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ABSTRACT Energy disaggregation, namely the separation of the aggregated household energy consumption
signal into its additive sub-components, bears resemblance to the signal (source) separation problem and
poses several challenges, not only as an ill-posed problem, but also, due to unsteady appliance signatures, ab-
normal behaviour that is usually detected in appliances operation and the existence of noise in the aggregated
signal. In this paper, we propose EnerGAN++, a model based on Generative Adversarial Networks (GAN) for
robust energy disaggregation. We attempt to unify the autoencoder (AE) and GAN architectures into a single
framework, in which the autoencoder achieves a non-linear power signal source separation. EnerGAN++ is
trained adversarially using a novel discriminator, to enhance robustness to noise. The discriminator performs
sequence classification, using a recurrent convolutional neural network to handle the temporal dynamics of
an appliance energy consumption time series. In particular, the proposed architecture of the discriminator
leverages the ability of Convolutional Neural Networks (CNN) in rapid processing and optimal feature
extraction, among with the need to infer the data temporal character and time dependence. Experimental
results indicate the proposed method’s superiority compared to the current state of the art.

INDEX TERMS Convolutional neural networks, denoising autoencoders, energy disaggregation, genera-
tive adversarial networks, non-intrusive load monitoring, recurrent neural networks, robustness to noise,
sequence-to-sequence learning.

I. INTRODUCTION
Non-Intrusive Load Monitoring (NILM) or energy disaggre-
gation can be considered as an efficient and cost effective
framework to reduce energy consumption [1]. Energy disag-
gregation uses the aggregate power signal of a household as
input to estimate which appliances contribute and to which
extent to the aggregate energy consumption signal. To this
day, various approaches have been proposed to solve the
NILM problem, as presented in Section I-A. Some of the most
successful ones exploit deep learning neural network struc-
tures for modelling an energy disaggregation problem (e.g.
recurrent neural network structures [2]). Nevertheless, there

are barriers and limitations that until recently, have not been
properly addressed. In particular, the proposed techniques
have not been applied successfully across different households
and datasets [3]. Thus, it is difficult to create algorithms with
a good generalization ability. In addition, noisy aggregate en-
ergy consumption measurements significantly deteriorate the
performance of NILM methods. Usually, the detected appli-
ances have unsteady signatures or present abnormal behavior
and additionally, the existence of noisy as well as inadequate
datasets deteriorates overall models’ performance [4]. The lat-
ter issue is more evident in case that deep learning structures
are used for energy disaggregation, since a large number of
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labeled samples is required during training. However, the col-
lection of labeled training data is an arduous task and therefore
the need for training-less solution (unsupervised learning) has
recently arisen [5].

In this study, we investigate the ability of generative adver-
sarial networks to create robust appliance power patterns for
energy disaggregation in the presence of noise. In this context,
the term noise implies that the aggregate energy consumption
signals, used during the testing phase of a deep learning NILM
model, deviates, sometimes significantly, from the aggregate
inputs used during the training phase. Usually, this deviation
worsens models performance, as the distinctive characteris-
tics of each appliance are no longer distinguishable in the
aggregate signal. Generative adversarial networks (GAN) [6],
which is a special category of generative models, can learn
data distributions through adversarial learning, even in the
presence of noise. Therefore, they are capable of representing
noisy time series with high consistency [7]. Given that GAN
input is a noise vector, the model is inherently more robust
to noisy input signals and less sensitive to inconsistencies or
gaps in the training input samples.

Nevertheless, adopting a GAN-inspired NILM model im-
plies that certain adjustments to the conventional GAN struc-
tures are required. A GAN is a framework for estimating
generative models through an adversarial process, in which
simultaneously two models are trained; the Generator and
the Discriminator. The generator maps a latent space to the
data space follows a learned distribution and is optimized,
during training, to cheat the discriminator. The discriminator
distinguishes the generated data produced by the generator.
Therefore, it is optimized not to be cheated by the generator.
GANs usually reproduce realistic outputs, after an adversari-
ally learning process, having the same statistics as the labeled
data. However, in our NILM context, the purpose is to re-
produce the real appliance consumption time series instead of
generating a realistic time sequence of the same statistics. This
means that we know at advance the desired generated-output
value. Thus, stepping backwards, the input vector shouldn’t be
a completely random generated vector, but an alternative input
vector that help GAN to reproduce real consumption outputs
of an appliance. Under this scope, the idea of inverse GAN is
adopted [8]. In an inverse GAN, real data signals are generated
in contrast to traditional GAN structures where realistic, but
not real, outputs are produced. Hereby, the aggregated energy
consumption is considered as the alternative random noise
trigger of the GAN. The aggregated signal composes of the
sum of independent energy consumption appliance patterns
and therefore, it is considered as the NILM-based GAN noise
signal trigger. In addition, labeled appliance energy consump-
tion data sequences are used as input signals to the GAN
generator in order to learn to generate almost identical data
sequence for an appliance. Thus, our GAN NILM model is
trained to produce faithful replica of appliance’s energy con-
sumption signals to cheat the discriminator.

In our recent work in [9], a NILM GAN-based model,
called EnerGAN, has been introduced for solving the energy

disaggregation problem; estimation of appliance energy con-
sumption time-series, triggered by aggregate energy measure-
ments. In the adversarial competitive learning, the EnerGAN
NILM model uses as the discriminator component a binary
classifier, which fails to model temporal dependencies and
recurrent properties that existing inherently in energy con-
sumption signals. Therefore, these models fail to discriminate
patterns of abrupt changes in the energy consumption signals.
Additionally, the use of a simple discriminator makes the
model to be more sensitive to noisy aggregate signal inputs
since it can be easily cheated by the generator. To address
the aforementioned difficulties, this paper proposes an exten-
sion of the previous EnerGAN model, named EnerGAN++
which enriches the discriminator with recurrent properties
to increase robustness and precision accuracy in adversarial
energy disaggregation modelling.

