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ABSTRACT This paper proposes a probabilistic approach for extracting time-varying and irregular time
signature information from polyphonic audio extracts, subsequently providing beat and bar line positions
given inferred time signature divisions. This is achieved via dynamically evaluating the beat tempo as a
function of time through finding an optimal compromise in beat and bar alignment in the time and tempo
domains. Time signature divisions are determined based on a new representation, termed the Metrogram,
that presents time-varying information regarding rhythmic and metric periodicities in the Tempogram. Our
methodology is characterised by its ability to provide a distribution over metric interpretations, offering
insights into the diverse ways music can be rhythmically perceived. Results indicate high-level accuracy for
a variety of polyphonic extracts containing irregular, complex, irrational, and time-varying time signatures.
Accuracy rivalling state-of-the-art methodologies is also reported in a beat tracking task performed on the
standard Ballroom Dataset. The paper offers insights into the field of dynamic time signature recognition
and beat tracking, offering a valuable and versatile resource for the analysis, composition, and performance
of music.

INDEX TERMS Audio signal processing, Beat tracking, Dynamic time signature recognition, Metrogram
transform, Music analysis, Polyphonic extracts, Rhythmic periodicity, Tempo inference, Time-varying time
signatures, Transcription.

I. Introduction
The process of transcribing complex polyphonic perfor-
mances to musical notation is a notoriously arduous task,
requiring the ability to distinguish numerous instrumental
lines, separable often only via remarkably subtle variances in
timbre, frequency, and waveform characteristics. Automated
music transcription is a field of great significance in the
music and educational industry, especially for primarily
improvised genres, such as jazz. In particular, one of the
most significant and challenging tasks is that of time sig-
nature inference and beat tracking, especially in metrically
ambiguous extracts, a common occurrence across genres [1]–
[3]. Inaccurate beat tracking for performances with rubato
(time-varying tempo) or multiple metric interpretations, re-
gardless of the accuracy of note detections, will result in
poor quality transcriptions given the misalignment of key
rhythmic structures in the transcription [4], [5].

Several competing methods exist in the literature for
tempo and time signature estimation from audio, primarily

through the employment of Tempograms [21], [22] and sim-
ilarity matrices [17], [20], respectively. Various probabilistic
methods are employed to facilitate meter detection [19],
[25], with Hidden Markov Models (HMMs) paired with bar
pointer models, in particular, proving successful for beat
and downbeat estimation tasks for genre-specific applica-
tions [6], [8]–[10], [12], [13], [15]. The advent of Deep
Learning (DL) approaches has presented numerous genre-
specific methods for beat and downbeat tracking, primarily
through the employment of Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Temporal
Convolutional Networks (TCNs) [23], [24], [34]–[38]. HMM
bar pointer models have also been successfully applied to
irregular (“odd”) time signature beat tracking tasks [6], [8],
[13], [14], however, the approaches assume a constant metric
division (often a priori). Likewise, for methods that tackle
time-varying time signatures using HMMs [10], [16] or
RNNS [24], [39], the models employ cascade formats, such
that joint beat and bar tracking is performed sequentially
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resulting in beat lengths independent of metric properties.
The subjectivity of perceived pulse (beat) positions and
lengths is addressed in literature through the employment
of agents [5], [31], yet the process has not been generalised
to joint time signature and beat tracking tasks. In general,
the majority of algorithms assume either a constant tempo,
beat length, or time signature division over time, providing
methods for extracting each independently, and thus poor
performance is reported for extracts with rubato and irregular
beat and time signature changes [25]. Likewise, although
high-level accuracy is reported for DL and HMM approaches
for specific genres, poor performance is often reported on
unseen genres [42] given that fundamentally, the models are
constrained by the training data and genre-specific rhythmic
and metric properties.

