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ABSTRACT Smoothing and sharpening are two fundamental image processing operations. The latter is
usually related to the former through the unsharp masking algorithm. In this paper, we develop a new type of
filter which performs smoothing or sharpening via a tuning parameter. The development of the new filter is
based on (1) a new Laplacian-based filter formulation which unifies the smoothing and sharpening operations,
(2) a patch interpolation model similar to that used in the guided filter which provides edge-awareness
capability, and (3) the generalized Gamma distribution which is used as the prior for parameter estimation.
We have conducted detailed studies on the properties of two versions of the proposed filter (self-guidance
and external guidance). We have also conducted experiments to demonstrate applications of the proposed
filter. In the self-guidance case, we have developed adaptive smoothing and sharpening algorithms based on
texture, depth and blurriness information extracted from an image. Applications include enhancing human
face images, producing shallow depth of field effects, focus-based image enhancement, and seam carving. In
the external guidance case, we have developed new algorithms for combining flash and no-flash images and
for enhancing multi-spectral images using a panchromatic image.

INDEX TERMS Edge-aware filter, image sharpening, image smoothing, maximum a posteriori estimate.

I. INTRODUCTION
Smoothing and sharpening are two fundamental operations in
image processing. Traditionally, smoothing is used to reduce
noise, while sharpening is used to enhance details [1]. In
recent years, smoothing has found increasingly more applica-
tions in graphics, computational photography, and computer
vision. Edge-aware smoothing, which preserves sharp edges
of objects, has been actively studied. Well known edge-aware
filters include [2]–[7]. Among them, the guided filter [3] and
its weighted versions [7]–[9] have the advantage of a low
computational complexity of O(N ) in addition to their good
performance. Applications of edge-aware filters include detail
enhancement, flash no-flash image denoising, upsampling of
depth map, image abstraction, image dehazing, tone mapping
and contrast enhancement to name a few. These applications
have been studied extensively in the literature.

On the other hand, sharpening is usually achieved through
the unsharp masking algorithm [1]. Let I and S be the
observed image to be processed and the sharpened image,
respectively. The sharpened image is produced by S = I + γ Z
where γ is called the sharpening gain and Z is the output
of a high-pass filter. The use of a linear filter to produce Z
presents two main disadvantages in some applications: high
sensitivity to noise and halo artifacts due to overshoot in high
contrast regions. Non-linear filters were proposed in [10]–[12]
to reduce the effect of noise but not solving the halo artifacts.
Edge-aware filters are the main tools to combat the halo ef-
fect. In addition, there are many studies on using adaptive
gain to perform content adaptive sharpening. For example,
in [13], a pixel adaptive gain γ based on the dynamics of the
image is proposed to sharpen areas of mid-range contrast, to
avoid overshooting in high contrast regions, and to produce
minimal sharpening at smooth regions. Attempts have also
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been made to formulate the adaptive sharpening problem as
an optimization problem [14]. A similar approach was taken
by [15] which used the local blurriness to vary the sharpening
gain γ . The main goal is to avoid sharpening the very smooth
background which is intentionally produced by the photogra-
pher to achieve the effect of shallow depth of field.

Although smoothing and sharpening are related through
Z = I − J , where J is a smoothed version of I , and edge-
aware filters are used to produce J to minimize the halo
effect, these two operations are usually used in different ap-
plications. The main motivation of this work is to develop a
unified framework such that smoothing and sharpening can
be integrated in one filter whose function can be controlled
by varying a parameter. Our aim is to develop a filter with
a tuning parameter such that when it is set smaller/greater
than 1 the filter is smoothing/sharpening. The filter must also
have the edge-awareness property such that it does not blur
edges when used in smoothing mode and does not create
halos when used in sharpening mode. A distinctive advan-
tage of such formulation is that it allows the user to perform
selective smoothing and sharpening in different areas of an
image to produce results such as smoothing the background
while sharpening the main object. In addition, the unification
of these two operations in one filter allows the user to have
a better control in information fusion applications such as
Pan-sharpening [16] and flash-no-flash imaging [3].

The main contributions of this work and organization of this
paper are summarized in the following.
� A systematic formulation of a new type of filter (Sec-

tion II-A) based on the Laplacian operator, which unifies
smoothing and sharpening operations in one filter. The
function and level of smoothing or sharpening are con-
trolled by varying the value of a parameter.

� The development of an edge-aware smoothing-
sharpening filter (Section III) based on a patch
interpolation model similar to that of the guided filter.
Parameters of the filter are determined by minimizing
the negative posterior probability. The generalized
Gamma distribution is used as the prior. The filter
includes the original guided filter as a special case.
Self-guidance and external-guidance versions of the
filter have been developed and their properties are
analyzed. Both versions of the filter are of the same
computational complexity as that of the guided filter.

� We have demonstrated the performance of the proposed
filter in a number of applications in Section IV. Us-
ing the self-guided filter, we have developed adaptive
smoothing-sharpening algorithms by extracting informa-
tion of texture, depth, and blurriness to adjust the filter
parameter to achieve content-aware processing. Appli-
cations include enhancement of images of human face,
creating the effect of shallow depth of field, smooth-
ing/sharpening guided by blurriness, and pre-processing
an image to achieve better seam carving results. Using
the filter in external guidance, we have applied the filter

to combine images taken under flash and no-flash con-
ditions, producing much better results than those pro-
duced by the guided filter. We have applied the filter to
solve the Pan-sharpening [17] problem which combines
information from multi-spectral images with a panchro-
matic image. Both subjective and objective comparison
are discussed to validate the applications of the proposed
filter.

II. THE SMOOTHING-SHARPENING FILTER, THE
SELF-GUIDED FILTER, AND MAIN IDEAS OF THIS WORK
In this section, we first present a filter called the smoothing-
sharpening filter in which smoothing and sharpening is con-
figured through the setting of a parameter. Next, we revisit the
basic idea of the guided filter. We then discuss the main idea
of the proposed edge-aware smoothing-sharpening filter.

A. THE SMOOTHING-SHARPENING FILTER
We develop a unified framework for combining smoothing
and sharpening into one filter. We first define the filter as

J (n) = I (n) + (1 − α)�I (n) (1)

where I (n) and J (n) are pixels of the input and output images
at location n, α is a parameter, and � is the discrete Laplace
operator (which is referred to as the Laplacian operator in rest
of this paper) defined as

�I (n) = μ(n) − I (n) (2)

where μ(n) = 1
N

∑
m∈�n

I (m) is the mean of the image cal-
culated over a patch centered at location n. The symbol �n

represents the set of pixel indices of the patch and N = |�n|
is the number of pixels. The particular parameterization of this
filter by 1 − α will become clear in the following discussions.

