween an imputed vector v̂ and all signals in the feasible signal
class. Given well-clustered non-negative data V, we impute
missing samples in V so the maximum error is minimized over
feasible clusters, regardless of the missingness pattern.

A. APPLICATION TO CLUSTERED DATA
Let V ∈ RF×N

+ be a matrix of N sample points with F ob-
servations (N points in F -dimensional Euclidean space). Sup-
pose the N data points lie in K disjoint clusters Ck (where
k = 1, 2, . . . , K), and that these clusters are compact, convex
spaces (e.g., the convex hull of the points belonging to Ck).

Now suppose there are missing values in V. Let � ∈
{0, 1}F×N be a matrix of indicators with �i j = 1 if vi j is
observed and 0 otherwise. We make no assumptions on the
missingness pattern, such as MCAR or MAR because we take
a geometric approach rather than a statistical one. We define
the projection operator of a matrix Y onto an index set � by

[P�(Y)]i j =
{

Yi j if �i j = 1
0 if �i j = 0

.

We use the subscripted vector (·) f o to denote fully observed
data points (columns), or data points with no missing values,
and we use the subscripted vector (·)po to denote partially
observed data points, or data with missing entries. We use a
subscripted matrix (·) f o or (·)po to denote the set of all fully
observed or partially observed data columns in the matrix.

We can impute a partially observed vector vpo by observ-
ing where its observed samples intersect with the clusters
C1, . . . ,Ck . Let the missing values plane be the restriction set
over RF that satisfies the constraints on the observed values
of vpo. Let v̂po be possible imputations of vpo. For each vpo,
we call this intersection the feasible set W :

W =
⋃

k∈[K]

Wk, (1)

where

Wk = {v̂po ∈ Ck : P�(v̂po) = P�(vpo)}. (2)

Fig. 2 illustrates the feasible set (a circle) when F = 2
there are two missing samples, and when the cluster (the
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FIGURE 2. Feasible set of estimators.

FIGURE 3. Feasible set of estimators.

signal class) is an ellipsoid. If the vector had only one missing
sample, the feasible set would be a line segment (Fig. 3).

Since W cannot be empty, there must be at least one cluster
for which Wk is non-empty. The optimal recovery estimator
v̂∗

po minimizes the maximum error over the feasible set of
estimates:

v̂∗
po = arg minv̂po∈Ck

max
v∈Ck

‖v̂po − v‖, (3)

where ‖ · ‖ denotes some norm or error function. If we use the
∞-norm, v̂∗

po is the Chebyshev center of the feasible set.
Feasible clusters are those for which Wk is not empty, and

Wk are disjoint. If there are multiple non-empty Wk , we can
find (3) over the cluster for which the corresponding Wk covers
the largest volume: k = arg maxk |Wk|.

B. NON-NEGATIVE MATRIX FACTORIZATION
In this subsection, we describe the conical interpretation of
NMF, keeping the notation and formulation used by Liu and
Tan [8]. Let V ∈ RF×N

+ be a matrix of N sample points with
F non-negative observations. Suppose the columns in V are
generated from K clusters. There exist W ∈ RF×K

+ and H ∈
RK×N

+ such that V = WH. This is the NMF of V [37].
Suppose the N data points originate from K cones. We

define a circular cone C(u, α) by a direction vector u and an
angle α ∈ (0, 2π ):

C(u, α) :=
{

x ∈ RF \{0} :
x · u

‖x‖2
≥ cos α

}
, (4)

or equivalently,

C(u, α) := {
x ∈ RF \{0} : (x · u)2 − (x · x) cos2(α) ≥ 0

}
.

(5)
In a three-dimensional space, this conical hull is sometimes
called an ice cream cone [32]. Since it is possible that a
circular cone extends outside the non-negative orthant, we
truncate the circular cones to be in the non-negative orthant
P so that we have C(u, α) ∩ P. We can consider uk to be the
dictionary entry corresponding to Ck and all x’s belonging to

FIGURE 4. Geometric assumption for greedy clustering.

FIGURE 5. Decomposition of vectors in a circular cone.