This paper instead proposes transforms in conjunction
with novel probabilistic tracking algorithms, aimed specif-
ically at extracting time-varying rhythmic and metric fea-
tures from non-genre specific polyphonic extracts, such as
providing metric interpretations, detecting time signature
changes, rubato, and irregular beat length, which is often
present in jazz and other improvisatory genres. As such,
the paper evaluates the model on a custom dataset featuring
a variety of metrically diverse extracts, with varying time
signatures, metric modulations, and rubato, as well as on the
Ballroom Dataset, in order to verify its capability in fixed
time signature beat tracking against the state of the art.

II. Methodology
A. Overview
This paper proposes a posterior distribution that is max-
imised in order to optimally fit the model to the audio
extract, with respect to a time series of tempo values and
a phase offset, which together determine the relative posi-
tions of the bar and beat (tatum) times in the extract. The
system iteratively samples the hyperparameter space of the
model, optimising the posterior conditioned on the sampled
hyperparameters with respect to the tempo values and phase
offset until satisfactory convergence is achieved for each
sampling iteration. The optimised posterior probabilities for
the sampled hyperparameter configurations are compared
and iterated until an appropriate global solution is found.
The posterior distribution is constructed based upon a Note
Onset Detection Function (NODF), a 2D Morlet Convolver,
and a Fundamental Tempogram, which is used finally to gen-
erate the Metrogram, as described in the following sections.
The analysis is presented in continuous time for simplicity,
although of course, the practical implementation involves a
time and frequency discretisation.

B. Note Onset Detection Function
As input to the Tempograms, a note onset detection function
(NODF) is required. This paper proposes a two-dimensional
NODF that predominantly exploits frequency domain infor-
mation in order to distinguish more complex instrumental
lines in polyphonic and polytimbral environments, which

may have otherwise been hidden in the analytic envelope
of the time domain.

The proposed NODF is based on the smoothed time-
derivative of a spectrogram-like representation, using vari-
able resolution wavelet basis functions in the analysis step:

f (ω, t) = |x (t) ⊛Wω (t)| =
∣∣∣∣∫ ∞

−∞
x (τ)Wω (t− τ) dτ

∣∣∣∣ , (1)

where f (ω, t) is the magnitude of the function evaluated
at frequency ω, and time t. x(t) is the continuous time
audio signal (mono), and Wω (t) is a wavelet function for
frequency ω. Here we employ the Morlet wavelet, defined
as a complex exponential with a Gaussian envelope [44]:

Wω (t) =
1

σω
exp

(
−

1

2σ2
ω

t2
)
exp (iωt). (2)

A wavelet-based approach is employed in our analysis
of polyphonic music due to its ability to finely tune time-
frequency resolutions at a semitone level, for example. A
smoothed derivative approximation of f (ω, t) is then ob-
tained by convolving, with respect to time, the first derivative
of a Gaussian kernel, g′σd

(t), with standard deviation σd.
Subsequently, the output is summed over N harmonics of the
frequency ω; the resulting value is limited to be above zero
so that it is suited for note onset detection, rather than note
release. As such, the method is analogous to the Harmonic
Product Spectrum (HPS) [11], [18] used in the detection of
fundamentals, however, our approach employs summations
instead of multiplications of harmonics:

D (ω, t) = max

{
0,

N∑
n=1

f (nω, t) ⊛ g′σd
(t)
√

σ2
ω + σ2

d

}
, (3)

where n is the harmonic index (1 ≤ n ≤ N ).
√

σ2
ω + σ2

d

is employed as a normalisation term. The inner function,
f (ω, t)⊛ g′σd

(t), can be expanded as:

=

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
x (t1 − τ) exp

(
−

1

2σ2
ω

τ
(
τ − 2iωσ2

ω

))
dτ

∣∣∣∣
×

(t1 − t)

σωσ3
d

exp

(
−

1

2σ2
d

(t− t1)
2

)
dt1.

(4)

D (ω, t) is now evaluated for each of the 88 semitones
ω (s) = A02

s−1
12 , where A0 = 2π×27.5, to yield the NODF.