To demonstrate the characteristics of this filter, we con-
sider a simple example of a 1-D filter of which the mean
is calculated by an average filter μ(n) = 1

3

∑1
m=−1 I (n − m).

The impulse response of the filter stated in (1) is then given
by h(n) = {(1 − α), (1 + 2α), (1 − α)}/3. The frequency re-
sponse is calculated as follows

H (ω) =
1∑

n=−1

h(n)e− jωn = 1 − 4(1 − α)

3
sin2 ω

2
(3)

In Fig. 1, we plot the magnitude response (|H (ω)|) of this filter
for three settings of α. We can see that (a) when 0 < α < 1,
it is a low-pass filter, (b) when α > 1, it is a high-frequency
emphasis filter, and (c) when α < 0, the filter’s function is not
well defined and is not considered in this paper.

Substitution of (2) into (1), we have

J (n) = αI (n) + (1 − α)μ(n) (4)

which is a weighted average between I (n) and μ(n) when 0 ≤
α < 1. It is a low-pass filter. On the other hand, when α > 1
we can then re-write (4) as

J (n) = μ(n) + α(I (n) − μ(n)) (5)
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FIGURE 1. Magnitude response of the smoothing-sharpening filter. When
0 < α < 1, it is a low-pass filter. When α > 1, it is a high-frequency
emphasis filter. When α < 0, the filter’s function is not well defined.

Equation (5) is the unsharp masking operation which is a
sharpening filter. The equivalence of (5) and (1) shows that
the filter stated in (1) can be configured as either a smoothing
filter 0 < α < 1 or a sharpening filter α > 1. We can further
re-write the filter stated in (4) in the following equivalent form

J (n) = μ(n) − α�I (n) (6)

which is the operation of a local mean minus a scaled local
Laplacian of the signal.

To use this interpretation in the development of the edge-
aware smoothing-sharpening filter, we need to generalize the
concept of Laplacian in the following sense. In its original
form, the Laplacian at a pixel location n is defined by (2)
where the patch is centered at location n. The Laplacian can
also be written as

�I (n) = 1

N

∑
m∈�n

(I (m) − I (n)) (7)

which is the average of the difference between the center pixel
I (n) and each pixel I (m) in the patch. Using this interpreta-
tion, we make the following generalization. For any pixel I (q)
at location q ∈ �n, the Laplacian is defined as

�I (q) = 1

N

∑
m∈�n

(I (m) − I (q)) (8)

This definition of the Laplacian thus generalizes the concept
from the original one which only applies to the center pixel of
the patch to the one which applies to all pixels in the patch.
Although the original meaning of the Laplacian is lost in the
generalization, we will use the same name in this paper to
simplify the terminology. Using this generalization, the filter
can be defined for all pixels in the patch as follows

J (q) = μ(n) − α�I (q) (9)

= αI (q) + (1 − α)μ(n) (10)

The difference between the two filters defined in (6) and (9)
is that the former is defined for the center pixel of the patch
while the latter is defined for all pixels in the patch. We will
call the new filter (stated in (10)) a patch interpolation model,
because the output is a weighted average of the input and the
patch mean.

When the parameter α is fixed, the filter does not have an
edge-awareness capability. This is a major problem of the
filter. We will show in the next section that the idea of the
guided filter provides a solution to this problem by adaptively
setting the parameter α.

B. THE SELF-GUIDED FILTER
We revisit the basic idea of the guided filter [3]. A square patch
of radius r has N = (2r + 1)2 pixels. Let �k represent the kth
patch in which a pixel at location q is denoted Ik (q) where
q ∈ �k and the subscript k indicates the patch. A linear model
is imposed on each pixel of the patch such that

Jk (q) = akIk (q) + bk, (11)

where Jk (q) is the desired output. The two patch dependent
parameters ak and bk are determined by solving a regularized
least squares problem with the following cost function

c = 1

2 N

∑
q∈�k

[
Jk (q) − Ik (q)

]2 + ε

2
a2

k , (12)

where the second term is the regularization and ε is a user
defined parameter. Solving ∂c/∂bk = 0, we have bk = (1 −
ak )μk where μk = 1

N

∑
q∈�k

Ik (q) is the patch mean. By Sub-
stitution of this result into (11), we have another patch model

Jk (q) = akIk (q) + (1 − ak )μk (13)

which is an interpolation between the pixels in the patch and
the patch mean.

A new regularized least squares problem is obtained by
substitution of (13) into (12) which results in the following
cost function

d = σ 2
k

2
(ak − 1)2 + ε

2
a2

k (14)

where σ 2
k = 1

N

∑
q∈�k

[Ik (q) − μk]2 is the patch variance.
Solving ∂d/∂ak = 0, we have

ak = σ 2
k

σ 2
k + ε

(15)

Let I (p) represent the pixel to be processed at location
p ∈ �k . It can be shown that the pixel I (p) belongs to N
overlapping patches [3]. Since each patch model produces one
output

Jk (p) = akI (p) + (1 − ak )μk, (16)
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there are N modelling results {Jk (p)}k=1:N . To aggregate these
results, a weighted average [7], [8] is performed:

J (p) =
N∑

k=1

wkJk (p) = I (p)
N∑

k=1

wkak +
N∑

k=1

wk (1 − ak )μk

(17)
where

∑N
k=1 wk = 1. The original guided filter [3] uses the

fixed weight wk = 1/N .

C. MAIN IDEA OF THE PROPOSED FILTER
The key to our development is the patch interpolation model
which is stated in (13) and the smooth-sharpening filter stated
in (10). Comparing the two, we can see that they are in a
similar form. There are two key differences.
� In its general form (1), the smoothing-sharpening filter

can be configured as either smoothing or sharpening. It
is not obvious how to set the parameter α such that the
filter has the edge-aware capability.

� On the other hand, in the guided filter case, the fil-
ter parameter ak is specifically determined for edge-
awareness. Referring to (15), for the case ε << σ 2

k
which indicates strong texture/edge inside the patch, the
algorithm assigns ak → 1 such that Jk (q) → I (q). For
the case ε >> σ 2

k which indicates a smooth patch, the
algorithm assigns ak → 0 such that Jk (q) → μk . As a
result, edge-aware smoothing is achieved. However, it is

always a smoothing filter because ak = σ 2
k

σ 2
k +ε

< 1.

Based on the above observations, to develop an edge-aware
smoothing-sharpening filter we should find a generalization of
the guided filter such that it is possible to set ak ≥ 1. We show
in the next section that the development is based on two key
ideas:

1) using the patch interpolation model stated in equation
(13), and

2) using the principle of maximum a posteriori to deter-
mine the parameter ak to overcome the limitation of
ak < 1 in the original guided filter.

