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ABSTRACT We propose sparse representation and dictionary learning algorithms for dictionaries whose
atoms are characterized by Gaussian probability distributions around some central atoms. This extension
of the space covered by the atoms permits a better characterization of localized features of the signals.
The representations are computed by trading-off representation error and the probability of the actual
atoms used in the representation. We propose two types of algorithms: a greedy one, similar in spirit
with Orthogonal Matching Pursuit, and one based on L1-regularization. We apply our new algorithms to
unsupervised anomaly detection, where the representation error is used as anomaly score. The flexibility
of our approach appears to improve more the representations of the many normal signals than those of
the few outliers, at least for an anomaly type called dependency, thus improving the detection quality.
Comparison with both standard dictionary learning algorithms and established anomaly detection methods
is favorable.

INDEX TERMS dictionary learning, sparse representations, anomaly detection, normal distribution

I. INTRODUCTION
Sparse coding is a technique used in signal processing
and machine learning for representing signals using a set
of features, named atoms. Each signal is represented as a
linear combination of a small number of features that are
relevant to the underlying structure. Sparse coding methods
are employed in many applications such as image denoising,
compression, signal reconstruction, clustering, or classifica-
tion. There are many methods for solving sparse coding
problems; remarkable representatives are Orthogonal Match-
ing Pursuit (OMP) [1] and Least Absolute Shrinkage and
Selection Operator (LASSO) [2]; other important methods
can be found in [3].

Anomaly detection (AD) is the process of identifying
patterns or data points that deviate significantly from ex-
pected behavior in a given dataset. Anomalies, also known as
outliers, are observations that do not conform to the normal
behavior or representation of the data. AD is applied to
different types of signals, such as images (medical, satellite,
etc.), time series data (server traffic, meteorology), or graphs
(financial transactions, utility networks). The main require-
ment is identifying unusual representations that may indicate

errors, defects, or fraud in the data. There are several well-
designed algorithms for problems involving anomaly detec-
tion, such as Histogram-based Outlier Detection (HBOS) [4],
Local Outlier Factor (LOF) [5], Connectivity-based Outlier
factor (COF) [6], Subspace Outlier Degree (SOD) [7], and
k-Nearest Neighbors (KNN) [8]. Other AD methods are re-
viewed in [9] and in [10]. The latter work, called ADBench,
takes a practical approach, based on own implementations
and extensive comparisons. Besides the AD methods listed
above, it implements also some recent ones, based on deep
networks [11], Gaussian mixture models [12], copula [13],
empirical cumulative distribution functions [14].

Sparse coding and dictionary learning (DL) have been
previously used for anomaly detection on numerous types
of signals: target detection in hyperspectral images was
performed in [15], by distinguishing it from the normal
background; structural defects in solid media were identified
in [16] with the aid of two distinct dictionaries (for local
and global features respectively) in the representation of
the ultrasonic wavefield response; identifying anomalies in
telemetry time series data has been approached with DL
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in [17]; fault detection was cast as AD in water networks
in [18].

The DL approach works in both supervised and unsuper-
vised learning. In this paper, our focus is on unsupervised
AD. The setup is very simple. A basic set of atoms, named
dictionary, is trained with a DL algorithm, using all (un-
labeled) data. The representation error is used as anomaly
score. The rationale behind this method is that, since normal
signals outnumber the anomalies and are more alike, the
dictionary will be naturally trained to better represent them
in order to minimize the overall representation error. On the
contrary, the anomalies will have poorer representations.

In [19], a selective procedure is used, during the training
stage of the representation basis, to attempt avoiding to
include outliers when training the dictionary. In [20] a new
formulation for the dictionary problem is presented with
the main applicability in anomaly detection; the authors
introduce a row sparsity regularization such that outliers
are represented in a different subspace from the inliers.
Other methods of sparse coding for anomaly detection are
presented in [21] and [22] involving the detection of irregular
heartbeats in ECG. The key idea presented in [22], [23] is the
extension of the atom notion to an infinite set. The atoms are
now represented as cones, offering the possibility of dynamic
actual atoms around some central atoms. We refer generically
to the associated algorithms as Cone-DL. Good results were
obtained in an anomaly detection problem. Moreover, recent
work has shown that sparse coding and DL methods are
appropriate for performing anomaly detection in a wide
range of applications, through a series of tests performed
on an extensive anomaly detection benchmark [23].

Our contribution. In this paper, we present a probabilistic
representation method suitable for applications involving
outlier detection. The fundamental strategy is to see the
atoms of a dictionary D as centers of Gaussian distributions.
We find sparse representations using atoms near the centers
by combined optimization of the representation error and
the probability of the actual atoms. The motivation of our
proposal is the following:

• Flexibility of the representation, provided by the ex-
tension of the space covered by the set of atoms that
replaces the fixed-atom used in the standard approach.

• For this reason, the Gaussian atoms are effective for
capturing gradual variations and localized features in
data, usually associated with normal signals much more
than with anomalies.