A. RELATED WORK
1) DEEP LEARNING IN NILM MODELLING
With the rise of deep learning, a new family of methods has
been introduced that exploit deep neural network structures to
solve the ill-pose problem of NILM. Deep learning techniques
have been applied to low frequency NILM since 2015 [10].
Recurrent Neural Netowrks (RNN), and their variants, such
as Long Short-Term Memory Networks (LSTM) and Gated
Recurrent Units (GRU) have been primarily used, as they are
very popular and effective with 1D time series data. Relevant
studies have been carried out in the past ([3], [10], [11]). In
a previous work of ours, we have also proposed a Bayesian
optimized bidirectional LSTM model for NILM [2], whereas
in [1] a context-aware LSTM model adaptable to external en-
vironmental conditions is presented. Although Convolutional
Neural Networks (CNN) are traditionally developed for two-
dimensional imagery data ([12]), one-dimensional CNN can
be used to model the temporal character of sequential time-
series data. Few researches [13] have enriched the CNN-based
structures with a recurrent character, such as CNN-LSTM
and Recurrent Convolutional Networks. In [14] a causal 1-D
convolutional neural network for NILM is proposed. Some re-
searches introduce the concept of data sequences [10] to feed
the classic structure with historical past values of power load.
Among them, [15] propose a sequence to point CNN architec-
ture, underscoring the importance of sliding windows to han-
dle long-term timeseries. Alternatively, sequence to sequence
architectures have also been proposed [16]. Among other deep
learning schemes applied for NILM, is worth-remembering
to mention denoising autoencoders, that primarily proposed
by [17].

Many popular NILM algorithms, such as Non-Negative
Matrix Factorization (NMF) [18], hidden Markov mod-
els [19], or tensor factorization models [20], [21] have their
origins in audio modeling/source separation algorithms, and
are all types of generative models that specify how to generate
data that fit to a distribution. With the rise of deep learn-
ing, a new family of methods, called deep generative models
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(DGMs), is formed through the combination of generative
models and deep neural networks [22]. Popular DGMs include
the Variational Autoencoder (VAE) and GANs. Bellow, we
present the relevant related work of the GAN model, which is
the basis framework of our EnerGAN++ configuration.

2) GENERATIVE ADVERSARIAL NETWORKS
GANs are popular in a variety of application domains, in-
cluding photorealistic image super-resolution [23], image in-
painting [24], text to image synthesis [25]. Several studies
have shown promising results for reproducing data, in spite
of labels corrupted by random noise [7], [26], [27]. Generative
adversarial networks learn a deep generative model that is able
to synthesize high dimensional data samples. New data sam-
ples are synthesized by passing latent samples, drawn from
a chosen prior distribution, through the generative model.
However, GANs do not offer an “inverse model,” a mapping
from data space back to latent space, making it difficult to
infer a latent representation for a given data sample. There are
several relevant studies trying to propose an inverse GAN such
as [8], [28], [29].

3) GENERATIVE ADVERSARIAL NETWORKS IN NILM
MODELLING
Bao et al. [30] adopt a GAN-based framework for solving
NILM in an early attempt. Then, Kaselimi et al. [9] propose
a generative adversarial network for sequence to sequence
learning, whereas Pan et al. [31] achieve sequence to sub-
sequence learning with conditional GANs. Chen et al. [32]
propose a context aware convolutional network for NILM that
has been trained adversarially. Recently, GANs have been
used as a method for generating realistic energy consumption
data. Under this framework [33] proposes an algorithm of
using GANs to sufficiently learn from a limited number of real
data, whereas the work of [34] proposes a synthetic appliance
power signature generator, called PowerGAN, to mitigate the
data limitations arising from the insufficient labeled appli-
ances power data.

B. MOTIVATION AND CONTRIBUTION
The main limitation of the aforementioned GAN-based NILM
approaches is that the discriminator is represented by a generic
classifier which has not been optimised for the specific partic-
ularities of energy disaggregation. More specifically, energy
consumption follows long-range dependencies which cannot
be approximated by the traditional shallow-based (short-term)
discriminant components. Moreover, data consumption time-
series of an appliance present non-linear auto-regressive be-
havior; the output values at a time instance is non-linearly re-
lated with the output values of previous time instances. There-
fore, the discriminator classifier should simulate recurrent ca-
pabilities. Finally, a GAN model used for NILM modelling
is implemented using the inverse GAN framework, since we
need to approximate real energy consumption signals of an
appliance instead of generating realistic outputs.

In this paper, we extend the EnerGAN approach of [9]
by including a deep learning classifier in the discriminator
component of GAN. In particular, we enrich the concept of
adversarial learning in NILM by introducing a more efficient
discriminator in our proposed EnerGAN++ model which is
now constitute of a combined convolutional layer with a re-
current GRU unit instead of a simple binary classifier. Ad-
vanced structures such as the recurrent GRU approximate
long range recurrent dependencies in a better way, compared
to traditional recurrent neural networks that suffer from the
vanishing gradient problem [35], [36]. In this work, we lever-
age the strengths of rapid progress in CNNs and the desire
to apply these models to time-varying power consumption
data sequences, under an adversarial training framework [37].
Here, we emphasize that alternative ways of applying CNNs
for sequential data with temporal character for NILM have
been proposed, such as [14]. However, none of the above
mentioned methods that combine CNNs properties with tem-
poral character have been used in adversarial learning for
energy disaggregation. In particular, EnerGAN++ model has
good performance, especially in case that (a) noisy aggregate
signals are used as input triggers and (b) abrupt changes in
the appliance energy signals are encountered. We name this
extended model, which is also based on an inverse GAN
structure, EnerGAN++. Therefore, the main contributions of
this paper can be summarized as follows:
� The use of a deep learning recurrent classifier to model

the discriminator component of the EnerGAN++, with
the capability to approximate long-term and regressive
data signal behaviour, instead of the traditional GAN
discriminators relied on shallow and generic classifiers.

� EnerGAN++ generates the entire signal waveform and it
is capable of making more long-term estimations, rather
than predicting solely the single current value of the
individual power signal

� Our approach uses the aggregate energy measurements
as the noise input vectors triggering the GAN model. In
addition, since our target is to approximate real energy
consumption of a specific appliance, EnerGAN++ uses
labeled time-series of single appliance as input vectors
of the generator during the training phase in contrast to
conventional GAN modelling where only random noise
signals are considered as input triggers. The non-linear
deep discriminator unit competitively acts with the gen-
erator to reject generated sequences which are not well
approximates of energy time-series of an appliance dur-
ing training. Instead during testing, only the aggregate
energy signal is used as input and the EnerGAN++ iso-
lates the energy consumption sequence of a specific ap-
pliance from aggregate measurements.

