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ABSTRACT This paper investigates the asymptotic behavior of the soft-margin and hard-margin support
vector machine (SVM) classifiers for simultaneously high-dimensional and numerous data (large n and large
p with n/p → δ) drawn from a Gaussian mixture distribution. Sharp predictions of the classification error
rate of the hard-margin and soft-margin SVM are provided, as well as asymptotic limits of as such important
parameters as the margin and the bias. As a further outcome, the analysis allows for the identification of the
maximum number of training samples that the hard-margin SVM is able to separate. The precise nature of
our results allows for an accurate performance comparison of the hard-margin and soft-margin SVM as well
as a better understanding of the involved parameters (such as the number of measurements and the margin
parameter) on the classification performance. Our analysis, confirmed by a set of numerical experiments,
builds upon the convex Gaussian min-max Theorem, and extends its scope to new problems never studied
before by this framework.

INDEX TERMS Performance analysis, statistical learning, support vector machines.

I. INTRODUCTION
With the advent of the era of big data, attention is now
turned to modern classification problems that require to solve
non-linear problems involving large and numerous data sets.
Large margin classifiers constitute a typical example of these
novel classification methods and include as particular cases
support vector machines [1], logistic regression [2] and Ad-
aboost [3]. The performance of these methods is known to be
very sensitive to some design parameters, the setting of which
is considered as a critical step, as inappropriate values can lead
to severe degradation in the performance of the underlying
classification technique. To properly set these design param-
eters, cross validation is the standard approach that has been
adopted in the machine learning research. However, such an
approach becomes rather computationally expensive in high
dimensional settings, since it involves to design the classifier
for each candidate value of the design parameters. Recently, a
new technique based on large dimensional statistical analyses
has emerged to assist in the design of a set of machine learning
algorithms including kernel clustering techniques [4], classifi-
cation [5], [6], and regression. It is based on determining sharp

performance characterizations that can be assessed based on
the foreknowledge of the data statistics or be approximated
using training data. The advantages of this new technique are
two-fold. First, it allows easy prediction of the performances
for any set of design parameters, avoiding the prohibitively
high computational complexity of the cross-validation ap-
proach and paving the way towards optimal setting of the
design parameters. Second, it is more instrumental to gain
a deep understanding of the performances with respect to
the data statistics and the different underlying parameters.
However, the application of this approach has been mainly
concentrated on methods and algorithms in which the output
possesses a closed-form expression, as algorithms involving
implicit formulation are mathematically much less tractable.

Recently, a line of research work has emerged that stud-
ies the performance of high-dimensional regression problems
involving non-smooth convex optimization methods. The ap-
proaches that have thus far been used can be classified into
three main categories: a leave-one out approach proposed
by El Karoui in [7], an approximate message passing based
approach developed in [8] and finally the convex Gaussian
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min-max theorem (CGMT) based approach initiated by Sto-
jnic [9] and further developed by Thrampoulidis et al in [10].
As far as regression problems are concerned, the CGMT has
been the basis of a unified framework that applies to a broad
class of regression problems, requiring less assumptions on
the structure of the objective function.

The present work focuses on the use of the CGMT for the
asymptotic analysis of the popular support vector machines
(SVM) [11]. An early conference version of this paper appears
in [12] but is limited to the study of the hard-margin SVM and
contains only sketch of the proofs. Previous works consider-
ing the analysis of the SVM have been based on either the
replica method [13] or leave-one out based approaches [14].
However, these works were not shown rigorously with some
intermediate results admitted without any proof. It should be
noted that the optimization problem involved in SVM could
not be written as an instance of the general high-dimensional
regression problem considered in [10]. Moreover, it raises
several new challenges towards the direct application of the
CGMT. Compared to the works in [13] and [14], this work
considered binary classification of isotropically distributed
Gaussian data and studies the feasibility of the hard-margin
SVM. As a major outcome, we prove that when the ra-
tio between the number of samples and that of features is
strictly less than 2, the hard-margin SVM is almost surely
feasible irrespective of how close are the distribution of both
classes. Additionally, we characterize the test error for both
hard-margin and soft-margin SVM and illustrate how it is
affected by the difference between mean vectors and the avail-
able number of training samples. Such an information can be
leveraged in practice to acquire a fast estimation of the clas-
sification performances without resorting to cross-validation
approaches. On a technical level, and as opposed to previous
works pursuing the same line of research, the analysis is rig-
orous and is based on the CGMT framework. It develops new
technical tools that can be leveraged in the future to extend the
CGMT framework to more general settings.

The rest of the paper is organized as follows. Section II
introduces the hard-margin and soft-margin SVM as well as
the considered statistical model. Section III presents our main
results along with some important implications. Numerical
illustrations are provided in Section IV. Finally, Section V is
devoted to the development of the technical proofs.

II. PROBLEM FORMULATION
Consider a set of training observations {(xi, yi )}n

i=1 where for
each xi ∈ Rp a given input vector, yi = 1 if xi belongs to class
C1 or yi = −1 if xi belongs to class C0. We assume that there
are n0 observations in class C0 and n1 observations in class
C1, both of them are drawn from Gaussian distribution with
different means and common covariance matrix equal to σ 2Ip.
More specifically:

i ∈ Ck ⇔ xi ∼ N (μk, σ
2Ip) .

As suggested by several previous studies [15]–[17], the
performance of a classifier shall depend on the difference

between the mean vectors μ � μ1 − μ0 and the covariance
matrix associated with each class, which is in our case equal to
σ 2Ip. Since the classification problem would not change upon
a translation of all observations with the same vector, we will
assume for technical reasons that μ0 = −μ and μ1 = μ with-
out any loss of generality. This is because one can transform
xi into xi − 1

2 (μ1 + μ2) without changing the classification
performance1.

A. HARD MARGIN SVM
Given a set of training data {(xi, yi )}n

i=1 that is linearly sepa-
rable, hard-margin SVM seeks the affine plane that separates
both classes with the maximum margin [1]. This amounts to
solving the following optimization problem:

�(n) � min
w,b

‖w‖2
2

s.t . ∀i ∈ {1, . . . , n} , yi
(
wT xi + b

) ≥ 1 . (1)

Let ŵH and b̂H solve the above problem, then the hard-margin
classifier applied to an unseen observation x is given by
LH (x) = sign(ŵT

H x + b̂H ).

B. SOFT MARGIN SVM
If the data are not linearly separable, the constraints of the
hard-margin SVM can not all be satisfied together. As a result,
the cost of the hard-margin optimization problem is infinite,
since the minimum over an empty set is by convention ∞.
Under such settings, one alternative is to use the soft-margin
SVM which by construction tolerates that some training data
are mis-classified but pays the cost of each misclassified ob-
servation by adding an upper bound on the number of the
misclassified training observations. More formally, the soft-
margin SVM is equivalent to solving the following optimiza-
tion problem:

�̃ � min
w,b,{ξi}n

i=1

‖w‖2
2 + τ̃

p

n∑
i=1

ξi

s.t . ∀i ∈ {1, . . . , n} , yi
(
wT xi + b

) ≥ 1 − ξi, ξi ≥ 0 (2)

where τ̃ is a strictly positive scalar, set beforehand by the user,
and aims to make a trade-off between maximizing the margin
and minimizing the training error. In this respect, a small τ̃
tends to put more emphasis on the margin while a larger τ̃
penalize the training error. Let ŵS and b̂S solve the above
problem, then the soft-margin SVM classifier applied to an
unseen observation x is given by LS (x) = sign(ŵT

S x + b̂S ).

III. MAIN RESULTS
The study of the statistical behavior of the hard-margin and
soft-margin SVM is carried out under the following asymp-
totic regime:

Assumption A- 1: We shall assume the following

1The reader can easily see from our theoretical analysis that the same
performances would be obtained if the empirical mean is subtracted from
xi, i.e., xi turned into xi − n0

n μ0 − n1
n μ1.
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� n, n0, n1 and p grow to infinity with n
p → δ, n0

n → π0

and n1
n → π1.

� σ 2 is a fixed strictly positive scalar, while ‖μ‖2 → μ.
� The training samples x1, . . . , xn are independent. More-

over, for k ∈ {0, 1}, xi ∈ Ck , if and only if xi = ykμ + zi

with zi ∼ N (0, Ip) and yk = 1 if k = 1 and yk = −1 if
k = 0.

A. HARD MARGIN SVM
In this section, we analyze the behavior of the hard-margin
SVM under Assumption 1.

Theorem 1: Let η	(ρ) be the unique solution in η to the
following equation:

η=
π1E

[(
G − ρμ

σ

)
1{G≥ ρμ

σ +η}
]
+π0E

[
( ρμ
σ

− G)1{G≥ ρμ
σ −η}

]
π1P

[
1{G≥ ρμ

σ +η}
]

+ π0P
[
1{G≥ ρμ

σ −η}
] .

(3)
where G ∼ N (0, 1) denotes a standard normal random vari-
able. Assume that:

δ > δ	 (4)

where δ	 is given by:

=
(

min
0≤ρ≤1

1

1 − ρ2

(
π1E

((
G − ρμ

σ
− η	(ρ)

)
+

)2

+π0E

((
G − ρμ

σ
+ η	(ρ)

)
+

)2
))−1

(5)

Then, under Assumption 1

P
[
� = ∞, n large enough

] = 1.

Proof: The proof is postponed to Section V-B. �
Remark 1: At this point of the work, it is quite early to

interpret the quantities η(ρ) and ρ, the physical significance
of which will appear clearly in the next theorem. However,
for the reader convenience, we would like to mention that
the proof shows clearly that asymptotically, the feasibility
of the hard-margin SVM, i.e, finding the solutions ŵH and
b̂H to (1) asymptotically happens when it is possible to find
the solutions of an equivalent optimization problem on the
variables η and ρ. If the data are not linearly separable, the
hard-margin SVM is not feasible and as such it is not possible
to find ŵH and b̂H that solve (1). Under this setting, the
cost of an equivalent scalar optimization problem involving
the scalar variables ρ and η becomes unbounded, a scenario
that happens when δ > δ	. More details of this scenario are
provided in Remark 3 subsequent to Theorem 2. Finally, it is
worth mentioning that in case π0 = π1, it is easy to see that
η = 0 is the unique solution to (3). Moreover, one can easily

see that in this case (4) becomes:

δ ≥ δ	 with δ	 = 1

inft∈R E

((√
1 + t2G − tμ

σ

)
+

)2

(6)
where to obtain (6), we used the change of variable t :=

ρ√
1−ρ2

Note that (6) is reminiscent of the condition derived

by Candès et al. in [17], which provides a similar condition
guaranteeing data separability. However, the work of [18]
considered data drawn from the logistic model with mean zero
and was based on different tools.

Remark 2: Theorem 1 establishes the failure of the hard-
margin SVM to linearly separate the data when the ratio be-
tween the number of samples and that of features is almost
surely strictly above a certain threshold. Equivalently, it can
be used to have an idea of the minimum number of training
samples that cannot be linearly separated without errors. As-
suming that n and p are sufficiently large, if the number of
training samples satisfies:

n > p(δ	 + ε)

for some fixed ε > 0, then the hard margin SVM fails to
linearly separate the training samples. The above result does
not tell, however, as to when the hard-margin SVM guarantees
perfect separation of the training samples. This constitutes
the objective of the following Theorem, which guarantees the
almost sure feasibility of the hard-margin SVM when δ < δ	
and determines under this condition almost sure limits of the
margin, the bias, and the angle between the solution vector
ŵH and vector μ.

Theorem 2: Assume that:

δ < δ	

Let β(q0) := min0≤ρ≤1
η∈R

DH (q0, ρ, η) where DH is defined in

(7) shown at bottom of this page. Then, function β has a
unique zero q	0,H . Moreover, with probability 1, for n and p
large enough,

‖ŵH‖ → q	0,H .

