
Received 14 November 2020; revised 19 February 2021; accepted 22 February 2021. Date of publication 9 March 2021;
date of current version 16 April 2021. The review of this article was arranged by Associate Editor Arsenia Chorti.

Digital Object Identifier 10.1109/OJSP.2021.3064760

On the Relation Between Fourier Frequency
and Period for Discrete Signals, and Series of

Discrete Periodic Complex Exponentials
ALFREDO RESTREPO 1,2 (Member, IEEE), JULIAN QUIROGA3, AND JAIRO A. HURTADO 2

1 Independent Researcher in Bogotá, Bogotá 111711, Colombia
2 Departamento de Electrónica, Pontificia Universidad Javeriana, Bogotá 050023, Colombia

3 Genius Sports, Medellin 110231, Colombia

CORRESPONDING AUTHOR: ALFREDO RESTREPO (e-mail: alfredo.restrepo@utexas.edu).

ABSTRACT Discrete complex exponentials are almost periodic signals, not always periodic; when periodic,
the frequency determines the period, but not viceversa, the period being a chaotic function of the frequency,
expressible in terms of Thomae’s function. The absolute value of the frequency is an increasing function of
the subadditive functional of average variation. For discrete signals that are either sums or series of periodic
complex exponentials, the decomposition into their periodic, additive components allows for their filtering
according to period. Likewise, their period-frequency spectrum makes predictable the effects on period of
convolution filtering. Ramanujan-Fourier series are a particular case of the signal class of series of periodic
complex exponentials, a broad class of signals on which a transform, discrete both in time and in frequency,
called the DFDT Transform, is defined.

INDEX TERMS Almost periodic sequence, Ramanujan sums, Ramanujan-Fourier series, Thomae’s function,
variation, period-frequency relation.

I. INTRODUCTION
Discrete complex exponentials behave differently from con-
tinuous complex exponentials in that the relationship between
period and Fourier frequency is not as straightforward as it
is for continuous complex exponentials: |ω|T = 2π , where
T stands for the period, and ω for the frequency. Discrete
complex exponentials ejnθ are uniformly almost periodic [13]–
[16], but not always periodic. When periodic, the period is a
positive integer N ; remarkably, |θ | does not uniquely deter-
mine N , and N depends univocally on θ in a chaotic way,
closely related to Thomae’s function; see Section III-B. The
relation between period and frequency for discrete complex
exponentials is made explicit with the period-frequency ma-
trix, defined in Section IV-C. The frequency is well related to
the average variation of the complex exponential, as in Fig. 2
of Section I-B.

Ramanujan sums have been considered for application in
Signal Processing, e.g. in [11] and [22]. In particular, they
have been used to study the periodicity structure of stream-
ing data [10], and also how the periodicity of a sampled

continuous signal does not imply the periodicity of the contin-
uous signal [9]. We are interested in periodicity, as it results
from the addition of periodic signals (see Section V). Also, in
Section VII, we consider the relation between the periodicity
of a sampled continuous complex exponential and the period
of the resulting discrete complex exponential. The integrality
of Ramanujan sums is usually proved using Möbius inversion;
we include a deduction that uses the pin train signal in Sec-
tion III-C. The usefulness of Möbius inversion in the compu-
tation of Fourier transforms has been considered e.g in [12]
and in [21]. Ramanujan Sine Sums, also integer valued, have
not been considered as much in Signal Processing; we briefly
review them in Section III-D. Series of Ramanujan sums have
been considered in Number Theory but not so much in Signal
Processing; more generally, we claim that series of periodic
complex exponentials are an important source of signals for
Signal Processing. It seems to us that discrete almost peri-
odic signals are underrepresented in Signal Processing; excep-
tions being [8], [7] and [5]; we stress the almost periodicity
of complex exponentials of frequencies that are not rational
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multiples of 2π . Series of discrete periodic complex exponen-
tials are also a source of almost periodic discrete signals. The
functional of average variation, which measures the roughness
of a signal, is not used often in Signal Processing, although
the related Total Variation functional [6] is commonly used in
Image Processing since 1994; we find that the average varia-
tion (defined in Section I-B) usefully and intuitively discrim-
inates among the discrete complex exponentials of a given
period, and also that its application to Ramanujan Sums, in
Section III-E, is insightful.

A few remarks on terminology: a continuous function is
continuous in the sense of calculus, while a continuous-time,
continuous or analog signal is a function whose domain is a
continuum, e.g. an interval of the real line. A discrete signal is
a function whose domain is a countable set, e.g. the integers
or the rationals. Being the variables of the discrete-time and
continuous-time Fourier transforms, we call Fourier frequen-
cies the angular frequencies θ and ω of the discrete com-
plex exponentials ejnθ , n ∈ Z, and the continuous complex
exponentials ejtω, t ∈ R.1 From this point onwards, unless
otherwise specified, whenever the terms signal or complex
exponential are used, the discrete case will be understood.

Section II characterizes the space of the Fourier frequencies
as a circle, and classifies the periodicity of complex expo-
nentials into periodic and almost periodic. Fourier frequency
looses its intuitive meaning in the discrete case, and the
functional of average variation (Section I-B) supplies some
of the lost intuition by assigning a degree of smoothness to
each complex exponential; thus, for each period, we give the
frequencies of the smoothest and the roughest complex ex-
ponentials. We review the definition of almost periodicity for
discrete signals (sequences). The separate concepts dealt with
in Section II are not novel but the approach as a whole is. We
think there is a tendency to extrapolate from the continuous to
the discrete case that does not always hold good.

Section III reviews a few relevant concepts from Number
Theory, including both Ramanujan cosine and sine sums. We
study the average variation of Ramanujan (cosine) sums and
we show the role of Thomae’s function relating period and
Fourier frequency. Also, since for the computation of series
of periodic complex exponentials (considered in Sections IV
and VI) you use series over the rational numbers, we give the
ordering (called Farey ordering) in which such series are to be
summed up. Sections III-A, III-B and III-E present contribu-
tions of the paper, novel to Signal Processing, notwithstanding
the probable fact that mathematicians may have considered
them previously.

Under the proviso that, for signals in practice that are either
periodic or series of periodic signals, each additive component
of a given period comes from a different source, the decompo-
sition of such signals into sums of signals of different periods

1N, Z, Q, R and C denote the sets of the natural numbers, the integers,
the rationals, the reals and the complex numbers, respectively. Z+ is the set
of the positive integers.

becomes an important tool. Section IV introduces the con-
cepts of the period-frequency matrix, the Discrete-Frequency,
Discrete-Time Transform, and the notion of filtering periodic
signals according to period, rather than frequency. These are
tools that deal with signals in the combined domain of pe-
riod and frequency. The consideration of the period-frequency
support of periodic signals leads to the consideration in Sec-
tion IV-D of signals that are (infinite) series of periodic com-
plex exponentials (see also Section VI), which are signals that
are not necessarily Ramanujan-Fourier Series (see Section III-
F), opening the way to the consideration of nonperiodic sig-
nals without a DTFT. These signals are “bigger” than signals
with a DTFT, and we define a norm for them in Section VI.

Section V introduces the notions of strong and weak peri-
odicity; a signal of period N is said to be weakly periodic if
it can be expressed as a sum of signals of periods strictly less
than N . Otherwise, it is said to be strongly periodic. Sawtooth
signals are shown to be strongly periodic. Also, the periodicity
of sums of periodic signals is characterized on the basis of
Fourier frequency. We consider particularly the case when
the period of a sum of periodic signals is less than the least
common multiple of the periods of the summands, a topic
treated in [25] somewhat differently.

The use of Ramanujan sums in the Discrete Fourier Trans-
form has proven useful in Signal Processing, see e.g. [21].
Likewise, the use of series of Ramanujan sums; see e.g. [1].
In a sense, an inverse Ramanujan Fourier transform expresses
a signal as a series combination of weighted Ramanujan sums.
We generalize this idea by allowing the possibility of assign-
ing a different weight to each periodic complex exponential
in a series of all the periodic complex exponentials. This
allows for example the possibility of separate series of the
smooth and rough periodic complex exponentials. Thus, Sec-
tion VI formally defines the discrete-frequency, discrete-time
transform DFDT, introduced in Section IV, by characterizing
certain spaces of signals on which Carmichael’s inner product
can be defined, used in turn for the computation of the DFDT
transform.

Applications to continuous-time signals are given in Sec-
tion VII.

The paper is written in a lemma-proof style and several
examples are given.

A. INITIAL REMARKS ON PERIODICITY
To use the term period in an unambiguous sense, we define a
repetition time of a signal s : Z → C to be any integer k such
that ∀n ∈ Z, sn+k = sn. Thus, the signal is periodic if it has a
positive repetition time, and its period is given by the minimal
positive repetition time. If the period is N , the signal is said
to be N-periodic. Lemmas 1–3 make rigorous certain results
using this terminology.

Lemma 1: If L is a repetition time of the N-periodic signal
s, then L is a multiple of N : N |L.

Proof: By the division algorithm, there are numbers c and
r, 0 ≤ r < N , such that L = cN + r. If N � L then r > 0 but
then ∀n sn = sn+L = scN+r = sn+r gives a contradiction. �
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FIGURE 1. The 12-periodic complex exponentials ej 2π
12 n, left, and ej 2π

12 5n,
right. The lengths of the projections on the vertical plane of the line
segments are the corresponding (constant) pointwise variations.

For each frequency θ ∈ [0, 2π ), the complex exponential
ejθn is periodic if and only if its frequency θ is a rational
multiple 2πq of 2π , otherwise it is only almost periodic. In
the first case, for θ = 2π M

N , with M and N relatively prime,
the period is N . Thus, for each N ∈ Z+, there are precisely
ϕ(N ) complex exponentials of period N , where ϕ stands for
Euler’s totient function; see Section III.

A signal is periodic if and only if it is a linear combination
of periodic complex exponentials, i.e. if its spectrum support
is finite and consists of frequencies of the form 2πq, q ∈ Q̂ :=
Q ∩ [0, 1). The period of a periodic signal is the least common
multiple of the periods of the complex exponentials it is a
linear combination of, as shown in Lemma 9 of Section V.

Almost periodicity for discrete signals is defined
in Section II-C. Almost periodicity was initially de-
fined [13], [15], [14] for functions of a continuous argument
and soon afterwards [17], [16] for sequences. Periodicity is a
structural property of signals which, since the times of Euler,
the Bernoulli’s and Fourier, has the trigonometric-series
aspect as well; likewise, almost periodicity has both
aspects [15]. The structural aspect is intuitive and the
trigonometrical-series provides a tool to handle the signals.

A linear combination of complex exponentials, as well as a
series of complex exponentials, such as a Ramanujan-Fourier
series, can be non-periodic, almost periodic. The considera-
tion of almost periodic inputs to linear systems [18] is of inter-
est, theoretical and practical [16], and a discrete, autonomous
nonlinear system can generate almost periodic signals.