� EnerGAN++ are inherently more robust to noisy input
signals and less sensitive to inconsistencies or gaps in
the input aggregate signal, since more sophisticated deep
learning GAN components are considered.

The remainder of this paper is structured as follows:
In Section II a detailed description of the NILM problem
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formulation is provided. Sections III and IV describe the two
EnerGAN++ network’s components: the generator and the
discriminator, explaining at the same time the challenges and
barriers that we should overcome to adopt a GAN network
for solving NILM problem as well as, the respective adap-
tations that EnerGAN++ introduces. Section V presents the
proposed EnerGAN++ method configuration. In Section VI,
the EnerGAN++ approach is experimentally evaluated against
state of the art energy disaggregation methods in publicly
available datasets, whereas Section VII concludes the paper
with a summary of findings.

II. NILM PROBLEM FORMULATION
The residential total power consumption is measured using
smart meter devices, thus the consumers be aware of their total
(aggregate) power consumption. However, as far as energy
efficiency is concerned, energy consumption awareness at ap-
pliance level is essential. One way to measure consumption
per appliance is through the usage of smart plugs, a solution
which is economically unaffordable. For this reason, usually
NILM or energy disaggregation methods are applied. NILM
is the problem of decomposing the total power consumption
of a household, into individual appliance power signal com-
ponents, using signal processing and machine learning tools,
without prior existence of smart-plug equipment.

At a discrete time index t , we assume p̃(t ) the noisy aggre-
gate measured energy signal for the whole household under
study. Signal p̃(t ) is the sum of the individual appliances’
power consumption p j (t ) plus an additional noise ε(t ). Thus,
in a NILM framework [38], we express the total power con-
sumption p̃(t ) as:

p̃(t ) =
M∑

m=1

pm(t ) + ε(t ) (1)

In Eq. (1) variable m refers to the m-th out of M avail-
able appliances. Here, we need a robust to noise model able
to separate the total noisy power measurements p̃(t ) into
the individual -free of noise- appliance source signals pm(t ).
Under a NILM framework, the individual appliance power
consumption pm(t ) is not a priori available, assuming the
absence of installed smart plugs. Instead, only p̃(t ) is given.
Therefore, the problem is to calculate the best estimates p̂m(t )
of the appliance power consumption, given the noisy p̃(t )
values.

NILM methods often look at the problem as decomposing
a mixture signal into individual appliances signals (based on
single-channel source separation) and formulate the task as
an optimization problem [see Eq. (1)]. Traditional generative
models such as independent component analysis [39] and non-
negative matrix factorization [18] have been proposed to solve
the NILM problem. Linear independent component analysis
(ICA) has been especially popular as a method for blind
source separation (BSS), with applications in various do-
mains including audio source separation and image process-
ing. However, it would be interesting to replace the linear ICA

model, with an alternative model to model the non-linearities
existing in energy data consumption signals. In the light of the
recent success of deep learning methods, auto-encoders (AEs)
have been proposed as an approach to supervised non-linear
source separation, by for example Pandey et al. [40] and Grais
and Plumbley [41]. In the context of NILM, the work of
Kelly [10] is one of the first works that have used denoising
autoencoders.

A. ADVERSARIAL LEARNING IN ENERGY
DISAGREGGATION - THE ENERGAN++ APPROACH
In general estimates of p̂m(t ) given as input the aggregate
signal p̃(t ) is approximated through a non-linear relationship
and therefore neural network structures are considered as uni-
versal approximators [42], [43]. However, unlike other deep
learning neural networks that are trained with a loss function
until convergence, a GAN model is trained in an adversarial
manner between two main components: the generator G and
the discriminator D. In our NILM modelling, the generator
G is trained to produce time sequences resembling energy
consumption of an appliance, while the discriminator D is
trained to check whether the produced time series by the
generator coincide with a specific (real) appliance energy
consumption sequence or not. Therefore G is trained in a way
to cheat D in the sense that it produces data sequences that
they are not be able to be distinguished by D. In other words
G and D play a two-play minmax game with value function of
V (D,G)

min
G

max
D

V (D,G) = Epm∼pdata(pm ) [logD(pm)]+

+ Ez∼pz (z)[log(1 − D(G(z)] (2)

Eq. (2) means that the discriminator D is trained to maximize
the probability of assigning the correct label between the
ground truth samples and the “fake” samples produced by G,
while simultaneously G to minimize log(1 − D(G(z)) that is
the generator to produce samples of being indistinguishable
by D. The discriminator is trained to reject the artificially
generated sequences by the G and the generator to produce
sequences confusing D.

A typical generative model takes a noise signal vector z
in space Rk and generates another signal, G(z), of a higher
dimensional space Rn with n > k. The generative models pro-
duce data that resemble the real data [6]. Probabilistic gener-
ative models demonstrate excellent performance for various
tasks such as denoising, inpainting, texture synthesis, video
and natural language processing [44].

In our case, a typical generative model will try to success-
fully reproduce the power consumption signal of an appliance
in households. In particular, in the following, we denote as
{plabel

m,t }t=t+T
t=t the target signals over a time window T and

as { p̂Gm,t }t=t+T
t=t the data generated by the generator G over

the same time interval. A traditional GAN generator is op-
timized to create data sequence resembling the labeled data.
This is achieved by propagating the noise signal into a higher
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FIGURE 1. Comparison between a typical GAN approach and the EnerGAN+ structure approach. Three main specifications are introduced there: (i) the
use of the aggregated signal as input noise, (ii) the encoding layer used to map the aggregated signal into a desired latent feature, and (iii) the advanced
CNN-GRU discriminator dedicated to achieve the optimal sequence classification, that ensure the EnerGAN++ ability to achieve energy disaggregation,
even if the data input samples are noisy.