Ck as noisy versions of uk . We call the angle between cones
βi j := arccos(ui · u j ). Assume the columns of V are in K
well-separated cones, that is,

min
i, j∈[K],i �= j

βi j > max
i, j∈[K],i �= j

αi + 3α j . (6)

This implies that the distance between any two points origi-
nating from the same cluster is less than the distance between
any two points in different clusters, which is a common as-
sumption used to guarantee clustering performance [38], [39]
(see Fig. 4). We can then partition V into k sets, denoted Vk :=
{vn ∈ Ck ∩ P}, and rewrite Vk as the sum of a rank-one matrix
Ak (parallel to uk) and a perturbation matrix Ek (orthogonal
to uk). For any vector z ∈ Vk , z = ‖z‖2(cos β )uk + y, where
‖y‖2 = ‖z‖2(sin β ) ≤ ‖z‖2(sin αk ). Ek is composed of the
orthogonal part y of each vector. Liu and Tan use this rank-one
approximation to find the error bound in Eq. 7 (see Fig. 5).

If V contains missing values, we can use the optimal recov-
ery estimator to impute V. Assuming the columns in V come
from K circular cones defined as (4), there is a pair of factor
matrices W∗ ∈ RF×K

+ , H∗ ∈ RK×N
+ , such that

‖V − W∗H∗‖F

‖V‖F
≤ max

k∈[K]
{sin αk}. (7)

Since the error is bounded by sin αk , we choose our op-
timal recovery estimator to minimize αk . Since cos2(α) is
monotonically decreasing for α ∈ (0, π/2), this is equivalent
to maximizing the left side of the inequality in (5):

v̂∗
po = arg max

v̂po∈Ck

{(v̂po · uk )2 − (v̂po · v̂po) cos2(αk )}. (8)

We can solve (8) analytically using the Lagrangian with
known values of vpo as equality constraints. We can also solve
(8) numerically using projected gradient descent.
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Generally, uk is not known beforehand, but we can find
uk given Wk . Given an ellipse in R3, we reconstruct its cone
by drawing lines from its limit points to the origin. Then it
is straightforward to find the center of the cone. (Note that
while this volume minimization problem is NP-hard, there are
efficient and accurate algorithms when certain assumptions
are met, which have been used with NMF [32].) Liu and Tan
propose the following optimization problem (in the absence of
missing values) over the optimal size angle and basis vector
for each cluster. We write the data points in each cluster as
X := [x1, . . . , xM ] ∈ RF×M

+ where M ∈ N+:

minimize(0,π/2) α

subject to xT
mu ≥ cos α, m ∈ [M],

u ≥ 0, ‖u‖2 = 1, α ≥ 0.

(9)

Of course, we also do not know Ck or Wk , so we use a clus-
tering algorithm to find the vectors belonging to each Ck (see
Sec. IV).

IV. ALGORITHM AND ERROR BOUND
Now we consider clustering and NMF with missing values.
If the geometric assumption (6) holds, a greedy clustering
algorithm [8, Alg. 1] returns the correct clustering of fully
observed data. Here we show that a greedy algorithm also
guarantees correct clustering of partially observed data under
certain conditions.

Lemma 1 (Greedy clustering with missing values): Let �

indicate the missing values of vpo. Let αk be the defining angle

Algorithm 2: Rank-1 NMF with Missing Values.
Data: Partially observed data
V ∈ RF×N

+ , � ∈ {0, 1}F×N , K ∈ N

Result: Ŵ∗ ∈ RF×K
+ and Ĥ∗ ∈ RK×N

+
1: Cluster data using Alg. 1 ;
2: Impute data using (3) ;
3: Perform rank-1 NMF on imputed data using an

SVD-based algorithm [8, Alg. 2] ;

of Ck and P�(αk ) be the defining angle of the cone resulting
from projecting Ck onto the missing value plane from �. If,
for exactly one k,

arccos

(
P�(vpo) · P�(uk )

‖P�(vpo)‖‖P�(uk )‖
)

≤ P�(αk ) (10)

then vpo originated from the corresponding Ck . If αk are iden-
tical for all k, Alg. 1 will cluster vpo correctly.