B. AVERAGE VARIATION
The average variation of a signal s = {sn}, is given by

var(s) := lim
L→∞

1

2L + 1

L∑
n=−L

|sn − sn+1| (1)

and provides a measure of what Tukey might have called
its roughness [36]. The pointwise variation (i.e. the absolute
difference of each two consecutive values) of a complex ex-
ponential ejθn, periodic or not, is constant (see Fig. 1) and its
average variation is

var({ejθn}) = |ejθn − ejθ (n+1)| = |1 − ejθ |

= 2| sin(
θ

2
)|; (2)

FIGURE 2. The average variation of ejθn vs. the Fourier frequency θ.

see Fig. 2. It is close to |θ |, for small |θ |.
For an N-periodic signal s, the average variation is given by

the average variation over one period:

var({sn}) := 1

N

(
N−2∑
n=0

|sn − sn+1| + |sN−1 − s0|
)

.

Average variation is a measure of roughness; defining the
smoothness of a complex exponential as two minus its average
variation, the roughness is high for frequencies θ with |θ | ≈
π , while for |θ | ≈ 0 = 2π (i.e. equivalent as frequencies, on
the basis of Equation (3), below) the smoothness is high. Com-
plex exponentials of the same period but of different Fourier
frequencies have different average variations.

C. SERIES OF PERIODIC COMPLEX EXPONENTIALS
Of recent interest in Signal Processing are both Ramanu-
jan Sums (which are periodic) and Ramanujan-Fourier Se-
ries [27], [22], [26]. The complex exponentials of a given pe-
riod in a Ramanujan-Fourier series are given the same weight;
we generalize this by considering series of periodic complex
exponentials where each periodic complex exponential in a
series of periodic complex exponentials may have a different
weight, in what we have termed the DFDT; see Sections IV-D
and VI. For a convergent series of periodic complex expo-
nentials, the pairing of the sequence of the coefficients of the
series, and the resulting signal, is a pairing of signals that are
discrete both in the time and in the frequency domains.

The countable, dense set {2πq : q ∈ [0, 1) ∩ Q} gives the
set of the frequencies of the periodic complex exponentials.
For the spectral analysis and filter design of series of peri-
odic complex exponentials, we group the Fourier frequencies
according to period, on the period-frequency matrix, as ex-
plained in Section IV.

II. COMPLEX EXPONENTIALS
Denote as � the set [0, 2π ) of the Fourier frequencies. The
similarity of two Fourier frequencies θ1 and θ2 is inherited
from the similarity of the corresponding complex exponentials
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{ejθ1n} and {ejθ2n}, by using the metric

d (θ1, θ2) := sup{|ejθ1n − ejθ2n| : n ∈ Z}, (3)

on the set � of the Fourier frequencies. With this metric,
the space of the Fourier frequencies is a topological circle,
and it is cyclically ordered [30]. Other subsets of R can be
used as Fourier-frequency sets; namely, any interval of length
2π , half closed, half open, such as [0, 2π ) or (−π, π ]; the
second case allows for the consideration of both positive and
negative frequencies. The endpoints of any interval of length
2π are equivalent: as θ → 2π , ejθn → e j0n since, for each
ε > 0 there is a δ > 0 such that ∀n ∈ Z, |e jδn − e j(2π−δ)n| =
2| sin(δn)| < ε.

A. PERIODICITY OF COMPLEX EXPONENTIALS
The signal ejn is not periodic, it is only almost periodic; in
fact, a complex exponential ejθn is periodic if and only if its
frequency θ is a rational multiple of 2π :

Lemma 2: The complex exponential ejnθ is periodic if and
only if θ is a rational multiple of 2π .

Proof: Clearly, the condition is sufficient. Also, if ejθn is
periodic, there is a positive integer r such that ejθ (n+r) =
ejθnejθr = ejθn; then, since an exponential never takes the
value 0, ejθr = 1. Then, for some integer k, θr = 2πk and the
condition is necessary as well. �

Lemma 3: The period of ej2π M
N n, with M < N and M and

N relatively prime, is N .
Proof: Clearly, N is a repetition time of ej2π M

N n. Let
gcd(N, M ) = 1 and assume that there is another positive repe-
tition time N ′ less than N ; then, for some integer k, M

N N ′ = k,
but then, being M

N equal to k
N ′ , it is reducible, which is a

contradiction. �

B. SMOOTHEST AND ROUGHEST PERIODIC
COMPLEX EXPONENTIALS
Let �̂ := 2πQ̂ = {θ = 2πq : q ∈ Q ∩ [0, 1)} denote the set
of the Fourier frequencies of periodic complex exponentials.

The closer to 0 the frequency of a complex exponential is,
the smaller its variation is, and the closer to π the frequency is,
the larger the variation. For N > 2, among the ϕ(N ) complex
exponentials of period N , two are smoothest (see Lemma 4),
and two are roughest (see Lemma 5). For small values of N ,
i.e. for N = 2, 3, 4 and 6, they coincide; see Fig. 11, below.
We present the formulae for the frequencies of the smoothest
and roughest complex exponentials of given period, in the
following two lemmas and corollary.

Lemma 4: The smoothest complex exponentials of period
N are those of frequencies 2π 1

N and 2π N−1
N .

Proof: The lemma follows from the fact that 1 and N , as
well as N − 1 and N are relatively prime for all N , and from
the variation of complex exponentials, visualized in Fig. 2. �

For example, the smoothest complex exponentials of pe-
riod 6 are those of frequencies 2π

6 and 2π 5
6 . Regarding the

frequencies of the roughest complex exponentials, you have,

Lemma 5: The roughest N-periodic complex exponentials,
writing N as N = 4m + k, with k = −1, k = 0, k = 1 or k =
2, have frequencies 2π 2m−1

4m+k and 2π 2m+k+1
4m+k , for k = −1, 0, 2,

and 2π 2 m
4m+1 = 2π N−1

2 N and 2π 2m+1
4m+1 = 2π N+1

2 N , for k = 1.

Proof: We are interested in frequencies 2π M
N closest to π ,

i.e. M
N closest to 1

2 , with gcd(M, N ) = 1.
We show first that N = 4m + k and 2m − 1 are relatively

prime for k = −1, 0, 2. If not, a prime p divides both 2m − 1
and 4m + k, for k ∈ {−1, 0, 2}, then, for some prime p, ∃r, s,
4m + k = r p and 2m − 1 = sp; then k + 2 = p(r − 2 s), that
is, p divides k + 2, k = −1, 0 or 2. If p divides 1 then p = 1,
a contradiction; if p divides 2, then p = 2, but p divides the
odd number 2m − 1 as well, a contradiction; if p divides 4,
then p = 2 but p divides the odd number 2m − 1 as well, also
a contradiction. We now show that N = 4m + 1 and 2 m are
relatively prime. Otherwise, a prime p divides both 4m + 1
and 2 m i.e. ∃r, s, 4m + 1 = r p and 2m = sp then 1 = p(r −
2 s) then p = 1, a contradiction.

By Lemma 8 below, 2m + k + 1 and 4m + k, for k =
−1, 0, 2, are also relatively prime, and, likewise, 2m + 1 and
4m + k are relatively prime.

It remains to notice that, for each m, with fixed denomina-
tor, 2m−1

4m−1 , 2m−1
4 m and 2m−1

4m+2 , as well as 2 m
4m+1 , are (irreducible)

fractions, closest to 1
2 . �

Corollary 1: For odd periods N , the roughest complex
exponentials have frequencies 2π ( 1

2 ± 1
2 N ); for even N , of

the form 4 m (i.e. a multiple of four), the roughest complex
exponentials have frequencies 2π ( 1

2 ± 1
N ). Lastly, for N even,

of the form 4m + 2, the roughest complex exponentials have
frequencies 2π ( 1

2 ± 2
N ).

Interestingly enough, the sum of a smoothest and a roughest
complex exponentials of period 12, using Ramanujan notation
for periodized segments,

ej2π 1
12 n + ej2π 5

12 n = 2jn cos

(
2π

6
n

)

= 2, j, 1, 2j,−1, j,−2,−j,−1,−2j, 1,−j

which takes values only on the axes of the complex plane.

C. NON-PERIODIC COMPLEX EXPONENTIALS
We denote the integer interval {n ∈ Z : M ≤ n ≤ N} as
/M, N/.

It follows from Lemma 2 that, for the frequencies

θ ∈ [0, 2π ) − �̂ = � − �̂

that are non-rational multiples of 2π , ejθn is not a peri-
odic signal. A discrete signal {sn} is said to be almost peri-
odic [17], [16], if for each real positive ε there is a length
L ∈ Z+ such that each integer interval /k, k + L/, k ∈ Z, of
length L, contains a number R such that

∀n ∈ Z |sn − sn+R| < ε.

The following two lemmas give known results whose proofs
are not easy to find in the Signal Processing literature.
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Lemma 6: Each complex exponential ejθn is almost peri-
odic.

Proof: Given ε > 0, partition the circle into L arcs
(ej 2π

L m, ej 2π
L (m+1)), m ∈ /0, L − 1/, such that |ej 2π

L − 1| < ε.
By the pigeonhole principle, for each k, out of the (L + 1)-
point set {ejθn : n ∈ /kL, (k + 1)L/}, there are two integers,
say n1 and n2, such that ejθn1 and ejθn2 are in one of the arcs
and therefore |ejθn1 − ejθn2 | < ε. If ejθn1 = ejθn2 the signal
is periodic; otherwise, with R = n2 − n1, |ejθ (n+R) − ejθn| =
|ejθR − 1| < ε. �

Complex exponentials meet a condition stronger than al-
most periodicity:

Lemma 7: For each ε > 0 there is a positive integer R such
that

∀n ∈ Z |ejθn − ejθ (n+R)| < ε.

Proof: If the exponential is N-periodic, take R = N . Oth-
erwise, if ejθn is not periodic, then for a given ε there is a
positive integer R such that∣∣1 − ejθR

∣∣ < ε ,

since, as proven by H. Weyl [31], the sequence {(nx)}, for2

irrational x, is uniformly distributed in [0, 1); correspond-
ingly, for θ not a rational multiple of 2π , the sequence {nθ},
mod-2π , is uniformly distributed in [0, 2π ), and the lemma
follows. �

III. RAMANUJAN SUMS AND SOME NUMBER THEORY
Let the (unique) prime factorization of the positive integer N
into (distinct) prime numbers be

N = pα1
1 pα2

2 . . . pαR
R (4)

where αi ≥ 1, for each i ∈ /1, R/; we refer to the numbers pαi
i

as the largest-power-of-a-prime factors (abbreviated as lpp
factor) of N . Euclid’s algorithm of division says that, for any
integers N and M, with M > 0, there are integers c and r, with
0 ≤ r < M, such that N = cM + r. If r = 0, one says that M
divides N and write M|N ; otherwise, write M � N . The number
of divisors d (N ) of N is given by

∏R
i=1(αi + 1), and the sum

of the divisors σ (N ) of N is σ (N ) = ∑
a|N a. ϕ(N ) denotes

the number of relatively prime numbers to N , not larger than
N ; it is known as Euler’s totient function.

The following result is well known but seldom made ex-
plicit.