Let ρ	H and η	H be such that (ρ	H , η
	
H ) =

argmin0≤ρ≤1
η∈R

DH (q	0,H , ρ, η), then, with probability 1,

ŵT
Hμ

‖ŵH‖‖μ‖ → ρ	H , and b̂H → η	H q	0,Hσ .

Proof: The proof is postponed to Section V-B. �
Remark 3: In reference to our discussion after Theorem 1,

and to give the reader the intuition behind the result of the
above theorem, it followed from the proof that the feasibility

DH (q0, ρ, η) �

√
δπ1E

((
G + 1

q0σ
− ρμ

σ
− η

)
+

)2

+ δπ0E

(
(G + 1

q0σ
− ρμ

σ
+ η) +

)2

−
√

1 − ρ2 (7)
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FIGURE 1. Theoretical predictions of the regions of failure and success of
hard-margin SVM when π0 = π1 = 0.5.

of the hard-margin SVM is equivalent to showing that the cost
of the following scalar optimization problem:

inf
q0≥0

q2
0 + sup

m≥0
m min

−1≤ρ≤1
η∈R

DH (q0, ρ, η)

= inf
q0≥0

q2
0 + sup

m≥0
mq0β(q0) (8)

is bounded. As

q0 �→ min
−1≤ρ≤1
η∈R

DH (q0, ρ, η)

is decreasing with q0 and grows like 1
q0

when q0 ↓ 0, for the
optimal cost of the above optimization problem to be bounded,
necessarily we must have β(q0) ≤ 0 for some q0 > 0. Since
function β is decreasing, such a condition holds if and only if
limq0→∞ β(q0) < 0, which can be easily seen to be equivalent
to δ < δ	. Moreover, when δ < δ	, using the fact that β is
decreasing, the minimizer of (8) corresponds to the unique
zero of function β.

Remark 4: The combination of the results of Theorem 1
and Theorem 2 provides a complete picture of the behavior
of the hard-margin-SVM. The importance of these results is
that they allow us to predict the performance for any setting
characterized by n, p, μ and σ , and constitutes thus a valuable
alternative to cross-validation approaches. Particularly, it en-
tails from these results that for the hard-margin SVM to lead
to perfect linear separation of the training samples, the number
of samples should be strictly less than:

n < p (δ	 − ε)

for some ε > 0. In case n
p → δ	, no conclusion can be drawn.

This phase transition phenomenon is illustrated in Fig. 1 π0 =
π1 = 0.5, which displays the failure and success regions with
varying μ

σ
and δ. Interestingly, it is noteworthy to mention that

as the factor μ
σ

increases, the capabilities of the hard-margin
SVM get improved, the number of samples that can be linearly
separated increasing significantly.

Remark 5: It is easy to see that δ	 increases with μ
σ

. Hence
δ	(

μ
σ

) ≥ δ	(
μ
σ

= 0). Consider the case in which μ
σ

= 0, and

π0 = π1 = 1
2 , which describes the situation in which data

from both classes follow the same distribution with mean 0
and covariance σ 2Ip. Simple calculations lead to that δ	(

μ
σ

=
0) = 2. So, when the data is uniformly sampled across the
classes, the hard-margin SVM would be able to linearly sep-
arate the data when δ < 2, yielding perfect classification of
training data. Curiously, this holds even when the training data
from both classes are drawn from the same distribution.

However, as will be shown below, in this situation, the test
error will be equal to 0.5, since both classes are generated
similarly.

Corollary 3: Let LH (x) = ŵT
H x + b̂H be the hard-margin

classifier, where ŵH and b̂H are solutions to (1). Under the
asymptotic regime defined in Assumption 1 and when δ < δ	,
the classification error rate associated with class C0 and C1

converges to:

P [LH (x) > 0|x ∈ C0] → Q

(
ρ	Hμ

σ
− η	H

)
P [LH (x) < 0|x ∈ C1] → Q

(
ρ	Hμ

σ
+ η	H

)
,

where Q(x) = 1√
2π

∫∞
x exp(− t2

2 )dt . Let εH denote the test

error of the hard-margin SVM. It thus converges to ε	H =
π0Q(

ρ	Hμ

σ
− η	H ) + π1Q(

ρ	Hμ

σ
+ η	H ).

Remark 6: In reference to Remark 5, it can be shown that
when π0 = π1 = 0.5 and μ = 0, the test error converges to
0.5 although the training error is zero. This is expected since
data from both classes are drawn from the same distribution.
Moreover, as seen in Corollary 3, the classification error rates
depends on the bias through η	H , and the angle between μ

and ŵH , capitalized by the quantity ρ	H . In our case, the
optimal Bayes separating hyperplane has direction aligned
with μ, hence ρ	H also represents the angle between the di-
rection of SVM separating hyperplane and the Bayes optimal
separating hyperplane. As ‖ŵH‖ → q	0,H , the projection of
ŵH on the space orthogonal to μ has a norm that converges

to q	0,H

√
1 − (ρ	H )2. Finally, it is important to note that the

classification error rate is not the same for both classes, unless
π0 = π1 in which case it is easy to see that η	H = 0. Moreover,
if π1 > π0, it is easy to prove that η	H > 0. Hence, it is the
class with a higher number of training data that presents the
lowest misclassification error rate.

Remark 7: The expressions provided in Theorem 2 and
Corollary 3 can be used to qualitatively understand the lim-
iting behaviors of q	0,H and ρ	H in the balanced training data
(π1 = π0 = 0.5) when 1) δ is fixed and μ

σ
tends to zero or

infinity and when 2) δ → 0 or tends from below to δ	.
Impact of low mean difference: Assume δ < 2 is fixed and

μ
σ

↓ 0. Then DH can be approximated as:

DH (q0, ρ, 0) ∼
μ
σ →0

√
δ

√
E

(
G + 1

q0σ

)2

+
−
√

1 − ρ2
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Hence, when μ
σ

↓ 0, ρ	H → 0 and q	0,H → q̃0 where q̃0 is the
unique solution to:

E

(
G + 1

q0σ

)2

+
= 1

δ
.

Impact of high mean difference: Assume δ is fixed below δ	

and μ
σ

→ ∞. Then, considering function β̃(q0) := μ
σ
β(q0),

one can easily see that:

β̃ ∼
μ
σ →∞

√
δ min

0≤ρ≤1

√
E(G

μ

σ
+ 1

q0μ
− ρ)2+

∼ min
0≤ρ≤1

√
δ(

1

q0μ
− ρ) +

Obviously for all q0, the minimum in ρ of the asymptotic
equivalent of β̃ is achieved when ρ = 1. Moreover, choosing
q0 = 1

μ
and ρ = 1, we obtain β̃ ∼ 0. It follows from this, that

when μ
σ

→ ∞, ρ	H → 1 and q	0,H ∼ 1
μ

.
Impact of small sample size Assume δ ↓ 0 while μ

σ
is fixed.

Then function β can be approximated as:

β ∼
δ↓0

min
0≤ρ≤1

√
δ

q0σ
−
√

1 − ρ2

Hence, ρ	H → 0 and q	0,H ∼
√
δ
σ

.
Impact of using the highest possible sample size In the

limit when δ → δ	, the set {(q0, ρ)|DH (q0, ρ, 0) ≤ 0}
converges to {(q0 = ∞, ρH )} where ρH is the unique ρ

satisfying:

√
δ	

√
E
(

G − ρμ

σ

)2

+
−
√

1 − ρ2 = 0.

Hence, when δ → δ	, q	0,H → ∞ and ρ	H → ρH .
As seen from Corollary 3, it is the alignment with μ and

not the margin that determines the performance. A bad align-
ment occurs when ρ	H → 0 and is associated with poor per-
formances. This happens for instance when μ

σ
→ 0 or when

the sample size is small (δ → 0). When μ
σ

→ ∞, ŵH tends
to align perfectly with μ, which translates into perfect clas-
sification. On the contrary, the use of as many samples as
allowed by the condition δ < δ	 is not associated with perfect
alignment. A better performance is expected as compared with
δ → 0 but far from perfect classification error rate.

B. SOFT MARGIN SVM
The following Theorem characterizes the asymptotic behavior
of the solution to the soft-margin SVM under the asymptotic
regime defined in Assumption 1.

Theorem 4: Let the map Rτ̃ (x, ρ, η, ξ ) : R>0 × [0, 1] ×
R × R>0 → R be defined in (9), shown at bottom of this
page. Define DS,τ̃ (q0, ρ, η, ξ ):R>0 × [0, 1] × R × R>0 →
R as:

DS,τ̃ (q0, ρ, η, ξ ) := q2
0 + q0Rτ̃

(
1

q0
, ρ, η, ξ

)
.

Then, the following convex-concave minimax optimization
problem

inf
q0>0

inf
η∈R

min
0≤ρ≤1

sup
ξ>0

DS,τ̃ (q0, ρ, η, ξ ) (10)

admits a unique solution (q	0,S, ρ
	
S, η

	
S ). Moreover, with prob-

ability 1, the following convergences hold true:

‖ŵS‖2
a.s.−→ q	0,S,

ŵT
S μ

‖ŵS‖2‖μ‖2

a.s.−→ ρ	S

and b̂S
a.s.−→ η	Sq	0,Sσ.

Proof: See Section V-C in the technical report [18]. �
Corollary 5 (Misclassification error rate): Let LS (x) =

ŵT
S x + b̂S be the soft margin SVM classifier, where ŵS and

b̂S are solutions to (2). Under the asymptotic regime defined in
Assumption 1, the classification error rate of the soft-margin
SVM classifier associated with class C0 and class C1 converge
to:

P
[
L̂S (x) > 0|x ∈ C0

]→ Q

(
ρ	Sμ

σ
− η	S

)
P
[
L̂S (x) < 0|x ∈ C1

]→ Q

(
ρ	Sμ

σ
+ η	S

)
.

where ρ	S , η	S and q	0,S are the unique solutions to (10). Let εS

denote the test error of the soft-margin SVM. It thus converges

to ε	S = π0Q(
ρ	Sμ

σ
− η	S ) + π1Q(

ρ	Sμ

σ
+ η	S ).

Remark 8: First, it is worth mentioning that the expressions
obtained for the soft-margin SVM can be numerically approx-
imated using a coordinate descent algorithm. Second, similar
to the hard margin SVM, in case of balanced classes (π0 =
π1 = 0.5), it is easy to see that η	 = 0. This confirms the intu-
ition according to which, for the symmetric case (μ1 = −μ2),
it is best to separate the data with a hyperplane crossing the
origin. Again it is easy to see that if π1 > π0, η	 > 0, showing

Rτ̃ (x, ρ, η, ξ ) := τ̃π1δE

[(
G+ x

σ
− ρμ
σ

−η− τ̃

2ξ

)
1{G≥ τ̃

ξ +η+ ρμ
σ − x

σ }

]
+τ̃π0δE

[(
G + x

σ
− ρμ
σ

+ η − τ̃

2ξ

)
1{G≥ τ̃

ξ −η+ ρμ
σ − x

σ }

]

+ ξπ1δ

2
E

[((
G + x

σ
− ρμ

σ
− η
)

+

)2

1{G≤− x
σ + ρμ

σ +η+ τ̃
ξ }

]
+ ξπ0δ

2
E

[((
G + x

σ
− ρμ

σ
+ η
)

+

)2

1{G≤− x
σ + ρμ

σ −η+ τ̃
ξ }

]

− ξ

2
(1 − ρ2) (9)
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FIGURE 2. Effect of μ on hard-margin SVM performances, when δ = 2.5, π0 = π1 = 0.5, p = 100 and σ = 1. The solid blue line corresponds to ρ�
H , q�

0,H and
ε� as defined in Theorem 2 and Corollary 3, while the squares and bars represent the mean and standard deviation of cos(�(μ, ŵH )), ‖ŵH‖2 and ε based
on 100 simulated data sets.