Proof: The result follows directly. �
Now consider feasibility of imputing data points using the

α̂ and û from Alg. 2. Clearly, the missing values plane for
each point intersects the original corresponding cone defined
by the true u and α of the cone. We know the û fall somewhere
within the original cones, but if the α̂ are too small, the new
cones may not intersect with the missing values plane.

Lemma 2 (Feasibility of imputation algorithm): The esti-
mator in (3) is able to find an imputation within the feasible
set given α1, . . . , αK and u1, . . . , uk returned by Alg. 1.

Proof: Let vector vpo be a partially observed version of
v f o ∈ V. We define the angle between vpo and cluster center
uk in the F -dimensional space:

γk = arccos

(
P�(vpo) · uk

‖P�(vpo)‖‖uk‖
)

, (11)

and between vpo and the projected cluster center in the pro-
jected (F − f )-dimensional space:

γ̂k = arccos

(
P�(vpo) · P�(uk )

‖P�(vpo)‖‖P�(uk )‖
)

, (12)

where � is the observed values indicator corresponding to
vpo. Then γk ≤ γ̂k since P�(vpo) · uk = P�(vpo) · P�(uk ) and
‖uk‖ ≥ ‖P�(uk )‖. Thus γ̂k is large enough that an imputation
on the missing values plane is feasible for each vpo. Since
αk = max γk, all partially observed points labeled as belong-
ing to Ck can be imputed. �

We extend bound (7) on the relative NMF error to miss-
ing values (Alg. 3). Note that the original bound allows for
overlapping cones and does not assume (6) holds. It only
requires all points be within αk of uk , which means vectors
in the normalized perturbation matrix Ek (illustrated as y in
Fig. 3) are upper-bounded by sin αk . In other words, If the
missing entries of each vpo are imputed using Alg. 1, then the
perturbation from the original uk , which we denote Êk , will be
at most 2Ek . We can prove this using a worst-case scenario.

VOLUME 2, 2021 211



DEAN AND R. VARSHNEY: OPTIMAL RECOVERY OF MISSING VALUES FOR NON-NEGATIVE MATRIX FACTORIZATION

FIGURE 6. Geometric proof of relative NMF error bound.

Theorem 1 (Rank-1 NMF with missing values): Suppose V
is drawn from K cones and missing values are introduced to
get Vpo. If Alg. 2 correctly clusters data points and Alg. 1 is
used to perform imputation, then

‖V − W∗
poH∗

po‖F

‖V‖F
≤ max

k∈[K]
{sin 2αk}, (13)

where W∗
po and H∗

po are found by Alg. 3.
Proof: Suppose there are two points v1 and v2 in a cone,

as indicated by the solid circle in Fig. 6. Then u will be at
an angle α from both v1 and v2. Now suppose v2 contains
missing values. Then the new v1 will be the only vector in the
cone, v̂2 is imputed using (8), where û = v1, and v̂2 is at an
angular distance sin 2α from û. (One can check that if there
are more than two points in the cone, this distance cannot
increase.) A worst-case imputation places v̂2 at an angle 2α

away from v1 (suppose the optimizer places v̂2 at an angle
greater than 2α from v1, but this is a contradiction since then
v2 would be a better estimate than the optimum). The dashed
circle in Fig. 6 represents points at an angle 2α from v1. Any
v̂2 outside the dotted circle is at an angle greater than 2α

from v2. So the shaded region indicates when the error may
be greater than sin 2α. But the missing values of v2 allow for
“movement” only along the axes. Since the intersection of a
hyperplane with a cone is a finite-dimensional ellipsoid [40],
[41], which is compact [42], v2 cannot “travel” via imputation
to the shaded region without crossing a feasible region less
than 2α from û. Hence the theorem holds. �

V. PROBABILISTIC ERROR
We now make some probabilistic assumptions on our data
and missingness patterns to calculate the expected maximum
error of optimal recovery imputation. First, consider a cone
C in an F -dimensional space defined by u and α. Let us
ignore the length of the vectors in C and preserve only the
angles of the vectors from u. We can then represent vectors of
an F -dimensional cone as points in an (F − 1)-dimensional
ball. For example, a 3-dimensional cone can be represented as
points in a circle, as in Fig. 7.