• In anomaly detection, we expect that the representation
error of normal signals is improved much more than
for anomalies, with respect to the usual DL setting. For
normal signals, it is much easier than for anomalies to
find better representations with atoms nearby the central
ones (hence with high probability). For anomalies, a
similar reduction cannot be achieved due to the low
probability of the atoms suited for the representation.

The problem may be seen as a weighted total least
squares (TLS) one [24], with the extra constraint of sparsity;
however, it is posed and solved differently than other sparse
TLS approaches [25]–[27]. We propose an algorithm in
OMP style that greedily selects central atoms based on
the probability of the residual to belong to the respective
distributions; then, for the obtained support, we propose a
coordinate descent algorithm for finding the representation
that is optimal for the combined error-probability objective.
Then, a DL algorithm is built on top of this Gauss version
of OMP. The same problems are also solved by a L1
regularization approach, with algorithms that are both simple
and effective.

The paper is organized as follows. In section II we
present the general formulation of our proposed problem.
Section III includes the method of computing the Gaussian
atoms when the support is known. Section IV presents a
natural way for finding the nearest Gaussian atom which
should be used during the support update. Moreover, this
procedure is necessary for the Gaussian version of OMP,
which is presented in full. Section V is dedicated to the
L1 regularization algorithm for sparse representation with
Gaussian atoms. DL algorithms are presented in Section VI;
the atom update rule is simply averaging. In section VII, we
give the results of our methods in outlier detection tasks,
using the ADBench [10] framework. For a specific type of
anomalies, which pose a challenge to several other detection
methods, we obtain better results than the state of the art.

II. PROBLEM FORMULATION
The core of our proposal is to replace each atom of the
dictionary D ∈ Rm×n with an infinite set of vectors
characterized by a probability distribution. More precisely,
instead of an atom di ∈ Rm (column i of the dictionary),
we propose to use vectors xi from the Gaussian distribution
Gi(di, σi) defined by the probability density function

p
(
xi;di, σ

2
i

)
=

1

σm
i (2π)m/2

exp

(
−∥xi − di∥2

2σ2
i

)
. (1)

Here, di is the mean of the distribution and σi is the standard
deviation. Since the distribution is multivariate, we could use
a covariance matrix different from σ2

i I , but we prefer to start
with the simplest configuration.

The sparse representation problem is reformulated such
that both representation error and probability are taken into
account. Given a signal y ∈ Rm, we seek a representation

y ≈
n∑

i=1

αixi, (2)

where only s coefficients αi are nonzero and the atom xi

is associated with the Gaussian distribution corresponding to
di. We name di central atom and xi actual atom.

Besides the approximation error in (2), we characterize
the actual atoms xi by their joint probability of belonging

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2023.3344313

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



<Society logo(s) and publication title will appear here.>

to Gi(di, σi) defined by (1):

p(xi ∈ Gi(di, σi), i = 1 : n) =
∏
αi ̸=0

p
(
xi;di, σ

2
i

)
(3)

Since we will seek to maximize or to bound this proba-
bility, it is more convenient to work with the negative log-
likelihood

− log (p(xi ∈ Gi(di, σi), i = 1 : n)) =

=
∑
αi ̸=0

(
∥xi − di∥2

2σ2
i

+m log
(
σi

√
2π
))

. (4)

In a broad sense, our goal is to compute a sparse
approximation (2) with small error and high probability.
More precisely, to make the problem more amenable to
optimization, we propose an objective that trades off error
and probability:

min
xi∈Rm,α∈Rn

∑
αi ̸=0

1

σ2
i

∥xi − di∥2 + λ∥y −
n∑

i=1

αixi∥2

s.t. ∥xi∥ = 1, i = 1 : n
∥α∥0 = s

(5)
where ∥α∥0 is the number of nonzero elements in the
coefficients vector α and λ > 0 is a trade-off factor.

III. REPRESENTATION PROBLEM WITH KNOWN
SUPPORT
We start by solving the problem with fixed support. For the
sake of simplicity, we assume that the s central atoms (the
means of the Gaussian distributions described by (1)) are di,
i = 1 : s; they are normalized: ∥di∥ = 1. Let y ∈ Rm be
the signal to be represented. The problem (5) becomes

min
xi∈Rm,αi∈R

s∑
i=1

1

σ2
i

∥xi − di∥2 + λ∥y −
s∑

i=1

αixi∥2

s.t. ∥xi∥ = 1, i = 1 : s
(6)

This is a weighted TLS [24] problem. We attempt to solve
(6) by successive optimization (block coordinate descent),
initialized with xi = di. The coefficients αi are initialized
by solving the least-squares problem

min
αi

∥y −
s∑

i=1

αidi∥. (7)

Assume that all variables are fixed, excepting x1; for
convenience, we remove the index 1 from all variables and
constants. The objective of (6) becomes

f(x, α) =
1

σ2
∥x− d∥2 + λ∥ỹ − αx∥2 (8)

where

ỹ = y −
s∑

i=2

αixi. (9)

Proposition 1:

The function
h(x) = min

α
f(x, α) (10)

is unimodal on the chord defined by the intersection of the
hypersphere ∥x∥ = 1 with the plane defined by d and ỹ,
between d and ỹ.