Lemma 8: If M ∈ /1, N/ is relatively prime to N , that is if
gcd(M, N ) = 1, then so is N − M.

Proof: We prove the contrapositive. If N and N − M are
not relatively prime, there is a prime p that divides both
N − M and N , then ∃r, s, N − M = r p and N = sp, then M =
p(s − r) and p divides M; then N and M are not relatively
prime. �

2Here, (nx) denotes the decimal part of nx. Incidentally, Walther’s [17]
interest in almost periodic sequences stemmed from Hecke’s study of the
analytic continuation of the series

∑∞
n=1(nx)zn, |z| < 1, with x irrational.

Alternatively to the notation of Equation (4), letting {pi} be
the ascending count (i.e. a one-to-one correspondence with the
natural numbers) of (all) the prime numbers, given numbers m
and n, you may write

n =
∞∏

i=1

pαi
i , m =

∞∏
i=1

pβi
i (5)

where only a finite number of the αi’s, and of the βi’s,
are positive. The least common multiple and the greatest
common divisor of m and n are then given by lcm(m, n) =∏∞

i=1 pmax(αi,βi )
i and gcd(m, n) = ∏∞

i=1 pmin(αi,βi )
i ; note that

each lpp factor of lcm(m, n) is an lpp factor of at least
one m and n. Also, lcm(m, n)gcd(m, n) = mn. The max and
the min operators being associative, if A and B are sets,
then lcm(A ∪ B) = lcm(lcm(A), lcm(B)) and gcd(A ∪ B) =
gcd(gcd(A), gcd(B)).

A. FAREY SEQUENCES AND SERIES OVER Q̂

The Farey sequences induce an order for series that
are summed over the rationals3 in [0, 1). The Farey
sequence [29] Fn of order n is the ascending (finite)
sequence of the irreducible fractions between 0 and 1
whose denominators do not exceed n. Thus, for example,
F6 = { 0

1 , 1
6 , 1

5 , 1
4 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 3
4 , 4

5 , 5
6 , 1

1 }. The set Q̂ of
the rationals in the interval [0, 1) is countable and it can
be given the count, called here the Farey ordering {qk} =
{ 0

1 , 1
2 , 1

3 , 2
3 , 1

4 , 3
4 , 1

5 , 2
5 , 3

5 , 4
5 , 1

6 , 5
6 , 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 , 1

8 , 3
8 , 5

8 , 7
8 ,

1
9 , 2

9 , 4
9 , 5

9 , 7
9 , 8

9 . . .}, where the irreducible fractions are given
the dictionary order, with denominators in ascending order,
and the numerators in ascending order.

The ordering of the terms of a series matters and the order
in which the terms are to be summed must be specified.4 For
a function f : Q̂ → C, e.g. f (q) = cqej2πqn, we assume the
Farey ordering of the terms in the series

∑
q∈Q̂ f (q):

∑
q∈Q̂

f (q) := lim
N→∞

∑
q∈FN −{1}

f (q). (6)

B. THOMAE’S FUNCTION AND THE RELATION
PERIOD-FREQUENCY
Let η(q), q ∈ Q̂ − {0}, give the denominator of the irreducible
fraction equivalent to q; thus, for m

n any fraction equivalent
to q,

η
(m

n

)
:= n

gcd(m, n)
. (7)

Call η the denominator function, and extend it, with η(0) = 1.

Restricted to Q̂, Thomae’s function is given by

τ (q) = 1

η(q)
;
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FIGURE 3. Stem plot of Thomae’s function τ( m
N ) = 1

N , for irreducible
rational argument. Plotted for 0 < m < N ≤ 40. To avoid clutter, the stem is
not always drawn.

see Fig. 3. In general, for rational argument x = m
n , with m

and n coprime, τ (x) = n and, for irrational x, τ (x) = 0.
Let Tomae’s signal t : N → Q̂ be given by t0 = 0 and

tk = τ (qk ) for k ≥ 1, where {qk} is the Farey ordering of the
rationals in [0, 1).

Let the function N : �̂ → Z+ be given by N (θ ) = η( θ
2π

);
it gives the period of the periodic exponential ejθn. It is a
chaotic function: a change of θ , no matter how small, is likely
to produce a large change of N ; in fact, any positive-length
interval (θ0, θ0 + ε) contains frequencies of complex expo-
nentials of arbitrarily large periods. Also, for any period n,
and any positive-length interval (θ0, θ0 + ε) ⊂ [0, 2π ), the
corresponding complex exponentials of period less than n are
finite in number, possibly zero, while the set of corresponding
complex exponentials of period larger than N is infinite. See
Fig. 10, below.

C. RAMANUJAN (COSINE) SUMS
We briefly review the definition of Ramanujan sums, in order
to set the notation. For each positive integer N , the Ramanujan
sum [20] of order N is the function cN : Z+ → C given by

cN (n) :=
∑

k∈Z∗(N )

ej 2π
N kn =

∑
k∈Z∗(N )

cos

(
2π

N
kn

)
(8)

where Z∗(N ) := {k ∈ /1, N/ : gcd(k, N ) = 1}.5 Each Ra-
manujan sum cN (n) is precisely the sum of the complex
exponentials of period N and is therefore N-periodic (see
Section II.) Each Ramanujan sum cN (n) is an even function

3No count c : N → Q preserves the standard (inherited from the reals),
linear order of Q.

4The order is immaterial when the series is absolutely summable.
5Actually, Z∗(N ) is the multiplicative group [28] whose elements are the

elements of the additive group Z(N ) = {0, 1, . . . N − 1} that are relatively
prime to N .

FIGURE 4. Ramanujan sums c8(n), c9(n), c10(n) and c11(n).

FIGURE 5. Möbius function μ(n).

with respect to n = N
2 , that is

cN

(
N

2
− n

)
=

∑
k∈Z∗(N )

(−1)k cos

(
2π

N
kn

)
= cN

(
N

2
+ n

)
(9)

Ramanujan sums are integer valued; in fact, you can write
the discrete comb signal6 as

pN (n) :=
N−1∑
k=0

ej2πn k
N =

∑
d|N

cd (n),

and, using Möbius inversion formula [29], Ramanujan con-
cludes that

cN (n) =
∑
d|N

μ

(
N

d

)
pd (n) =

∑
d|n,d|N

μ

(
N

d

)
d (10)

where μ denotes the Möbius function; see Fig. 5.
Vaidyanathan et al. [22], have given an alternative proof of the
integrality of Ramanujan sums. Clearly, for each N , |cN (n)| ≤
|cN (N )| = ϕ(N ) ≤ N − 1; see Fig. 4. The max of cN (n) is not

6The discrete comb signal, or pin train, of period N and average 1, is
given by pN (kN ) = N whenever its argument is an integer multiple of N ,
and p(n) = 0 otherwise.
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a monotonic function of N but, overall, it increases with N ; in
particular, for N prime, the max of cN (n) is N − 1.

D. RAMANUJAN SINE SUMS
Ramanujan also introduced [20] the sine sums

sN (n) =
∑

k∈Z∗(N )

jk−1 sin
2πkn

N
(11)

= 1

2

∑
k∈Z∗(N )

((−1)k jN − 1)jkej 2π
N kn. (12)

For even N , the coprime k’s are odd; then, jk−1 in Equation
(11) is real, and so is sN (n). For N of the form 4m + 2, m ∈ N,
s4m+2 = 0(n) is the zero signal since, then,

sN (n) =
∑

k∈Z∗(N )

jk−1 sin
2πkn

N

=
∑

k∈Z∗(N ),k< N
2

jk−1 sin
2πkn

N
+ (−1)k jk−1 sin

2πkn

N

is zero (the k’s are odd.) The case Ramanujan was interested
is N = 4 m; then

s4 m(n) =
∑

k∈Z∗(4 m)

(j−k − jk )j
n
m k,

is integer-valued for n ∈ Z, since we know that for even N ,
s4 m(n) is real and, in addition, |(j−k − jk )j

n
m k| takes only the

values 0 and 2. In particular,

s4(n) = 0, 2, 0,−2 ,

s8(n) = 0, 0, 4, 0, 0, 0,−4, 0 ,

s12(n) = 0, 2, 0, 4, 0, 2, 0,−2, 0,−4, 0,−2 and,

s32(n) = 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,−16, 0, 0, 0, 0, 0, 0, 0 ;
see Fig. 6.

E. AVERAGE VARIATION OF RAMANUJAN SUMS
We present a few results regarding the average variation of
Ramanujan sums, together with their deductions. Being a sum
of zero-average signals, for N > 1, the average of each Ra-
manujan sum cN is zero; or, from Equation (10), see [29], and
the linearity of the average operator,

av[cN (n)] =
∑
d|N

μ

(
N

d

)
av[pd (n)] =

∑
d|N

μ(d ) = 0;

A computation of the average variations of the first 10
Ramanujan sums gives 0, 4/2, 6/3, 8/4, 10/5, 8/6, 14/7, 16/8,
24/9 and 24/10. As a function of N , var(cN (n)) is a chaotic
function, yet, it has some patterns that we explain below; see
Fig. 7 and Table 1. From Equation (10), with N as in equation

FIGURE 6. Ramanujan’s s-sums s4(n), s8(n), s12(n) and s32(n).

FIGURE 7. Stem plot of the average variation of Ramanujan sums cN , for
N ∈ /0, 1000/.

TABLE I Average Variation of Ramanujan Sums cN (n), According to Several
Possible Factorizations of N

Observe the constant subsequences of var(cN ), in Fig. 7
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(4), you have

cN (n) = pN (n) −
∑

i∈/1,R/

p N
pi

(n) +
∑

i, j∈/1,R/,i �= j

p N
pi p j

(n)

+
∑

i, j,k∈/1,R/,i �= j,i �=k, j �=k

p N
pi p j pk

(n) + · · · + (−1)Rp1(n)

(13)

where R = ω(N ) is the number of primes that divide N . From
definitions,

var(cN ) = 1

N

N∑
n=1

|
∑

k∈Z∗(N )

ej 2π
N k(n+1) −

∑
k∈Z∗(N )

ej 2π
N kn|

= 1

N

N∑
n=1

|
∑

k∈Z∗(N )

(ej 2π
N k − 1)ej 2π

N kn|. (14)

The average variation of c1 is zero. For p prime,

cp(n) = pp(n) − p1(n) = p − 1,−1, . . . − 1

and thus var(cp) = 2p
p = 2.

We say that a signal {sn} is sparse whenever every non-zero
term is surrounded by zero terms, i.e. ∀n, snsn−1 = 0. The
interpolation operator [23] is useful for the computation of
the average variation Ramanujan sums. The degree-L inter-
polation operator ϒL, L ∈ Z+, when applied to a signal x,
produces the signal

yn := [ϒL(x)]n = L x n
L

whenever n
L ∈ Z, and yn = 0 otherwise. The interpolation op-

erator preserves the average of the signal and, as we show
below, in some cases, the average variation of the signal as
well. Also, for L > 1, the interpolated version of a signal
is always sparse. Lastly, note that the average variation of a
sparse signal and of an interpolated version is the same.