dimension space through a neural network structure (i.e., a
decoder) with the purpose of transforming the noise input z
into a data sequence { p̂Gm,t }t=t+T

t=t . This is illustrated in Fig. 1,
where the noise input signal z is forwarded into a convolu-
tional decoder to generate a data sequence of p̂Gm of similar
statistical properties with the labelled data plabel

m .
Even though the generated data { p̂Gm,t }t=t+T

t=t are indistin-
guishable from the real data {plabel

m,t }t=t+T
t=t , as they follow

the same statistical properties, their resemblance to the ac-
tual power values is purely coincidental. Until now, we have
underlined the GAN’s ability to reproduce appliances power
signals that resemble to the actual appliance operation power
signal. However, solving NILM problem implies the need for
a network trained not only to reproduce the power signal of an
appliance but to know the exact operation and consumption of
the appliance at a given time epoch. Thus, our method extends
beyond the need for randomly generated appliance power
consumption value having the same statistics. The trained
network should be able to provide information regarding the
estimated appliance power consumption value at a specific
time, and this, in turn, means that z values should not be purely
randomly generated but to move in a space appropriate for
extracting the desirable sequential data {plabel

m,t }t=t+T
t=t [45]. In

case that the desirable output (i.e. the disaggregated appliance
values) {plabel

m,t }t=t+T
t=t is a priori known, we need to solve

the inverse problem, which corresponds to finding the latent
vector z that explains the output measurements as much as
possible.

To address the aforementioned difficulties, in this paper,
we modify the traditional GAN configuration to fit the par-
ticularities of energy disaggregation problem. In energy dis-
aggregation the purpose of a NILM-based GAN network is
to generate real appliance power sequence which is almost
identical with the labelled data over a time interval T , that
is { p̂Gm,t }t=t+T

t=t ≈ {plabel
m,t }t=t+T

t=t instead of producing realistic
data sequences. Thus, it is important to find a way of inverting
the “non-invertible” generator. This is achieved through the
following modifications of the traditional GAN structure (see
Fig. 1).

� First, instead of using a noise input signal z the aggregate
energy consumption signal p̃(t ) is considered. Aggre-
gate signal p̃(t ), which is the sum of appliance’s energy
consumption signals, can be considered as an “noise”
input trigger of the EnerGAN++ model. In this way, the
generator G is capable of producing real and not realistic
energy consumption sequences for the m-th appliance,
confusing the discriminator D.

� Second, in case that the aggregate signal p̃(t ) is used
as input trigger of the proposed GAN-based model for
NILM, an additional layer is required for the generator
G. In particular, we add an encoder prior to the de-
coder with the main purpose of compressing the input
aggregate signal p̃(t ) in a way to produce a noise vector
resembling z of the traditional GAN structure.

� Third, the traditional GAN models considers simple
classification structure for the discriminator D. Energy
consumption signal presents high temporal relationships
and auto-regressive properties. Therefore, the traditional
GAN discriminator can be easily cheated by the gener-
ator, reducing the overall NILM performance. For this
reason, the proposed EnerGAN++ model modifies the
conventional GAN discriminator by using GRU unit
which has recurrent capabilities in order to address
the temporal appliance’s energy consumption properties.
EnerGAN++ has a more clever discriminator, forcing the
generator to produce almost identical appliance energy
consumption to cheat D.

III. ENERGAN++ GENERATOR
Fig. 2 presents the structure of the generator of the proposed
EnerGAN++ model. Our method extends the traditional op-
eration of a GAN beyond the need for randomly generated
appliance’s power data sequence of the same statistics with
the labeled data. The NILM framework implies the need for a
network trained to generate the exact operation and consump-
tion of an appliance at a given time instance t .

This is achieved by using as input trigger of the Ener-
GAN++ the aggregate signal { p̃t }t=t+T

t=t over a time window
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FIGURE 2. Proposed EnerGAN++ architecture. The proposed method aims to unify existing AE and GAN architectures into a single framework, in which
AE achieves a non-linear total power signal source separation, and adversarial training enhances model’s robustness to noise. The generator is a
convolutional autoencoder and as input has the noisy version of the aggregated power signal. The autoecoder is trained adversarially with the
discriminator. The discriminator is a long-term convolutional recurrent network for sequence classification, and is conditioned with the aggregated power
signal.

of T duration. The signal { p̃t }t=t+T
t=t is considered as a noise

trigger since it is the summation of independent energy con-
sumption signals of the appliances. In addition, during train-
ing, the ground truth data of the m-th appliance {plabel

m,t }t=t+T
t=t

over a time window of T duration is considered in order to
initiate the EnerGAN++ generator to simulate the real energy
consumption data of the m-th appliance. We denote as Itrain

the input trigger vector of the GEnerGAN++(·) generator during
the training phase,

Itrain ≡
[
{ p̃t }t=t+T

t=t {plabel
m,t }t=t+T

t=t

]T
(3)

To handle the aggregate signal { p̃t }t=t+T
t=t and the ground

truth labels of {plabel
m,t }t=t+T

t=t as input trigger of the Ener-
GAN++ model, an encoder layer is added prior to the decoder.
The encoder generates a compressed “noise” signal zm (by
encoding the input vector signal of Itrain) [10] which is used
as input trigger of the decoder of the EnerGAN++ generator
to produce a real appliance energy consumption time series
G(zm) for the m-th appliance. Thus, the pipeline of the Ener-
GAN+ generator during the training phase is the following:

the pipeline o f EnerGAN++ generator during training :

Itrain → Encoder (Itrain) → zm →
→ Decoder (zm) → GEnerGAN++(zm) (4)

Eq. (4) means that the input signal Itrain ≡
[{ p̃t }t=t+T

t=t {plabel
m,t }t=t+T

t=t ]T is transformed (compressed)
to a latent noise trigger zm, through a convolutional encoder
and then, the noise signal zm is decompressed to generate
a signal GEnerGAN++(zm) that resembles the real energy
consumption of the m-th appliance. The encoder with
convolutional layers, is forced to be an inverted version of
the decoder (with transposed convolutional layers), where
corresponding layers perform opposite mappings and share
parameters [46]. The model tries to minimize the difference
between the { p̂Gm,t }t=t+T

t=t sequence values and the actual
sequence values {plabel

m,t }t=t+T
t=t , generating data sequences

GEnerGAN++(zm) that confuse the discriminator D.
During the testing phase, the generator of the EnerGAN++

model GEnerGAN++(·) receives as input only the aggregate
signal { p̃t }t=t+T

t=t and not the appliance ground truth data of
{plabel

m,t }t=t+T
t=t since it has been learned during the training

phase to produce almost identical energy consumption time
series of the m-th appliance. Thus, the pipeline of the Ener-
GAN++ generator GEnerGAN++(·) during the testing phase is
the following:

the pipeline o f EnerGAN++ generator during testing :

{ p̃t }t=t+T
t=t → Encoder

( { p̃t }t=t+T
t=t

) → ẑm →
→ Decoder (ẑm) → GEnerGAN++(ẑm) (5)
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FIGURE 3. Computation of a hidden state in a GRU cell.