The parameter σω, which determines the time-frequency
resolution of the analysis, is chosen to respect the logarithmic
spacing of the musical pitches, such that the frequency width
is one-sixth of the distance between adjacent semitones. A
factor of 6 is chosen as a reasonable compromise between
frequency resolution and the potential inclusion of non-
equally-tempered tones. The frequency resolution resulting
from the wavelet analysis step is obtained from the Fourier
Transform of the proposed wavelet:

W̄ω (ϕ) = F {Wω (t)} =
√
2π exp

(
−
(ϕ− ω)2 σ2

ω

2

)
. (5)

which is of course a Gaussian in the frequency domain
with a standard deviation equal to the inverse of the wavelet
parameter σω. Thus, σω can be expressed as:
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FIGURE 1: Simplified overview of the proposed architecture

σω (s) =
12

(ω (s+ 1)− ω (s− 1))
=

12

A0

(
2

s
12 − 2

s−2
12

)−1
. (6)

A one-dimensional NODF (required in Eq. (10)), is then
obtained as a weighted sum of the two-dimensional form
(Eq. (3)) across s, corresponding to the 88 semitones:

D (t) =
1

√
2π

88∑
s=1

D (ω (s) , t) V̄ (s)
√

σω (s)2 + σ2
d, (7)

where V̄ (s) is a (normalised) weighting function with
respect to the semitone number, s. The following expression
is proposed that prioritises lower frequencies with strength
q, which is typically desirable given the strong dependence
of beat on the bass notes:

V̄ (s) =

(
88− s

88

)q

·
[∫ 88

0

(
88− s

88

)q

ds

]−1

=

(
1 + q

88

)
·
(
88− s

88

)q

.

C. Fundamental Tempogram
An alternative to the conventional Tempogram, a Fundamen-
tal Tempogram (so termed because of its ability to attenuate
harmonics and sub-harmonics of the true tempo), is now pro-
posed in order to extract metric information from the NODF.
As a starting point, this could be attempted by performing
further wavelet analysis of the one-dimensional NODF D (t)
(Eq. (7)), with frequency centred upon candidate beats-per-
minute (bpm) ωbpm:

RCWT

(
ωbpm, t

)
=
∣∣∣D (t) ⊛Wωbpm (t)

∣∣∣2 . (8)

The wavelet function, Wωbpm
(t), is defined in terms of

the bpm (ωbpm) and equivalent receptive field (standard
deviation) σωbpm

, as follows:

Wωbpm (t) =
1

σωbpm

exp

(
−

1

2σ2
ωbpm

t2

)
exp

(
iπωbpm

60
t

)
. (9)

However, given that information regarding note position-
ing and spacing in the frequency domain is lost when
evaluating D (t) from D (ω (s) , t), the following alternative
expression employing the two-dimensional NODF, Eq. (3),
is proposed:

RCWT

(
ωbpm, t

)
=

∫ ∞

0
|D (ω (s) , t) ⊛W2D (s, t)|2 ds

=

∫ ∞

0

∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
D (ω (j) , τ)W2D (s− j, t− τ) dτ dj

∣∣∣∣2 ds,

where W2D (s, t) is a 2D Morlet wavelet defined as:

W2D (s, t)

=
1

σωsσωbpm

exp

−
1

2

( s

σωs

)2

+

(
t

σωbpm

)2
+

iπωbpm

60
t

.

Parameter σωs
is the standard deviation of the wavelet

in component s. The resulting function is equivalent to a
standard Morlet function in the time domain, weighted by a
Gaussian in the (semitone) frequency domain.

The purpose of increasing the dimensionality of the
wavelet whilst evaluating the CWT Tempogram is to capture
correlations between note positions at neighbouring tatum
and bar lines. The s component of the wavelet effectively
weights neighbouring note positions by a Gaussian with
standard deviation σωs

semitones, such that closer note
values at neighbouring tatum and bar lines produce greater
responses in the final CWT Tempogram; typically, σωs

= 12
is employed. Thus, periodicities in certain frequency ranges
are extracted with greater accuracy. The relationship between
the three-dimensional space generated by this process and
the final CWT Tempogram can be observed in the animation
available here.