If the prime p divides N then, p2|pN , μ(p2) = 0 and

cpN (n) = [ϒp(cN )](n); (15)

thus, for example,

c12(n) = 4, 0, 2, 0,−2, 0,−4, 0,−2, 0, 2, 0

= [ϒ2(c6)](n)

= [ϒ2(2, 1,−1,−2,−1, 1)](n)

If a Ramanujan sum is so interpolated twice, the second
time, its average variation does not change. In particular, for
N = 2α , the average variation is 2, since

c2α (n) = p2α (n) − p2α−1 (n)

= 2α−1, 0, . . .0,−2α−1, 0, . . ., 0.

Similarly, for N = pα a power of the prime p,

cpα (n)

= ppα (n) − ppα−1 (n)

= pα − pα−1, 0, . . . 0,−pα−1, 0, . . . 0,−pα−1, 0, . . ., 0

and the average variation is

var(cpα ) = 1

pα
(2(pα − pα−1) + 2(p − 1)pα−1)

= 4(1 − p−1);
for example, the number 3 being prime, c3(n) has average
variation 2; the average variation of c32 (n) is 8

3 ; therefore, for
α ≥ 2, the average variation of c3α (n) is 8

3 ; see Table 1.
More generally, with p1 < . . . < pR a fixed collection of

primes, for all N’s of the form N = pα1
1 . . .pαR

R , with αi ≥ 1,
and at least one αi ≥ 2, the average variation of the corre-
sponding Ramanujan sums cN (n) is the same; the reasons
being that firstly, the original sum was “sparse” and secondly,
that when you multiply one such N times pi, i ∈ /1, R/, the
resulting sum cpiN (n) is the interpolated version [ϒpi (cN )](n)
cN (n). of interpolated to [ϒpi (cN )](n), i ∈ /1, R/. For exam-
ple, var(c12) = var(c18) = var(c36) = . . .; see Table 1.

F. SERIES OF RAMANUJAN SUMS
Equations (6.1) and (7.2) of Ramanujan’s paper [20] read

∞∑
N=1

1

Ns+1
cN (n) = σs(n)

nsζ (s + 1)
= σ−s(n)

ζ (s + 1)
, s ≥ 0 (16)

where ζ (z) = ∑∞
n=1

1
nz is Riemann’s zeta function, and σs(n)

is the sum
∑

d|n ds of the sth power of the divisors of n.7 Thus,
for s = 1, he deduces that, for n ≥ 1,

∞∑
N=1

1

N2
cN (n) = 6

π2

σ (n)

n
; (17)

the signal in this equation is a series of periodic complex
exponentials that is neither almost periodic nor bounded.8 For
each N prime, | 1

N cN (n)| periodically takes values arbitrarily

close to 1; still, since 1
ζ (s+1) = ∑∞

N=1
μ(N )
Ns+1 and for s = 0,∑∞

N=1
μ(N )

N = 0, Ramanujan deduces from Equation (16) that

∞∑
N=1

1

N
cN (n) = 0(n), n ≥ 1, (18)

is the zero signal Z+ → C; see Fig. 8 for a truncated version
of the series, where it is apparent that the convergence is not
uniform.

As a number theorist, Ramanujan considered the sums
cN (n) for n ∈ Z+; notice that, for n = 0, you have

∞∑
k=1

1

k
ck (0) =

∞∑
k=1

ϕ(k)

k
≥

∞∑
k=1

1

k
= ∞;

thus, as a signal Z → C∗,
∞∑

k=1

1

k
ck (n) = ∞δ(n),

7It is not hard to show that σ−s(n) = σs (n)
ns .

8ρ(n) = σ (n)
n is known as the relative sum-of-divisors function. The Rie-

mann Hypothesis is equivalent to σ (n)
n < eγ log log(n), for n > 5040 [35].

158 VOLUME 2, 2021



FIGURE 8. Truncated Ramanujan-Fourier series
∑30

N=1
1
N cN (n), plotted for

n ∈ /0, 50/, and n ∈ /1000, 1050/.

where δ is Kronecker’s delta sequence.
Ramanujan sums can be extended in several ways; for ex-

ample, in Equation (8), you might allow for n ∈ N, or n ∈ Z;
if n ∈ R then you get a continuous signal [27]; n ∈ C, if you
are interested in analytic functions of the complex variable.

IV. PERIOD-FREQUENCY SPECTRUM AND FILTERING
With the exception of Subsection IV-D and IV-E, this Sec-
tion, as well as the following one, deal with periodic signals.
Section VI deals with (infinite) series of periodic signals.
We introduce the notion of the (unique) representation of
an N-periodic signal as the superposition of its d-periodic
components (d|N); if the N-periodic component is not null,
we say that the signal is strongly periodic, otherwise it is said
to be weakly periodic. The decomposition according to period
allows for the filtering of the signal according to period; these
notions are extended to the case of signals that are series of pe-
riodic signals. Under the assumption that the each d-periodic
component of an N-periodic signal arises from a different
source, the filtering according to period of the signal can
either enhance or deplete the contribution of each source. A
period-frequency matrix allows for the explicit representation
of periodic signals, as well as series of periodic signals, in the
period-frequency domain.

If s is N-periodic and X = DFT[s0, . . .sN−1], with Xk =
1
N

∑N−1
n=0 sne−j 2π

N nk , for k ∈ /0, N − 1/, then

sn =
N−1∑
k=0

Xkej2π k
N n =

N∑
k=1

Xkej2π k
N n, n ∈ Z (19)

uniquely expresses s as a linear combination of complex ex-
ponentials, of Fourier frequencies 2π

N k. With XN := X0, it can
be reorganized as

sn =
∑
d|N

∑
(k,N )=d

Xkej2π k
N n =

∑
d|N

∑
(k,N )=d

Xkej2π
k/d
N/d n

, (20)

where (k, N ) := gcd(k, N ). With d ′ = N
d , call each compo-

nent

sd ′
n :=

∑
k:(k,N )=d

Xkej2π
k/d
d ′ n (21)

FIGURE 9. The N-periodic signal s is filtered by period. For each of the σ

divisors d of N, the i-th output of the period discriminator is the
d-periodic signal sd (see Equation (21)). Each period component is
multiplied by a coefficient αd , before addition.

the d’-periodic component of s; you can write then,

sn =
∑
d|N

sd ′
n =

∑
d|N

sd
n (22)

This decomposition into signals of period d , d|N , is unique,
except for the order of the terms.

The average of s is XN = X0. For the remaining divisors
d of N , the average power associated with the d-periodic
component is

S�
d :=

∑
r<d : (r,d )=1

|XN
d r |2 =

∑
r<d : (r,d )=1

|Xd ′r |2. (23)

A. FILTERING PERIODIC SIGNALS ACCORDING TO PERIOD
If each of the periodic components

sd
n =

∑
r<d:(r,d )=1

Xrd ′ e j2π r
d n (24)

of signal s is multiplied times a given factor αd , you get the
filtered-by-period signal

tn =
∑
d|N

αd sd
n =

∑
d|N

αd

∑
r:(r,d )=1

Xrd ′ e j2π r
d n, (25)

as in Fig. 9.

B. PERIOD SUPPORT OF A PERIODIC SIGNAL
Writing a periodic signal s as

sn =
R∑

r=0

brej2πqrn, qr ∈ Q̂, (26)

its average power is given by

lim
N→∞

1

2N + 1

N∑
n=−N

sns∗
n (27)

=
R∑

r=0

R∑
s=0

brb∗
s lim

N→∞
1

2N + 1

N∑
n=−N

ej2π (qr−qs )n

=
R∑

r=0

R∑
s=0

brb∗
sδr−s =

R∑
r=0

brb∗
r .
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FIGURE 10. The period-frequency matrix; the vertical axis is for frequency
and the horizontal axis is for period. To each q ∈ Q̂ there corresponds the
point (η(q), 2πq) of the matrix. The Farey ordering is given here by running
over the points, from left to right, upwards on each column. The number of
points on the N-th column is ϕ(N).

Let the period support of the signal be the set of the peri-
ods of the complex exponentials a periodic signal is a linear
combination of. For the signal in Equation (19), you have

� := {d|N : S�
d �= 0}. (28)

(see Equation (23)) and, for the signal in Equation (26),

� := {η(qr ) : br �= 0, r ∈ /0, R/}, (29)

where η is the denominator function, of Equation (7).
As shown in Lemma 9 below, the period of a periodic

signal is the least common multiple of its period support, i.e.
lcm(�).

C. PERIOD-FREQUENCY SUPPORT OF A SERIES OF
PERIODIC SIGNALS
Consider series of periodic signals of the form

sn =
∑
q∈Q̂

bqej2πqn = lim
k→∞

∑
q∈F∗

k

bqej2πqn (30)

where the order of the terms in the series is the Farey order
of Equation (6), and F∗

k := Fk − {1}. The spectrum of signals
that are either sums or series of periodic complex exponentials
can be organized on the basis of a period-frequency matrix,
so that the frequencies and periods of the periodic complex
exponentials that compose a signal are organized in an explicit
way. Let the period-frequency matrix be given by the set{(

N, 2π
M

N

)
: N, M ∈ Z+, M ≤ N, gcd(M, N ) = 1

}
.

(31)
The period-frequency matrix is a subset of the Cartesian

product Z+ × �̂, as shown in Fig. 10. The period-frequency
matrix is the 90◦-rotated graph of the inverse of the Q-
restricted Thomae’s function τ of Fig. 3. It is an infinite
version of the Farey array considered in [24]. For each com-
ponent bqej2πqn of a periodic signal, or a series of peri-
odic signals, if the limit exchange of Equation (32) below
is valid, there corresponds the average power |bq|2 and the

point (η(q), 2πq) of the period-frequency matrix. The dis-
tribution of the average power in the combined domain of
period and Fourier frequency is useful information; notice
how any convolution filter with transfer function H (θ ) which
is nonzero over an interval, will let pass complex exponentials
of arbitrarily large periods. With a low-pass filter you may
block out exponentials of small periods; with a sharp cutoff
frequency θc, you block out periods smaller than or equal to
�2πθ−1

c �.
The average power limN→∞ 1

2N+1

∑N
n=−N sns∗

n of the sig-
nal in Equation (30) cannot be computed always with a Parse-
val relation, unless the exchange of limits

lim
N→∞

1

2N + 1

N∑
n=−N

lim
k→∞

∑
qr∈F∗

k

bqr ej2πqrn
∑

qs∈F∗
k

b∗
qs

e−j2πqsn

= lim
k→∞

∑
qr∈F∗

k

∑
qs∈F∗

k

bqr b∗
qs

lim
N→∞

1

2N + 1

N∑
n=−N

ej2π (qr−qs )n

(32)

is valid, in which case, the average power is given by
limk→∞

∑
qr∈F∗

k
|bqr |2. This is made more precise with

Carmichael’s inner product, in Section VI-C.
Let the period-frequency spectrum of signals of the form in

Equation (30) (with either finite or infinite non-null terms or
not) be defined on the period-frequency matrix, and be given
by

�(N, θ ) := �(η(q), 2πq) = |bq|2.
Correspondingly, let the period-frequency spectrum support
be given by

� := {(η(q), 2πq) : bq �= 0};
it is a subset of the period-frequency matrix. The period-
frequency spectrum support of each Ramanujan sum cN (n)
is precisely the column of abscissa N of the period-frequency
matrix.