Let there be N points {x1, . . . , xN } ∈ RF , drawn uniformly
at random from K F -dimensional balls, labeled B1, . . . , BK .
Let d (xi, x j ) be the Euclidean distance between xi and x j . We
assume there is at least one data point in each ball, and that the
distance between any two points in a ball Bk is less than the
distance between any point in Bk and a point not in Bk . That

FIGURE 7. Geometric proof of relative NMF error bound.

FIGURE 8. Minimum covering sphere in two dimensions.

is, for any i, j ∈ [N], i �= j,

max
i, j∈Bk

d (xi, x j ) < min
i∈Bk , j /∈Bk

d (xi, x j ) for all k = 1, . . . , K.

(14)
This is equivalent to the geometric assumption in (6), and
we can correctly cluster any points drawn from such balls
using Alg. 1. After obtaining the clusters, we can compute
the minimum covering sphere (MCS) on the points in each
cluster [43] (Fig. 8). This gives us K balls with Nk points in
each ball.

Now suppose that we have partially observed entries in our
data. Let the missingness of a point be a Bernoulli random
variable with parameter γ . That is, x is fully observed with
probability γ and partially observed with probability 1 − γ .
There is now some uncertainty about the position of partially
observed data points, so we will find the MCS for only the
fully observed points. This is analogous to step 3 in Algorithm
2. By calculating the expected change in the radius of the
MCS, we can calculate the expected change in its correspond-
ing cone.

Theorem 2 (Probabilistic bound on NMF error): Given
the setting described above, and assuming that the N points
are drawn uniformly at random from the K balls, then after
imputing with Alg. 1, we can tighten the bound in (13) to

E

[‖V − W∗
poH∗

po‖F

‖V‖F

]
≤ max

k∈[K]
{sin αk}. (15)

Proof: If the N points are drawn uniformly at random from
the K balls, then E[Nk] = N/k, and the expected number of
fully observed and partially observed points in each cluster is

E[|Xk, f o|] = γ Nk and E[|Xk,po|] = (1 − γ )Nk .

(16)
Clearly, the volume of the MCS can only decrease as |Xk, f o|

decreases. Let Rmax be the radius of MCS if there were no
missing values, and let R̂ be the radius of the MCS of only
the fully observed points. Then R̂ < Rmax only if any x ∈ Xpo

originally lay on the surface of MCSk, f o. Suppose the points
are randomly distributed along the radius of the F -ball and we

212 VOLUME 2, 2021



FIGURE 9. Assumption that points are uniformly random on the radius.

pick points to be partially observed uniformly at random. Let

Npo = 
(1 − γ )N�. (17)

Assume xi are i.i.d. and uniformly distributed (without loss of
generality) on [0,1]. This matches the assumption in the prob-
abilistic analysis in [8] that the angles are drawn uniformly
at random on [0, α] (see Fig. 9). Assuming a continuous dis-
tribution, almost surely no two points have exactly the same
radius, and the probability of picking the � outermost points is

P (�) =
( N−�

Npo−�

)
( N

Npo

) , where � = 0, 1, . . ., Npo. (18)

This gives us

E[�] =
Npo∑
�=1

� · P [�] (19)

=
Npo∑
�=1

� ·
( N−�

Npo−�

)
( N

Npo

) (20)

= 1( N
Npo

) Npo∑
�=1

� ·
(

N − �

Npo − �

)
(21)

=
( N−1

Npo−1

)
N (N + 1)( N

Npo

)
(N − Npo + 1)(N − Npo + 2)

, (22)

where Npo is dependent on γ , as defined in (17).
The radius of the resulting MCS is dependent on the distri-

bution of points along the radius. We can determine R̂ using
order statistics. If we assume uniform distribution between 0
and 1, and order the points x1, . . . , xn so that x1 is closest to
the center of the sphere and xn is farthest, the radius of the nth
point, Rn, is given by the beta distribution

Rn ∼ B(n, 1), (23)

and

E[Rn] = n

n + 1
. (24)

FIGURE 10. Example of E[R̂] with N = 9 and � = 3.