As a further aid to determining beat tempo, an Autocor-
relation Tempogram is also constructed. This takes the one-
dimensional NODF D(t) (Eq. (7)) as its input, autocorrelates
it, and then smooths the result through convolution with a
Gaussian function having the same standard deviation as the
CWT Tempogram (σωbpm

):

RAC

(
ωbpm, t

)
= D (t)D

(
t+

60

ωbpm

)
⊛ exp

(
−

1

2σ2
ωbpm

t2

)

=

∫ ∞

−∞
D (τ)D

(
τ +

60

ωbpm

)
exp

(
−

1

2σ2
ωbpm

(τ − t)2

)
dτ.

(10)

As a consequence of their construction, RCWT has har-
monics associated with the rhythmic components, whilst
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RAC has sub-harmonics. Harmonic and tempo ambiguity
in Tempograms have been encountered previously in the
literature, with certain methods proposed, such as exploiting
the combined properties of the Autocorrelation (RAC and
Fourier Tempograms (RDFT ) through multiplication [16],
[27], [28] and performing octave removal [26]. However,
as a consequence of the methods employed (such as DFT
as opposed to CWT) to generate RAC and RCWT in [16],
[27], [28], and the limitations of purely targeting octave
removal in [26], fundamental “rhythmic” frequencies remain
largely inseparable from their harmonics. This paper by
contrast proposes combining the properties of the presented
CWT and Autocorrelation Tempograms, employing the same
receptive fields σωbpm

in each case, via computing the
geometric mean of the two arrays such that harmonics and
sub-harmonics are attenuated and the resulting Tempogram
normalised. Employing the notation ⌈x⌉+ = max{0, x}, the
final proposed Fundamental Tempogram is obtained as:

RF

(
ωbpm, t

)
=
√

RCWT

(
ωbpm, t

)
⌈RAC

(
ωbpm, t

)
⌉+. (11)

D. Metrogram Transform for Time Signature Recognition
As observed in the Tempogram plots (such as Figure 2),
tempo trajectories present in the Tempogram provide insight
into the type of time signature divisions represented in the
music, specifically the ratios between the tempo lines. A few
papers explore the concept of ratios in the Tempogram [7],
[27], [29], in order to facilitate meter tracking and genre
classification. However, in these papers, ratios are evaluated
causally with respect to a specified tempo and for a limited
discrete subset of metric divisions, and in [29], the depen-
dency on time is lost given this fixed-tempo assumption.
Here however we propose a transform that exploits the
Tempogram properties to extract rhythmic ratios present in
the music, independent of tempo information, thus enabling
the time-varying metric characteristics to be evaluated in
continuous form. To achieve this, the proposed transform,
named the Metrogram, involves evaluating the multiplicative
equivalent of the autocorrelation function in the frequency
domain. The proposed Metrogram can be expressed as:

P (k, t) =
1

Z (k)

∫ ∞

0+
RF

(
ωbpm, t

)
RF

(
kωbpm, t

)
dωbpm, (12)

where k is the rhythmic ratio to be evaluated, and Z (k) is
a constant factor with respect to k; typically Z (k) ∝ k−(p+1)

is suitable (0.5 < p < 1.5), given that higher time sig-
nature divisions are inherently more sensitive to rhythmic
ambiguity, and therefore larger Metrogram ratios should be
weighted accordingly. Note that the evaluation of P (k, t)
is not limited by integer values of k, and can thus be
employed to detect polyrhythms in music, for example. To
determine the primary time signature division as a function
of time given the Metrogram, k̂ (t) = maxk{P (k, t)} can
be employed.

The Fundamental Tempogram’s equivalent receptive field
is noteworthy; both the Autocorrelation and CWT Tem-

FIGURE 2: Fundamental Tempograms (left) with the cor-
responding Metrograms (right) for two receptive fields for
a recording modulating from 3/4 to 4/4. The threshold
division assignments over time are illustrated in blue in the
Metrograms. Top: σωbpm

= 0.5s. Bottom: σωbpm
= 3.0s.