D. THE DFDT: AN INTRODUCTION
Equation (30) can also be written as

sn =
∞∑

k=0

bqk ej2πqkn =
∞∑

k=0

b′
kej2πqkn (33)

where {qk} = {0, 1
2 , 1

3 , 2
3 , 1

4 , 3
4 , 1

5 . . .} is the Farey ordering of
Q̂, and b′

k := bqk . For s periodic, b′
k eventually becomes 0.

In Section VI-D, {bq : q ∈ Q̂}, if the context makes it clear,
{b′

k, k ∈ N}, is termed the discrete-frequency, discrete-time
(DFDT) Fourier transform of the signal s. The signals of
Equations (16), (17) and (18) are signals of this type (33)
and thus, the signals of Equations (17) and (18) are DFDT
inverses of sequences {bq}, with b0 = 0 and, for q > 0, bq =
η−1(q), and bq = η−2(q), respectively. Since

∑∞
k=1

1
k ck (n) =∑

q∈Q̂−{0} τ (q)ej2πqn, the inverse DFDT of Thomae’s signal
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is the signal ∞δ(n). You may also get almost periodic signals
with Equation (30).

The DFDT is asymmetric in the sense that, in the time
domain, you have two-sided signals {sn : n ∈ Z} while, in
the frequency domain, you have one-sided signals {b′

k : k ∈
N}, unless you consider negative frequencies and the ratio-
nals in (− 1

2 , 1
2 ] instead of Q̂, and their corresponding order-

ing N → Q ∩ (− 1
2 , 1

2 ], as in {q′
0, q′

1, q′
2, q′

−1, q′
3, q′

−2 . . .} =
{0, 1

2 , 1
3 ,−(1 − 2

3 ), 1
4 ,−(1 − 3

4 ), 1
5 . . .}, resulting from the

Farey ordering, and with q′ = −(1 − q), whenever q ∈ ( 1
2 , 1).

E. FILTERING BY PERIOD SERIES OF PERIODIC
COMPLEX EXPONENTIALS
Equation (20) expresses a periodic signal in terms of its d-
periodic components, d|N . In the limit, as N → ∞, you get
that the signals of Equations (30) and (33) can be reorganized
as series of d-periodic signals, d ∈ Z+

sn =
∞∑

d=1

∑
r<d:(r,d )=1

Br,d ej2π r
d n, (34)

and, given a sequence {αd : d ∈ Z+} of coefficients, you get
the filtered-by-period signal

tn =
∞∑

d=1

αd

∑
r<d:(r,d )=1

Br,d ej2π r
d n; (35)

provided there is convergence. Thus, for example, with αd =
d , the filtering of a signal of the form in Equation (16), with
s > 1, gives the signal σs−1(n)

ns−1ζ (s)
.

V. PERIOD OF SUMS OF PERIODIC SIGNALS
The period of a sum of periodic signals may be smaller than
the least common multiple of the periods of the summands
(it can be as small as the least common multiple divided by
the greatest common divisor), when they are weakly periodic.
The sawtooth signals, as well as the pulse trains, are shown to
be strongly periodic.

If the frequencies in of the spectrum support of a periodic
signal are known with full accuracy, the period can be com-
puted, as the following lemma indicates.

Lemma 9: The linear combination

sn =
R−1∑
i=0

Aie
j2π

Mi
Ni

n
, n ∈ Z, (36)

of independent ( Mi
Ni

�= M j
Nj

), periodic, complex exponentials,
with gcd(Mi, Ni ) = 1, is periodic and its period is given by
the least common multiple of {N0, . . . NR−1}.

Proof: The addition of a constant signal to a periodic signal
does not modify the period, therefore the Fourier frequency 0
is not considered. Let L be the least common multiple of the
set of denominators {Ni : i ∈ /0, R − 1/}, thus L is a repeti-
tion time of the linear combination {sn}. Assume the period T
is less than L, then∑R−1

i=0 Aie
j2π

Mi
Ni

(n+T ) = ∑R−1
i=0 Aie

j2π
Mi
Ni

n; then

∑R−1
i=0 Aie

j2π
Mi
Ni

T
e

j2π
Mi
Ni

n = ∑R−1
i=0 Aie

j2π
Mi
Ni

n, then∑R−1
i=0 Ai(e

j2π
Mi
Ni

T − 1)e j2π
Mi
Ni

n = 0;

not all coefficients Ai(e
j2π

Mi
Ni

T − 1) in the linear combination
above are zero, since L is less than the least common multiple

of the Ni’s; then the orthogonal set of signals {e j2π
Mi
Ni

n} is
linearly dependent, a contradiction. �

Corollary 2: The period of a periodic signal is given by the
least common multiple lcm(�) of its period support.

Corollary 3: The period-frequency support of a pα-
periodic signal, where p is a prime number and α is a positive
integer, includes a point (pα, 2πq) with first coordinate pα .

A. SUMS OF PERIODIC SIGNALS
The sum of two periodic signals is periodic since the least
common multiple of their periods is a positive repetition time
of the sum.

Corollary 4: The period of a sum of periodic signals is
given by the least common multiple of the periods of the
complex exponentials in the summands that do not cancel out.

Proof: It follows from Lemma 9 and from the fact that the
expansion of a periodic signal into a linear combination of
complex exponentials is unique. �

The period of a sum of periodic signals is a divisor of the
least common multiple of the periods of the summands.

Corollary 5: If the period of the sum of two periodic sig-
nals is smaller than the least common multiple of the periods
of the signals being added then the periods share at least one
common lpp factor.

Proof: We prove the contrapositive. Assume the periods n
and m of the signals being added do not share a common lpp
factor; that is, with n = �pαi

i and m = �pβi
i , as in Equation

(5), assume that whenever αi �= 0 or βi �= 0, then αi �= βi.
Then, since for each αi > 0, at least one complex exponential
of period pαi

i composes one of the signals, and likewise, for

each βi > 0, at least one complex exponential of period pβi
i is

a term of the other signal, no cancellation of these complex
exponentials of lpp factor periods is possible. Then the period
of the sum is the least common multiple of m and n. �

For example, since 12 = 22 × 3 and 18 = 2 × 32 have no
lpp factor in common, the period of the sum of signals of
periods 12 and 18 is always 36. On the other hand, the period
of the sum of signals of periods 10 = 2 × 5 and 15 = 3 × 5
can be 6 = 2 × 3.

Corollary 6: [25] - If the signals r and s are periodic, of
periods R and S, respectively, and if T is the period of r + s
then lcm(S, R) = lcm(S, T ) = lcm(T, R).

Proof: lcm(S, R) is the product of the common lpp factors
of R and S, times the lpp factors of R that are not lpp factors
of S, times the lpp factors of S that are not lpp factors of R. If
there are no cancellations of complex exponentials of periods
that are common factors of R and S, then the corollary follows
easily. If there are cancellations of complex exponentials of
periods that are common lpp factors of S and R, and the period
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of r + s is less than lcm(R, S), then, since the lpp factors
missing in T are present in both R and S, the corollary is still
true. �

B. STRONG AND WEAK PERIODICITIES
For each frequency 2π k

N in the spectrum support � of an N-
periodic signal, either gcd(N, k) = 1, or gcd(N, k) > 1; in the
first case, the corresponding complex exponential ej 2π

N kn has
period N and, in the second case, a period that is a proper
divisor of N . Accordingly, we partition the spectrum support
� of the N-periodic signal into two subsets,

� = �S ∪ �W , (37)

with �S := { 2π
N k : gcd(N, k) = 1} and �W := { 2π

N k :
gcd(N, k) > 1}, and call �S the strong support of the
signal and �W the weak support. If �S �= ∅, the signal is
said to be strongly N-periodic; otherwise, it is said to be
weakly N-periodic, in which case, the least common multiple
of the denominators of the fractions k

N corresponding to the
frequencies 2π

N k ∈ �W , when reduced, is N . Conversely, if
�W = ∅, or if the least common multiple of the denominators
of the fractions k

N corresponding to the frequencies in �W ,
when reduced, is less than N , then the signal is strongly
periodic: �S �= ∅.

The periodization s = x = {. . . x|x|x| . . .}, of a length-N
segment x, has period N if and only if x itself is not a repeated
concatenation. As in Equation (20), s can be written as

sn = sN
n + s′′

n (38)

where

sN
n :=

∑
k:gcd(k,N )=1

Xke j 2π
N kn, (39)

s′′
n =

∑
d|N

∑
k:gcd(k,N )=d>1

Xke j 2π
N kn. (40)

sN and s′′ are said to be the strongly periodic and weakly
periodic components of s, respectively.

The signal s can be weakly periodic only if at least two
primes divide N ; thus, if N is a power of a prime, N = pα ,
with p prime, s is strongly periodic. Such is the case of the 8-
periodic signal cos nπ + cos nπ

2 + cos nπ
4 . All periods in the

period support of a signal whose period is the power pα of a
prime p are powers of p.

Lemma 10: The period of a sum of strongly periodic sig-
nals, of periods N and M with N �= M, is the least common
multiple of N and M.

Proof: The complex exponentials of periods N and M
present in the Fourier decomposition of the signals, do not
cancel out. (For N = M, the strongly periodic components
could cancel out.) �

Lemma 11 below is used to prove Lemma 12.
Lemma 11:

∑N−1
n=1 nej 2π

N n = N
2 (−1 + j cot 2π

2 N )

Proof: Note that the set of vertices

vk =
k∑

n=0

e−j 2π
N k, k ∈ /0, N − 1/ (41)

determines a regular N-gon in the upper complex plane, �z ≥
0, with a vertex at the origin. It is not hard to show, by
scaling and rotating the standard polygon with vertices ej 2π

N k ,
k ∈ /0, N − 1/, centered at the origin, that the polygon in (41)
has center at

ej( π
2 − 2π

2 N )

|ej 2π
N − 1|

.