Proof. See the appendix.
The function (8) is convex in each of the variables x and

α (but not in both). If x is fixed, then the optimal value of
α is

α =
xT ỹ

∥x∥2
. (11)

Replacing in (8) we get

h(x) =
1

σ2
∥x− d∥2 + λ

∥∥∥∥ỹ − xT ỹ

∥x∥2
x

∥∥∥∥2 . (12)

Prop. 1 says that the minimum of (12) is between d and
ỹ, at the point where moving towards d or ỹ increases the
objective. So, essentially, we have to search for solutions of
the form

x = γd+ (1− γ)ỹ, (13)

with γ ∈ [0, 1]. Normalization is necessary and also align-
ment, i.e., a change of sign of d or ỹ, if their scalar product
is negative.

So, we find the minimum of (12) by line search on
the chord joining d and ỹ/∥ỹ∥ on the hypersphere, thus
enforcing the constraint ∥x∥ = 1. Several techniques can
be used; we have chosen golden section, which is simple
and robust, although not the fastest. The above described
algorithm for minimizing (12) is named Atom update for
further reference.

Returning now to the coordinate descent algorithm for
solving (6), of which minimizing (12) is just a step, we note
that once x1 and α1 have been updated, the coefficients αi

are no longer optimal. Their optimal value for the current xi

can be found by solving the least squares problem similar
to (7):

min
αi

∥y −
s∑

i=1

αixi∥. (14)

We can solve it after the update of each xi, noting that a fast
algorithm is possible since we update only the i-th column
of the matrix involved in the least squares problem. Thus,
we update an orthogonal triangularization.

Remark. The algorithm described above converges. Due
to Prop. 1, the minimum of (12) can be computed with
good approximation by the golden section algorithm. So,
each coordinate descent step indeed decreases the objective
of (6). The same happens when solving (14).

IV. OMP WITH GAUSSIAN ATOMS
In this section, we present the OMP method adapted for
Gaussian atoms, which solves problem (5).

The main difficulty is identifying the support of the
representation, since once the support is available, we know
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to compute the actual atoms and their coefficients from the
previous section. We assume that the central atoms D and
the associated standard deviations are given.

In the spirit of the classical OMP, the atoms are chosen
sequentially. In order to add a new atom to the support, we
search for the central atom that is the nearest to the current
residual. However, the distance is measured in a probabilistic
sense, as the probability of the residual to belong to a
distribution (1).

Let us assume that k atoms have been selected and the
current residual is r̃ = y −

∑
i∈S αixi, where S is the

current support. Since the central atoms can have directions
that point away from the current residual, we adjust them
based on the scalar product between the atoms and the
residual, φ = sign(r̃⊤D). If a scalar product is negative,
the atom is reversed, such that it is nearest to the residual
(this implies also reversing the sign of the coefficient in the
linear representation). The nearest central atom is identified
by the highest probability (1) of the residual, which amounts
to the minimum of (compare with (4))

∥r̃ − φidi∥2

2σ2
i

+m log
(
σi

√
2π
)
. (15)

Once the central atom is found, the current support is
updated and the method continues with the search for the
actual atom belonging to the Gaussian distribution around
the chosen central atom. This implies changing all the actual
atoms of the support and is done as described in the previous
section, using coordinate descent. A predetermined number
T of iterations is used, in which we sweep the current support
and sequentially update the atoms and their coefficients;
alternatively, one can iterate until atom changes fall below a
given tolerance. We summarize the steps of the Gauss-OMP
method in Algorithm 1. Since Atom update is a coordinate
descent algorithm, the representation error always decreases.
Although Gauss-OMP converges, the chosen support is not
necessarily optimal, hence attaining the minimum of (5) is
not guaranteed.

The complexity of Gauss-OMP is O(Tms2 + smn). The
operations in steps 10-13 are O(m), although the hidden
coefficient of m can be large, due to the golden section
search made by Atom update. The three loops (steps 2, 7,
8) account for the Ts2 part of the complexity. The smn part
of the complexity is due to steps 4 and 5. So, considering T
a constant, the complexity is similar to that of OMP, which
is O(ms(n+ s) + s3) [28]. However, Gauss-OMP is much
slower due to Atom update.

V. CONVEX RELAXATION
Using a standard L1 relaxation, we replace the objective of
(5) with

n∑
i=1

1

σ2
i

∥xi − di∥2 + λ∥y −
n∑

i=1

αixi∥2 + γ∥α∥1 (16)

where γ > 0 is a constant. Of course, the constraints ∥xi∥ =
1, i = 1 : n, need to be enforced.