X-axis = time. An animation showing the gradual transition
between the extremes of the receptive field can be seen here

pograms employ Gaussian window functions with a standard
deviation of σωbpm

, defining this receptive field. A small
receptive field might miss correlations between adjacent bar
lines, whilst a sufficiently large σωbpm

might not capture
localised metric variation. A suitable range, influenced by
the musical genre, has been found experimentally to lie
between 1.5s < σωbpm

< 5s, a result in line with previous
works [13]. Figure 2 illustrates the receptive field’s effect on
the Fundamental Tempogram and the subsequent influence
on the integer-valued Metrogram division assignments.

E. Tempo Inference and Beat Tracking
Having defined the various input components to the tempo
and beat tracking functions, we now describe time-varying
tempo inference through simultaneous optimisation with
respect to 6 probabilistic objective functions. Specifically,
the various inputs are discretised into arrays, denoted by the
NODF, D1:N , the Fundamental Tempogram, R1:N (ωbpm),
and the bar-aligned metric divisions extracted from the
Metrogram, k̂1:N , forming the input dataset x1:N =
{D1:N , k̂1:N , R1:N (ω)}. In [6], [8], [13], [14] Markov
models were applied to meter and rhythm. Here a posterior
distribution is proposed directly in terms of the bpm over
time, λ1:N , and the phase offset within a bar, ϕ:

p(λ1:N , ϕ |x1:N ) ∝ p(x1:N |λ1:N , ϕ) p (ϕ, λ1:N ) , (13)

where:

p(x1:N |λ1:N , ϕ) ∝
N∏

n=1

p(xn |λ1:N , ϕ). (14)

This paper proposes a likelihood that is constructed to
account for all metric phenomena previously described, with
no dependency on training data:

p(xn |λ1:N , ϕ) ∝
6∏

j=1

µj , (15)
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where j, 1 ≤ j ≤ 6, are the indices associated with the
following proposed probabilistic objective functions:

µ1 = σ (C0Rn (λn)− b0) (16)

µ2 = σ
(
C1Rn (λn)Rn

(
⌊λn/k̂n⌉

)
− b1

)
(17)

µ3 = exp

−
1

2σ2
bar

Dn − cos2r1

 ϕ

k̂0
+

π∆t

60

n∑
m=1

λm

k̂m

2
(18)

µ4 = exp

−
1

2σ2
tatum

Dn − cos2r2

ϕ+
π∆t

60

n∑
m=1

λm

2
(19)

µ5 = σ

C2Dn cos2r1

 ϕ

k̂0
+

π∆t

60

n∑
m=1

λm

k̂m

− b2

 (20)

µ6 = σ

C3Dn cos2r2

ϕ+
π∆t

60

n∑
m=1

λm

− b3

 . (21)

Equation (16) encourages the maximisation of the fit
with respect to the Fundamental Tempogram, and Eq. (17)
maximises the fit of the tatum and division tempo trajectories
with respect to the Tempogram array. Likewise, Eq. (18)
and (20) maximise the fit of the bar lines with respect
to the NODF, and Eq. (19) and (21) maximise the fit of
the tatum lines. C0, C1, C2, C3 are scaling constants, and
b0, b1, b2, b3 are biases. The function cos2r θ is employed
to enforce convergence on the possible bar and tatum line
alignments, with hyperparameters r1, r2 utilised such that
alignments are encouraged with strength r with respect to
the time domain NODF rendered previously. Note, previous
methods that model time-varying time signature divisions
employ cascade formats [10], [24], [39], such that joint beat
and bar tracking is performed sequentially, as opposed to our
proposed method that simultaneously optimises with respect
to beat and bar allocations, ensuring beat length variations
are appropriately modelled. The prior is then specified as:

p (ϕ, λ1:N ) = p(ϕ) p(λ1:N ) (22)

∝ p(λN |λ1:N−1) p(λN−1 |λ1:N−2), . . . , p(λ2 |λ1) p(λ1) (23)

= p(λ1)

N−1∏
n=1

p(λn+1 |λn) ∝
N−1∏
n=1

p(λn+1 |λn). (24)

Eq. (23) and (24) are possible given p(ϕ) and p(λ1) are
assumed to be uniform in the ranges 0 ≤ ϕ ≤ maxn{k̂n}π,
0 ≤ λ1 ≤ ωbpm,max, and due to the Markovian nature of
the proposed prior on λ1:N :

p (λn+1 |λn) ∝ exp

[
−

1

2
(
σλd

∆t
)2 (λn+1 − λn)

2

]
{λn ≥ 0} .