III. THE EDGE-AWARE SMOOTHING-SHARPENING FILTER
We first develop the self-guided edge-aware smoothing-
sharpening filter in Section III-A. We then develop the
external-guided version of the filter in Section III-B. Imple-
mentation and computational complexity of the proposed filter
are discussed in section III-C.

A. THE SELF-GUIDED FORM AND ITS PROPERTIES
1) THE SELF-GUIDED SMOOTHING-SHARPENING FILTER
We define the linear Gaussian observation model for the patch
data as follows

Ik (q) = Jk (q) + r(q) (18)

where r(q) is a realization of an i.i.d. zero mean Gaussian
random variable with variance τ 2N (τ > 0). Here we use the
patch size N = |�k| to parameterize the noise variance such
that the result does not depend on N .

To determine αk , we treat it as a random variable and use the
principle of maximum a posteriori. More specifically, using
Bayes rule we can write the negative log-posterior as a cost
function D(αk ) by ignoring constants as follows

D(αk ) = − log p(αk |{Ik (q)})

= − log p({Ik (q)}|αk ) − log p(αk ) (19)

where based on the observation model stated in (18), the
negative log-likelihood for the patch is given by

− log p({Ik (q)}|αk ) = 1

2τ 2N

∑
q∈�k

(Ik (q) − Jk (q))2

= σ 2
k

2τ 2
(αk − 1)2 (20)

Compared with the first term of the cost function of the guided
filter stated in (12), the above negative log-likelihood has an
extra parameter τ . We set τ = 1 in this work which allows us
to include the guided filter as a special case in the proposed
filter.

Substitution of (20) into (19) the cost function can be writ-
ten as

D(αk ) = σ 2
k

2
(αk − 1)2 − log p(αk ). (21)

Compared with the cost function of the guided filter, the above
cost function is different in two aspects: (a) the parameter bk is
implicitly defined in the patch interpolation model, and (b) the
regularization term ε

2α2
k (which is the negative of logarithm

of zero mean Gaussian) is replaced by the negative log-prior
which permits us to develop different filters.

In this work, we consider the generalized Gamma distribu-
tion as the prior:

p(αk ) ∝ α
η

k e− 1
2 (αk/θ )h

(22)

where θ > 0 is a scale parameter. We set h = 2 and η ≥ 0
to control the shape of the distribution. Substituting (22) into
(21) we have the cost function in which constant terms are
omitted

D(αk ) = σ 2
k

2
(αk − 1)2 + 1

2θ2
α2

k − η log αk (23)

We can easily see the motivation and justification of such
settings. When η = 0, the cost function is the same as that of
the guided filter with the setting ε = 1/θ2. When η > 0, the
cost function has an extra term −η log αk compared with the
cost function of the guided filter. We will show that this extra
term permits the filter to be configured as either a smoothing
filter (0 < αk ≤ 1) or a sharpening filter (αk > 1).

Another justification is mathematical simplicity. The cost
function under this parameter setting is convex leading to a
unique minimum. Indeed, the generalized Gamma distribu-
tion allows us to explore other settings of parameters such as
h �= 2. However, for such a setting, the cost function may not
be convex and is difficult to optimize. Therefore, we do not
pursue study in this direction.
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We now determine the filter parameter αk by minimizing
the cost function D(αk ) which is equivalent to maximising the
posterior. Solving ∂D/∂αk = 0, we obtain the optimal value

αk = 1

2

⎧⎪⎨
⎪⎩

σ 2
k

σ 2
k + 1

θ2

+

√√√√( σ 2
k

σ 2
k + 1

θ2

)2

+ 4η

σ 2
k + 1

θ2

⎫⎪⎬
⎪⎭ (24)

2) PROPERTIES
To reveal how the proposed filter generalizes the original
guided filter, we set ε = 1/θ2 such that the guided filter’s
parameter stated in (15) is given by

ak = σ 2
k

σ 2
k + ε

= σ 2
k

σ 2
k + 1/θ2

(25)

Substitution (25) into (24), we have

αk = 1

2

{
ak +

√
a2

k + 4η

σ 2
k + ε

}
(26)

We can clearly see that the parameter of the proposed filter
can be expressed as a function of the parameter of the original
guided filter. Their relationship is discussed in the following.
Based on the interpolation model stated in equation (13), we
can prove that the proposed filter can be configured by setting
η relative to ε as follows.
� When η < ε, we can show that αk < 1 which leads to

a smoothing filter. In an extreme case when η = 0, the
proposed filter is reduced to the original guided filter.
It is also interesting to note that for this setting αk > ak

which means the proposed filter always performs a lower
degree of smoothing than the original guided filter.

� When η = ε, we can show that αk = 1 which leads to no
filtering.

� When η > ε, we can show that αk > 1 which leads to
a sharpening filtering. The sharpening gain is defined as
γk = αk − 1 which is an increasing function of η.

In light of the above discussion and to simplify parameter
settings, we introduce another parameter κ to replace η by
defining η = κ/θ2 = κε. The parameter of the proposed filter
can be re-written as

αk = 1

2

{
ak +

√
a2

k + 4κ (1 − ak )

}
(27)

The advantage of this new parameterization is that the filter
can be configured as smoothing by setting 0 ≤ κ < 1 and as
sharpening by setting κ > 1.

For the smoothing case, we plot αk for different settings
of κ including the case with κ = 0 which is the guided filter.
Results are shown in Fig. 2. We can see that as κ is increased,
αk is less adapted to σ 2

k and is closer to the constant 1 (no
filtering) for σ 2

k > T where T is a signal dependent threshold.
Next, we study the sharpening gain γk as a function of κ

(κ > 1) and the patch variance σ 2
k . The interpolation model

FIGURE 2. Interpolation weight αk as a function of patch variance σ2
k and

filter parameter κ under two fixed settings of ε (top ε = 0.001, bottom
ε = 0.01). As κ is increased, αk is less adapted to σ2

k and is close to the
constant 1 for σ2

k > T where T is a signal dependent threshold.

can be re-written in a sharpening filter form

Jk (q) = Ik (q) + γk (Ik (q) − μk ) (28)

Fig. 3 shows the sharpening gain as a function of the patch
variance σ 2

k for various settings of κ . We can make the fol-
lowing observations. (a) The sharpening gain is a decreasing
function of the patch variance. This is a desirable property of
the sharpening filter. It performs a higher degree of enhance-
ment on a patch of smaller variance which is usually due to
low contrast. (b) The level of enhancement can be controlled
by setting the parameter κ . A bigger value will lead to a
bigger sharpening gain for the patch of fixed variance. (c) The
parameter ε also controls the sharpening gain. For the same
setting of κ , a bigger value of ε will lead to a bigger value of
the sharpening gain.