FIGURE 3. Effect of δ on hard-margin SVM performances, when μ = 1, π0 = π1 = 0.5, p = 200 and σ = 1. The solid blue line corresponds to ρ�
H , q�

0 and ε�

as defined in Theorem 2 and Corollary 3, while the squares and bars represent the mean and standard deviation of cos(�(μ, ŵH )), ‖ŵH‖2 and ε based on
100 simulated data sets.

that the class with more training data is the one that presents
the best misclassification performance.

IV. NUMERICAL RESULTS
In this section, we validate through a set of numerical results
the accuracy of our theoretical finding. All the data are drawn
from a Gaussian mixture model as defined in Assumption 1.

A. HARD MARGIN SVM
Fig. 2 illustrates the impact of μ on the angle between the
optimal Bayes separating hyperplane, (in our case aligned
with μ) and ŵH the separating hyperplane of hard-margin
SVM, as well as on the margin and the classification error
rate. As can be seen, the alignment with μ improves rapidly
with μwhen μ is small before saturating for large values of μ.
Moreover, when μ is small, the inverse of the margin which is
proportional to the norm of ‖ŵH‖ reaches very high values,
being in the limit of feasibility of the hard-margin SVM.
Finally, as can be seen, the classification error rate decreases
considerably as μ increases. Fig. 3 describes the impact of δ.
We note that the use of more training samples tends to improve
the alignment and at the same time to decrease the margin.
This does not imply a reduction in the classification error
performance. On the contrary, the better alignment results in

a higher classification performance, despite the decrease of
the margin value. For the sake of illustration, we represent
hatched zones in Fig. 2 and Fig. 3 to refer to regions in which
the hard-margin SVM is unfeasible. We note that the norm of
ŵ increases when approaching to these unfeasibility regions.

B. SOFT MARGIN SVM
Fig. 4 investigates the impact of μ on the angle between the
optimal Bayes separating hyperplane aligned with μ and ŵS

the separating hyperplane of SVM, as well as on the inverse
of the margin and the classification error rate. It shows that
the alignment significantly improves as μ increases fast when
μ < 2. The increase then becomes less important for high μ.
We also note that curiously the margin tends to decrease in the
range of small μ. This can be explained by the fact that in this
region the alignment with the mean vector μ is weak, causing
the margin to decrease when μ is small. In the region of large
μ, the margin increases rapidly (‖ŵS‖2 decreases).

Fig. 5 investigates the impact of the number of samples on
the classification performances. As expected, as more training
data are used, a better alignment with the mean vector μ is
noted. However, this results also in a decrease in the margin
which does not hopefully translates into a loss in classification
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FIGURE 4. Effect of μ when when τ̃ = 2, δ = 2, p = 200, σ = 1, π1 = π0 = 0.5. The solid blue line corresponds to ρ�
S , q�

0,S and ε� as defined in Theorem 4,
while the squares and bars represent the mean and standard deviation of cos(�(μ, ŵS ), ‖ŵS‖2 and ε based on 100 simulated data sets.

FIGURE 5. Effect of δ when τ̃ = 2, μ = 1, p = 200, σ = 1, π1 = π0 = 0.5. The solid blue line corresponds to ρ�
S , q�

0,S and ε� as defined in Theorem 4, while
the squares and bars represent the mean and standard deviation of cos(�(μ, ŵS ), ‖ŵS‖2 and εS based on 100 simulated data sets.

FIGURE 6. Effect of τ̃ when μ = 1, p = 200, δ = 1, σ = 1 and π0 = π1 = 0.5. The solid blue line corresponds to ρ�
S , q�

0,S and ε�
S as defined in Theorem 4,

while the squares and bars represent the mean and standard deviation of cos(�(μ, ŵS ), ‖ŵS‖2 and εS based on 2000 simulated data sets. (a) Angle
between μ and ŵS . (b) ‖ŵ‖S . (c) Total classification error rate.

performances, these latter being determined by only how good
is the alignment with μ.

Finally, we investigate in Fig. 6 the impact of τ̃ on the
performances. As seen, the alignment with μ and the mar-
gin decreases significantly when τ is greater than a certain
threshold value, suggesting to use smallest values of τ̃ . Such
an observation is in agreement with the simulations of [13],
where it was suggested to use the threshold value since using

too tiny values for τ̃ is known to pose numerical difficulties in
solving the optimization problem.

V. TECHNICAL PROOFS
A. CGMT FRAMEWORK
Our technical proofs builds upon the CGMT framework,
rooted in the works of Stojnic [9] and further mathemati-
cally formulated in the works of Thrampoulidis et al. in [10]
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and [19]. The CGMT can be regarded as a generalization
of a classical Gaussian comparison dating back to the early
works of Gordon in 1988 [20]. This inequality provides a
high-probability lower bound of the optimal cost function of
any optimization problem that can be written in the following
form:

�(n)(G) := min
w∈Sw

max
u∈Su

uT Gw + ψ (w,u), (11)

where G ∈ Rn×p is a standard Gaussian matrix, Sw and Su
are two compact sets in Rp and Rn and ψ : Rp × Rn → R is
continuous on Sw × Su, possibly random but independent of
G. The optimization problem in (11) is identified as a primary
optimization problem (PO), the asymptotic behavior of which
cannot be directly studied in general, due to the coupling
between vectors w and u in the bilinear term. To this end,
based on Gaussian comparison inequalities [21], we associate
with it the following optimization problem

φ(n)(g,h) := min
w∈Sw

max
u∈Su

‖w‖2gT u + ‖u‖2hT w + ψ (w,u),

(12)
where g ∈ Rn and h ∈ Rp are standard Gaussian vectors.
According to Gordon’s comparison inequality, for any c ∈ R,
it holds that:

P
[
�(n)(G) < c

] ≤ 2P
[
φ(n)(g,h) < c

]
. (13)

Particularly, if a high-probability lower bound of the (AO)
can be found, then by (13), this lower bound translates also
into a high-probability lower bound of the (PO). The impor-
tance of this result lies in that so far it does not require any
assumption on the convexity of function ψ or the sets Sw
and Su, and most importantly it allows to relate the (PO)
to a seemingly unrelated (AO) problem which presents the
advantage of being in general much easier to analyze than the
(PO) problem, as the bilinear term is now decoupled into two
independent quantities involving respectively vectors g and h.
Combining the Gordon’s original result with convexity, it was
shown that this result can be strenghened to a more precise
characterization of the asymptotic behavior of the (PO), [9],
[22]. Particularly, if the sets Sw and Su are additionally convex
and ψ is convex-concave on Sw × Su, then, for any κ ∈ R,
and t > 0,

P
[∣∣�(n)(G) − κ

∣∣ > t
] ≤ 2P

[|φ(n)(g,h) − κ| > t
]
.

A direct consequence of this inequality is that if the optimal
cost of the (AO) problem converges to ν then the optimal
cost of the (PO) converges also to the same constant. More
formally, if for some ν ∈ R, the optimal cost of the (AO)
concentrates around ν in the sense that:

P
[∣∣φ(n)(g,h) − ν

∣∣ > t
] →

n→∞ 0, (14)

then similarly, the optimal cost of the (PO) satisfies:

P
[∣∣�(n)(G) − ν

∣∣ > t
] →

n→∞ 0, (15)

However, in most cases, the ultimate goal is not to char-
acterize the optimal cost of the PO but rather a functional of

the minimizer of �(n)(G) which we denote by w	. Although
not directly obvious, this can be related to evaluation of the
optimal cost of the (AO) as shown in the following Theorem.

Theorem 6: (CGMT, [23]) Let S be an arbitrary open
subset of Sw and Sc = Sw\S . Denote φ

(n)
Sc (g,h) the op-

timal cost of (11) when the optimization is constrained
over w ∈ Sc. Suppose there exists constants φ and φSc

such that (i) φ(n)(g,h) → φ in probability, (ii) φ(n)
Sc (g,h) >

φSc with probability approaching 1, (iii) φ < φSc . Then,
limn→∞ P[w� ∈ S] = 1, where w� is a minimizer of (11).

Remark 9: Theorem 6 can be used to characterize a set in
which lies the minimizer of (11) with probability approaching
1. The main ingredient is to compare the asymptotic limit
of the AO optimal costs on the set of interest and its com-
plementary. Note that Theorem 6 requires the asymptotic
statements to hold in probability and not almost surely. In
practice, as will be shown next, it is often the case that all
asymptotic results of the (AO) hold in the almost sure sense.
However, this cannot be straighforwardly leveraged to obtain
results of the (PO) holding almost surely. The reason lies in
that Gordon’s lemma involves probability inequalities which
directly establishes asymptotic results in probability. Using a
converse version of the Borel Cantelli Lemma, we show that
it is possible to transfer almost sure convergence results of the
(AO) to that of the (PO), which allows us to obtain a stronger
version for the CGMT.

Theorem 7: Let S be an arbitrary open subset of Sw and
Sc = Sw\S . Denote φ(n)

Sc (g,h) the optimal cost of (11) when
the optimization is constrained over w ∈ Sc. Suppose there
exists constants φ and φSc

such that (i) φ(n)(g,h) → φ al-

most surely, (ii) φ(n)
Sc (g,h) > φSc almost surely, (iii) φ < φSc .

Then, P[w� ∈ S, i.o.] = 1, where w� is a minimizer of (11).

Proof: Let η = φSc −φ
3 > 0. Then, φSc − η = φ + 2η. The

event Gn := {φ(n)(g,h) ≥ φ + η} does not occur infinitely of-
ten, hence,

P
[
φ(n)(g,h) ≥ φ + η, i.o.

] = 0.

Since Gn are independent, each event being generated
by independent vectors g and h, the converse of Borel-
Cantelli Lemma implies that

∑∞
n=1 P(Gn) < ∞. Similarly,

we can prove that Rn := {φ(n)
Sc (g,h) ≤ φSc − η} satisfy∑∞

n=1 P[Rn] < ∞. Let�(n)
Sc (G) be the optimal cost of the PO

problem when the minimization is constrained over w ∈ Sc.
Consider now the event

Kn =
{
�

(n)
Sc (G) ≥ φSc − η, �(G)(n) ≤ φ + η

}
In this event, we have �(n)

Sc (G) ≥ φSc − η = φ + 2η. Hence,

�
(n)
Sc (G) > �(G), which implies that w� ∈ S . As a conse-

quence,

P [w� /∈ S] ≤ P(Kc
n)
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where Kc
n is the complementary event of Kn. From the union

bound,

P
[Kc

n

] ≤ P[Rn] + P[Gn].

Hence,

∞∑
n=1

[Kc
n

]
< ∞,

which proves that Kc
n and thus {w� ∈ S} do not occur in-

finitely often. �
Remark 10: In practice, to satisfy (i) and (ii) in Theorem

6 or Theorem 7, one can prove that φ(n)(g,h) converges to φ,
while φ(n)

Sc (g,h) is lower-bounded by a quantity that converges
to φSc with

φSc > φ. (16)

Moreover, it is often the case that φ and φSc represent optimal
costs of the same asymptotic objective function involving the
same optimization variables, but with the variables of the lat-
ter being constrained to be away of the solution of the former.
Under this setting, showing that their associated optimization
problem possesses a unique solution is sufficient to prove (16).

The main advantage of the CGMT as a technical tool is that
it leads to a unified approach for handling the performance
analysis of solutions to high-dimensional optimization prob-
lems. When the optimization sets follow the assumptions of
Theorem 7, the proof based on the CGMT proceeds in general
into the following steps:
� Identification of the (PO) and its associated (AO)
� Simplification of the (AO): In practice this step involves

reducing the (AO) into a scalar optimization problem.
� Asymptotic analysis of the (AO): This step involves

proving that the (AO) converges to the optimal costs of a
certain asymptotic optimization problem involving only
scalar variables.