(25)

Thus, taking the partial derivative of the negative log of
the posterior (L (λ1:N , ϕ) := − log p(λ1:N , ϕ |x1:N )) with
respect to λn and ϕ results in Eq. (26) and (27) respectively.

The model parameters can be initialised through maximi-
sation over the Metrogram inner terms in Eq. (12) given the
determined k̂n values (multiplied by k̂n for the beat tempo):

λn = k̂n max
ωbpm

{
Rn
(
ωbpm

)
Rn

(
k̂nωbpm

)}
. (28)

Other models typically employ the Viterbi algorithm
for optimisation [6], [8]–[10], [12], [13] or Monte Carlo
(MC) techniques [15]; for the structure of our continuous-
parameter model an iterative Gradient Descent method [30]
is appropriate, as follows:[

λ

ϕ

]
e+1

=

[
λ

ϕ

]
e

− η

[
∂
∂λ
∂
∂ϕ

]
L (λ) |e, (29)

where e is the training epoch, and λ = {λn}Nn=1. In
order to avoid becoming trapped in local minima during
convergence, a stochastic step is added. For every epoch,
with probability ps (ps ≈ 0.2), the algorithm evaluates the
posterior probability at a grid of ϕ values, ϕ = ϕe + nsπ,
for −⌈k̂max/2⌉ ≤ ns ≤ ⌈k̂max/2⌉ and integer ns. k̂max

is the maximum division extracted from the whole extract
and ϕe corresponds to ϕ computed during the current epoch.
The algorithm then updates ϕ according to the maximum
posterior probability (MAP estimate) across the specified
range of ns. This specific range of ϕ is chosen given that
each beat corresponds to π phase, thus, this step effectively
samples the neighbouring beats to ensure the correct beat-bar
alignment position has been chosen.

Upon satisfactory convergence of the parameters λ and
ϕ, the bar (right) and tatum (left) times in terms of the
sampling index n can be determined by solving the following
equations for n (with appropriate linear interpolation):

mod

(
∆t

60

N∑
n=1

λn +
ϕ

π
, 1

)
= 0,mod

(
∆t

60

N∑
n=1

λn

k̂n
+

ϕ

πk̂0
, 1

)
= 0.

F. Monte Carlo Hyperparameter Sampling
Given the inherent subjectivity in time signature recognition
[1], the proposed posterior exhibits multiple local maxima
dependent on hyperparameter selections. This arises primar-
ily due to polyrhythmic and polymetric elements, prevalent
in genres like jazz [3]. For instance, a waltz in 3/4 could
be perceived as 6/8, 12/8, or 2/2 due to a multi-layered
rhythmic hierarchy (as observed in Figure 4). Hyperparam-
eters include q, the weight in the 2D NODF, σωbpm

, the
Tempogram receptive field, and σωs

, the 2D wavelet standard
deviation. To determine the most suitable maxima, a global
posterior maximum with respect to the hyperparameters can
be identified (MAP estimate) by employing Monte Carlo
(MC) sampling of the model’s hyperparameter space for
J iterations. Subsequently, for each sampling iteration, the
posterior is evaluated through gradient descent of the neg-
ative log posterior (as per Eq. (29)) conditioned on these
hyperparameters. The extended posterior is thus given by:

p(λ1:N , ϕ, σωs , σωbpm , q |x1:N )

∝ p(λ1:N , ϕ)p(x1:N |σωs , σωbpm , q, λ1:N , ϕ)

× p(σωs )p(σωbpm )p(q).

(30)
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Each hyperparameter σωs , σωbpm
and q is assigned a sepa-

rate gamma distribution as its prior, p(θ|α, β) = βα

Γ(α)
θα−1e−βθ .