B. THE GUIDED FORM AND ITS PROPERTIES
In this section, we develop a guided version of the proposed
filter by a further generalization of smoothing-sharpening for-
mulation stated in Section (II-A) and the guided filter.

1) THE GUIDED SMOOTHING-SHARPENING FORMULATION
AND THE GUIDED FILTER
Referring to the filter formulation stated in (9), we can see
that one of the key components is the Laplacian which is a
second derivative operation and is thus sensitive to noise in the
image I . When a guidance image G, which is assumed to have
a higher signal-to-noise ratio, is available, a generalization
is to replace the Laplacian calculated on I by the Laplacian
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FIGURE 3. The sharpening gain γk is a decreasing function of the patch
variance σ2

k for various settings of κ under two fixed settings of ε (top
ε = 0.001, bottom ε = 0.01). The sharpening gain γk is bigger for a bigger
value of κ and is a decreasing function of the patch variance σ2

k .

calculated on G such that the filter can be written as:

J (q) = μ(n) − α�G(q) (29)

where μ(n) is the mean of the patch centered at I (n) and

�G(q) = 1

N

∑
m∈�n

(G(m) − G(q)) (30)

Although this idea is technically sound, how to determine α

remains a problem. We will revisit the basic idea of the origi-
nal guided filter and show how this problem can be solved by
using a similar approach as the development of the self-guided
version of the proposed filter described in the previous section.

In the original guided filter, the patch model is given by

Jk (q) = akGk (q) + bk (31)

The two parameters ak and bk are determined by minimization
of the cost function over the patch data

{ak, bk} = min
ak ,bk

∑
q∈�k

[
Jk (q) − Ik (q)

]2 + ε

2
a2

k (32)

It can be shown that

bk = μk − akνk (33)

where μk and νk are the mean for the kth patch of image I and
G, respectively. The parameter ak is given by

ak = φk

ς2
k + ε

(34)

where ς2
k is the patch variance of G, and φk is the sample

covariance

φk = 1

N

∑
q∈�k

(Gk (q) − νk )(Ik (q) − μk ) (35)

Substituting (33) into (31), we have a new patch model

Jk (q) = μk + ak (Gk (q) − νk ) = μk − ak�Gk (q) (36)

where �Gk (q) = νk − Gk (q) is the generalization of the
Laplacian defined in (8).

Comparing the guided filter model stated in (36) with the
proposed smoothing-sharpening model stated in (29), we can
see that they are similar. Simply put, if we start with the
filter model stated in (29), we will determine the same fil-
ter as the guided filter which is a smoothing filter. In the
next section, we address the problem of how to develop a
smoothing-sharpening guided filter.

2) THE PROPOSED GUIDED SMOOTHING-
SHARPENING FILTER
To use (36) to develop the smoothing and sharpening filter, we
face a new difficulty that ak can be positive or negative. This
is unlike the case for the self-guidance version developed in
Section III-A1 where it is always the case ak ≥ 0. Referring
to (34), the sign of ak is defined by the sign of the covariance
φk such that

sign(ak ) = sign(φk ) (37)

The role of the sign of the covariance φk can be explained as
follows. Because �Ik (q) is replaced by �Gk (q), it requires
that the two patches Ik and Gk must be correlated. If they are
positively correlated, then it is expected the two Laplacians
are of the same sign. If they are negatively correlated, then
it is expected the two Laplacians are of opposite sign. Thus
a correction of the sign of the Laplacian calculated on the
guidance image is required. The definition of ak stated in (34)
automatically satisfies this requirement.

In light of the above discussion, we can develop the guided
version of the smoothing-sharpening filter by defining the
guided patch interpolation model as the following

Jk (q) = μk + sign(φk )αk (Gk (q) − νk ) (38)

such that αk is a positive parameter. We can then follow the
same procedure as that presented in Section III-A1 for the
development. More specifically, the negative log-likelihood is

− log p({Jk (q)}|αk ) = 1

2τ 2N

∑
q∈�k

(Ik (q) − Jk (q))2

= ς2
k

2
α2

k − |φk|αk (39)
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where we have set τ = 1 as before. Using the same general-
ized Gamma distribution as the prior, we obtain the negative
log-posterior as the cost function D(αk )

D(αk ) = − log p({Jk (q)}|αk ) − log p(αk )

= ς2
k

2
α2

k − |φk|αk + 1

2θ2
α2

k − η log αk (40)

We also follow the same parameter settings of the self-guided
form by letting ε = 1/θ2 and η = κε. Solving ∂D/∂αk = 0
and re-arranging the results, we have

αk = 1

2

⎧⎪⎨
⎪⎩

|φk|
ς2

k + ε
+

√√√√( |φk|
ς2

k + ε

)2

+ 4κε

ς2
k + ε

⎫⎪⎬
⎪⎭ (41)

3) PROPERTIES
We can clearly see that when G = I, we have ς2

k = φk = σ 2
k .

The guided version of the proposed filter stated by (42) re-
duces to its self-guided version stated by (26). The relation-
ship between the proposed filter and original guided filter can
be revealed by substitution of (34) into (41), which results in
the following

αk = 1

2

{
|ak| +

√
a2

k + 4κε

ς2
k + ε

}
(42)

We can also see that αk ≥ |ak| from (42). The original guided
filter is a special case of the proposed filter when κ = 0 lead-
ing to αk = |ak|.

Next we discuss under what parameter setting the filter
is smoothing or sharpening. The analysis presented in Sec-
tion II-A can not be used, because the Laplacian is calcu-
lated on the guidance image rather than on the image to be
processed. The following analysis is based on an observation
that a smoothing filter will reduce the patch variance while
a sharpening filter will increase the patch variance. It is also
assumed that the patch mean is not changed by the filter. This
is a reasonable assumption because smoothing and sharpening
usually do not change the average brightness of the image.

To make the discussion easy to follow, we first define the
patch variance for the three images as

Original image : σ 2
k = 1

N

∑
q∈�k

(Ik (q) − μk )2 (43)

Guided image : ς2
k = 1

N

∑
q∈�k

(Gk (q) − νk )2 (44)

Filtered image : τ 2
k = 1

N

∑
q∈�k

(Jk (q) − μk )2 (45)

In equation (45), we substitute Jk (q) by the patch interpolation
model stated in (38) and use the definition stated in (44), we
obtain

τ 2
k = α2

k ς2
k (46)

Next we identify parameter settings that lead to reduced
variance, i.e., τ 2

k /σ 2
k ≤ 1 for smoothing or increased variance,

i.e., τ 2
k /σ 2

k > 1 for sharpening. It can be shown that

τ 2
k

σ 2
k

= 1

2
ρ2

k ς̂2
k

{
1 +

√
1 + 4κε

σ 2
k ρ2

k ς̂2
k

}
+ κες̂2

k

σ 2
k

(47)

where ς̂2
k = ς2

k
ς2

k +ε
and ρk (|ρk| ≤ 1) is the cross correlation

coefficient of the two patches defined as

ρk = φk

σkςk
(48)

where φk is the sample covariance between the corresponding
patches of the original and guided images. It is defined in
equation (35).