The average of the vertices gives the center of the polygon,
therefore

1

N

N−1∑
k=0

vk = 1

N

N−1∑
k=0

k∑
n=0

e−j 2π
N k = ej( π

2 − 2π
2 N )

|ej 2π
N − 1|

;

that is,

1

N

(
1 +

N∑
n=1

ne−j 2π
N n

)
= ej( π

2 − 2π
2 N )

|ej 2π
N − 1|

;

thus,

N−1∑
n=1

ne−j 2π
N n = N

ej( π
2 − 2π

2 N )

|ej 2π
N − 1|

− N

or

N−1∑
n=1

ne−j 2π
N n = N

⎛
⎝ je−j 2π

2 N√
(cos 2π

N − 1)2 + sin2( 2π
N )

− 1

⎞
⎠

= N

⎛
⎝ je−j 2π

2 N

√
2
√

1 − cos 2π
5

− 1

⎞
⎠

= N

(
sin 2π

2 N

2| sin( 2π
2 N )| − 1 + j

cos 2π
2 N

2| sin( 2π
2 N )|

)

= N

(
−1

2
+ j

2
cot

2π

2 N

)

which is the lemma.9 �
You have, therefore,
Lemma 12: The signal 0, 1, . . . N − 1 is strongly periodic.
Proof: Since it holds in general that

gcd(1, N ) = gcd(N − 1, N ) = 1,

9Incidentally, for ω �= 0, mod-2π , the series
∑∞

n=1 nejωn is Abel summable
to 1

2
1

cos ω−1 . In fact, since
∑∞

n=1 nzn = z
(1−z)2 , |z| < 1, the Abel means of the

series are A(r) = ∑∞
n=1 n(rejω )n = rejω

(1−rejω )2 , for r < 1, and, in the limit, as

r → 1−, you get A(1) = 1
2 cos ω−2 = −1

4 sin−2 ω
2 .
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it is sufficient to prove that the coefficient

X1 = 1

N

N−1∑
n=0

n e−j 2π
N n

of the exponential ej 2π
N n, in the expansion

∑N−1
k=0 Xkej 2π

N nk of
the signal, is not null. In fact,

�(X1) = �
(

1

N

N−1∑
n=0

ne−j 2π
N n

)
= 1

N

N−1∑
n=0

n cos

(
2π

N
n

)
= −1

2
,

as the previous lemma says. �
For example, the strongly periodic signal cos( 2π

12 n)n of pe-
riod 12 plus the weakly periodic signal cos( 2π

5 n) − cos( 2π
12 )n

of period 60, have a sum of period 5. Also, the signal 0, 1, 2 +
0, 1, of period 6, plus the signal 0, 1, 2, 3, 4 − 0, 1, of period
10, give the signal 0, 1, 2, 3, 4 + 0, 1, 2, of period 15.

The method of the proof of Lemma 12 can be used in other
cases, for example,

Lemma 13: The signals 0, . . . 0, 1 and, in general, the sig-
nals of the form 0, 0, . . . 0, 1, . . . 1 (i.e. the pulse trains) are
strongly periodic.

Proof: In the first case, X1 = ej 2π
N (N−1) �= 0 and, in the

second case, X1 = ∑N−1
n=M>0 ej 2π

N n �= 0. �

C. THE CASE WHEN THE PERIOD OF A SUM OF PERIODIC
SIGNALS IS LESS THAN THE LEAST COMMON MULTIPLE OF
THE PERIODS OF THE SUMMANDS
Let s and t be periodic signals with period supports �s

and �t , respectively. Let N = LCM(�s) and M = LCM(�t )
be the corresponding periods. Let s′ = sN and t ′ = tM be
the strongly periodic components, and s′′ = ∑

d|N,d<N sd and

t ′′ = ∑
d|M,d<M td be the weakly periodic components of the

signals, as in Equations (39) and (40). The period support
�s+t of s + t is not necessarily �s ∪ �t , due to possible can-
cellation of complex exponentials; the smallest possible pe-
riod support of s + t is the symmetric difference (�s ∪ �t ) −
(�s ∩ �t ), since �s ∩ �t is the set of the periods of the
complex exponentials, common to s and t . We are interested
in the case LCM(�s+t ) < LCM{LCM(�s), LCM(�t )}.

Lemma 14: The smallest possible period of s + t is
LCM(N,M )
GCD(N,M )

Proof: When the periodic components of common periods
cancel out. �

Corollary 7: If GCD(M, N ) = 1, then the period of s + t is
LCM(M, N ).

Proof: No cancellation of complex exponentials is possible
and �s+t = �s ∪ �t . �

Lemma 15: If N = M and the period of s + t is less than N
then s′ = −t ′. This includes the case s′ = t ′ = 0.

Proof: Otherwise, the sum is strongly periodic of period
N . �

Lemma 16: If N �= M and the period LCM(�s+t ) of s +
t is less than LCM(N, M ) then s′ = t ′ = 0. (Equivalently, If

N �= M, and either s or t is strongly periodic, then the period
of s + t is the LCM of N and M.)

Proof: Without loss of generality, suppose N > M. If s′ �=
0 then N ∈ �s, and a complex exponential of period N com-
poses s, which will not cancel out when added to t . Thus, no
cancellation of common lpp factors is possible, and each lpp
factor of N divides the period of the sum. Of course, no can-
cellation of non-common lpp factors is possible either. Each
lpp factor of s and t divides the period of s + t , which is then
the LCM of N and M. If t ′ �= 0, and M-periodic components
of s cancel out t ′, then M|N and the period of the sum is still
N . If t ′ is not cancelled out, the period of the sum is the LCM
of N and M. �

Corollary 8: If M is a proper divisor of N , and s is strongly
periodic, then the period of s + t is N .

If all summands in a finite sum of periodic signals of differ-
ent periods are strongly periodic, the period of the sum is the
least common multiple of the periods of the summands. The
period of the sum of two strongly periodic signals of the same
period may be smaller if, in addition to the strongly periodic
components cancelling out, the weakly periodic components
are not full or, by further cancellation of complex exponen-
tials of equal frequencies, the least common multiple of the
resulting period support is smaller.

Lemma 17: If a sum of two periodic signals has a period
smaller than the least common multiple of the periods of the
signals being added then it must be the case that the periods
have at least one common lpp factor pα

Proof: If signals s and r of periods R = ∏
pαi

i and S =∏
pβi

i , respectively, have sum t of period T = ∏
pγi

i , where
the αi’s, βi’s and γi’s are nonnegative integers and the pi’s are
the prime numbers in ascending order. By Corollary 6,∏

pmax(αi,βi )
i =

∏
pmax(αi,γi )

i =
∏

pmax(βi,γi )
i .

If

T =
∏

pγi
i <

∏
pmax(αi,βi )

i = lcm(R, S)

then, for some i, γi < max(αi, βi ) then, since max(αi, βi ) =
max(αi, γi ) = max(βi, γi ), it must be the case that γi ≤ αi and
γi ≤ βi and then αi = βi. �

D. EXAMPLES
The N-set {1, 0, . . ., 0 , 1, 1, 0, . . ., 0 , 1, . . ., 1, 0 , 1} of
N-periodic signals is linearly independent. Their sum
is N, 1, 2, . . . N − 1; this signal, as well as the signal
1, 2, . . ., N , are strongly periodic, as Lemma 18 and Corollary
9 show.

Lemma 18: The DFT of y = [N, N − 1, . . .1] is

Y0 = N + 1

2
; Yk = 1

1 − e−j 2π
N k

, k ∈ /1, N − 1/.

Proof: The DFT of the N-point signal [1, . . .1, 0, . . .0],
having M consecutive ones followed by N − M consecutive
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zeros, is given by

X0 = M

N
,

Xk = 1

N

M−1∑
n=0

e−j 2π
N nk = 1

N

1 − e−j 2π
N Mk

1 − e−j 2π
N k

,

with k ∈ /1, N − 1/ and M ∈ /1, N/. Thus, by the linearity of
the DFT,

Y0 =
N∑

M=1

M

N
= N + 1

2
,

and

Yk =
N∑

M=1

Xk = 1

N

N∑
M=1

1 − e−j 2π
N Mk

1 − e−j 2π
N k

= 1

N

N −∑N
M=1 e−j 2π

N Mk

1 − e−j 2π
N k

.

Now, since

N∑
M=1

e−j 2π
N Mk = e−j 2π

N k
N−1∑
M=0

e−j 2π
N kM

= e−j 2π
N k 1 − e−j 2π

N Nk

1 − e−j 2π
N k

= 0

then,

Yk = 1

1 − e−j 2π
N k

.

�
The following lemma is a well known property of the DFT,

whose proof we include for completeness.
Lemma 19: If the DFT of [x0, x1, . . . xN−1] is Xk ,

k ∈ /0, N − 1/, then the DFT of [xN , xN−1, . . . x1] is
[XN , XN−1, . . . X1], with the proviso that xN := x0 and XN :=
X0.

Proof: Since Xk = 1
N

∑N−1
n=0 xne−j 2π

N nk , then

XN−k = 1

N

N−1∑
n=0

xnej 2π
N nk = 1

N

N−1∑
n=0

xne−j 2π
N (N−n)k

or, changing the order of the terms,

= 1

N

N−1∑
m=0

xN−me−j 2π
N mk .

�
Corollary 9: The DFT of y = [1, 2, . . . N] is

Y0 = N + 1

2
,

Yk = ej 2π
N k

1 − ej 2π
N k

= 1

e−j 2π
N k − 1

, k ∈ /1, N − 1/.

FIGURE 11. For periods N ∈ /2, 30/, the frequencies of the smoothest
(blue), and the roughest (red), complex exponentials are indicated, in the
period-frequency matrix. For N = 2, 3, 4, the roughest and smoothest
complex exponentials coincide (purple).

FIGURE 12. Time plots of the linear combinations, with weights 1
N2 , of the

smoothest (above), and roughest (below), cosines of periods N ∈ /2, 30/

(see Fig. 11). The averaged variations of the segments shown (over the
interval n ∈ /0, 50/) are 0.5131, and 0.5136, respectively. For the interval
/1000, 1050/ (not shown), the averaged variations are 0.5132 and 0.5113.

E. SEPARATE SUPERPOSITIONS OF ROUGH AND SMOOTH
COMPLEX EXPONENTIALS
Each Ramanujan sum cN (n) adds the complex exponentials of
period N , of both large and small average variation. The aver-
age variation is a subadditive functional; we consider briefly
the signals that result from the separate addition of complex
exponentials of small and large variation, as the period ranges
as N ∈ /N1, N2/, with, say N1 = 2 and N2 = 30. Consider
thus sums

sn =
30∑

N=2

aN cos

(
2π

k(N )

N
n

)

with k(N ) being either the integer relatively prime to N
that makes the corresponding cosine smoothest (with k(N ) =
1 or k(N ) = N − 1), or roughest (k(N ) ≈ N

2 ). The period-
frequency support of {sn} is either peripheral (in the smooth
case) or central (in the rough case); see Figs. 11, 12 and 13.

VI. THE DFDT TRANSFORM: AN EXTENSION OF THE RFT
Series of periodic complex exponentials, of which the
Ramanujan-Fourier series are a particular case, provide the
Signal Processing and the Time Series Communities with a
theoretical source of nonperiodic signals that are “bigger”
than those with a DTFT. Based on the notion of average, we
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FIGURE 13. Linear combinations of the smoothest (above), and roughest
(below) cosines of periods N from 2 through 30, with weights given by N.
The averaged variations in the interval /0, 50/ are 32.497 and 168.664. For
the interval /1000, 1050/ (not shown), the averaged variations are 15.969
and 54.636.

present a formalism and a corresponding space of signals,
analogous to that used by Carmichael in the context of the
Ramanujan-Fourier series.