Subsequently, the allocation results obtained from the sam-
pling iteration that achieved the greatest posterior value are
taken. The corresponding sampling iteration index, i, can
thus be expressed as:

i = max
j

{
p
(
λ1:N , ϕ, σ

(j)
ωs , σ

(j)
ωbpm

, q(j) |x1:N

)}
, (31)

where σ
(j)
ωs , σ

(j)
ωbpm

, q(j) are the hyperparameters sampled
from the priors during the jth sampling iteration; note
that the posteriors here are computed with respect to the
converged λ1:N , ϕ values resulting from the optimisation

step. A notable benefit of this proposed approach is the
ability to provide the user with a variety of metric interpre-
tations, corresponding to each sampling iteration, alongside
the single highest probability assignment.

III. Results and Discussion
In order to evaluate the performance of our approach on
extracts with both beat and time-signature variations, a met-
rically diverse custom dataset is presented. Although several
other datasets have been presented with either irregular
or time-varying time signatures [6], [8], [10], [13], [14],
[16], [32], none are available for extracts that exhibit both
simultaneously with rubato, as is the case in improvisatory
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genres such as jazz. This custom dataset was recorded by
the first author and features 43 extracts (primarily jazz piano)
with primary time signature divisions of 2, 3, 4, 5, and 7 (35
extracts), as well as several metrically ambiguous extracts
with dynamic (time-varying) time signature divisions and
tempo (rubato). A custom-designed algorithm was developed
for the labelling of ground truth assignments based upon
quarter-speed playback and expert domain knowledge pro-
vided by the first author.

The following widely-used evaluation techniques [33] are
employed: The F-measure, Cemgil score, P-score, and the
Mean Squared Error (MSE). As input to the optimisation
step, the terms xn = {Dn, k̂n, Rn (ω)} are computed once
every 1500 data samples at 44.1kHz. This compression
factor, found through experimentation, provides a suitable
compromise in temporal accuracy and computational effi-
ciency, a result consistent with previous findings [6], [31].
The results for the 35 primary division extracts are shown
in Table 1. One example extract’s beat assignment results
are plotted in Figure 3. Likewise, another example extract,
Figure 5, is presented with its Fundamental Tempogram,
Metrogram (with the division allocations highlighted in
blue), and the final beat (grey vertical lines) and Bar
(bright orange vertical lines) allocations superimposed over
the CWT NODF intensities and audio waveform. Figure 4
additionally presents three metric interpretations provided by
the algorithm for a metrically ambiguous orchestral extract.
As depicted in Table 1, the algorithm displays high-level
accuracy for both tatum and bar line assignments, with
a tatum F-measure mean of 0.967 attesting to its strong
performance in handling rubato, syncopation, and rhythmic
irregularities. Every time signature division in the dataset
was accurately inferred. Evaluation metrics largely remain
consistent across the different time signature divisions (see
Table 1). For the case of more subjective metric assignments,
the algorithm was able to infer compatible interpretations
for each, as observed in the example extracts presented in
Figures 5 and 4.

Our model is designed to account for localised metric and
rhythmic variations, such as time-varying time signature divi-
sions and beat tempo, providing a set of probability-ranked
metric interpretations, and is hence more flexible than the
majority of other approaches in the literature. Nevertheless,
comparisons with state-of-the-art approaches are considered
for fixed-time signature recognition to specifically evaluate
its fixed-division beat tracking capabilities. For this purpose,
evaluation is performed on the Ballroom dataset (BDS) [43];
our algorithm’s performance is shown in Table 2. Its overall
performance is then compared with a number of state-of-the-
art algorithms in Table 3. Overall, our results are competitive
with the leading methods for fixed time-signature methods,
surpassed only by some of the deep learning methods that
employ 8-fold cross-validation. For context, 8-fold cross-
evaluation involves training on a fraction (k-1)/k of the
dataset and testing on the remaining 1/k. As such, while