In a special case in which κ = 0 leading to the original
guided filter, we have the following results

τ 2
k

σ 2
k

= ρ2
k η2

k = ρ2
k

[
ς2

k

ς2
k + ε

]2

< 1 (49)

This means that the original guided filter is always a smooth-
ing filter.

However, there is a highly non-linear relationship between
the ratio τ 2

k /σ 2
k and the two filter parameters κ and ε for the

two patches in I and G where the variances (σ 2
k and ς2

k ) and
correlation coefficients (ρk) can be calculated. In theory, we
can calculate the required parameter settings such that for two
given patches the ratio is greater than one or less than one. But
doing so adds considerable computation burden in practice. A
practical approach is to let the user set the two parameters
such that the desirable result is produced. In this regard, we
can see that the ratio τ 2

k /σ 2
k is an increasing function of κε

σ 2
k

.

For the case where ε and σ 2
k are fixed, increasing κ will

increase the ratio and the patch is more likely to be sharpened
(or less smoothed). For the case where κ and ε are fixed,
a patch with a larger/smaller value of variance is less/more
likely to be sharpened. This is a desirable feature because
more sharpening should be applied to areas of less variance.

C. IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY
The implementation is similar to that of the original guided
filter. For each patch, we calculate the parameter αk using
either (27) for the self-guided version or (41) for the guided
version. We then perform the weighted average operation.
More specifically, for the self-guided version, the filter output
is given by

J (p) = I (p)
N∑

k=1

wkαk +
N∑

k=1

wk (1 − αk )μk (50)

For the guided version, the filter output is given by

J (p) = G(p)
N∑

k=1

wkβk +
N∑

k=1

wk (μk − βkνk ) (51)

where βk = sign(φk )αk and ak is given by (34).
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FIGURE 4. Effect of varying κ for settings r = 11, ε = 0.01, scale = 1. (a) and (b) Smoothing (0 < κ < 1). (c) Original image (κ = 1, no filtering). (d) and (e)
Sharpening (κ > 1).

We calculate the weight for the self-guided and the guided
case as follows

wk = ck

1 + (
σ 2

k /(sσ̄ 2)
)2 (52)

and

wk = ck

1 + (
ς2

k /(sς̄2)
)2 (53)

where ck is a normalization factor to ensure
∑N

k=1 wk = 1, s
is a user defined scale parameter, σ̄ 2 and ς̄2 are the average of
σ 2

k and ς2
k over the whole image.

The proposed guided smoothing-sharpening filter can be
implemented in MATLAB of which the code is shown in
Appendix. The self-guided version has a similar implemen-
tation. We assume the four parameters are given: patch radius
(r), Kappa (κ), Epsilon (ε), and Scale (s). We can see from
the brute-force implementation that the proposed filter has an
O(N ) complexity which is the same as that of the original
guided filter. It can be implemented by using 7 linear filters.

For color images, we can process each color component
individually. Alternatively, we can convert the image from
RGB to HSV color space. Filtering is performed on the value
channel. The processing result is then combined with the hue
and saturation channels and is converted back to RGB.

IV. APPLICATIONS EXAMPLES
There are two purposes of this section: validation (Sec-
tion IV-A) of the theoretical analysis of the proposed filter,
and demonstration of successful applications in (a) adaptive
smoothing and sharpening (Section IV-B) based on extracted
information of texture, depth and blurriness, and (b) infor-
mation fusion (Section IV-C) for denoising and creating high
resolution multi-spectral images.

A. EFFECTS OF PARAMETER SETTINGS FOR THE
SELF-GUIDANCE CASE
We demonstrate the properties of the filter and confirm the
theoretical analysis presented in Section III-A2. The proposed
filter has 3 user defined parameters: (a) The patch radius r, (b)
the sharpening/smoothing gain κ , and (c) the regularization
parameter ε. In this section we study the effect of these pa-
rameters on the processed image.

In Fig. 4 we demonstrate the effect of varying κ by keep-
ing the rest of the parameters fixed. Fig. 4(a) and 4(b) show
the effect of smoothing when 0 < κ < 1. Smaller κ values
increase the smoothing level on the result image. Fig. 4(d)
and 4(e) show the effect of sharpening when κ > 1. Larger κ

values produce a sharper result. The image shown in Fig. 4(c)
is produced by setting κ = 1. We can verify that it is exactly
as the original image. Thus when κ = 1 the filter produces no
smoothing or sharpening effect.

Next, we study the effect of patch size and ε for sharpening
and smoothing separately. To set the filter in smoothing mode
we set a fixed κ = 10−2. In Fig. 5 the results are organized
in such a way that the radius varies from 5 to 10 column-
wise while ε varies from 10−2 to 1 row-wise. Results shown
in this figure clearly show the edge preserving capabilities of
the filter in smooth mode. Setting a larger ε value produces
a more washed out result, while increasing the radius of the
filter also produces a stronger smoothing result.

The results shown in Fig. 6 are obtained by setting κ = 20
to demonstrate the sharpening effects as a function of different
ε and r values. These results confirm that the sharpening gain
increases with the increase in ε as previously stated in Fig. 3.
Increasing the radius impacts the variance for each pixel posi-
tion. As a result, it produces a change in the sharpening gain.

B. APPLICATION IN ADAPTIVE SMOOTHING-SHARPENING
As mentioned in the previous section, the value of κ controls
the sharpening/smoothing gain of the proposed filter, in this
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FIGURE 5. Effect of varying ε and r in smoothing mode for fixed settings
of κ = 10−2 and scale = 0.25.

FIGURE 6. Effect of varying ε and r in sharpening mode for fixed settings
of κ = 20 and scale = 1.

FIGURE 7. Non-linear transformation, using κmin = 0.5, κmax = 1.5,

c = 10, t0 = 0.3.

section we propose three pixel-adaptive smoothing and sharp-
ening algorithms by defining κ as a non-linear transformation
of a feature map such as depth, blurriness or texture.