� Proof of the uniqueness of the solution to the asymptotic
optimization problem associated with the (AO). This will
allow us to satisfy the requirements (i), (ii) and (iii) in
Theorem 6 and Theorem 7.

However, one major difficulty towards applying the CGMT
in practice is related to the assumptions of compactness that
does not always hold as well as the possible unfeasibility of
the optimization problem. This is for instance the case of the
hard-margin SVM considered in the present work. To over-
come these technical issues, we approximate the original (PO)
by a sequence of “bounded” (PO) problems, each satisfying
the compactness conditions of the CGMT. We associate with
this sequence of (PO) a sequence of (AO) and analyze their
asymptotic behaviors. On each problem of the (PO) sequence,
we apply Theorem 7 to analyze its asymptotic behavior. Based
on this analysis, we develop a principled machinery that al-
lows us to analyze the behavior of the unbounded original
(PO).

B. HARD MARGIN SVM: PROOF OF THEOREM 1
We develop in this section the proof of Theorem 1 establishing
the phase transition in the behavior of the hard-margin SVM.
The proof relies on the CGMT framework and proceeds into
the following steps:

Identification of the PO problem. The max-margin solu-
tion is obtained by solving the following optimization prob-
lem

min
w,b

max
ũi≥0

i=1,...,n

wT w +
n∑

i=1

ũi
(
1 − yiwT (yiμ + σzi ) − yib

)
.

Let ũ = [ũ1, . . . , ũn]T and ji be the vector indexing the obser-
vations belonging to class Ci. Let Z = [−y1z1, . . . ,−ynzn]T .
We need thus to solve the following optimization problem

min
w,b

max
ũ≥0

wT w + 1T ũ − wT μ1T ũ − (jT
1 − jT

0 )ũ b + σ ũT Zw.

Performing the change of variable u = σ
√

pũ leads to the
following primary optimization problem

�(n) � min
w,b

max
u≥0

1√
p

uT Zw + ψ (w,u). (17)

with ψ (w,u) � wT w + 1√
pσ 1T u − 1√

pσ wT μ1T u −
1√
pσ (jT

1 − jT
0 )u b.

Construction of a Sequence of primary optimization
problems satisfying the CGMT constraints.

The CGMT requires the feasibility sets of the optimization
variables to be compact. This constitutes a major technical
difficulty precluding the direct use of the standard CGMT
framework. Obviously, this is not satisfied since the feasibility
set associated with w and u are not compact. To solve this
issue, we write �(n) as:

�(n) = inf
r,B≥0

sup
θ≥0

min
w∈Rp

‖w‖2≤r
|b|≤B

max
u≥0

‖u‖2≤θ

1√
p

uT Zw + ψ (w,u) (18)

and denote by �(n)
r,B,θ the following optimization problems:

�
(n)
r,B,θ = min

w∈Rp

‖w‖2≤r
|b|≤B

max
u≥0

‖u‖2≤θ

1√
p

uT Zw + ψ (w,u) (19)

Moreover, we also denote by �r,B the following optimization
problem:

�
(n)
r,B = sup

θ≥0
min

w∈Rp

‖w‖2≤r
|b|≤B

max
u≥0

‖u‖2≤θ

1√
p

uT Zw + ψ (w,u) (20)

We identified thus a family of primary problems indexed by
(r,B, θ ), each of which admits the desired format and satisfies
the compactness conditions required by the CGMT theorem.
Particularly, we can easily distinguish the the bilinear form

1√
puT Zw and the function ψ (w,u) which is convex in w and

linear thus concave in u.

VOLUME 2, 2021 107



KAMMOUN AND ALOUINI: ON THE PRECISE ERROR ANALYSIS OF SUPPORT VECTOR MACHINES

Identification of the associated sequence of AO prob-
lems.

We associate thus with each one of them the following
auxiliary optimization (AO) problem which can be written as:

φ
(n)
r,B,θ = min

w∈Rp

‖w‖2≤r
|b|≤B

max
u≥0

‖u‖2≤θ

1√
p
‖w‖2gT u

− 1√
p
‖u‖2hT w + ψ (w,u)

Now that we have identified the (AO) problems, we wish to
solve them and infer their asymptotic behavior. To this end, we
proceed in two steps. First, we simplify the (AO) problems by
reducing them to problems that involve only optimization over
a few number of scalars. In doing so, the asymptotic behavior
of the AO problems is much simplified and is carried out in the
second step. We will see later how the study of the asymptotic
behavior of the AO problems sequences allow us to infer the
behavior of the original PO in (18)

Simplification of the AO problems. One major step to-
wards the simplification of the (AO) problems is to reduce
them to problems that involve only few scalar optimization
parameters. Obviously, the objective function of the AO lends
itself to this kind of simplification, vector w appearing only
through its norm or its scalar product wT μ and wT h. In light
of this observation, we decompose w as:

w = α1
μ

‖μ‖2
+ α2w⊥,

where w⊥ is a unit norm vector orthogonal to μ. With these
notations at hand, we write the (AO) as:

φ
(n)
r,B,θ = min

w∈Rp

‖w‖2≤r
|b|≤B

max
u≥0

‖u‖2≤θ

1√
p

√
α2

1 + α2
2gT u

− 1√
p
‖u‖2

(
α1

hT μ

‖μ‖2
+ α2hT w⊥

)
+ α2

1 + α2
2

+ 1√
pσ

1T u − α1‖μ‖2
1√
pσ

1T u

− 1√
pσ

(jT
1 − jT

0 )ub.

We will now prove that optimizing over w reduces to optimiz-
ing over the set of scalars (α1, α2). Note here, that flipping the
min-max is not permitted since the objective function is not
convex in w and concave in u and as a consequence, the use
of the Sion’s min max theorem is not allowed. One however
is tempted to replace w⊥ by sign(α2) h⊥

‖h⊥‖2
, where h⊥ is the

orthogonal projection of h onto the subspace orthogonal to μ,
since this would minimize the objective function for any u.
This property, that the vector w⊥ = sign(α2) h⊥

‖h⊥‖2
minimizes

the objective function for any u allows us, using Lemma 8

proven in the Appendix, to show that φr,B,θ is also given by:

φ
(n)
r,B,θ= min

α1,α2∈R
α2

1+α2
2≤r2

|b|≤B

max
u≥0

‖u‖2≤θ

1√
p

√
α2

1 + α2
2gT u

− 1√
p
‖u‖2

(
α1

hT μ

‖μ‖2
+ |α2|‖h⊥‖2

)
+ α2

1 + α2
2 + 1√

pσ
1T u

− α1‖μ‖2
1√
pσ

1T u − 1√
pσ

(jT
1 − jT

0 )ub.

obtained by replacing w⊥ by sign(α2) h
‖h‖2

. The (AO) prob-
lems are thus simplified in that the minimization over w is
reduced to minimizing over the scalars α1 and α2. In the
sequel, it is convenient to perform the optimization over

q0 =
√
α2

1 + α2
2 and α1. With this notation at hand, φr,B,θ

is simplified in (21) shown at bottom of next page, where
(21a) follows from decomposing the maximization over u into
the maximization over its direction and its magnitude, (21b)
is obtained by applying lemma 11 and (21d) is derived by
performing the change of variable ρ = α1

q0
.

The above simplification of the auxiliary problem follows
through a deterministic analysis that does not involve any
asymptotic approximations. Contrary to the original writing
of the AO, this new simplification is more handy towards
understanding its asymptotic behavior since it involves only
optimizatin over scalar variables. The next step will involve
the study of the asymptotic behavior of the (AO) problems.

Asymptotic Behavior of the (AO) problems (Proof of
Theorem 1). A well-known fact is that the hard-margin SVM
does not always lead to a finite solution, but it is not clear as
to when this happens. In the following, we identify through a
careful analysis of the sequence of AO problems the condition
that guarantees the almost sure feasibility of the hard-margin
SVM. Particularly, we will prove that if the condition in
Theorem 1 holds true, with probability 1, the hard-margin
SVM leads to infinite solution for sufficiently large dimen-
sions n and p. The key idea of the proof relies on showing
that the cost of the sequence of AO problems increase at least
linearly with θ , that is:

φ
(n)
r,B,θ ≥ unθ, (22)

where un is a certain sequence independent of the parameters
r,B and θ . We can easily see that if (22) holds, then tending θ
to infinity the cost of the sequence of AO problems will grow
to infinity when θ grows to infinity. We will prove later how
this property translates into the infeasibility of the original
PO problem. Before tackling the proof, we shall provide the
intuition behind the linear increase of the AO cost with θ .
Recall that in this step, we place ourselves in the scenario
wherein the SVM is not feasible, and as such its cost is in-
finite. Due to the difficulty of handling unbounded results, we
approximate the dual problem associated with the SVM by a
sequence of bounded PO problems, in which the optimization
variables and the Lagrangian coefficients are optimized over
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an increasing sequence of balls. The constraints of the SVM
problem could not be satisfied for all w in Rn and thus for
all w constrained on the optimization set of each PO bounded
problem. This results in an increase of the cost of each PO
(and hence of the AO) with θ , the radius of the θ -balls on
which are constrained the lagrangian vector u.

To begin with, we define for fixed q0 ∈ R + , ρ ∈ [−1, 1]
and η ∈ R function D̂H (q0, ρ, η) in (23), shown at bottom of
this page. We can thus lower-bound φ(n)

r,B,θ as:

φ
(n)
r,B,θ≥ min

0≤q0≤r
−1≤ρ≤1
η∈R

q2
0 + θq0

(
D̂H (q0, ρ, η)

)
+ . (24)

where (a) + = max(a, 0). Function hn : q0 �→ D̂H (q0, ρ, η)
is decreasing in q0. We may thus find a lower-bound for it by
taking its limit as q0 → ∞. However this would not be help-
ful, since after replacing this function by this lower-bound,
and optimizing over q0, we find that φ̃r,B,θ ≥ 0, a fact that
does not carry a lot of information. To solve this problem,
we need to consider the cases when q0 is in the vicinity of
zero, and when q0 is sufficiently far away from zero. When
q0 is very close to zero, in a sense that will be defined, we
may expect hn(q0) ≥ C

q0
, and hence q0hn(q0) ≥ C. This will

allow us to prove the sought-for scaling behaviour with re-
spect to θ of φr,B,θ when q0 is in the vicinity of zero. One can
easily see that if 0 ≤ q0 ≤ qU � 1

2σ max1≤i≤n |gi|+2‖μ‖2
, then

φ
(n)
r,B,θ= min

0≤q0≤r
|α1|≤q0|b|≤B

max
u≥0

‖u‖2≤θ

1√
p

q0gT u − 1√
p
‖u‖2

(
α1

hT μ

‖μ‖2
+
√

q2
0 − α2

1‖h⊥‖2

)
+ α2

1 + α2
2 + 1√

pσ
1T u − α1‖μ‖2

1√
pσ

1T u

− 1√
pσ

(jT
1 − jT

0 )ub, (21a)

= min
q0≤r

|α1|≤q0|b|≤B

max
θ≥m≥0

max
‖u‖2=m

uT
(

q0g + 1√
pσ

1 − α1‖u‖2
1√
pσ

1 − 1√
pσ

(j1 − j0)b

)
+ q2

0

− m

(
1√
p
α1

hT μ

‖μ‖2
+
√

q2
0 − α2

1
1√
p
‖h⊥‖2

)
(21b)

= min
0≤q0≤r
|α1|≤q0|b|≤B

max
θ≥m≥0

q2
0 + m

√√√√1

p

∑
i∈C1

(
q0gi + 1 − α1‖μ‖2 − b

σ

)2

+
+ 1

p

∑
i∈C0

(
q0gi + 1 − α1‖μ‖2 + b

σ

)2

+

− m

(
1√
p
α1

hT μ

‖μ‖2
+
√

q2
0 − α2

1
1√
p
‖h⊥‖2

)
(21c)