It is clear that the output of the EnerGAN++ genera-
tor during the testing phase approximates its output during
training since the ground truth data of the m-th appliance
are available only during training. Therefore, we have that
GEnerGAN++(ẑm) ≈ GEnerGAN++(zm), meaning that the propo-
duce data time series by the generator { p̂Gm,t }t=t+T

t=t is very
close to the labeled data of {plabel

m,t }t=t+T
t=t

IV. ENERGAN++ DISCIMINATOR
In the EnerGAN++ model there is not a loss function for train-
ing the network until convergence. Instead, adversarial learn-
ing is adopted based on a min-max two-player game between
the generator GEnerGAN++ and the discriminator DEnerGAN++.
The generator produces a sequence of data { p̂Gm,t }t=t+T

t=t to
cheat the discriminator, while the discriminator seeks to dis-
tinguish whether the data sequence produced by G is real
(assigned a value of 1) or fake (assigned a value of 0). The
traditional discriminator of a GAN network does not take into
account the regressive temporal characteristics of the energy
consumption signals. Therefore, it can be easily cheated by
the generator which has been appropriately modified to pro-
duce almost identical time series for the m-th appliance (see
Section III).

Here, the discriminator solves a binary sequence classifica-
tion problem. Sequence classification is posed as a problem of
assigning a label to a sequence of observations. Recently deep
learning reccurent networks have been proposed in the litera-
ture for sequence classification. Examples are the LSTM [36]
and the GRU [47] structures. These networks have an in-
ternal mechanism to balance between current and previous
time steps, and thus, memorizing the temporal information
flow.

A. CNN ENRICHED - GATED RECURRENT NETWORKS FOR
ENERGAN++ DISCRIMINATOR
In the EnerGAN++ model, a combined CNN enriched - GRU
classifier is adopted as the discriminator unit. GRU networks
are appropriate for modelling the temporal auto-regressive
properties of a time series (Fig. 3). However, GRU structures
are not able to extract features from the input data in a way to

optimize the overall classification performance. For this rea-
son, in this paper, we adopt a combined approach by introduc-
ing a CNN model [12] prior to the GRU framework. Hereby,
CNNs have been used as feature extractors for the GRUs. In
other words, the combination of CNN as an efficient feature
extractor with the GRU model, is capable of representing,
synthesize and therefore distinguish the temporal dynamic
nature of the power sequence signals.

GRU is a modern version and very similar to the traditional
LSTM cell, albeit less complex. It merges the cell state and
hidden state of the traditional LSTM cell, and in addition, it
combines the forget and input gates into a single update gate.
Thus, it is more computational efficient as it need less pa-
rameters for training and it has less complex structure. GRUs
make use of a gated activation function and are designed so
as to have more persistent memory thereby making it easier to
capture long-term dependencies.

In the proposed EnerGAN++ dicriminator, a stack of l GRU
layers is considered. In general, stacking improves discrimi-
nation performance [48]. Stacked GRU layers have two main
operations of dependence; the in-depth dependence and the
temporal dependency. The in-depth dependence implies that
the output of the current GRU layer is related with the output
of the previous layer, while temporal dependency assumes that
the hidden GRU states in a layer are inter-related in the time
domain. Each GRU unit has two additional control variables;
the reset gate rl (t ) and the update gate ul (t ) (see Fig. 3). The
reset gate rl (t ) is responsible for determining how much of
information to forget. The update gate ul (t ) is responsible
for determining the worth-remembering information of the
previous states that should be forwarded to the next state.
Therefore, the gates rl (t ) and ul (t ) are related with the hidden
states hl (t ) and hl (t − 1) as follows[

ul (t )

rl (t )

]
=

[
σ

σ

]
Wl

[
hl (t − 1)

hl−1(t )

]
+

[
bl

u

bl
r

]
(6)

In Eq. (6) σ is the sigmoid function and b1
u and b1

r are the re-
spective biases of each component for the GRU cell. Variables
W and U are the transition matrices of the l-th GRU. In case of
l = 1, the convolutional layer is considered as previous layer
and the input vector is the feature vector [see Eq. (9)]. This
means that hl=0(t ) ≡ fD(t ).

In stacked GRUs configuration a recursive approach is con-
sidered as regards the operation of each GRU cell. In particu-
lar, a new memory state, denoted as h̃l (t ), is considered, acting
as the consolidation of the hidden state of the previous layer
hl−1(t ) and the previous hidden state hl (t − 1) of the current
layer. The consolidated hidden state h̃l (t ) is given by:

h̃l (t ) = tanh
(

rl (t )Uhl (t − 1) + Whl−1(t )
)

(7)

In Eq. (7) function tanh(·) refers to the hyperbolic tangent
relationship. As we stated previous, for l = 0 the value of the
hidden state equals hl=0(t ) ≡ fD(t ) (see Fig. 4). Eq. (7) means
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FIGURE 4. Discriminator is a long-term convolutional recurrent network
for sequence classification. The proposed architecture of the discriminator
leverages the strength of rapid progress in CNNs, among with the need to
apply the convolutional models for temporal sequences of data. Thus, a
sequential input is entered into the discriminator, a CNN layer is used for
the optimal feature extraction and then, the stacked recurrent layers
follow. The scope of the discriminator is to decide whether the given
sequence is the generated or the real one.

that the consolidated state is related with the output of the
hidden state hl (t − 1) at the time instance t − 1 and the output
of the previous hidden layer hl−1(t ) at the time instance t .
Using the values of the consolidated state h̃l (t ) [see Eq. (7)]
and the values of the update gate ul (t ) [see Eq. (6)] the value
of the hidden state of the l-th GRU element is estimated

hl (t ) =
(

1 − ul (t )
)

h̃l (t ) + ul (t )hl (t − 1) (8)

In more detail, the GRU related above mentioned operations
are illustrated in Fig. 4.