The non-linear transformation used in this paper is simply
a variation of the Gompertz1 function which is a sigmoid
function. It is defined as:

g(t ) = ae−be−ct
(54)

where a, b and c are three parameters. Let us consider t (t ∈
[0, 1]) as a feature map extracted from the input image, the
parameter of the proposed filter κ is defined as:

κ = (κmax − κmin)e−0.69×e−c(t−t0 ) + κmin (55)

where κmin and κmax are the minimum and the maximum
values that the gain κ will take, c is the growth rate of the
transformation and t0 is the value of t that produces κi =
(κmax − κmin)/2.

We show an example of the non-linear transformation in
Fig. 7, where there are two well defined areas in the function:
the smoothing region where the κmin ≤ κ < 1 and the sharp-
ening region where 1 < κ ≤ κmax. We can control the level of
smoothing or sharpening by changing the values of κmin and
κmax. Setting κmin = 1 will cancel the smoothing effect also
setting κmax = 1 will cancel or not produce any sharpening on
the image. In the following subsections we produce content
adaptive κ by using the non-linear transformation on feature
maps.

1) TEXTURE GUIDED SMOOTHING AND SHARPENING OF
FACE IMAGES
A challenge in sharpening portraits by a non-adaptive unsharp
masking algorithm is that undesirable effect on skin regions
is usually produced. Examples are shown in Figs 8(b) and
9(g),(h) in which the skin part of the image is sharpened. To
solve this problem, we first estimate a binary skin map using
one of the many algorithms for skin segmentation, e.g., [18]–
[20]. We then transform the binary skin map by using the non-
linear transformation in (55) to obtain pixel-adaptive κ , which

1[Online]. Available: https://en.wikipedia.org/wiki/Gompertz_function
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FIGURE 8. Face enhancement results. (a) Original image. (b) UM (γ = 1.1). (c) The proposed filter (r = 3, ε = 0.01, Niter = 1, κmax = 5, κmin = 0.1). The
proposed method does not sharpen skin regions producing more aesthetically pleasing result.

FIGURE 9. Face enhancement. (a, b) Original images. (c, d) CAS results. (e,f) GUM results. (g,h) UM results. (i,j) Proposed filter results.

is used in the proposed filter to sharpen non-skin regions only
while gently smoothing the skin region to produce a notable
face enhancement.

In Fig. 8 we compare the result of the proposed method
against the popular unsharp masking (UM). UM algorithm has
a fixed gain (γ ) to amplify the high frequency components of
the image. It can be seen that our method produces a more aes-
thetically pleasing result in skin region while still sharpening
the non-skin region.

In Fig. 9 we compare our method with other state-of-the-
art sharpening methods such as generalized unsharp mask-
ing (GUM) [21], unsharp masking [1] and contrast adaptive
sharpening (CAS).2 Our filter produces a more natural and
aesthetically appealing effect on the image than UM and its
performance is similar to GUM and CAS.

2[Online]. Available: https://www.amd.com/en/technologies/radeon-
software-fidelityfx

128 VOLUME 2, 2021

https://www.amd.com/en/technologies/radeon-software-fidelityfx


2) DEPTH GUIDED SMOOTHING FOR SHALLOW DEPTH
OF FIELD
Modern mobile phones can have multiple high resolution
cameras to capture high quality images which can be used to
estimate the depth map of a scene. We combine this capability
and the proposed algorithm to produce a shallow depth of
field (SDoF) effect which is frequently used to emphasize the
main object. Traditionally, SDoF effect is achieved by using
a lens with a large aperture in a SLR camera. The proposed
algorithm of pixel-adaptive smoothing and sharpening can be
used as post-processing tool to create the SDoF effect. The
idea is to obtain the depth map from the phone and perform
the non-linear transformation to determine κ which is used in
the filtering process. In this experiment, we used a Samsung
Galaxy Note 9 phone in live focus mode to capture the im-
age and depth map information. We note that methods such
as [22], [23] can be used to estimate the depth map from a
single image if only one camera is available.

The depth map D is a gray-scale image with values in the
range [0,1]. A closer object in the scene has a smaller D value.
So the feature map is defined as t = 1 − D. Applying the non-
linear transformation, the depth information is mapped to κ

which is a decreasing function of D leading to progressively
smoothing effect as the distance increases. At the same time
the closer objects are sharpened to correct slight out of focus
or blur.

In Fig. 10 and Fig. 11 we show two different results where
the foreground is sharpened and the background is smoothed
to produce the SDoF effect. We can see that the background
is smoothed with a natural appearance to simulate the defocus
blur, also the foreground is sharpened reducing the blur due to
movement in Fig. 10 and out of focus in Fig. 11.

3) CONTENT-AWARE SEAM CARVING
We present an application of the background smoothing al-
gorithm detailed in previous section as a pre-processing step
for seam carving. Seam carving was introduced in [24] as an
effective tool for resizing an image without significant change
to main objects. The idea is to delete pixels of unimportant
details in an image. The importance of a pixel is measured by
a function of gradient. A natural image often contains details
such as trees, sand, grass which are usually less important
compared to the object of interest such as human. However,
a direct application of gradient-based seam-carving may lead
to unsatisfactory results. An example is shown in Fig. 12(b).
A solution to this problem is to use content-aware image re-
sizing. To avoid elimination of information in foreground, we
pre-process the input image by using the proposed SDoF al-
gorithm which not only smooths out details in the background
but also emphasizes the object of interest by sharpening it.
Results are shown in Fig. 12(d) which shows that after SDoF
filtering the seams are not running over the boy’s face. As a
result, the seam-carving algorithm produces a better output
image.

FIGURE 10. Shallow depth of field (SDoF) effect. (a),(b) Original image.
(c),(d) SDoF using the proposed filter (r = 3, ε = 10, Niter = 1, κmax = 2,

κmin = 0). Our filter not only smooths the background, it also sharpens the
object to correct small movements and out of focus.

4) BLURRINESS GUIDED SHARPENING AND SMOOTHING
When an object in a scene is outside the focal plane it is
defocused with a blur level directly proportional to the dis-
tance from the focal plane [25]. Due to the limited depth
of field intrinsic in most optical systems, the defocus blur is
present in most of images. When the depth information is not
available, the defocus blur becomes the simplest depth cue in
an image [26] and it is widely used by photographers to make
the main object of the scene to stand out from the background.
Sometimes, due to wrong focal settings, images need to be
sharpened or deblured to achieve a more pleasant result.

When an image has defocus blur present, the sharpening
process becomes a challenge. Sharpening highly defocused
regions produces artifacts and sharpening in focus regions can
lead to over-sharpening. To tackle these problems we propose
a method by sharpening and smoothing an image adaptively
using the defocus-blur map to compute a spatially varying
κ map. The key behind the success of our method is the
estimation of the defocus-blur map.
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FIGURE 11. Shallow depth of field (SDoF). (a),(b) Original image. (c), (d)
SDof using the proposed filter (r = 1, ε = 100, Niter = 10, κmax = 2,

κmin = 0). Our filter not only smooths the background, it also sharpens the
object.