Ramanujan [20] considered series

sn =
∞∑

N=1

αN cN (n) (42)

of Ramanujan sums. Each such Ramanujan series, also known
as a Ramanujan-Fourier series, is a series of periodic complex
exponentials where the weight of the complex exponentials of
each period is the same. The period of cN (n) is N , yet, a large
period is not a synonym of smooth, as the average variation
can be large; see Fig. 7. Ramanujan series were initially pro-
posed as arithmetic functions, i.e. meaningful sequences for
number theory [26]. In signal processing, it is advantageous to
consider n ∈ Z, n ∈ R and n ∈ C as well. Planat [27] has con-
sidered Ramanujan series for the modelling of low-frequency,
1/ f noise.

A. THE RAMANUJAN FOURIER TRANSFORM
With Equation (42), the set {cN (n) : N ≥ 1} of the Ramanu-
jan sums becomes a basis for a space of signals, in what is
known as the Ramanujan Fourier Transform (RFT), {sn} �→
{αN }, [32], [22]. The RFT assigns to the signal s of Equation
(42), the sequence {αN } of the corresponding coefficients;
Equation (42) gives the inverse Ramanujan Fourier transform
of the signal {αN }, n ≥ 1.

Both the DFDT and the RFT assign (one-sided) discrete
signals to (two-sided) discrete signals. Thus, for example, the
inverse RFT of the signal { 1

N2 : n ≥ 1} is the signal 6
π2

σ (n)
n ,

and the inverse RFT of the signal { 1
N : N ≥ 1} is the zero

signal 0(n).
Given the signal {sn}, the left hand side of Equation (42),

the matter of how to compute its RFT, the sequence of co-
efficients {αN }, arises. This is achieved with large generality
using a formula proposed by Carmichael in 1932 [32]. The
formula is the limit of an average and can be interpreted as
an inner product of sorts. We use a similar approach for the
computation of the DFDT.

In Carmichael’s deduction there is a limit exchange that
is not always valid, as he points out, and the formula fails
to cover certain cases of Ramanujan-Fourier series, such as
the case of αN = 1

N . More study is necessary regarding the
domain and the kernel of the inverse RFT.

B. SIGNALS OF BOUNDED AVERAGE, OF BOUNDED
AVERAGE MAGNITUDE, AND OF BOUNDED AVERAGE
SQUARE MAGNITUDE
For brevity, in this Section, we consider sequences N → C
that start with the subindex 0. Let the magnitude |s| of a signal
s = {sn} be given its componentwise magnitude, |s| = {|sn|},
and, similarly, let the square of the signal be given by its
componentwise square: s2 = {s2

n}.
The average (or arithmetic mean) of a one-sided sequence

{sn, n ∈ N} is given by

s = lim
m→∞

1

m

m−1∑
n=0

sn.

Note that, if sn → L, then s = L; also, if s ∈ l∞, then |s| ≤
||s||∞. The average square magnitude of the signal s is de-
noted

|s2| = lim
m→∞

1

m

m−1∑
n=0

|s2
n|.

There are bounded signals with no average. Con-
sider for example the signal {1,−1,−1, 1, 1,

1, 1,−1,−1,−1,−1,−1,−1,−1,−1, . . .}; see [34]. [19] is
a good source for spaces of discrete signals.

Denote as a the linear space of the signals with a finite av-
erage, the space of the signals with a finite average magnitude
as b1, and the space of the signals with a finite average square
magnitude as b2. Also, denote the space of the signals having
zero average as a0, the space of the signals having zero aver-
age magnitude as b10, and the space of the signals having zero
average square magnitude as b20. Note that each summable
signal has a zero average; also, that each signal summable in
magnitude has zero average magnitude, i.e. l1 ⊂ b10, since,
for s ∈ l1,

lim
m→∞

1

m

m−1∑
n=0

|sn| ≤ lim
m→∞

1

m

∞∑
n=0

|sn| = 0;

and, likewise, that l2 ⊂ b20.
Note that l1 �= b10 since the signal { 1

n , n ≥ 1} of Example
VI-B1 belongs to b10 − l1. Also, remember that l1 ⊂ l210

since, for s ∈ l1,
∞∑

n=0

|sn|2 =
∑

n:|sn|≥1

|sn|2 +
∑

n:|sn|<1

|sn|2

≤
∑

n:|sn|≥1

|sn|2 +
∑

n:|sn|<1

|sn|,

10In general, whenever 0 < p1 ≤ p2, lp1 ⊂ lp2 .
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the first sum being finite, and the second being smaller than
its magnitude sum. The signal of Example VI-B1 is in l2 − l1,
and in b20.

1) EXAMPLE
The z-transform of 1

n un−1 is − log(1 − z−1), |z| > 1; also, its
average is zero since

1

N

N∑
n=2

1

n
≤ 1

N − 1

∫ N

1

1

x
dx = 1

N − 1
ln(N )

tends to zero, as N tends to infinity, and so,

1

N

N∑
n=1

1

n
= 1

N
+ 1

N

N∑
n=2

1

n

tends to zero, as well. This is also an example of a signal not
in l1 but having a DTFT (except at θ = 0):

S(θ ) =
∞∑

n=1

1

n
e−jθn = −log(1 − e−jθ ), θ �= 0;

|S(θ )| is an unbound, convex function for θ ∈ (0, 2π ), with a
minimum at θ = π of |S(π )| = ln(2).

2) EXAMPLE
In [33], Hecke mentions the formula

lim
r→1−

(1 − r)
∞∑

m=1

cmrm = lim
t→∞

1

t

t∑
m=1

cm

for the arithmetic mean of the coefficients of a power series;
we provide a proof of this. From a hint for an exercise in [28],
note that

(1 − r)
N∑

m=1

cmrm =
N∑

m=1

amrm − cN+1rN+1

where cm = ∑m
k=1 ak , with a1 = c1, and am = ck − ck−1 for

m ≥ 2. Then, provided that limr→1− (limN→∞{cN rN }) = 0,

lim
r→1−

(1 − r)
∞∑

m=1

cmrm = lim
r→1−

∞∑
m=1

amrm =
∞∑

m=1

am,

provided that {am} is summable. Now, since

σN = 1

N

N∑
n=1

cn,

as N → ∞, is the Cesaro sumvv of the series
∑∞

m=1 am, in
this sense,

lim
r→1−

(1 − r)
∞∑

m=1

cmrm = lim
N→∞

1

N

N∑
n=1

cn

3) EXAMPLE
Let {an}, n ≥ 0 be a sequence with z-transform A(z), z ∈
ROCa. The z-transform of {un} ∗ {an} is z

z−1 A(z), on the in-
tersection of the regions of convergence, and the z-transform

of 1
n+1 un+1 is

−z log(1 − z−1), |z| > 1.

Note that the n-th element of

{bn} :=
{

un

n + 1

}
.{un ∗ an}

is

bn = 1

n + 1

n∑
k=0

ak

and that, if B(z) is the z-transform of b, by a property of the
z-transform,

a = lim
n→∞ bn = lim

z→1
(z − 1)B(z).

C. CARMICHAEL’S INNER PRODUCT
Consider the bilinear map b2 × b2 → C given by

〈x, y〉 := lim
m→∞

1

m

m−1∑
n=0

xny∗
n; (43)

for signals t ∈ b2, with 〈t, t〉 �= 0, you have Cauchy-Schwartz
inequality since, for s ∈ b2,

0 ≤ 〈s − 〈s, t〉
〈t, t〉 t, s − 〈s, t〉

〈t, t〉 t〉 = 〈s, s〉 − |〈s, t〉|2
〈t, t〉 ,

or,

|〈s, t〉|2 ≤ 〈s, s〉〈t, t〉. (44)

This map 〈 , 〉 is not quite an inner product due to the fact
that there are nonzero signals s ∈ b2 for which 〈s, s〉 = 0. By
considering the space b2

b20
of equivalence classes s of signals

in b2, modulo signals in b20, you get what we may term
Carmichel’s inner product given by, with so and to arbitrary
signals in b20:〈

s, t
〉

:= 〈s + so, t + to〉

= lim
m→∞

1

m

m−1∑
n=0

(sn + son)(tn + ton)∗

= lim
m→∞

1

m

m−1∑
n=0

(snt∗
n + snto∗

n + sont∗
n + sonto∗

n)

= 〈s, t〉 + 〈s, to〉 + 〈so, t〉 + 〈so, to〉
= 〈s, t〉 (45)

since, by Inequality 44,

|〈s, to〉| ≤
√

〈s, s〉〈to, to〉 = 0;
and, similarly, 〈s, to〉 = 〈so, t〉 = 〈so, to〉 = 0.

Carmichael’s inner product determines the norm ||s||C :=√〈
s, s
〉

on the space b2
b20

. From now on, we drop the overlines,
and equivalence classes are understood.
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For q1, q2∈ Q̂, the corresponding inner product

〈{ej2πq1n}, {ej2πq2n}〉 = lim
m→∞

1

m

m−1∑
n=0

ej2π (q1−q2 )n

has been used by Vaidyanathan et al. for signal processing that
uses the RFT.

Lemma 20: Complex exponentials are clearly bounded and
have average given by

lim
m→∞

1

m

m−1∑
n=0

ej2πqn =
{

1, if q ∈ Z

0, if q ∈ Q − Z
(46)

Proof: If q ∈ Z then

m−1∑
n=0

ej2πqn = m

and, if q ∈ Q − Z, then

1

m

m−1∑
n=0

ej2πqn = 1

m

1 − ej2πqm

1 − ej2πq
≤ 1

m

2

|1 − ej2πq|
m→∞−−−→ 0.

�
Corollary 10: If x is N-periodic and y is M-periodic with

DFT’s X = [X0, . . . XN−1] and Y = [Y0. . .. YM−1], then

〈
x, y

〉 = min(M,N )−1∑
k=0

XkY ∗
k (47)

which is an identity of the Parseval type.
Proof: If x is N-periodic and y is M-periodic, you have

xn =
N−1∑
k=0

Xkej2πqkn, and, yn =
M−1∑
l=0

Yl e
j2πql n

with qk = k
N , ql = l

M , and thus

〈
x, y

〉 = lim
m→∞

1

m

m−1∑
n=0

(
N−1∑
k=0

Xkej2πqkn

)(
M−1∑
l=0

Y ∗
l e−j2πql n

)

(48)

=
N−1∑
k=0

M−1∑
l=0

XkY ∗
l lim

m→∞
1

m

m−1∑
n=0

ej2π (qk−ql )n

=
N−1∑
k=0

M−1∑
l=0

XkY ∗
l δ(k − l ) (49)

getting

〈
x, y

〉 = min(M,N )−1∑
k=0

XkY ∗
k

�
Corollary 11: (Carmichael) For rationals qk and ql in [0,

1), 〈{ej2πqkn}, {ej2πql n}〉 = 1,

if k = l , and, otherwise,〈{ej2πqkn}, {ej2πql n}〉 = 0.