B. OPERATION OF THE ENERGAN+ DISCRIMINATOR
The proposed discriminator has two main components; the
convolutional layer and the GRU unit. The convolutional layer
transform the input signal to a reliable feature vector fD(t ),
while the GRU unit performs the discrimination. As input
signal the generated power signal GEnerGAN++(ẑm) of the m-th
appliance is used [see Eq.(5)]. In addition, the labeled train-
ing samples of the respective appliance {plabel

m,t }t=t+T
t=t and the

aggregate measurements { p̃t }t=t+T
t=t is used as input triggers

for classification comparisons. The discriminator has been
optimized through training to distinguish the “fake” data se-
quences produced by the generator { p̂Gm,t }t=t+T

t=t from the real
ones.

Initially, the input vector of the discriminator, that is the
data produced by the generator { p̂Gm,t }t=t+T

t=t , the real labelled
data {plabel

m,t }t=t+T
t=t and the aggregate measurements { p̃t }t=t+T

t=t
are fed as inputs to a CNN structure with the main purpose of

transforming them into optimized feature maps of fD(t ).

fD(t ) ∼ ConvDEnerGAN++
(Iinput

)
with

Iinput =
[
{plabel

m,t }t=t+T
t=t , { p̂Gm,t }t=t+T

t=t , { p̃t }t=t+T
t=t

]T
(9)

The features fD(t ) at the time instance t are fed to the GRU
structure trained to distriguish the “fake” sequence produced
by GEnerGAN++ from the real one (available in the training
set). Therefore, we have that

DEnerGAN++ ≡ GRU ( fD(t ))

=

⎧⎪⎨
⎪⎩

1 if { p̂Gm,t }t=t+T
t=t ≈ {plabel

m,t }t=t+T
t=t

0 if { p̂Gm,t }t=t+T
t=t not ≈ {plabel

m,t }t=t+T
t=t

(10)

V. PROPOSED ENERGAN++ MODEL CONFIGURATION
The min-max game refers to the minimization of generator
and the maximization of the discriminator.

A. ADVERSARIAL LEARNING BETWEEN THE GENERATOR
AND THE DISCRIMINATOR
Eq. (10) means that the disctiminator is trained not to be
cheated by the generator GEnerGAN++. At the same time
the generator is optimized to produce a sequence of the
m-th appliance in a way to cheat the discriminator, that is
GEnerGAN++(ẑm) ≈ {plabel

m,t }t=t+T
t=t . This results into a 2-player

adversarial learning between the discriminator and the gener-
ator

EnerGAN++: min
G

max
D

V (DEnerGAN++,GEnerGAN++) =

= E
[
logDEnerGAN++(plabel

m ,GEnerGAN++(ẑm))
]
+

+ E
[
log(1 − DEnerGAN++(GEnerGAN++(ẑm), p̃))

]
(11)

In Eq. (11) it is held that GEnerGAN++(ẑm) ≡ { p̂Gm,t }t=t+T
t=t

B. PROPOSED ENERGAN++ NETWORK CONFIGURATION
Fig. 2 shows the proposed methodology and the basic struc-
ture of the proposed model. As we have stated previously two
main components are included in the EnerGAN++ model; the
generator and the discriminator.

EnerGAN++ generator configuration: The EnerGAN++
generator consists of an autoencoder having (i) a convolu-
tional encoder and (ii) a decoder part, which is an inverted
convolutional version of the encoder. During the training
phase the encoder part takes the aggregate signal measure-
ments p̃(t ) and the labelled energy consumption time series of
the m-th appliance plabel

m (t ) and maps it to a latent compressed
vector of zm(t ). The compressed vector zm(t ) feeds the de-
coder part of the generator with the purpose of reconstructing
an approximate version of plabel

m (t ) denoted as p̂m(t ). During
the testing phase only the aggregate measurements are used
as inputs to the encoder part of the generator and therefore,
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it produces an approximate latent compressed vector of ẑm(t ).
The decoder part has been learned, during the training phase,
to produce approximate energy consumoption time series of
the m-th appliance. Therefore, during the test phase, the de-
coder part of the generator produces a data sequence of p̂Gm(t )
close to plabel

m (t ) from the input latent signal ẑm(t ). Therefore,
the loss function of the generator autoencoder will be:

LGEnerGAN++ : min

∥∥∥∥plabel
m (t ) − Decoder(ẑm(t ))

∥∥∥∥
2

with

ẑm(t ) = Encoder( p̃(t )) (12)

Eq. (12) means that the encoder part of the generator has
been trained to produce a latent compressed signal ẑm with
the capability of generating the energy time series plabel

m for
the m-th appliance.

The encoder configuration structure has three convolutional
layers: the first layer consists of 256 filters with a kernel size
1×8, the second layer consists of 128 filters of 1×16 kernel
size, whereas the third layer consists of 64 filters with size
1×32. The decoder maps the latent value zm to a higher feature
space, which describes accurately the individual appliance
waveform. The proposed topology layout has two deconvo-
lution layers: the first layer consists of 64 filters with a kernel
size 1×8 and the second layer consists of 128 filters of 1×16
kernel size. The latent vector is not randomly generated, on
the contrary it comes from an inverted generator (the encoder)
and encloses information from the aggregate signal.

EnerGAN++ discriminator configuration: The discrimina-
tor D comprises of a convolutional layer with 60 different
kernels consisting of trainable parameters which can convolve
the given input and extract the appropriate features. After the
automated feature selection, a sequence classification with
two stacked recurrent GRU layer follows. The first GRU layer
comprises of 40 filters and the second with 30 filters, whereas
the network architecture ends up with two dense layers. The
first one consists of 30 neurons, whereas the second one is
fully connected to the output neuron to predict whether the
input pair is the actual data or the generated one. The neurons
in output layer use as the activation function the sigmoid
function, whereas all the remaining layers use ReLU as the
activation function.