Algorithm 1: Gauss-OMP

Data: central atoms dj ∈ Rm with standard
deviations σj ∈ R; (dj and σj define Gaussian
atoms Gj(dj , σj), j = 1 : n)
vector y ∈ Rm

sparsity level s
number of search iterations T

Result: support S ⊂ 1 : n of sparse representation
actual atoms xj ∈ Rm, j ∈ S
representation coefficients αj ∈ R, j ∈ S

1 Initialize r̃ = y, S = ∅, X = D
2 for k = 1 to s do
3 Normalize residual: r̃ = r̃/∥r̃∥
4 Compute projection orientations: φ = sign(r⊤D)
5 Decide next index based on probabilities:

j = argmini∥r̃−φidi∥2/(2σ2
i )+m log

(
σi

√
2π
)

6 Increase support: S ← S ∪ {j}
7 for t = 1 to T do
8 for i = 1 to k do
9 Index in full dictionary j = S(i)

10 Remove current atom from residual:
ỹ ← r̃ + xjαj

11 Update atom:
xj = Atom update(dj , σj , ỹ, λ, ε)

12 Update αj with (11) (with x = xj)
13 Update residual: r̃ ← ỹ − xjαj

We adopt a block coordinate descent approach and opti-
mize successively the actual atoms xj and then immediately
the corresponding representation coefficient αj .

Assume first that all variables are fixed except xj . Denote
X̂ the matrix having the vectors xi, i ̸= j, as columns.
Similarly, α̂ is the vector α from which αj was removed.
Denoting ŷ = y−X̂α̂, the terms of (16) that depend on xj

are
f(xj) =

1

σ2
j

∥xj − dj∥2 + λ∥ŷ − αjxj∥2

By setting the gradient of f to zero, we obtain the new atom

xj =
σ2
j

λα2
jσ

2
j + 1

(
αj ŷ +

1

σ2
j

dj

)
. (17)

We proceed to update coefficient αj , assuming all other
variables are fixed. The function to be optimized is

g(αj) = λ∥ŷ − αjxj∥2 + γ|αj | (18)

This is a convex function whose minimum is given by

αj = soft thr
(
xT
j ŷ,

γ

2λ

)
, (19)

where soft thr is the soft thresholding operator.
Algorithm 2 implements the above approach. The initial

representations are computed by running the FISTA algo-
rithm [29] with the dictionary of central atoms. This gives a
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Algorithm 2: Gauss-L1

Data: central atoms dj ∈ Rm with standard
deviations σj ∈ R, j = 1 : n
vector y ∈ Rm

number of iterations nit

parameters λ, γ from (16)
number of FISTA iterations nFISTA

step parameter t for FISTA
Result: actual atoms xi ∈ Rm, i = 1 : n

representation coefficients α ∈ Rm

1 Initialize X = D, α = 0
2 Compute initial representations:

α = FISTA(y,X,α, γ/λ, nFISTA, t)
3 for i = 1 to nit do
4 Compute residual: r = y −Xα
5 for j = random permutation of 1 : n do
6 Remove current atom from residual:

ŷ ← r + αjxj

7 Update actual atom xj with (17)
8 Update coefficient αj with (19)
9 Update residual: r ← ŷ − αjxj

10 Normalize atoms (columns of X)

good start of the algorithm. The atoms are updated in random
order in each iteration, to prevent stalling. The residual is
efficiently computed by updating it with the current atom;
full recomputation is made only in each master iteration.
Otherwise, the algorithm is simple: formulas (17) and (19)
are repeatedly used. Note that normalization is made only
at the end of an iteration. Besides the data and parameters
from (16), the other input parameters are related to FISTA:
the number of iterations is nFISTA, which should not be
too large, since an approximate solution is sufficient; the
step size t is specific to proximal gradient methods and
ideally should be the inverse of the largest eigenvalue of
XTX; finally, the regularization constant is γ/λ, as visible
from (16).

The complexity of Gauss-L1 is O(nitmn). Each individ-
ual atom update (steps 6–9 of Algorithm 2) requires O(m)
operations. So, while the complexity per iteration is light, the
number of iterations nit is an important factor that is hard
to quantify. The experiments in Section VII suggest that 100
iterations are more than enough for convergence.

It is worth mentioning that the algorithm does not guar-
antee the decrease of the objective. Although (17) and (19)
decrease the objective, the normalization in each iteration
may increase it. However, the results shown in Section VII
suggest that each iteration decreases the objective.

VI. DL WITH GAUSSIAN ATOMS
We aim now to solve the DL problem associated with
dictionaries of Gaussian atoms. Given a matrix Y ∈ Rm×N ,

Algorithm 3: DL-Gauss (-OMP or -L1)

Data: training signals Y ∈ Rm×N

initial central atoms D ∈ Rm×n

standard deviations σj ∈ R, j = 1 : n
number of iterations nit

Result: trained dictionary D ∈ Rm×n

1 for i = 1 to nit do
2 Initialize D̃ = 0m×N

3 for ℓ = 1 to N do
4 Compute representation α and actual atoms

X for yℓ with Gauss-OMP or Gauss-L1
5 for j = 1 to n, αj ̸= 0 do
6 d̃j ← d̃j + xj

7 Normalize columns of D̃
8 D ← D̃

whose columns are the training signals, we want to find the
dictionary D of central atoms such that the sum over all
signals of objective functions like those in (5) or (16) is
minimum. We assume that the standard deviations σi are
given.