= min
0≤q0≤r
−1≤ρ≤1

|b|≤B

q2
0 + θq0

⎛⎝√√√√1

p

∑
i∈C1

(
gi + 1

q0σ
− ρ‖μ‖2

σ
− b

q0σ

)2

+
+ 1

p

∑
i∈C0

(
gi + 1

q0σ
− ρ

‖μ‖2

σ
+ b

σq0

)2

+

−
(

1√
p
ρ

hT μ

‖μ‖2
+
√

1 − ρ2 1√
p
‖h⊥‖2

))
+

(21d)

= min
0≤q0≤r
|α1|≤q0|b|≤B

q2
0 + θq0

(
D̂H (q0, ρ,

b

σq0
)

)
+

(21e)

D̂H : (q0, ρ, η) �→
√√√√1

p

∑
i∈C1

(
gi + 1

q0σ
− ρ‖μ‖2

σ
− η

)2

+
+ 1

p

∑
i∈C0

(
gi + 1

q0σ
− ρ

‖μ‖2

σ
+ η

)2

+

−
(

1√
p
ρ

∣∣hT μ
∣∣

‖μ‖2
+
√

1 − ρ2 1√
p
‖h⊥‖2

)
(23)
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gi + 1
q0σ

− ρ‖μ2‖
σ

≥ 1
2q0σ

, thereby implying that:

min
0≤q0≤qU
η∈R
|ρ|≤1

θq0
(
D̂H (q0, ρ, η)

)
(25)

≥ min
0≤q0≤qU
η∈R
|ρ|≤1

θq0

⎛⎝√n1

p

(
1

2q0σ
− η

)
+

+ n0

p

(
1

2q0σ
+ η

)2

+

(26)

− 1√
p

|hT μ|
‖μ‖2

− 1√
p
‖h⊥‖2

)
+

(a)≥ θ
1

σ

√
n1n0

np
− θqU

(
1√
p

|hT μ|
‖μ‖2

+ 1√
p
‖h⊥‖

)
. (27)

where (a) follows from performing the optimization over η ∈
R. Since qU ≤ 1

2σ | max1≤i≤n gi|+2‖μ‖2
, and |max1≤i≤n gi√

2 log n
| a.s.−→ 1,

qU converges to 0 almost surely. Hence, with probability 1 as

n and p are sufficiently large, qU ≤ 1
2σ

√
n1n0
np . We have thus

proved that with probability 1, for large n and p,

min
0≤q0≤qU
η∈R
|ρ|≤1

θq0
(
D̂H (q0, ρ, η)

)≥ θ
1

2σ

√
n1n0

np
. (28)

We will now consider the optimization of φ(n)
r,B,θ when qU ≤

q0 ≤ r.2 Using the fact that function hn is decreasing in q0,
we obtain:

min
qU ≤q0≤r

|ρ|≤1
η∈R

θq0
(
D̂H (q0, ρ, η)

)
+ ≥ min

qU ≤q0≤r
|ρ|≤1
η∈R

θq0 (�n(ρ, η)) +

(29)

where �n : [−1, 1] × R with

�n(ρ, η) =√√√√1

p

∑
i∈C1

(
gi − ρ‖μ‖

σ
− η

)2

+
+ 1

p

∑
i∈C0

(
gi − ρ‖μ‖

σ
+ η

)2

+

− 1√
p

hT μ

‖μ‖ −
√

1 − ρ2

p
‖h⊥‖. (30)

It is easy to see that �n is jointly convex function in its argu-
ments (ρ, η) and converges almost surely to

� : (ρ, η) �→√
δπ1E

(
G − ρμ

σ
− η
)2

+
+ δπ0E

(
G − ρμ

σ
+ η
)2

+

−
√

1 − ρ2

2Without loss of generality, we assume that r ≥ qU .

where G ∼ N (0, 1). Since limη→∞ �(ρ, η) = ∞, using
Lemma 11 and Lemma 10 in [10], we obtain:

min
η∈R

�n(ρ, η)
a.s.−→ min

η∈R
�(ρ, η) .

Moreover, for ρ ∈ [−1, 1], expressing the first order condi-
tions with respect to η, the optimum η	(ρ) is the solution to
the following equation:

η =
π1√
2π

∫∞
ρμ
σ +η(x − ρμ

σ
)Dx + π0√

2π

∫∞
ρμ
σ −η( ρμ

σ
− x)Dx

π1√
2π

∫∞
ρμ
σ +η Dx + π0√

2π

∫∞
ρμ
σ −η Dx

(31)
where Dx = e−x2/2dx. It is easy to see that the solution of (31)
is unique. This is because function

η : �→ η

(
π1

∫ ∞
ρμ
σ +η

Dx + π0

∫ ∞
ρμ
σ −η

Dx

)

− π1

∫ ∞
ρμ
σ +η

(x − ρμ

σ
)Dx − π0

∫ ∞
ρμ
σ −η

(ρμ
σ

− x
)

Dx

(32)

is decreasing with limits ∞ and −∞ when η → −∞ and
η → ∞ respectively. Using Lemma 10 in the Appendix,
Function ρ �→ minη∈R �n(η, ρ) is convex in ρ. Since the con-
vergence of convex functions is uniform over compacts, from
Theorem 2.1 in [24], we have:

min
η∈R

−1≤ρ≤1

�n(ρ, η)
a.s.−→ min

η∈R
−1≤ρ≤1

�(ρ, η) . (33)

If Condition (5) is satisfied, � � min η∈R
−1≤ρ≤1

�(ρ, η) > 0,

which implies that for all ε > 0, and sufficiently large n and p
we have with probability 1,

min
qU ≤q0≤r

|ρ|≤1

θq0D̂H (q0, ρ, η) ≥ θqU
(
�− ε

)
. (34)

Taking ε = �
2 and combining (27) and (34) leads to:

min
qU ≤q0≤r

|ρ|≤1

θq0D̂H (q0, ρ, η) ≥ θqU
�

2
(35)

almost surely for enough large n and p. Combining (28) and
(35), yields

φ
(n)
r,B,θ ≥ θ min

(
1

2σ

√
n1n0

np
, qU

�

2

)
As qU converges almost surely to zero, for sufficiently large

n and p, min( 1
2σ

√
n1n0
np , qU

�
2 ) = qU

�
2 . Hence for sufficiently

large n and p, we obtain

φ
(n)
r,B,θ ≥ θqU

�

2
(36)

which establishes (22). With the above inequality (36) at hand,
we are now ready to establish Theorem 1. First, we shall bring
to the reader’s attention that the order of magnitude of n and p
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above which (35) holds is independent of r,B and θ . It entails
from this that the set:

E �
{

∪∞
k=1 ∩∞

m=1

{
φ

(n)
k,k,m ≥ mqU

�

2

}
for n and p sufficiently large

}
(37)

verifies P[E] = 1. Let us now consider the optimal value�(n)

of the primary optimization problem and illustrate how the
characterization of the auxiliary problem allows to ensure
that under the setting of Theorem 1, � = ∞ for n and p
sufficiently large. One way to prove this is to show that for all
x > 0, P[�(n) ≤ x, for n, p sufficiently large] = 0. From
(18), if �(n) �= ∞, for ε > 0 sufficiently small, there exists
k ∈ N such that �(n) ≥ �

(n)
k,k − ε. Hence,

P
[{
�(n) ≤ x

}] ≤ P
[
∪∞

k=1

{
�

(n)
k,k ≤ x + ε

}]
≤ P

[
∪∞

k=1

{
∩∞

m=1

{
�

(n)
k,k,m ≤ x + ε

}}]
,

For m ∈ N	, the events Ek = {∩∞
m=1{�(n)

k,k,m ≤ (x + ε)}}
forms an increasing sequence of events, thus:

P
[∪∞

k=1Ek
] = lim

k→∞
P [Ek] .

Similarly, as �(n)
k,k,m ≥ �

(n)
k,k,m−1, for k ∈ N	, the sequence of

events, Ek,m = {�(n)
k,k,m ≤ x} is decreasing, thus:

P
[∩∞

m=1Ek,m
] = lim

m→∞ P
[Ek,m

]
We thus obtain:

P
[
�(n) ≤ x

] ≤ lim
k→∞

lim
m→∞ P

[{
�

(n)
k,k,m ≤ x + ε

}]
From the CGMT theorem, we have:

P
[
�

(n)
k,k,m ≤ x + ε

]
≤ 2P

[
φ

(n)
k,k,m ≤ x + ε

]
.

Hence,

lim
k→∞

lim
m→∞ P

[
�

(n)
k,k,m ≤ x + ε

]
≤ lim

k→∞
lim

m→∞ 2P

×
[
φ

(n)
k,k,m ≤ x + ε

]
(38)

= 2P
[
∪∞

k=1

{
∩∞

m=1{φ(n)
k,k,m ≤ x + ε}

}]
(39)

Using the fact that P[E] = 1 with E given by (37), the event
An = {∪∞

k=1{∩∞
m=1{φ(n)

k,k,m ≤ x + ε}}} does not occur infinitely
often, or in other words P[An, i.o] = 0. Since (An) are inde-
pendent, each event being generated by independent vectors

g and h in Rn×1 and Rp×1, the converse of Borel-Cantelli
lemma implies that

∑∞
n=1 P(An) < ∞. Therefore,

∞∑
n=1

P
[
�(n) ≤ x

]
< ∞ .

Using Borel-Cantelli Lemma, we deduce that for any x,

P
[
�(n) ≤ x, i.o

] = 0 .

This implies that {�(n) = ∞} occurs infinitely often.

C. ASYMPTOTIC BEHAVIOR OF THE (AO) PROBLEMS
(PROOF OF THEOREM 2)
Proof of the uniqueness of q	0,H , the zero of function β

and the minimizers of DH (q	0,H , ρ
	
H , η

	
H ). To begin with, we

check first that function β has a unique zero q	0,H . Towards
this end, note that the η	(ρ, q0) minimizing DH (q0, ρ, η) for
fixed q0 and ρ should be solution to (40) shown at bottom of
this page, in η. Such an equation admits a unique solution
because function

η �→ η

[
π1

∫ ∞
ρμ
σ − 1

q0
+η

Dx + π0

∫ ∞
ρμ
σ − 1

q0
−η

Dx

]

−
[
π1

∫ ∞
ρμ
σ − 1

q0
+η

(
x − ρμ

σ
+ 1

q0

)
Dx

−π0

∫ ∞
ρμ
σ − 1

q0σ
−η

(
x − ρμ

σ
+ 1

q0σ

)
Dx

]
is an increasing function with limits −∞ and ∞ when η →
−∞ and η → ∞. Moreover, (ρ, q0) �→ η	(ρ, q0) is a con-
tinuous function. From the Maximum Theorem [25, Theo-
rem 9.17], function q0 �→ min−1≤ρ≤1 DH (q0, ρ, η

	(ρ, q0)) is
continuous. It tends to ∞ as q0 → 0 + and to

min
−1≤ρ≤1

(
δπ1E

[((
G − ρμ

σ
− η	(ρ)

)
+

)2
]

+δπ0E

[((
G − ρμ

σ
+ η	(ρ)

)
+

)2
]) 1

2

−
√

1 − ρ2 < 0

(41)

when q tends to ∞. There exists thus q	0,H such
that min−1≤ρ≤1

η∈R
DH (q	0,H , ρ, η) = 0. We will prove

that necessarily such a q	0,H is unique. Assume that
there exists two solutions q	01 and q	02 such that
min−1≤ρ≤1

η∈R
DH (q	01, ρ, η) = min−1≤ρ≤1

η∈R
DH (q	02, ρ, η) = 0.