VI. EXPERIMENTS
A. DESCRIPTION OF THE DATASET
The evaluation of our generative adversarial model for en-
ergy disaggregation has been conducted on nine appliances
derived from AMPds [50] and REFIT [51] datasets. These
open-access energy consumption datasets provide the aggre-
gate power measurements of the whole house and sub-metered
readings (smart plugs) from individual appliances at different
time resolutions; 60 s for AMPds, 8 s for REFIT. In our study,
REFIT data are down sampled to 60 s resolution. The AMPds

consists of a single house in Canada, whereas the REFIT con-
sists of 20 houses located in U.K. Both the AMPds and REFIT
datasets collected over a period of two years. The appliances
are: clothes dryer, heat pump and oven appliances from AM-
Pds and dishwasher, kettle, microwave, toaster, tumble dryer
and washing machine appliances from REFIT dataset.

The Section V presents: (i) the evaluation performance
metrics for our proposed methods in contrast to the other
state of the art methods (see Section V.B), (ii) the robustness
of our method to noise, which is our comparative advan-
tage in contrast to other conventional NILM methods (see
Section V.C).

The paper points out the EnerGAN++ method’s compara-
tive advantage for noisy aggregate data. Furthermore, REFIT
measurements contain noise in the label ground truth data due
to numerous unknown appliances and measurement errors.
This introduces an additional challenges for our proposed
method.

Our EnerGAN++ algorithm is implemented in Python 3.6
using the Keras API integrated into TensorFlow 2. The com-
puter used for all of the training and testing was an Intel Core
i7-8750H CPU at 2,20 GHz with 8 GB of random-access
memory and an NVIDIA GeForce GTX 1050 with 4096 MB
of DDR5 memory.

B. QUANTITATIVE EVALUATION METRICS
In this study, we compare the proposed EnerGAN++ method
for NILM, against other state of the art methods. In particular,
our method is evaluated against the previous version of our
proposed GAN (EnerGAN) [9], as well as the BabiLSTM
network, as presented in [2]. Furthermore, the method is com-
pared against the traditional deep learning models, applied
for NILM, such as sequence to sequence CNNs (seq2seq
CNN), [16], [13], unidirectional LSTMs [11], [3] and denois-
ing autoencoders [10]. These models have also been imple-
mented in Python 3.6 using Keras. Finally, we compare the
proposed method against additional benchmark approaches
such as FHMM [49] and CO [49]. These approaches are
implemented in NILMTK library [49].

Table 1 is a summary that compares the aforementioned
techniques with the proposed EnerGAN++ model. The met-
rics used are:

i) the Mean Absolute Error (MAE) that measures the
average magnitude of the errors in the set of predic-
tions and is a commonly used metric for NILM [4].
MAE metric is used when we are interested in the error
in power at every time point, and is less affected by
outliers, i.e. isolated predictions that are particularly
inaccurate:

MAE = �N
t=1

∣∣p̂j(t ) − pj(t )
∣∣

N
(13)

ii) the Signal Aggregate Error (SAE) is a common metric
used to estimate the total energy consumed by each
appliance over a period of time [4]. This measure is
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TABLE 1. Performance Metrics (MAE, SAE, RMSE) for Nine Appliance of the AMPds and REFIT Datasets. in Bolds, We Have Highlighted the Method That
Succeeds the Best Performance Per Appliance

useful because a method could be accurate enough for
reports of daily power usage even if its per-timestep
prediction is less accurate,

SAE =
∣∣�N

t=1p̂j(t ) − �N
t=1pj(t )

∣∣
�N

t=1pj(t )
(14)

iii) the Root Mean Squared Error (RMSE), that is more
sensitive to large errors, occurring either due to time
delays or even fault detection (outliers),

RMSE =
√

�N
t=1(p̂j(t ) − pj(t ))2

N
(15)

From the above, we consider that the smaller the MAE,
SAE and RMSE errors are, the better the performance
of the examined method is.

C. EXPERIMENTAL RESULTS
In Table 1, our proposed method has the lower values for MAE
metric. This indicates that the proposed EnerGAN++ has the
best performance compared to the other methods, in terms
of MAE. The exception is the clothes dryer appliance, where
MAE as well as RMSE values seem to be higher, while SAE
error succeeds the minimum value. This is probably occurs
due to the “jagged edges” appeared in clothes dryer appliance
pattern, that successfully cashed by the bidirectional-LSTM
scheme, but only as outline in the proposed scheme (also

see Fig. 5). SAE and RMSE metric values show also good
performance for the majority of appliances. In terms of RMSE
error, however, the “failures” observed refereed to time delays
occurred between the generated and ground truth data. Fur-
thermore, from previous studies in NILM, has been observed
that architectures such as LSTM and CNN, underestimate
power values during the training process. As a result, such
schemes, produce patterns with lower power values, leading
to small RMSE values, but, on the contrary, to increased MAE
values. Furthermore, it should be pointed out that the proposed
network has been significantly improved compared to our
former EnerGAN network [9]. The improvement is due to the
different discriminator configuration, i.e. the recurrent convo-
lutional network for sequence classification that is trained to
discriminate samples from data, as well as the different loss
functions selected for our proposed GAN network.

Fig. 5 shows the aggregate signal (grey line) and the gen-
erated power timeseries from our GAN network (purple line)
at a given time period. Also, with orange line the ground truth
data are depicted. As shown, the operation of each appliance
is detected at an adequate level. In Fig. 5, the generated
timeseries of power data are identical with the actual opera-
tion (ground truth) of clothes dryer, oven, kettle, microwave,
toaster, tumble dryer and washing machine appliances. How-
ever, during the snapshot in time as illustrated in Fig. 5, for
the heat pump appliance, a false positive is appeared, since
the appliance is detected in operation five times, whereas 4
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FIGURE 5. Comparison of the proposed method (purple line) with ground truth (in orange) for selected appliances in AMPds and REFIT dataset.
Furthermore, the aggregated data are also illustrated.

times is actually ON. On the contrary, a false negative is
detected, at first, for dishwasher appliance, but actually the
orange undetected signal for this case indicates noise and not
actual presence of the dishwasher appliance.