We adopt the standard technique of alternating sparse
representation steps (using Algorithms 1 or 2) and dictionary
update steps. To see how the latter can be done, consider the
representation of signal yℓ, which is

∑n
i=1 αiℓxiℓ. We note

that in both (5) and (16), the only term that directly depends
on the central atoms is the first. In the DL context, it becomes

N∑
ℓ=1

n∑
i=1

1

σ2
i

∥xiℓ − di∥2 =

n∑
i=1

1

σ2
i

∑
ℓ,αiℓ ̸=0

∥xiℓ − di∥2. (20)

The second sum contains only the actual atoms effectively
used in the representation. This is explicitly the case in (5).
For (16), this is justified by the update formula (17): when
αj = 0, it results that xj = dj ; so, the terms for which
αiℓ = 0 naturally disappear from (20).

The update rule for the central atoms is clear from (20).
Once the actual atoms have been computed, the central atoms
are computed with

di =
∑

ℓ,αiℓ ̸=0

xiℓ, (21)

followed by normalization. This formula is not only simple,
but allows on the fly computation of the future central
atoms, without the necessity of storing the actual atoms.
Algorithm 3 presents the structure of DL for dictionaries
with Gaussian atoms.

We note that the central atoms update (21) is a very
light operation and hence the complexity of DL-Gauss is
essentially given by the representation algorithm.

Remark. Regarding convergence, DL-Gauss shares the
behavior of other DL algorithms. Although Gauss-OMP
gives the optimal solution for the chosen support, in the
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context of DL-Gauss-OMP there is no guarantee that the
supports that are chosen are better than those at the pre-
vious iteration. Also, although the update (21) of central
atoms decreases the objective, there is no guarantee that the
next computed representations have smaller error. Similar
comments apply to DL-Gauss-L1. So, there is no guarantee
that DL-Gauss decreases the objective of (5) or (16) at
each iteration. However, like for most DL algorithms lacking
such guarantees, the practical behevior, illustrated in the next
section, is very good.

VII. ANOMALY DETECTION EXPERIMENTS
In this section, we present the main results obtained with the
proposed methods for dictionaries with Gaussian atoms. Our
focus on anomaly detection is supported by the possibility of
trade-off between representation error and likelihood, which
should favor the many normal samples more than the few
anomalies.

A. Evaluation setup
The anomaly detection procedure is carried out in two stages.
The first one is the training of a dictionary D capable of
representing all samples of the dataset. The second stage
represents the anomaly classifications, in which we identify
the outliers as the samples that obtain the worst representa-
tion score.

Anomaly scores. Due to the combined nature of the
objectives of (5) and (16), we can use for anomaly detection
several scores related to a signal y.

• The first choice is the error

Se(y) = ∥y −
n∑

i=1

αixi∥. (22)

Error was used in several other DL applications to
anomaly detection, like [17], [21], [30].

• Another candidate is the probability (1) of the repre-
sentation or the corresponding negative log-likelihood

Sp(y) =
∑
αi ̸=0

1

σ2
i

∥xi − di∥2 +m log(σi). (23)

The score (23) is especially suited for the OMP versions
of Gaussian DL, as the atoms are chosen based on it
in (15).

• Finally, the value of the objectives (5) or (16) can also
be used.

Competing methods. We compare our algorithms to the
14 ADBench methods suitable for unsupervised anomaly;
see [10] for the complete list; most of them are cited in
Section I. ADBench appears to be the most comprehensive
framework and benchmark for anomaly detection currently
available. It is a continuator of Python Outlier Detection
(PyOD) [31] and it contains the most used algorithms in
anomaly detection tasks. Moreover, it contains a benchmark
with datasets proposed as a reference.

Standard dictionary learning is performed using the Ap-
proximate version of the K-SVD algorithm [32] [33]; for
the coefficients update during the learning phase, the OMP
algorithm is used. The dictionaries were trained with 40 iter-
ations. Standard DL was used for generating the dictionaries
used in Gauss-OMP and Gauss-L1, but also for anomaly
detection, as the baseline DL method; the anomaly scores
are the representation errors given by OMP.

The Gauss-OMP and DL-Gauss-OMP algorithms have
been developed in Python and are compatible with the open-
source anomaly detection framework PyOD [31]. Gauss-L1
and DL-Gauss-L1 have been implemented in MATLAB; the
Python version will be soon available. The code of our
algorithms is available at https://asydil.upb.ro/software/.

Performance indicators. We classify the methods using
two performance indicators:

• The ROC AUC (Receiver Operating Characteristic Area
Under Curve) values for each dataset and their average
over all datasets, based on the scores described above.