Thus if � of the outermost points are chosen to be missing,

E[R̂] = Rmax − (�/N )Rmax =
(

N − �

N

)
Rmax. (25)

We illustrate with an example in Fig. 10. We can substitute
E[�] for �, and since E[�] is a function of γ , we have derived
the expected radius of the MCS as a function of missingness:

E[R̂] =
(

N − E[�]

N

)
Rmax. (26)

Now we reverse the arrow in Fig. 9. Due to the random
distribution of points in the sphere, removing the � outermost
points does not change the expected center u of the MCS.
Transitioning from spheres back to cones, we get

E[α̂] =
(

N − E[�]

N

)
α. (27)

Thus

α − E[α̂] = E[�]

N
· α, (28)

and the normalized Frobenius distance between W∗
f oH∗

f o and
W∗H∗ for a single cone is:

E

[‖W∗
f oH∗

f o − W∗H∗‖F

‖W∗H∗‖F

]
≤ sin

(
E[�]

N
· α

)
. (29)

If we assume vn ∈ V are MCAR, the statistical mean of V f o

is the same as that of V. Since vn are uniformly distributed,
the range of vn remains centered on the mean, so the expected
center of the MCS does not change. Thus the maximum differ-
ence between a point v ∈ Ck and its imputed point v̂ is sin αk ,
and the theorem follows. �

A. MCS WITH A DIFFERENT ASSUMPTION
If instead we assume points are uniformly distributed in the
volume of the ball, we find the change in radius as follows.
First, calculate the volume of a F -dimensional ball of radius
R = 1:

VF (R) = πF/2

�(F/2 + 1)
RF . (30)

Then we calculate radius R̂ of an F -dimensional ball as:

R̂F (V̂ ) = �(F/2 + 1)1/F

√
π

V̂ 1/F , (31)

where volume V̂ = ( 1−�
N )VF (1).
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The probability that a point x is in MCSpo is

P (x ∈ MCSpo) = V (R̂)

V (Rmax )
. (32)

Thus the expected radius given a missing parameter γ is
given by

E[R̂] = R̂F

(
1 − E[�]

N
VF (1)

)
, (33)

where E[�] is a function of γ , and the expected NMF error is

E

[‖V − W∗H∗‖F

‖W∗H∗‖F

]
= sin

(
E[R̂] · α

)
. (34)

B. MINIMUM COVERING SPHERICAL CAP FOR
NORMALIZED DATA
If the data is normalized such that each vector has an L2 norm
of 1, all the points will fall on the surface of a sphere. Let
there be N points {x1, . . . , xN } ∈ RF , drawn at random from
K F -dimensional spherical caps of a radius R F -ball, labeled
C1, . . . ,CK . Let d (xi, x j ) be some distance between xi and x j .
Assume there is at least one data point in each spherical cap,
and that (6) holds.

The area of an F -dimensional spherical cap is

A(R, h) = 1

2
AF RF−1I2rh−h2/r2

(
F − 1

2
,

1

2

)
, (35)

where 0 ≤ h ≤ R, An = 2πn/2/�[n/2] is the area of the unit
n-ball, h is the height of the cap, which can be calculated as a
function of the angle α between the center and the edge of the
cap, and Ix(a, b) is the regularized incomplete beta function.
Using the same style of analysis from the previous section,
we can find the expected angle E[αpo] given a parameter γ

for partially observed points. Thus,

E

[‖V − W∗H∗‖F

‖W∗H∗‖F

]
= sin

(
E[αpo]

)
. (36)

VI. EXPERIMENTAL RESULTS
To test our algorithm, we first generate conical data satisfying
the geometric assumption, using N = 10 000, F = 160, and
K = 40. We choose squared length of each v as a Poisson
random variable with parameter 1, and we choose the angles
of v uniformly. We then let V be partially-observed with
Bernoulli parameter ξ to obtain Vpo. That is,