Methods have been developed to estimate the defocus-blur
map. Some of the methods use multiple images or special
hardware [27]–[29] while others use a single image. These
methods fall into two main categories. The first one is the
traditional image processing methods such as [30], [31] which
perform a frequency domain analysis to estimate the defocus-
blur map or [32], [33] which use changes in gradient to esti-
mate the blur level at edges and then interpolate those level
to the rest of the image using a matting algorithm. The second
one is the machine learning based methods such as [34] which
uses an end-to-end CNN to estimate the defocus map and [35]
which estimates the blur map by using a regression tree field
(RTF) model.

In this work we use entropy, which is a measure of pixel
variation in a local area, as an indicator for the defocus. The
defocus-blur map D at a pixel location is defined as the en-
tropy of a patch centered at that particular pixel. The map
is then refined by using the guided filter [3] which uses the
original image as the guidance. The refined defocus-blur map
is non-linearly transformed by equation (54) to obtain the

desired κ map. The proposed filter with the pixel-adaptive
κ is applied to the image. The result is adaptive smoothing-
sharpening based on the local entropy information as a mea-
sure of defocus-blur.

In Fig. 13 we first show an image which contains different
levels of focal blur. The boy’s face (image (a)) is in focus
while the background is slightly out of focus. The refined en-
tropy map (image (b)) is produced by the MATLAB function
entropyfilt with a window size of 33x33 pixels and the
result is refined by using guided filter [3] (r = 32, ε = 0.01).
The κ map is shown in image (c).

In the second row of Fig. 13 we show 3 different results.
Image (d) is the result of smoothing areas with some degrees
of focal blur. The background is successfully blurred while the
boy’s face remains sharp leading to a pleasing SDoF effect.
Image (e) is the result of sharpening the out-of-focus regions
to increase the depth of field. The background appears sharper
producing the sensation that the scene’s depth is slightly larger
than the original. In both cases, the boy’s face which is in
focus, is not changed (achieved by setting κ = 1). However,
we should point out that the proposed filter can be easily
configured to sharpen the in-focus objects by adjusting the
parameters of the non-linear transformation. As a compari-
son, image (f) shows the effect of sharpening with a fixed κ

value for the whole image, leading to an image of non natural
appearance.

To further demonstrate the advantage of the proposed
smoothing-sharpening filter, we compare results from the
gradient domain guided filter (GDGF) [9], the weighted
guided filter (WGF) [8], and the side window guided filter
(SWGF3) [36]. We tune parameters of these 3 filters such
that the background is maximally smoothed while preserv-
ing information of the face shown in Fig. 13(a) as much as
possible. Results are shown in Fig. 14 which clearly shows
that the proposed filter has the best capability for blurring
the background while preserving the information of the face
which is almost unchanged. On the other hand, both GDGF
and WGF can blur the background to some extend at the cost
of smoothing the face. For the SWGF, we have to choose a
relatively small patch size to prevent the face being overly
smoothed. As a result, there is little effect on smoothing the
background.

C. EXTERNAL GUIDED SMOOTHING AND SHARPENING
1) FLASH/NO-FLASH SHARPENING
In this section we demonstrate another application of the
proposed filter where guided smoothing and sharpening is re-
quired. For example, a picture taken under low light condition
contains a high level of noise due to the use of high ISO set-
ting. One of the successful applications of the original guided
filter [3] is in processing images captured under low light
condition without using the flash. One such image is shown
in Fig. 15(a). The idea is to use another image captured with

3[Online]. Available: https://github.com/YuanhaoGong/SideWindowFilter
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FIGURE 12. Seam carving results. (a) Original image and seams to be removed. (b) Removed seams in (a). (c) Image after background smoothing and
seam to be removed. (d) Removed seams in (c). The proposed background filter leads to a better result.

FIGURE 13. Sharpening/smoothing guided by defocus. (a) Original image. (b) Refined entropy map. (c) κ map. (d) Result of blurring defocused regions to
produce a shallow depth of field. (e) Sharpening defocused regions to increase the depth of field. (f) Sharpening the whole image with a fixed κ.

flash-on as a guidance to enhance the one without flash. In
the original implementation, the guided filter with parameters
r = 8 and ε = 0.004 are used. Result is shown in Fig. 15(c),
where we can see that noise has been greatly reduced while
the color information is preserved. This is however at the cost
of loss of details, e.g., details on the wall and on the vases.
This is evident when we compare the result with the guidance
image (with-flash).

To tackle this problem, we first apply the guided filter in
an iterative manner. We represent the filter operation as J =
GF (I, G) where GF denotes the guided filter. The iteration
is performed as: J (0) = I and J (n) = GF (J (n−1), G). Using
the parameter settings r = 25 and ε = 10−6, we perform 10
iterations and show the result in Fig. 15(d). Comparing the
original GF result with the iterative GF result, we can see that
the latter has retained more details of the original scene than
the former.
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FIGURE 14. Background smoothing. Comparison with other guided filters
(a) Proposed method (same as Fig. 13(d)). (b) GDGF [9] (r = 7, ε = 0.01). (c)
WGF [8] (r = 7, ε = 0.001) (d) SWGF [36] (r = 3, Niter = 3).

TABLE I The Total Variation of the Image Produced by the Proposed
Iterative Smoothing-Sharpening Filter. It is an Increasing Function of κ

Indicating the Image Appear to Be Sharper by Using a Larger Setting of κ

Next, we test the proposed guided smoothing-sharpening
filter in the same iterative way, i.e., same parameter settings
with 10 iterations. The proposed filter has two extra param-
eters: κ and the scale s. For simplicity, we set s = 1 and
κ = 10 and 100 to study the sharpening effect. Results in
Fig. 15(e) and (f) which show that the proposed filter does
indeed produce sharper results than the iterative GF. To make
a quantitative comparison, we calculate the total variation of
the image. The total variation for image I is defined as

TV (I ) =
∑

c∈{R,G,B}

∑
n

|I (c)
h (n)| + |I (c)

v (n)| (56)

where I (c)
h (n) / I (c)

v (n) is the first derivative of the image along
the horizontal/vertical direction at location n and the super-
script c is used to indicate the color channel. Since the total
variation is the sum of absolute values of the first derivative,
we can use it as an indication of the sharpness of the image
in this application. The total variations for different settings
of κ are shown in Table 1, where κ = 0 corresponds to the
iterative guided filter. We can see that the sharpness of the
image is indeed an increasing function of κ .