• The average rank, in terms of ROC AUC, of each of our
methods in the context of the 14 ADBench methods,
over all used datasets. The ROC AUC results of the
15 methods for each dataset are sorted; the best rank
is 1 and the worst is 15; tied values are given equal,
averaged ranks. The ranks obtained by each method are
then averaged.

Datasets. ADBench drew attention on the influence of
anomaly types on the performance of the detection methods
and proposed four anomaly classes that differ with respect
to their resemblance with normal samples: local, global,
dependency and cluster anomalies; refer to [10] for a detailed
description. The benchmark also provides a procedure for
synthetically generating these types of anomalies starting
from the normal signals in each dataset. We exclude local
and cluster anomalies from our tests, as they are not suited
for the error criterion that we use for distinguishing between
the two types of samples. The global anomalies differ from
the normal samples to such an extent that many of the
benchmark methods perfectly detect them and we therefore
exclude them as well. Dependency anomalies, which are
signals with independent samples, unlike those of normal
data, appear to be well suited for our methods.

Out of the 57 datasets in the benchmark, we perform the
tests on 30 sets that span numerous domains of applications
including healthcare, astronautics, linguistics, biology, chem-
istry and others. We generate the dependency variants of all
30 datasets using the software from [10]. The proportion of
anomalies in the datasets ranges from 1% to 40%, however
60% of datasets contain less than 10% anomalies. The list
of datasets and the associated ROC AUC results for both the
ADBench methods and standard DL algorithm can be found
in [23, Table C.7].

All the simulations were performed in the spirit of an
unsupervised method. We split each dataset in two: 70% for
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training and 30% for testing, respecting the global proportion
of anomalies in both sets (stratified sampling). The labels of
the training set are not otherwise used. Z-score normalization
was performed on all data. For each dataset, we ran 5
independent rounds, with random initializations. The ROC
AUC values that we report are mean values over the 5 runs.

Parameters. Our methods require the use of some hyper-
parameters, which we explored with a partial grid search. In
order to further broaden the representation accuracy between
normal samples and anomalies, we impose that the samples
be represented using a few dictionary atoms, i.e., set the
sparsity level to a lower value than the usual DL setup.
More precisely, we took s ∈ {2, 3}. We used dictionaries
with overcompleteness factor c = n/m = 2. These choices
are also supported by complexity reasons. An important
hyperparameter is the trade-off factor λ from (5) and (16); we
took λ ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103}. The sparsity
enforcing parameter from (16) was generally taken γ = λ.
Finally, we adopted two sets of standard deviation values;
in one, the value σ = 0.05 is associated with all Gaussian
atoms; in the other, the standard deviations have uniformly
random values in the interval [0.01, 0.1].

The other parameters are set as follows. The number of re-
finement iterations in Gauss-OMP is T = 10. The parameters
of FISTA in Gauss-L1 are nFISTA = 50, t = 0.0001. The
number of iterations is nit = 100 for both Gauss-L1 and DL-
Gauss-L1, but only 40 for DL-Gauss-OMP. The dictionary
D used in Gauss-L1 is learned on the training data with 40
iterations of AK-SVD with a sparsity level s = 2 and random
initialization. The same dictionary is used as initialization for
DL-Gauss-L1.

B. Results
Convergence curves. We start by illustrating the evolution of
our methods during the optimization process. The behavior
of Gauss-L1 is shown in Figures 1 and 2. The first shows
the individual behavior for 100 randomly chosen test signals
from the dataset landsat, while the second shows the evolu-
tion of the mean values and standard deviation intervals for
all test signals. In both cases, the parameters are λ = γ = 1,
c = 2, σ ∈ [0.01, 0.1]. From left to right, we see the
error (22), the quadratic term of (23) (reflecting the distance
between the actual and the central atoms), and the objective
of the optimization problem (16). First of all, we note that
the objective of the optimization problem decreases not only
in average, but for all signals, although not necessarily by
much, a sign that the initialization is good. The error has
also a decreasing tendency, although more erratic (since
not directly optimized). The distance has very small values
for many signals, especially for the normal ones, which
means that the actual and central atoms are nearly identical;
however, for some signals, the distance increases and has
relatively large values. Finally, we note that, in this case, the
error and the objective value are larger for the anomalies.
An important remark is that the decrease of the error and of

the objective is larger for normal signals than for anomalies,
showing that our approach indeed attains one of its goals. In
particular, for a few normal signals whose error and objective
are initially larger than those of some anomalies (initial
values correspond to AK-SVD), our algorithm manages to
decrease the error and the objective below those of all
anomalies. So, there are signals misclassified by AK-SVD
that are correctly classified by Gauss-L1. Figure 2 suggests
that indeed, in this case, the error gives the best separation
of normal and abnormal signals, while the distance would be
a unreliable anomaly score. The behavior of DL-Gauss-L1
is similar. For other datasets the situation is not necessarily
so neat, but the trends are similar.