Let (ρ	1, ρ	2) and (η	1(ρ	1, q	01), η	2(ρ2, q	02)) such that

η =
π1E

[
(G − ρμ

σ
+ 1

q0
)1{G≥ ρμ

σ − 1
q0

+η}

]
− π0E

[
(G − ρμ

σ
+ 1

q0
)1{G≥ ρμ

σ − 1
q0

−η}

]
π1P

[
G ≥ ρμ

σ
− 1

q0
+ η
]

+ π0P
[
G ≥ ρμ

σ
− 1

q0
− η
] (40)
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min−1≤ρ≤1
η∈R

DH (q	01, ρ, η) = DH (q	01, ρ
	
1, η

	
1(ρ	1, q	01)) and

min−1≤ρ≤1
η∈R

DH (q	02, ρ, η) = DH (q	02, ρ
	
2, η

	
2(ρ	2, q	02)).

Hence,

0 = DH (q	02, ρ
	
2, η

	(q	02, ρ
	
2 ))

= DH (q	01, ρ
	
1, η

	(q	01, ρ
	
1 )) (42)

≤ DH (q	01, ρ
	
2, η

	(q	02, ρ
	
2 )) (43)

Since for any η ∈ R and ρ ∈ [−1, 1], q �→ DH (q, ρ, η) is
decreasing, q	01 ≥ q	02. The same reasoning leads also to q	01 ≤
q	02. Hence q	01 = q	02. We will prove now that there exists
unique ρ	H and η	(ρ	H , q	0,H ) such that:

min
−1≤ρ≤1
η∈R

DH (q	0,H , ρ, η) = DH (q	0,H , η
	(ρ	H , q	0,H )) = 0.

Function

ϕ : (ρ, η) �→
⎛⎝δπ1E

⎡⎣((G − ρμ

σ
+ 1

ρq	0,H
− η

)
+

)2
⎤⎦

+δπ0E

⎡⎣((G − ρμ

σ
+ 1

ρq	0,H
+ η

)
+

)2
⎤⎦⎞⎠

1
2

,

(44)

is jointly convex in its arguments. Hence, ρ �→
minη∈R ϕ(ρ, η) is convex in [−1, 1]. As ρ �→ −

√
1 − ρ2 is

strictly convex in [−1, 1], then ρ �→ minη∈R DH (q	0,H , ρ, η)
is strictly convex in [−1, 1]. Assume that there exists ρ	H and
ρ̃	 in [−1, 1] such that:

min
η∈R

DH (q	0,H , ρ
	
H , η) = min

η∈R
DH (q	0,H , ρ̃

	, η) (45)

= min
−1≤ρ≤1
η∈R

DH (q	0,H , ρ, η) = 0. (46)

Let λ ∈ (0, 1). Assume ρ	H �= ρ̃	. Then

min
η∈R

DH (q	0,H , λρ
	
H + (1 − λ)ρ̃	, η) (47)

< λmin
η∈R

DH (q	0,H , ρ
	
H , η)+(1−λ) min

η∈R
DH (q	0,H , ρ̃

	, η)=0

(48)

We obtain thus a contradiction, since 0 =
min η∈R

ρ∈[−1,1]
DH (q	0,H , ρ, η). Hence the uniqueness of the

minimizer ρ	H . Combining all the above results shows the
uniqueness of q	0,H , η

	 and ρ	H . The uniqueness of q	0,H and
that of the minimizers of function (ρ, η) �→ DH (q	0,H , ρ, η)
will allow us to satisfy the requirements (i), (ii) and (iii) of
Theorem 7 when applied to elements of the sequence of (PO)
problems. This will be made more clear in the sequel.

Proof of feasibility of the (PO) problem. To begin with,
we prove that if δ < δ	, then, for there exists a positive con-
stant C such that:

P
[
�(n) > C, i.o

] = 0. (49)

For that, it suffices to check that for k0 sufficiently large and
for any small 1 > ε > 0,

P
[
∪∞

m=1

{
φ

(n)
k0,k0,m

≥ C + 1 − ε
}
, i.o.

]
= 0. (50)

Indeed, assume that (50) is satisfied and let us prove that it
implies 49. As �(n) ≤ �

(n)
k0,k0

,

P
[
�(n) > C

] ≤ P
[
�

(n)
k0,k0

> C
]

Recall the fact that �(n)
k0,k0

= limm→∞�
(n)
k0,k0,m

. Then, if

�
(n)
k0,k0

�= ∞, then for any ε > 0, there exists m0 sufficiently

large such that for any m ≥ m0, �(n) ≤ �
(n)
k0,k0,m

+ ε. In case

�
(n)
k0,k0

= ∞, then necessarily �(n)
k0,k0,m

≥ C + 1 − ε for suffi-
ciently large m. So in both cases, �k0,k0 = ∞ or �k0,k0 �= ∞,
it holds true that

�(n) > C ⇒ �
(n)
k0,k0,m

≥ C + 1 − ε for m sufficiently large

Hence,

P
[
�(n) > C

] ≤ P
[
∪∞

m=1

{
�

(n)
k0,k0,m

≥ C + 1 − ε
}]

(51)

= lim
m→∞ P

[{
�

(n)
k0,k0,m

≥ C + 1 − ε
}]

(52)

≤ lim
m→∞ 2P

[{
φ

(n)
k0,k0,m

≥ C + 1 − ε
}]

(53)

= 2P
[
∪∞

m=1

{
φ

(n)
k0,k0,m

≥ C + 1 − ε
}]
(54)

In a similar way as previously, based on the converse of Borel-
Cantelli lemma, we deduce that

∑∞
n=1 P[∪∞

m=1{φ(n)
k0,k0,m

≥
C + 1 − ε}] < ∞ and hence

∑∞
n=1 P[�(n) > C] < ∞, which

implies (49).
Proof of (50) To show the boundedness of the optimal PO

cost, it suffices thus to establish (50). Towards this end, let Q
be such that:

min
η∈R

ρ∈[−1,1]

DH (Q, ρ, η) < 0.

Note that such a Q exists since as already shown in (41),
limq→∞ min η∈R

ρ∈[−1,1]
DH (q, ρ, η) < 0. Let ρ	(Q) and η	(Q)

be such that DH (Q, ρ	(Q), η	(Q)) = min η∈R
ρ∈[−1,1]

DH (q, ρ, η).

Function Q �→ D̂H (Q, ρ	(Q), η	(Q)) converges point-wise to
DH (Q, ρ	(Q), η	(Q)) < 0. Hence,

D̂H (Q, ρ	(Q), η	(Q))
a.s.−→ DH (Q, ρ	(Q), η	(Q)) < 0.

For n and p sufficiently large, we thus have:

D̂H (Q, ρ	(Q), η	(Q)) < 0. (55)
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Now, take integer k greater than max(�Q�, η	(Q)Qσ ). Recall-
ing that:

φ
(n)
k,k,m = min

0≤q≤k
|ρ|≤1
|b|≤k

q2 + m.q

(
D̂H

(
q, ρ,

b

qσ

))
+

(56)

≤ Q2 + m.Q(D̂H (Q, ρ	(Q), η	(Q))) + (57)

From (55), we thus have for n and p sufficiently large,
φ

(n)
k,k,m ≤ Q2, thereby establishing (50).
From the convergence of the AOs cost back to the con-

vergence of the PO cost. To prove theorem 2, it suffices to es-
tablish the following convergences for any ε > 0 sufficiently
small and some integer k0 sufficiently large:

P
[
∪∞

k=k0
lim

m→∞φk,k,m ≤ (q	0,H )2 − ε, i.o.
]

= 0, (58)

P
[

lim
m→∞φk,k,m ≥ (q	0,H )2 + ε, i.o.

]
= 0, ∀k ≥ k0. (59)

Indeed, assume that (58) and (59) hold true, and let us prove
that they translate into

P
[
�(n) ≤ (q	0,H )2 − ε, i.o.

] = 0 (60)

P
[
�(n) ≥ (q	0,H )2 + ε, i.o.

] = 0 (61)

the combination of both of which leads to limn→∞�(n) →
(q	0,H )2 almost surely.

Proof of (60). For ε > 0 sufficiently small, there exists

k ∈ N such that �(n) ≥ �
(n)
k,k − ε

2 . Hence,

P
[
�(n) ≤ (q	0,H )2 − ε

] ≤ P
[
∪∞

k=1

{
�

(n)
k,k ≤ (q	0,H )2 − ε

2

}]
≤ P

[
∪∞

k=1 ∩∞
m=1

{
�

(n)
k,k,m ≤ (q	0,H )2 − ε

2

}]
(a)= lim

k→∞
lim

m→∞ P
[{
�

(n)
k,k,m ≤ (q	0,H )2 − ε

2

}]
where (a) follows from the fact that the sequence of events
{∩∞

m=1{�(n)
k,k,m ≤ (q	0,H )2 − ε

2 }}k∈N	 forms an increasing se-

quence of events, while {�(n)
k,k,m ≤ (q	0,H )2 − ε

2 }m∈N	 forms a
decreasing sequence of events. Using the CGMT Theorem,
we have:

P
[{
�

(n)
k,k,m ≤ (q	0,H )2− ε

2

}]
≤ 2P

[{
φ

(n)
k,k,m ≤ (q	0,H )2− ε

2

}]
Hence

lim
k→∞

lim
m→∞ P

[{
�

(n)
k,k,m ≤ (q	0,H )2 − ε

2

}]
≤ lim

k→∞
lim

m→∞ 2P
[{
φ

(n)
k,k,m ≤ (q	0,H )2 − ε

2

}]
= 2P

[
∪∞

k=1 ∩∞
m=1

{
φ

(n)
k,k,m ≤ (q	0,H )2 − ε

2

}]
Let k0 be an integer chosen such that k0 > q	0,H . Hence,

P
[
∪∞

k=1 ∩∞
m=1

{
φ

(n)
k,k,m ≤ (q	0,H )2 − ε

2

}]
≤ P

[
∪∞

k=k0
∩∞

m=1

{
φ

(n)
k,k,m ≤ (q	0,H )2 − ε

2

}]

= P
[
∪∞

k=k0
∀m, φ(n)

k,k,m ≤ (q	0,H )2 − ε

2

]
≤ P

[
∪∞

k=k0
lim

m→∞φ
(n)
k,k,m ≤ (q	0,H )2 − ε

2

]
Letting B(AO)

n � ∪∞
k=k0

{limm→∞ φ
(n)
k,k,m ≤ (q	0,H )2 − ε

2 }, it fol-

lows from (58) that P[B(AO)
n , i.o.] = 0. Since (B(AO)

n ) are in-
dependent, from the converse of Borel-Cantelli Lemma, we
have:

∞∑
n=1

P(B(AO
n ) < ∞.

From the inequalities above, and leveraging this fact, we ob-
tain:

∞∑
n=1

P
[
�(n) ≤ (q	0,H )2 − ε

2

]
< ∞

which from the Borel Cantelli Lemma implies (60).
Proof of (61). Using the fact that for all k ∈ N, �(n) ≤

�
(n)
k,k , we bound P[�(n) ≥ (q	0,H )2 + ε] as:

P
[
�(n) ≥ (q	0,H )2 + ε

]
≤ P

[
∩∞

k=1

{
�

(n)
k,k ≥ (q	0,H )2 + ε

}]
We already proved the boundedness of the PO cost in (49),
which implies that almost surely �(n)

k,k �= ∞ for sufficiently
large k ≥ k0. Hence, for k ≥ k0, there exists m such that:

�
(n)
k,k ≤ �

(n)
k,k,m − ε

2
.