D. ROBUSTNESS TO NOISE
Hereby we compare the results of our proposed method after
having applied additive white Gaussian noise in the aggregate
signal in varying percentages (5%, 10%, 20%, 30% and 40%).
The n% percentage values means that the power measure-
ments of the aggregated signal (in W) have a deviation of
n% with 68%. Fig. 6 shows the generated values and their
respective ground truth, assuming clear aggregated signal (as
illustrated in the up left diagram) and aggregated signal, cor-
rupted with 5%, 10%, 20%, 30% and 40% Gaussian noise,
respectively. As noticed, the aggregated power values are dif-
ferentiated from the real ones, according to the percentage of
the Gaussian noise, and gradually “new” peak values in the
aggregate timeseries are appeared, that could lead to an erro-
neously detection of an appliance in operation or to degrade
the quality of the generated appliance power signal. In Fig. 6,
the aggregated signal distortion, is observed, for the different
percentages of the Gaussian noise. For example, on the 6th
of May, at 6:00 AM, the aggregated signal has its maximum,
with peak values reaching the 4000 W, while, after adding
the Gaussian noise (40%), the same maximum is now higher

(6000 W). Despite of the additive Gaussian noise, it appears
that the GAN’s performance isn’t affected.

Dishwasher appliance has a duration in operation of about
a half hour or even 1 h. The Gaussian noise, distorts the aggre-
gated signal, however, this distortion is not enough to fool the
EnerGAN++ and force it to fault detection. In the next step,
the study examines the behaviour of the EnerGAN++ model in
detecting appliances in operation for short time, since the peak
values from the Gaussian noise act as a catalyst for techniques
that detect the appliance pattern into the aggregated signal.
Toaster, an appliance that remains ON for a short period of
time (some minutes), has been selected. Fig. 7 compares the
generated appliances power values (dark green line) using as
input an aggregate signal corrupted with Gaussian noise (gray
filled color), with the respective estimations after applying
the traditional LSTM (yellow line) and CNN (orange line)
methods. In contrast to EnerGAN++ method that performs
learning in an adversarial framework (between generator and
discriminator), CNN and LSTM methods try to catch the
appliance signal from the aggregated signal using non-linear
regression relationships. Thus, a possible aggregated signal
distortion, leads to erroneous appliance signal detection and
the opposite one. This is obvious, in Fig. 7, where the CNN
and LSTM architectures underestimate the toaster appliance
power values during operation at 8:00 AM, as the Gaussian
noise increases from 5% to 40%. In addition, fault detection
seems to be appeared for LSTM and CNN models. The right
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FIGURE 6. Generated power appliance samples for dishwasher appliance (REFIT). The diagrams show the GAN’s model robustness to noise, for all the
cases (adding Gaussian noise in 5%, 10%, 20%, 30%, and 40%).

FIGURE 7. Generated power values for toaster appliance, The diagrams indicate that the proposed model is robust to noise, whereas the baselines are
weak for the cases with noise.

down diagram (40%) is indicative of the CNN method’s “con-
fusion”. In particular, it appears that the CNN model detects
the toaster appliance in operation, two times in the time in-
terval between 7:45 and 8:00 AM, and in addition, the peak
power values for the appliance in operation reach almost the
400 W, whereas the actual power values should be of about
900 W.

Fig. 8 shows the MAE metric results for noise in the aggre-
gate signal in all cases (5%, 10%, 20%, 30%, 40%) between

the proposed approach and the LSTM and CNN methods,
per appliance. The quantitative results on AMPds and RE-
FIT datasets, shown that the EnerGAN++ approach is ro-
bust to noise in the aggregate signal. Here, it is neverthe-
less necessary to remind that the smaller MAE error val-
ues provide a better performance. It is indicative that in
most appliances, the rate of change of the MAE is lower
than the increase in Gaussian error (for further details see
Table 2).
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FIGURE 8. Quantitative results on AMPds and REFIT datasets. The small MAE error values provide better performance.

TABLE 2. Rate of Change in MAE Error With an Increase on Gaussian Noise. the Comparison is Between the Proposed EnerGAN++ Method and the
BabiLSTM As Well As Sequence to Sequence CNN Methods

Fig. 9 compares the results of EnerGAN++ model with
the corresponding results provided by the sequence to sub-
sequence conditional GAN model [31], given noisy aggregate
signal values, for the REFIT dataset. EnerGAN++ is a robust
to noise model and achieves good performance, regardless of
noise, in contrast to the SEQ2SUB model. SEQ2SUB model

achieves good results in normal cases as shown in [31], how-
ever, given noise aggregate signal input, its performance is
degraded (Fig. 9). Fig. 10 compares the result of EnerGAN
model and WaveNILM [14] model given noisy aggregated
inputs, for the AMPds dataset. The results using WaveNILM
method are significantly degraded with the noisy inputs.
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FIGURE 9. Comparison between EnerGAN++ model results provided after
applying Gaussian noise to the aggregate signal and the respective results
of the disaggregation using the sequence to sub-sequence conditional
GAN model of [31]. The small MAE error values provide better
performance.

FIGURE 10. Comparison between EnerGAN++ model results provided
after applying Gaussian noise to the aggregate signal and the respective
results of the disaggregation using the WaveNILM model of [14]. The small
MAE error values provide better performance.

Table 2 shows the MAE error rate of change
�r for the respective increase of Gaussian noise
((0−5)%, (5−10)%, (10−20)%, (20−30)%, (30−40)%),
as well as the average rate of change �r for all the above
mentioned cases.

�r = MAEn j% − MAEni%

n j − ni
, n j > ni (16)

�r =
∑N

1 |�r|
N

(17)

As observed, the change of MAE by an additional one
percentage point, referred as �r, is lower in our proposed

case, rather than in the two other methods (BaBiLSTM and
seq2seqCNN).

VII. CONCLUSION
In this paper, we attempt to incorporate the autoencoder ar-
chitecture under a generative adversarial network, to achieve
the inverse mapping and extract meaningful appliance power
consumption signal from the generator. Furthermore, we pro-
pose a novel discriminator for sequence classification, that
successfully distinguishes the generated appliance sequences
from the real ones. A hybrid CNN-GRU model ensures that
the discriminator creates proper features and exploits the tem-
poral information of the timeseries. In the discriminator, the
appliance power signal is paired with the aid of the aggregated
signal, to assist the discriminator to properly separate the gen-
erated from the real values. Experimental results indicate the
proposed method’s superiority compared to the current state
of the art.
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