The evolution of DL-Gauss-OMP is shown in Figure 3,
on 500 randomly chosen signals from the dataset cardio,
with λ = 1000, c = 2, s = 2, σ = 0.05. This time,
the probability score (23) gives the best anomaly detection;
since λ is large, the error is very well optimized for all
signals; the small number of anomalies in cardio makes
it less costly to use actual atoms that are farther from the
central ones, hence the good detection performance of the
probability score. The values of the objective are generally
decreasing, although individual curves (not shown) are not
decreasing as nicely as for the L1 algorithm. We also note
that, although at initialization (with AK-SVD), the normal
and abnormal signals are not well separated (their average
scores are about the same), our algorithm is able to separate
them fairly well.

Anomaly detection. The rank and ROC AUC results of
Gauss-OMP and DL-Gauss-OMP are presented in Table 1
and those of Gauss-L1 and DL-Gauss-L1 in Table 2; this
is a selection containing the best results. In Table 1, the
anomaly score that gives the best results varies; it is indicated
in the first column as ’err’ for (22), ’prob’ for (23) and
’obj’ for the objective of (5). For the L1 methods, the best
score is always the error (22). The explanations of Figures
1–3 have a larger support here: indeed, for small λ the
error is the best score, while for large λ, likelihood is best.
The optimization objective is also good in the midrange.
Somewhat surprisingly (possibly due to our inability to find
the right parameters), the OMP methods give poor results
with small λ and the L1 methods are bad for large λ. DL-
Gauss-OMP gives usually a significant improvement over
Gauss-OMP. The improvement of DL-Gauss-L1 over Gauss-
L1 is rather marginal.

To put the numbers in context, here are some values for
comparison. Whenever the rank is ≤ 2.50, our methods have
a better rank than all the 14 from ADBench. Extensive results
of AK-SVD and Cone-DL methods can be found in [23]; we
give here only the best. AK-SVD obtains the best rank of
1.93, while a Cone-DL method has a best of 1.67. So, DL-
Gauss-OMP is at the level of AK-SVD, while DL-Gauss-L1
narrowly beats Cone-DL.

The situation is more clear for ROC AUC. The best
method from ADBench, COF, has 0.9274. AK-SVD has a
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FIGURE 1. Gauss-L1 evolution for 100 test signals from the dataset landsat. Left: error. Middle: distance between actual and central atoms. Right:
objective function. Blue: normal signals. Red: anomalies.

FIGURE 2. Gauss-L1 evolution for all test signals from the dataset landsat. Left: error. Middle: distance between actual and central atoms. Right:
objective function.

FIGURE 3. DL-Gauss-OMP evolution for signals from the dataset cardio. Left: error. Middle: log-likelihood (23). Right: objective function.

best of 0.9329. Our best results are clearly better. The best
of Cone-DL methods is 0.9443. Gauss-L1 and DL-Gauss-L1
achieve better results.

Our tests were run on a Lenovo laptop with Intel i7
processor and 32 GB of RAM. The running times of our
algorithm for processing all 30 datasets are shown in Table 3.
The training time for Gauss-OMP and Gauss-L1 is actually
that of AK-SVD; note the differences between the MATLAB
and Python implementations. Testing is made with exactly
the same operations for the OMP methods, so the times
should be identical in ideal conditions; same remark holds
for the L1 methods. It is clear that DL is a costly procedure in
this context and so efforts to speed it up are necessary. Note
however that AK-SVD uses a highly optimized pre-compiled
OMP implementation, while we have plainly implemented
our methods.

TABLE 1. Results for Gauss-OMP methods

parameters Gauss-OMP DL-Gauss-OMP
score s λ σ rank ROC AUC rank ROC AUC

err 2 1 0.05 4.07 0.8676 3.13 0.8967
err 2 1 ∈ [0.01, 1] 6.77 0.8092 4.10 0.8817
obj 2 10 0.05 4.27 0.8643 2.20 0.9271
obj 2 10 ∈ [0.01, 1] 6.70 0.8176 3.37 0.9192

prob 2 100 0.05 3.77 0.8742 3.57 0.8802
prob 2 100 ∈ [0.01, 1] 5.67 0.8267 2.50 0.9212
prob 2 1000 0.05 3.70 0.8685 1.93 0.9401
prob 2 1000 ∈ [0.01, 1] 6.80 0.8042 2.63 0.9357
prob 3 1000 0.05 4.40 0.8464 2.10 0.9283
prob 3 1000 ∈ [0.01, 1] 6.60 0.8110 2.47 0.9344

At this moment, Gauss-L1 appears to give the best trade-
off: very good results (better than state of the art) and
affordable execution time.
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TABLE 2. Results for L1 methods using the error score (22).