Hence,

P
[
�(n) ≥ (q	0,H )2 + ε

] ≤ P
[
∪∞

m=1

{
�

(n)
k,k ≥ (q	0,H )2 + ε

}]
= lim

m→∞ P
[{
�

(n)
k,k,m ≥ (q	0,H )2 + ε

2

}]
Using the CGMT theorem, we have:

lim
m→∞ P

[{
�

(n)
k,k,m ≥ (q	0,H )2 + ε

2

}]
≤ 2 lim

m→∞ P
[{
φ

(n)
k,k,m ≥ (q	0,H )2 + ε

2

}]
= 2P

[
∪∞

m=1

{
φ

(n)
k,k,m ≥ (q	0,H )2 + ε

2

}]
Choose k > q	0,H . Hence,

P
[
∪∞

m=1

{
φ

(n)
k,k,m ≥ (q	0,H )2 + ε

}]
≤ P

[
∪∞

m=1

{
φ

(n)
k,k,m ≥ (q	0,H )2 + ε

}]
≤ P

[
lim

m→∞φk,k,m ≥ (q	0,H )2 + ε

2

]
With this at hand, we can in a similar way as before invoke
the Converse of Borel-Cantelli Lemma to prove that {�(n) ≥
(q	0,H )2 + ε

2 } does not occur infinitely often. So far, we have
thus proven that establishing (58) and (59) leads to proving
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that �(n) → (q	0,H )2 almost surely. We will now proceed to
the proof of (58) and (59).

Proof of (58). From (24) and the discussion following it,
we have for sufficiently large k:

lim
m→∞φk,k,m = min

0≤q0≤k
D̂H (q0,ρ,η)≤0

−1≤ρ≤1
η∈R

q2
0

Hence,

P
[

lim
m→∞φk,k,m ≤ (q	0,H )2 − ε

]
≤ P[ min

0≤q0≤k
D̂H (q0,ρ,η)≤0

−1≤ρ≤1
η∈R

q2
0 ≤ (q	0,H )2 − ε]

≤ P

⎡⎢⎢⎢⎢⎣ min
0≤q0≤k

min−1≤ρ≤1
η∈R

D̂H (q0,ρ,η)≤0

q2
0 ≤ (q	0,H )2 − ε

⎤⎥⎥⎥⎥⎦
Function η �→ D̂H (q0, ρ, η) is convex in η and conveges
pointwise to DH (q0, ρ, η). Since limη→∞ DH (q0, ρ, η) = ∞
and limη→−∞ DH (q0, ρ, η) = ∞, from Lemma 10 in [10], we
have:

min
η∈R

D̂H (q0, ρ, η)
a.s.−→ min

η∈R
DH (q0, ρ, η) (62)

Function ρ �→ minη∈R D̂H (q0, ρ, η) defined on [−1, 1] is
convex in ρ, and converges pointwise from (62) to ρ �→
minη∈R DH (q0, ρ, η). As the pointwise convergence of con-
vex functions implies uniform convergence over compact sets,
we have for any q0 ∈ (0, k]:

min
−1≤ρ≤1
η∈R

D̂H (q0, ρ, η)
a.s.−→ min

−1≤ρ≤1
η∈R

DH (q0, ρ, η) = β(q0)

Define function β̂ as β̂ : q0 �→ min−1≤ρ≤1
η∈R

D̂H (q0, ρ, η). We

shall prove that

β̂(q0) ≥ 0 for all q ∈ (0,
q	0,H

2
]. (63)

To see this, we argue that β(
q	0,H

2 ) > 0, hence, β̂(
q	0,H

2 ) ≥ 0
almost surely. As β̂ is decreasing we conclude that β̂(q0) ≥ 0

for all q0 ∈ (0,
q	0,H

2 ]. In view of this and choosing integer k0

greater than 2q	0,H , we obtain

P
[

lim
m→∞φk0,k0,m ≤ (q	0,H )2 − ε

]

≤ P

⎡⎢⎢⎢⎣ min
q	0,H

2 ≤q0≤k0

β̂(q0 )≤0

q2
0 ≤ (q	0,H )2 − ε

⎤⎥⎥⎥⎦

Function q0 �→ β̂(q0) is convex and converges pointwise to
q0 �→ β(q0) for all q0 > 0. Hence, it converges uniformly

over the set [
q	0,H

2 , k0]. As a result, for all δ̃ sufficiently small,
we can choose n, and p sufficiently large such that for all

q0 ∈ [
q	0,H

2 , k0]

β(q0) − δ̃ ≤ β̂(q0) ≤ β(q0) + δ̃

We thus have:

P
[

lim
m→∞φk0,k0,m ≤ (q	0,H )2 − ε

]
≤ P[ min

q	0,H
2 ≤q0≤k0

β(q0 )≤δ̃

q2
0 ≤ (q	0,H )2 − ε]

Before going further, it is noteworthy to mention that the
right-hand side event is casted in the form of a determinstic
statement that does not involve any random variables. It suf-
fices thus to check that for δ̃ sufficiently small, this statement
is false. This can be easily checked using Lemma 9 which
enables to show that there exists δ0 such that for all δ̃ ≤ δ0,

min
q	0,H

2 ≤q0≤k0

β(q0 )≤δ̃

q2
0 ≥ min

q	0,H
2 ≤q0≤k0
β(q0 )≤0

q2
0 − ε

2

Since q0 �→ β(q0) is decreasing, (q	0,H )2 = min q	0,H
2 ≤q0≤k0
β(q0 )≤0

q2
0

which directly implies that:

P
[

lim
m→∞φk0,k0,m ≤ (q	0,H )2 − ε, i.o.

]
= 0.

Finally, to finish the proof of (58), we need to show that:

lim
m→∞φk,k,m = lim

m→∞φk0,k0,m (64)

where k0 is some integer sufficiently large. For that, we shall
recall that for k0 sufficiently large, and for all k ≥ k0

lim
m→∞φk,k,m = min

0≤q0≤k
D̂H (q0,ρ,η)≤0

−1≤ρ≤1
η∈R

q2
0 (65)

It is clear that limm→∞ φk,k,m ≤ limm→∞ φk0,k0,m. To prove
(64), assume that limm→∞ φk,k,m < limm→∞ φk0,k0,m. Let
q0,1 and q0,2 be positive scalars such that limm→∞ φk,k,m =
q2

0,1 and limm→∞ φk0,k0,m = q2
0,2. Then,

q0,1 < q0,2. (66)

As q0,2 ≤ k0, q0,1 ≤ k0. From (65), we obtain q2
0,1 ≥

limm→∞ φk0,k0,m = q2
0,2, and hence q0,1 ≥ q0,2 which contra-

dicts (66).
Proof of (59). We will now proceed to the proof of (59)

for sufficiently large k. To begin with, we recall that:

φk,k,m = min
0≤q0≤k
−k≤b≤k
−1≤ρ≤1

q2
0 + q0mD̂H

(
q0, ρ,

b

q0σ

)
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Let k be greater than 2 max(q	0,H , η
	
H q	0,Hσ ). Then, we can

bound φk,k,m as:

φk,k,m ≤ min
q	0,H

2 ≤q0≤k

q2
0 + mq0D̂H (q0, ρ

	
H , η

	
H ) (67)

≤ min
q	0,H

2 ≤q0≤k
D̂H (q0, η

	
H )≤0

q2
0 + mq0D̂H (q0, ρ

	
H , η

	
H ) (68)

≤ min
q	0,H

2 ≤q0≤k
D̂H (q0, η

	
H )≤0

q2
0 (69)

As a result,

lim
m→∞φk,k,m ≤ min

q	0,H
2 ≤q0≤k

D̂H (q0,ρ
	
H ,η

	
H )≤0

q2
0

Function q0 �→ D̂H (q0, ρ
	
H , η

	
H ) is convex in q0 and con-

verges pointwise to q0 �→ DH (q0, ρ
	
H , η

	
H ). As the conver-

gence of convex functions is uniform over compact sets, it
thus converges uniformly to q0 �→ DH (q0, ρ

	
H , η

	
H ) over the

set {q0 | q	0,H
2 ≤ q0 ≤ k}. Hence, for all δ̃ sufficiently small,

and for all n and p sufficiently large,

D̂H (q0, ρ
	
H , η

	
H ) ≤ DH (q0, ρ

	
H , η

	
H ) + δ̃

Hence,{
q0 | DH (q0, ρ

	
H , η

	
H ) ≤ −δ̃} ⊂ {q0 | D̂H (q0, ρ

	
H , η

	
H ) ≤ 0

}
and thus:

lim
m→∞φk,k,m ≤ min

q	0,H
2 ≤q0≤k

DH (q0,
η	H

q	0,H σ
)≤−δ̃

q2
0 (70)

Applying Lemma 9, we can see that:

min
q	0,H

2 ≤q0≤k

DH (q0,
η	H

q	0,H σ
)≤0

q2
0 = inf

δ̃≥0
min

q	0,H
2 ≤q0≤k

DH (q0,ρ
	,

η	H
q	0,H σ

)≤−δ̃

q2
0

Invoking the ε-definition of the infimum, we thus have for δ̃ >
0,

min
q	0,H

2 ≤q0≤k

DH (q0,
η	H

q	0,H σ
)≤−δ̃

q2
0 ≤ min

q	0,H
2 ≤q0≤k

DH (q0,ρ
	,

η	H
q	0,H σ

)≤0

q2
0 + ε

2
≤ (q	0,H )2 + ε

2

and thus from (70)

lim
m→∞φk,k,m ≤ (q	0,H )2 + ε

2
,

which proves (59).
Concluding. It follows from (60) and (61) that when

δ ≤ δ	,

�(n) a.s.−→ (q	0,H )2.

Recalling that �(n) = ‖ŵH‖2, this shows that ‖ŵH‖2 a.s.−→
(q	0,H )2. To prove that

ŵT
H μ

‖ŵH ‖2‖μ‖2
converges to ρ	H , we consider

the following set:

Sζ =
{

w ∈ Rp |
∣∣∣∣ wT μ

‖ŵ‖2‖μ‖2
− ρ	H

∣∣∣∣ ≤ ζ

}
and define the perturbed version of the PO obtained from (17)
by constraining w to be outside the set Sζ :

�̃(n) = min
w,b

w/∈Sζ
max
u≥0

1√
p

uT Zw + ψ (w,u)

We consider proving that there exists ν̃ such that

P
[
�̃(n) ≤ (q	0,H )2 + ν̃, i.o

] = 0 (71)

which implies that w ∈ Sζ almost surely. For that, we invoke
the max-min inequality and lower-bound �̃(n) by 3:

�̃(n) ≥ inf
r,B≥0

sup
θ≥0

�̃
(n)
r,B,θ

with

�̃
(n)
r,B,θ := min

w∈Rp

w/∈Sζ
‖w‖2≤r
|b|≤B

max
u≥0

‖u‖2≤θ

1√
p

uT Zw + ψ (w,u)

In the event {�̃ ≤ (q	0,H )2 + ν̃}, �̃ �= ∞. Hence, there exists

k chosen sufficiently large as needed such that:

�̃ ≥ �̃k,k,m − ε, ∀ k ≥ k and m ∈ N

Hence,

P
[
�̃(n) < (q	0,H )2 + ν̃

]
≤ P

[
∪∞

k=1 ∩∞
m=1

{
�̃

(n)
k,k,m < (q	0,H )2 + ν̃

}]
(72)

= lim
k→∞

lim
m→∞ P

[
�̃

(n)
k,k,m < (q	0,H )2 + ν̃

]
(73)

We may proceed as previously by associating with each
�̃

(n)
k,k,m the following perturbed AO problem given by:

φ̃
(n)
k,k,m = min

w∈Rp

w/∈Sζ
‖w‖2≤k
|b|≤k

max
u≥0

‖u‖2≤m

1√
p
‖w‖2gT u

− 1√
p
‖u‖2hT w + ψ (w,u)

Using Gordon’s inequality, we obtain:

P
[
�̃

(n)
k,k,m < (q	0,H )2 + ν̃

]
≤ 2P

[
φ̃

(n)
k,k,m < (q	0,H )2 + ν̃

]

3Note here that equality is not guaranteed since the set {w | w /∈ Sζ } is not
convex
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Hence,

P
[
�̃(n) < (q	0,H )2 + ν̃

]
≤ 2 lim

k→∞
lim

m→∞ P
[
φ̃

(n)
k,k,m < (q	0,H )2 + ν̃

]
(74)