Proof: It follows from Lemma 20. �
Going back to (two-sided) signals Z → C, for s and t as in

Equation (30),

sn =
∑
q∈Q̂

bqej2πqn, tn =
∑
q∈Q̂

dqej2πqn

let their correspondingly extended inner product be

〈
s, t
〉 = lim

N→∞
1

2N + 1

N∑
n=−N

snt∗
n . (50)

For example, if r is the signal {. . . 0, 0, 1, 1
2 , 1

3 , . . .} of ex-
ample VI-B1; then, since r ∈ b20,

〈
r, {ej2πql n}〉 = 0.

D. THE DFDT TRANSFORM
A natural extension of the RFT consists in allowing each
complex exponential to have a different weight, while still
using a series of the periodic complex exponentials, of fre-
quencies in �̂ = {2πq : q ∈ Q̂}. The generalization, called
the Discrete-Frequency, Discrete-Time (DFDT) Fourier trans-
form, provides a tool that extends the current uses of the RFT
for Signal Processing. The DFDT transform s �→ b has inverse

sn =
∞∑

k=0

bqk ej2πqkn, (51)

where s : Z → C ∪ {∞} is and b : N → C. Each coefficient
bq, q ∈ Q̂ corresponds to the frequency θq = 2πq ∈ θ̂ . The
transform signal {bqk }, or {bk} for short, can be often com-
puted using Carmichael’s inner product.

E. COMPUTATION OF THE DFDT TRANSFORM
In many cases, the DFDT {bqk }, abbreviated {b′

k}, of signal
sn = ∑

q∈Q̂ bqk ej2πqn can be obtained with Carmichael’s in-
ner product of Equation (50). Consider

〈
s, ej2πql n

〉 =
〈 ∞∑

k=0

bkej2πqkn, ej2πql n

〉

= lim
N→∞

1

2N + 1

N∑
n=−N

∞∑
k=0

bkej2π (qk−ql )n; (52)

if these limits commute, which depends on the bk’s, the coef-
ficients are given by

bk = 〈
s, ej2πql n

〉
(53)

since, then, by corollary 11,

〈
s, ej2πql n

〉 = ∞∑
k=0

bk lim
N→∞

1

2N + 1

N∑
n=−N

ej2π (qk−ql )n = bk,
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and now

bk = lim
N→∞

1

2N + 1

N∑
n=−N

sne−j2πqkn (54)

together with sn = ∑
q∈Q̂ bqej2πqn is a DFDT - DFDT−1 pair.

For signals xn = ∑∞
k=0 Xkejqkn and yn = ∑∞

l=0 Yl ejql n, if
the limit exchange step from Equation (48) to Equation (49)
is valid,

〈x, y〉 =
∞∑

k=0

XkY ∗
k . (55)

Equation (54) computes the DFDT transform of x. Alas, the
formula lacks generality, as the mentioned limit exchange is
not always possible. In particular, for sn = ∑∞

k=0 bqk ej2πqkn,
with s ∈ b20 − {0},

|s2| = lim
N→∞

1

2N + 1

N∑
n=−N

∞∑
k=0

bqk ej2πqkn
∞∑

l=0

b∗
ql

e−j2πql n

= lim
N→∞

1

2N + 1

N∑
n=−N

∞∑
k=0

∞∑
l=0

bqk b∗
ql

ej2π (qk−ql )n

the limit exchange

=
∞∑

k=0

∞∑
l=0

bqk b∗
ql

lim
N→∞

1

2N + 1

N∑
n=−N

ej2π (qk−ql )n

is not valid since, otherwise,

0 = |s2| =
∞∑

k=0

∞∑
l=0

bqk b∗
ql

δk−l =
∞∑

k=0

|bqk |2,

and s = 0.

F. DFDT TRANSFORM OF A TIME-INVERTED SIGNAL
Since

s−n =
∞∑

k=0

bqk e−j2πqkn =
∞∑

k=0

bqk ej2π (1−qk )n, (56)

a time inversion of the signal s corresponds to a reshuffling
of the frequencies of its DFDT transform; if the transform of
{sn} is {bqk } = {b0, b 1

2
, b 1

3
, b 2

3
, b 1

4
, b 3

4
, b 1

5
, b 2

5
, b 3

5
, b 4

5
, . . .},

the transform of {s−n} is the reshuffling {bq f (k)} =
{b0, b 1

2
, b 2

3
, b 1

3
, b 3

4
, b 1

4
, b 4

5
, b 3

5
, b 2

5
, b 1

5
, . . .}; that is,

f (ns + k) = ns+1 − k + 1,

for k ∈ /1, ns+1 − ns/, where ns := ∑s
r=1 ϕ(r); vertically

downshifting the portion θ ∈ (π, 2π ) of the period-frequency
matrix in Fig. 10. Alternatively, using negative frequencies,
as in Section IV-D, with θq = 2πq, if S(θq ) is the DFDT
transform of {sn}, the transform of {s−n} is S(−θq ). The DFDT
is asymmetric in the sense that, in the time domain, you have
two-sided signals {sn : n ∈ Z} while, in the frequency domain,

you have one-sided signals {b′
k : k ∈ N}, unless you consider

negative frequencies and the rationals in (− 1
2 , 1

2 ] instead of Q̂,
and their corresponding ordering, mentioned in Section IV-D.

G. THE RFT AS A PARTICULAR CASE OF THE DFDT
TRANSFORM
The inverse RFT of Equation (42) can be seen as a case of
the inverse DFDT of Equation (51), with b′

k = aη(qk ), where
η(q) = 1/τ (q) is the denominator function; that is,

∞∑
N=1

aN cN (n) =
∞∑

k=0

aη(qk )e
j2πqkn.

For example, the inverse DFDT transform of Thomae’s
signal tk of Section III-B, is

∑
q∈Q̂−{0}

τ (q)ej2πqn =
∞∑

k=0

tkej2πqn =
∞∑

k=1

1

k
ck (n)

and it is zero for n �= 0. In this case, the exchange of the limits
in Equation (52) is not allowed. In this case, the signal in
Equation (51), has DFDT transform b′ = {b′

k}, with b′
0 = 0

and b′
k = aη(qk ) = 1

k , for k ≥ 1, i.e.

b′ =
{

0, 1,
1

2
,

1

3
,

1

3
,

1

4
,

1

4
,

1

5
,

1

5
,

1

5
,

1

5
. . .

}
,

where each fraction 1
l repeats itself ϕ(l ) times. In this case,

lim
m→∞

∞∑
k=0

b′
k

1

m

m∑
n=1

ej2π (qk−ql )n

�=
∞∑

k=0

b′
k lim

m→∞
1

m

m∑
n=1

ej2π (qk−ql )n

=
∞∑

k=1

b′
k δl (k) = bl = 1

r

where r := mint : l ≤ ∑t
ν=1 ϕ(ν), since, as Ramanujan

proved, for n ≥ 1,
∑∞

k=0 bkej2πqkn = ∑∞
k=1

1
k ck (n) = 0(n).

In an inverse DFDT transform, the periods of the complex
exponentials grow with the summation index. Since the aver-
age variation of the complex exponentials of a given period
varies, you may consider separate series of rough and smooth
periodic complex exponentials, as was done in Section V-E for
finite sums. The N-periodic complex exponentials of smallest
average variation are those of Fourier frequencies 2π 1

N and
2π N−1

N = −2π 1
N . A real signal with smoothest Fourier com-

ponents of all periodicities, is

sn =
∞∑

N=1

aN cos

(
2π

1

N
n

)
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For series of roughest complex exponentials, with frequencies
closest to π ,

rn = a2 cos(nπ ) +
∞∑

N=2

a2 N cos

((
π − 2π

1

2 N

)
n

)

+
∞∑

N=1

a2N+1 cos

((
π − 2π

1

2(2N + 1)

)
n

)

Truncated versions of these series are shown in Figs. 12 and
13.

VII. CONCLUSION
The distribution of the average power on the period-frequency
matrix is a tool for filter design. Knowledge of the transfer
function H (θ ) of a discrete convolution filter, and of the pe-
riod of a unit-amplitude periodic complex exponential to be
filtered, is not enough information to predict the output of the
filter, and any band-pass filter will let pass complex exponen-
tials of arbitrarily large periods. Most discrete signals in sig-
nal processing are uniformly sampled versions of continuous
signals, that respect Nyquist sampling rate. If the continuous

complex exponential ejωt = ej 2π
τ t , of period τ , is sampled with

sampling rate T −1, the discrete complex exponential ejθn,
with θ = 2π T

τ
results (for T = 1, θ = ω, and the periods of

the discrete and the continuous exponentials coincide). Now,
if T

τ
is rational, with corresponding irreducible fraction M

N ,
the period of the discrete complex exponential is N , of cor-
responding temporal duration NT , which can be very large.
Notice as well that there are continuous complex exponentials
of frequency arbitrarily close to ω that, when sampled with
the sampling rate T −1, give rise to discrete periodic complex
exponentials of arbitrarily large periods.

Series of discrete, periodic complex exponentials constitute
an important model of signals, some of them integer valued.
The integrality of Ramanujan sums makes them suitable for
applications in cryptography, as well as in fixed-point dig-
ital machines. On the other hand, unbound signals are not
amenable for their computation with computers but are of
theoretical interest, e.g. in Number Theory and in Time Series
Analysis.

Given a signal {sn} that is a series of periodic complex
exponentials, the sinc-interpolated signal

f (t ) =
∞∑

n=−∞
snsinc(π (t − n)) (57)

is a nonperiodic continuous signal, bandlimited to |ω| ≤ π ,
with a countably infinite spectrum that includes frequencies
ω arbitrarily close to zero. The fact that extremely low fre-
quency signals (e.g planetary magnetic fields [3], [2]) are hard
to observe [4] (among other things, the antenna would be
inordinately large) has made difficult to observe such spectra.

If sn = ∑
k Xkejθkn is a linear combination of complex ex-

ponentials, e.g. a Ramanujan sum, the continuous interpolated
version according to Equation (57), is the continuous signal

f (t ) = ∑
k Xkejθkt , and the filtering by period of f (t ) can be

done in the discrete domain.
Signal Theory goes hand in hand with System Theory,

as systems process signals. Mathematicians have considered
often the case of almost periodic signals, as solutions of dif-
ference equations and their corresponding discrete systems.
Almost periodic solutions of difference equations arise in
practical situations; a subject that merits further research in
Signal Processing [37].

The restriction of Thomae’s function to the rationals in [0,
1] relates the period and Fourier frequency of the periodic
complex exponentials, and its use is novel in Signal Process-
ing. Also novel is the consideration of other signals defined
on Q̂, such as the DFDT transforms (of series of periodic
signals).

We have not considered amplitude-modulated signals, even
though, in practice, signals are windowed, as they approxi-
mately exist over a finite interval only. Neither have we con-
sidered frequency-modulated signals. The subject of additive
noise has not been considered either.

Whether a signal is periodic or not depends on knowing the
whole signal. In practice, for a streaming signal, you can only
know if, at a given point, the signal has repeated itself, or not.
We are working on an algorithm that tells how many times
(≥ 0) a signal being monitored has repeated itself so far.
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