Gauss-L1 DL-Gauss-L1
parameters σ rank ROC AUC rank ROC AUC

λ = γ = 0.001 0.05 1.77 0.9479 1.77 0.9479
∈ [0.01, 1] 1.73 0.9503 1.73 0.9503

λ = γ = 0.01 0.05 1.80 0.9453 1.90 0.9454
∈ [0.01, 1] 1.80 0.9457 1.80 0.9458

λ = γ = 0.1 0.05 1.83 0.9465 1.83 0.9468
∈ [0.01, 1] 1.73 0.9471 1.60 0.9476

λ = γ = 1 0.05 1.73 0.9492 1.70 0.9513
∈ [0.01, 1] 1.70 0.9498 1.63 0.9519

TABLE 3. Execution times (in seconds) of our algorithms for all 30

datasets.

algorithm training testing

Gauss-OMP 80.8 332.4
DL-Gauss-OMP 3528 331.6
Gauss-L1 22.8 157.7
DL-Gauss-L1 1585 157.4

VIII. CONCLUSIONS
In this paper, we present a novel perspective on the sparse
representation problem and derive an algorithm inspired
by Orthogonal Matching Pursuit, named Gaussian OMP.
This method obtains a sparse representation for a given
input signal by taking into account a Gaussian distribution
for each atom, which is thus extended to an infinite set.
The optimization objective combines the representation error
and the probability of the actual atoms belonging to the
distributions defined by the central atoms.

Moreover, we propose an L1 regularization method suited
for sparse representations with Gaussian atoms that uses
a block coordinate descent approach. We also present a
solution for performing the dictionary update step in the DL
problem when working with Gaussian atoms, that works for
both our proposed Gauss-OMP and the L1 variant, Gauss-L1.

These strategies can be used in anomaly detection tasks.
To represent outliers, attempting to find actual atoms with a
high probability is more likely to decrease the representation
error more than for normal signals, hence Gauss-DL can
potentially obtain better results than standard DL.

We show that Gaussian atoms representation methods can
obtain competitive results in the context of anomaly detection
open-source benchmarks.

Further research will be focused on methods to choose
different variances for different Gaussian atoms and on
speeding up the algorithms.

APPENDIX: PROOF OF PROPOSITION 1
1. We first prove that the solution is in the plane defined
by d and ỹ. Multiplying with σ2 (which does not change
unimodality, hence we abusively keep the notation h), the
function (10) can be written as

h(x) = h1(x) + βh2(x), (24)

where h1(x) = ∥x − d∥2, h2(x) = minα ∥ỹ − αx∥2, and
β = σ2λ.

Lemma. If x, ξ ∈ Rm are such that ∥x∥ = ∥ξ∥ = 1,
xT ỹ > 0 and ξT ỹ > 0 (changing the sign of x does not
change the value of h2) and ∥ỹ−x∥ < ∥ỹ−ξ∥, then h2(x) <
h2(ξ).

Proof. With the optimal form (11) of α, we get

h2(x) = ∥ỹ − (xT ỹ)x∥2 = ∥ỹ∥2 − (xT ỹ)2.

Since ∥ỹ − x∥2 < ∥ỹ − ξ∥2 implies xT ỹ > ξT ỹ and these
scalar products are positive, the conclusion is obvious.

Assume now that ξ is not in the plane defined by d and
ỹ. By (spherical) projection, we can find x on that plane,
with ∥d−x∥ < ∥d− ξ∥ and ∥ỹ −x∥ < ∥ỹ − ξ∥ (meaning
that x is closer to both d and ỹ). The first inequality means
that h1(x) < h1(ξ); through the above Lemma, the second
inequality implies h2(x) < h2(ξ). We conclude that h(x) <
h(ξ). Hence, the solution is on the plane defined by d and
ỹ.

2. Since the problem has been reduced to a plane, we can
solve it in 2D after an appropriate rotation. Since ∥x∥ = 1,
we take x1 = cos θ, x2 = sin θ. The optimal value (11) of
α is

α = xT ỹ = ỹ1 cos θ + ỹ2 sin θ.

Using this value, after some straightforward calculation it
results that (the variable is now θ instead of x):

h2(θ) = (ỹ1 sin θ − ỹ2 cos θ)
2
.

Since a rotation does not change the properties of the
function, we can take ỹ2 = 0. Also, since only the angle
between the directions of d and ỹ matters, it is enough to
take θ ∈ [0, π/2] and examine only the case d1 ≥ 0, d2 ≥ 0.
So, the function (24) becomes

h(θ) = (cos θ − d1)
2 + (sin θ − d2)

2 + βỹ21 sin
2 θ.

Its derivative is

h′(θ) = 2
(
d1 sin θ − d2 cos θ + βỹ21 sin θ cos θ

)
. (25)

We note that h′(0) < 0, hence h is decreasing in the
neighborhood of zero. Let θ0 > 0 be the smallest for
which h′(θ0) = 0, which also implies that h′(θ) < 0
for θ ∈ [0, θ0). The first two terms of (25) are increasing
functions of θ ∈ [0, π/2]; the third is positive on the same
interval. Thus, it results that h′(θ) > 0 for θ ∈ (θ0, π/2]. So,
the function h(θ) is unimodal on [0, π/2] and it has a single
minimum. The angle θ = 0 corresponds to ỹ, while the
angle corresponding to d is somewhere in (0, π/2]. Hence,
the function (10) is unimodal on the chord between the
directions d and ỹ.
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