�(i, j)
i.i.d.∼ Bern(ξ ). (37)

We run tests using ξ ∈ {0.4, 0.55, 0.7, 0.8, 0.9} and find im-
putation relative error for NMF:

E [V, W∗
poH∗

po] = ‖V − W∗
poH∗

po‖F

‖V‖F
. (38)

Fig. 11 shows relative error of our optimal recovery imputa-
tion with different values of α when we enforce correct clus-
tering. The error for all α values and missingness percentages
lies within the bound given by (13). Note that because our data

FIGURE 11. Relative NMF error of imputed conical data with correct
clustering.

FIGURE 12. Relative NMF error for Conical data.

FIGURE 13. Relative NMF error for Pavia data.

is drawn uniformly at random, the error does not approach the
worst-case bound.

In the next experiment, we impute the conical data with
α = 0.1 with other local imputation algorithms, including kN-
Nimpute [44] with Euclidean, cosine, and Chebyshev (L∞)
distances and iterated local least squares (itrLLS) [45]. We
perform two tests with optimal recovery: one with enforced
correct clusterings and one without prior knowledge of the
correct clusterings. We use α = 0.1 and do not enforce correct
clustering for Alg. 3 as before (see Fig. 12). We find k = 8
neighbors gives us the best results. Optimal recovery performs
much better than other methods when clusters are known, and
it performs similarly to other methods when they are not.

Following [8], the next experiment tests a subset of the
hyperspectral imaging data set from Pavia [46]. We crop the
103 images to have 2000 pixels per image, set K = 9, cor-
responding to the different imagery categories, and introduce
missing values in the same proportions as before (see Fig. 13).
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FIGURE 14. Relative NMF error for Mouse data.

TABLE I Average Imputation Times for Mouse Data in Seconds.

We also run tests with mice protein data [47] (see Fig. 14). The
original dataset contains 1077 measurements with 77 proteins.
We remove the 9 proteins that had missing measurements,
then introduce missing values. We find k = 5 neighbors gives
us the best results for kNNimpute on these datasets. On the
mouse data, we also test bicluster BPCA [27] in addition
to the other methods. The conical and Pavia test data were
not sufficiently well-conditioned to run bicluster BPCA. See
Tab. I for a comparison of run times. Our results demonstrate
that optimal recovery performs similarly to kNN methods
when clusters are not known beforehand. When clusters are
known, optimal recovery performs similarly to more advanced
methods (itrLLSimpute and biBPCA) in a fraction of the time.

VII. SUMMARY, DISCUSSION ON FAIRNESS, AND FUTURE
WORK
We have extended classical approximation-theoretic optimal
recovery to the setting of imputing missing values, specifically
for NMF. We showed that imputation using optimal recov-
ery minimizes relative NMF error under certain separability
assumptions, and provided a straightforward algorithm for
implementation. We gave a probabilistic error analysis of a
clustering algorithm after minimax imputation. This analy-
sis style can be extended to other clustering and imputation
algorithms; various applications may require different model
assumptions.

We now discuss the minimax approach and its implications
on fairness. Missingness patterns themselves may carry in-
formation [48], and statistics-based imputation methods may
introduce unfairness [49]. In certain social contexts, biases in
algorithms can lead to unfair policy-making [50]. Researchers
attempt to mitigate some of these biases using multiple im-
putation [24] or weighted estimators [51]. Philosopher John

Rawls argues that in an effort to provide all individuals with
equal opportunities, inequalities should only exist if they re-
sult in the worst off being better off [52]. In a scenario where
one’s place in society is chosen at random (including social
status and other assets), one would prefer to land in a society
that plays by a minimax rule, where the disadvantage of the
worst off is minimized.

On the experimental side, we plan to test our imputation
algorithm on single-cell RNA sequencing data along with
different clustering algorithms, which will help us refine our
algorithm for specific cases. We also aim to extend our algo-
rithm to the scenario where complete cases for each cluster
are not available. On the theoretical side, future work aims to
study how minimax imputation impacts fairness in decision-
making and clustering [53].
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