Another issue is related to the number of iterations. In
general, for κ > 1, more iterations tend to produce a higher
degree of sharpening effect. How to set the number of itera-
tions is application dependent and it can be a user specified pa-
rameter. For the image shown in Fig. 15, we empirically found

FIGURE 15. Flash/no flash sharpening. (a) Image without flash. (b) Image
with flash. (c) GF (r = 8, ε = 0.004). (d) Iterative GF (r = 25, ε = 10−6,

Niter = 10). (e) The proposed filter (r = 25, ε = 10−6, Niter = 10, s = 1,

κ = 10). (f) The proposed filter (r = 25, ε = 10−6, Niter = 10, s = 1, κ = 100).

that between 5 to 10 iterations and a setting of 10 < κ < 100
result in visually pleasing images.

2) PAN-SHARPENING
Multi spectral (MS) images usually have low spatial resolu-
tion but are rich in spectral information. On the other hand
panchromatic images (called PAN images) have low spec-
tral resolution but have high spatial resolution. For example,
the IKONOS and QuickBird imaging sensors capture a PAN
image with a spatial resolution of 1 and 0.6 m respectively
and a MS image with a spatial resolution of 4 and 2.6 m
respectively [37]. Pan-sharpening is a technique that combines
information of MS images with PAN images to produce a
high spatial resolution image with large spectral information.
Pan-sharpening is a useful tool in many remote sensing appli-
cations.

132 VOLUME 2, 2021



FIGURE 16. Pan-sharpening results and comparison with other methods. (a) Original low resolution multi spectral image. (b) High resolution
panchromatic image. (c) Proposed filter. (d) to (i) Other state of the art methods. The proposed filter successfully transfers the details from the high
spatial resolution panchromatic image to the up-sampled multi spectral image while preserving the spectral resolution.

Pan-sharpening techniques have been continuously devel-
oped over the years. Some frequently used techniques in-
clude: Brovery transform (BT) [37], intensity-hue-saturation
(IHS) [38], principal component analysis (PCA) [16], wavelet
transform (WT) [39], [40], guided filter based methods such
as [17], [41], and P+XS [42]. We use some of these methods
to compare with the result of the proposed algorithm.

The proposed method consists of 3 steps similar to the GF-
based approach [17]. The MS image is first up-sampled using
nearest neighbor interpolation. The result is then processed by
the proposed filter which uses the PAN image as a guidance
to transfer the high spatial resolution information from the
guidance image to the low resolution MS image. The last step
is a histogram matching on the result image using the original
MS image as a reference.

Fig. 16(a) and Fig. 16(b) show the up-sampled MS image
and the PAN images respectively. The images are from United
States Geological Survey database.4 Fig. 16(c) shows the
output of the proposed algorithm using r = 11, ε = 0.1, κ =

4[Online]. Available: https://earthexplorer.usgs.gov/

1.2, scale = 0.5, the details of the PAN image are success-
fully transferred to the up-sampled MS image and the spectral
resolution is preserved. In the second and third rows of Fig. 16
we present the results of the Pan-sharpening process using BT,
IHS, PCA, WT, GF and P+XS algorithms. We can observe
that our method produces sharp and high contrast results with
large spatial and spectral information.

We use ERGAS [43] to quantify the quality of a Pan-
sharpened image. ERGAS is a metric that calculates the spec-
tral distortion. Ideally, its value should be zero. The ERGAS
values for results produced by different methods are shown
in the caption of Fig. 16. We can see that the result of the
proposed filter is of about the same quality as those produced
by state-of-the-art methods. Thus, the proposed filter is a new
tool for Pan-sharpening with the ability to perform pixel-wise
sharpening or smoothing.

V. CONCLUSION
Smoothing and sharpening are two fundamental operations
in image processing. They are usually related through the
unsharp masking algorithm. In this paper, we have developed
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a new filter which can perform smoothing and sharpening de-
pending on the setting of a parameter κ . The filter is a smooth-
ing filter or a sharpening filter when 0 < κ < 1 or κ > 1. The
systematic unification of these two operations in one filter is
based on (a) a new Laplacian based filter formulation which
unifies the smoothing and sharpening operations, (b) a patch
interpolation model similar to the guided filter which provides
the edge-awareness capability, and (c) the generalized Gamma
distribution as the prior for parameter estimation. As a result
the filter allows pixel-adaptive image smoothing/sharpening
by adapting κ to local characteristics such as texture, depth,
and blurriness. Based on the patch interpolation model, the
proposed filter uses the guidance information in two ways.
In self-guidance the proposed filter uses information of the
image to be processed and has the ability to use other in-
formation to adapt κ . In external-guidance, the filter is sim-
ilar to the guided filter, but has an extra ability of adaptive
smoothing-sharpening. In addition, the proposed filter has the
desirable edge-awareness property which retains sharp edges
in smoothing and does not suffer from the halo effect in
sharpening.

Using the filter in self-guidance we have developed adap-
tive smoothing-sharpening algorithms based on information
of texture, depth and blurriness to enhance human face im-
ages, to create the effect of shallow depth of field, to per-
form adaptive processing based on local blurriness, and to
pre-process an image to achieve better seam carving results.
Using the filter in external guidance, we have combined im-
ages of under flash and no-flash conditions, producing much
better results than those produced by using the guided filter.
We have also demonstrated the successful application of the
filter to solve the Pan-sharpening problem which combines
information from multi-spectral images with a panchromatic
image.

APPENDIX
A brute-force implementation of the proposed filter in MAT-
LAB is presented as the following code. We assume param-
eters such as: patch radius (r), Kappa (κ), Epsilon (ε), and
Scale (s), are provided by the user.
pad = ′symmetric′;
N = (2 ∗ r+ 1)2;
h = ones(2 ∗ r+ 1)/N;
%patch mean of I
mu = imfilter(I,h,pad);
%patch mean of G
nu = imfilter(G,h,pad);
%patch cov
phi = imfilter(I. ∗ G,h,pad) − mu. ∗ nu;
%patch var of G
vS = imfilter(G. ∗ G,h,pad) − nu. ∗ nu;
a = phi./(vS+ Epsilon);
Beta = (a+ sign(phi). ∗ sqrt(a.2 + 4 ∗ kappa...

∗Epsilon./(vS+ Epsilon)))/2;
%weight calculation
w = vS./(s ∗ mean(vS(:)));

w = 1./(1+ w.2);
nor = imfilter(w,h,pad);
%final output
A = imfilter(Beta. ∗ w,h,pad);
B = imfilter((mu− Beta. ∗ nu). ∗ w,h,pad);
J = (G. ∗ A+ B)./nor;
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