= 2P
[
∪∞

k=k
∩∞

m=1

{
φ̃

(n)
k,k,m < (q	0,H )2 + ν̃

}]
(75)

≤ 2P
[
∪∞

k=k

{
lim

m→∞ φ̃
(n)
k,k,m < (q	0,H )2 + ν̃

}]
(76)

Following the same calculations as before, we can further
simplify φ̃(n)

k,k,m
for m ∈ N as:

φ̃
(n)
k,k,m

= inf
0≤q0≤k
−1≤ρ≤1
|ρ−ρ	H |≥ζ

|b|≤k

q2
0 + mq0D̂H

(
q0, ρ,

b

σq0

)

Hence,

lim
m→∞ φ̃

(n)
k,k,m

≥ lim
m→∞ inf

0≤q0≤k̃
−1≤ρ≤1

|ρ−ρ	H ‖≥ζ
η∈R

q2
0 + mq0D̂H (q0, ρ, η) (77)

= inf
0≤q0≤k
−1≤ρ≤1
|ρ−ρ	H |≥ζ
η∈R

D̂H (q0,ρ,η)≤0

q2
0 (78)

≥ inf
0≤q0≤k

min −1≤ρ≤1
|ρ−ρ	H |≥ζ
η∈R

D̂H (q0,ρ,η)

q2
0 (79)

(a)= inf
q	0,H

2 ≤q0≤k
min −1≤ρ≤1

|ρ−ρ	H |≥ζ
η∈R

D̂H (q0,ρ,η)≤0

q2
0 (80)

where (a) follows from (63). Next, using the uniform con-
vergence of (q0, ρ) �→ minη∈R D̂H (q0, ρ, η) to (q0, ρ) �→
minη∈R DH (q0, ρ, η) we show that for all δ̃ > 0, we may se-

lect n and p sufficiently large such that for all q0 ∈ [
q	0,H

2 , k],

min
−1≤ρ≤1
|ρ−ρ	H |≥ζ
η∈R

D̂H (q0, ρ, η) ≥ min
−1≤ρ≤1
|ρ−ρ	H |≥ζ
η∈R

DH (q0, ρ, η) − δ̃

Hence, almost surely,

lim
m→∞ φ̃

(n)
k,k,m

≥ inf
q	0,H

2 ≤q0≤k
min −1≤ρ≤1

|ρ−ρ	H |≥ζ
η∈R

DH (q0,ρ,η)≤δ̃

q2
0

Fix ε > 0. From Lemma 9, there exists δ0 such that for all
δ̃ ≤ δ0,

lim
m→∞ φ̃

(n)
k,k̃,m

≥ inf
q	0,H

2 ≤q0≤k
β̃(q0 )≤0

q2
0 − ε.

with β̃ : q0 �→ min −1≤ρ≤1
|ρ−ρ	H ‖≥ζ
η∈R

DH (q0, ρ, η). It is easy to see that

β̃(q	0,H ) ≥ β(q	0,H ) = 0. Since ρ	H is the unique minimizer of
ρ �→ minη∈R DH (q	0,H , ρ, η), β̃(q	0,H ) > 0. As β̃ is decreas-
ing,

inf
q	0,H

2 ≤q0≤k
β̃(q0 )≤0

q2
0 > (q	0,H )2

and as such

lim
m→∞ φ̃

(n)
k,k,m

> (q	0,H )2

The event {φ̃(n)
k̃,k̃,m

> (q	0,H )2 < (q	0,H )2 + ν̃} does not

occur infinitely often. Since φ̃
(n)
k,k,m > φ̃

(n)
k̃,k̃,m

the event

{∪∞
k=k

{φ̃(n)
k̃,k̃,m

> (q	0,H )2 < (q	0,H )2 + ν̃}} does not occur
infintely often either. Keeping track of the inequalities
(77)-(80) and using as before the converse of the Borel
Cantelli Lemma, we prove (71). We can similarly follow
the same methodology to prove the convergence of b̂H to
η	H q	0,Hσ . Details are omitted due to lack of space.

VI. CONCLUSION
This paper presents an asymptotically sharp characteriza-
tion of the performance of the hard-margin and soft-margin
SVM. Our analysis builds upon the recently developed CGMT
framework, which was mainly used before in the study of
high-dimensional regression problems. Considering its use for
the analysis of SVM poses technical challenges, which have
been handled through a new promising technical approach.
This approach not only allowed for an easier use of the CGMT
but also enabled to obtain stronger almost sure convergence
results. We believe that the developed tools lay the ground-
work to facilitate and pave the way towards the use of the
CGMT to general optimization based-classifiers such as lo-
gistic regression, Adaboost, for which an explicit formulation
is not available.

APPENDIX A TECHNICAL LEMMAS
This appendix gathers some important lemmas that are exten-
sively used when optimizing the auxiliary problem. The fol-
lowing Lemma, whose proof is not complicated, is fundamen-
tal to simplify the optimization of the auxiliary problem. As
shown above, it allowed in some cases to avoid the necessity
of flipping the order of the min-max when solving min-max
optimization problems.

Lemma 8: Let d1 and d2 be two strictly positive integers.
Let X × Y be two non-empty sets in Rd1 × Rd2 . Let F : X ×
Y → R be a given real-valued function. Assume there exists
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X̃ ⊂ X such that for all x ∈ X there exists x̃ ∈ X̃ such that:

∀y ∈ Y, F (x, y) ≥ F (x̃, y). (81)

Then

min
x∈X

max
y∈Y

F (x, y) = min
x̃∈X̃

max
y∈Y

F (x̃, y)

In particular, if X̃ = {x̃}, then:

min
x∈X

max
y∈Y

F (x, y) = max
y∈Y

F (x̃, y)

Proof: It is easy to see that minx∈X maxy∈Y F (x, y) is
upper-bounded by:

min
x∈X

max
y∈Y

F (x, y) ≤ min
x̃∈X̃

max
y∈Y

F (x̃, y)

To prove the lower-bound, we will exploit the property de-
scribed in (81). Let x ∈ X and let x̃(x) is such that for all
y ∈ Y ,

F (x, y) ≥ F (x̃(x), y)

Hence

max
y∈Y

F (x, y) ≥ max
y∈Y

F (x̃(x), y) ≥ min
x̃∈X̃

max
y∈Y

F (x̃, y)

which proves that:

min
x∈X

max
y∈Y

F (x, y) ≥ min
x̃∈X̃

max
y∈Y

F (x̃, y)

�
Lemma 9: Let d ∈ N	. Let Sx be a compact non-empty set

in Rd . Let f and c be two continuous functions over Sx such
that the set {c(x) ≤ 0} is non-empty. Then:

min
x∈Sx

c(x)≤0

f (x) = sup
δ≥0

min
x∈Sx

c(x)≤δ
f (x) = inf

δ>0
min
x∈Sx

c(x)≤−δ
f (x)

Proof: We will prove only the first equality, the second
one following along the same lines. Obviously, the following
inequality holds true,

min
x∈Sx

c(x)≤0

f (x) ≥ sup
δ≥0

min
x∈Sx

c(x)≤δ
f (x)

To see this, it suffices to note that for all δ ≥ 0,

min
x∈Sx

c(x)≤0

f (x) ≥ min
x∈Sx

c(x)≤δ
f (x)

Hence,

min
x∈Sx

c(x)≤0

f (x) ≥ f � sup
δ≥0

min
x∈Sx

c(x)≤δ
f (x)

From the ε-definition of the supremum, for any ε >

0, there exists δε and x	ε such that c(xε ) ≤ δε , f (x	ε ) =
min x∈Sx

c(x)≤δε
f (x), and

f ≤ f (x	ε ) + ε

Now for all m ∈ N	 such that m ≥ m0 � ��[] 1
δε

, define
x	m such that f (x	m) = min

x ∈ Sx

c(x) ≤ 1
m

f (x). Clearly, f (x	m) ≥ f (x	ε ).

Hence,

f ≤ f (x	m) + ε ≤ min
x∈Sx

c(x)≤0

f (x) + ε (82)

Assume that

f > min
x∈Sx

c(x)≤0

f (x). (83)

Then, plugging ε = 1
2 ( f − min x∈Sx

c(x)≤0
f (x)) into (82) leads to

f ≤ min
x∈Sx

c(x)≤0

f (x)

which contradicts (83). �
Lemma 10: Let X and Y be two convex sets. Let f : X ×

Y → R be a jointly convex function in X × Y . Assume that
∀y ∈ Y , infx∈X f (x, y) > −∞. Then: g : y �→ infx∈X f (x, y)
is convex in Y .

Proof: See [26] �
Lemma 11: Let a = [a1, . . . , an]T be a vector in Rn×1 and

θ be a positive scalar. Then:

max
u≥0

‖u‖2=θ
aT u = θ

√∑n

i=1
(ai )2+

Lemma 12: Let a ∈ Rn×1. Let β̃ and τ be positive scalars.
Then, if β̃ = 0,

max
0≤u≤τ

uT a − β̃‖u‖2 = max
0≤u≤τ

uT a =
n∑

i=1

τ (ai ) +

If β̃ �= 0, then:

max
0≤u≤τ

uT a − β̃‖u‖2 = sup
ξ≥0

n∑
i=1

(
aiτ − τ 2 1

2ξ

)
1{aiξ≥τ }

+
n∑

i=1

a2
i ξ

2
1{0≤aiξ<τ } − β̃2ξ

2
(84)

Moreover, function ξ �→∑n
i=1(aiτ − τ 2 1

2ξ )1{aiξ≥τ } +∑n
i=1

a2
i ξ

2 1{0≤aiξ≤τ } − β̃2ξ
2 is concave in ξ when ξ ∈ (0,∞).

Proof: Using the fact that:

‖u‖ = inf
χ>0

χ

2
+ ‖u‖2

2

2χ

we obtain:

max
0≤u≤τ

uT a − β̃‖u‖2 = max
0≤u≤τ

sup
χ≥0

uT a − β̃

[
χ

2
+ ‖u‖2

2

2χ

]
(85)

= sup
χ>0

max
0≤u≤τ

n∑
i=1

aiui − β̃

2χ
u2

i − β̃
χ

2
(86)
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Function x �→ aix − β̃
2χ x2 is increasing on (−∞,

aiχ

β̃
) and de-

creasing on ( aiχ

β̃
,∞) taking its maximum at x	 = aiχ

β̃
. Hence,

max
0≤x≤τ

aix − β̃

2χ
x2 =

⎧⎪⎪⎨⎪⎪⎩
0 if aiχ

β̃
< 0

aiτ − τ 2 β̃
2χ if 0 ≤ τ <

aiχ

β̃
a2

i χ

2β̃
if 0 ≤ aiχ

β̃
≤ τ

Hence,

max
0≤u≤τ

uT a − β̃‖u‖2 = sup
χ>0

n∑
i=1

(
aiτ − τ 2 β̃

2χ

)
1{ aiχ

β̃
≥τ
}

+
n∑

i=1

a2
i χ

2β̃
1{

0≤ aiχ
β̃
<τ
} − β̃χ

2

Performing the change of variable ξ :� χ

β̃
yields (84).

We will now proceed to proving the concavity of function

ϕi : ξ �→ (aiτ − τ 2 1
2ξ )1{aiξ≥τ } + a2

i ξ

2 1{0≤aiξ<τ } − β̃2ξ
2 . To

this end, note that:

ϕi(ξ ) = max
0≤ui≤τ

aiui − u2
i

2ξ
− β̃2 ξ

2
.

Function (ξ, ui ) �→ u2
i

2ξ is jointly convex in R>0 × [0, τ ] since

it is the perspective function of x �→ x2. Hence, (ξ, ui ) is
jointly concave in R>0 × [0, τ ]. Using Lemma 10, we thus
get that ξ �→ ϕi(ξ ) is concave in R>0 �
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