these models may exhibit high F-measures for specific
datasets, there is potential for overfitting to particular genre-
specific metric and rhythmic features, as evidenced when
tested on unfamiliar datasets [42] (the BDS is primarily
drum-tracked with minimal tempo variation). A distinctive
feature of our approach is its zero-training necessity and
versatility to general polyphonic audio extracts, facilitating
broader applications in various rhythmic and metric domains,
as exhibited by the performance in the custom dataset.
Accordingly, an interesting consequence of the proposed
method is that lower BDS performance figures from our
method are predominantly attributed to the model providing
localised and global alternate metric interpretations (such
as hemiolas or polymetric features), especially in the Waltz
category, a possibility that is not entertained by either the
fixed or dynamic time-signature methods. Indeed, this is a
challenge faced previously in the literature, with numerous
studies finding the misalignment of objective beat tracking
scores with subjective participant scores due to varying
metric interpretations [1]–[4].

IV. Conclusion
This paper presents a probabilistic approach for the extrac-
tion of time-varying and irregular time signatures from poly-
phonic audio extracts, whilst also providing beat tracking
estimates according to the inferred metric properties. Central
to this approach is the Metrogram, a novel representation that
captures time-varying information on rhythmic and metric
periodicities within the Tempogram. A unique feature of
our methodology is its ability to provide a distribution over
metric interpretations through hyperparameter sampling of
the posterior, offering insights into the diverse ways music
can be rhythmically perceived. This aspect is particularly
crucial for handling complex, irrational, and fluctuating time
signatures commonly found in polyphonic extracts, espe-
cially in rhythmically and metrically diverse genres such as
jazz. To demonstrate this unique feature, this paper presents
a dataset consisting of irregular, irrational, and time-varying
time signatures, with overall high level accuracy reported.
This level of accuracy is attributable to the unique probabilis-
tic approach to dynamically evaluating the optimal balance in
beat and bar alignment across both time and tempo domains.
Likewise, empirical evaluations of the algorithm’s fixed time
signature beat tracking capabilities are presented for the
standard Ballroom Dataset, with accuracy rivalling state-of-
the-art methodologies.

Looking ahead, the potential applications of this algo-
rithm are extensive; its adaptability and capacity to inter-
pret complex rhythmic and polymetric structures open new
avenues for music composition, performance, and analysis.
Ultimately, our algorithm balances adaptability and accu-
racy, demonstrating capability in handling complex rhythmic
and metric structures and offering versatility across diverse
polyphonic audio environments, paving the way for a deeper
understanding and appreciation of the complexities inherent
in music.
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Bar F measure: 1.0, Bar Cemgil: 0.768, Bar P score: 1.0, Bar MSE: 0.00096
Tatum F measure: 1.0, Tatum Cemgil: 0.814, Tatum P score: 0.983, Tatum MSE: 0.00073

FIGURE 3: Predicted and Ground Truth Bar and Tatum alignment results superimposed over the audio waveform for an
extract with a primary time signature division of 7. Red = Predicted; Orange = Ground Truth; x-axis = time (s)

(a) 12/8 (or 4/4) - Video available here (b) 3/4 - Video available here (c) 6/8 - Video available here

FIGURE 4: A selection of metric interpretations provided by the algorithm for a metrically ambiguous orchestral extract
(Piano Concerto No.4 by the first Author). A reduced score is shown for convenience (full scores available in the links)

(a) F. Tempogram (y-axis=Tempo, bpm) (b) Metrogram (y-axis=Division) (c) Allocations (Bar=Orange, Beat=Grey)

FIGURE 5: Results for an extract which modulates from 2/4 to 3/4 (x-axis = time for 15s extract). Video available here

Division F-meas. (B) Cemgil (B) P-score (B) MSE (B) F-meas. (T) Cemgil (T) P-score (T) MSE (T)

2 or 4 0.962 0.773 0.997 0.00111 0.961 0.777 0.940 0.00368
3 0.954 0.723 1.000 0.00148 0.933 0.724 0.905 0.00170
5 1.000 0.835 1.000 0.00066 1.000 0.837 1.000 0.00066
7 1.000 0.781 1.000 0.00096 0.996 0.790 0.944 0.00090

Overall 0.972 0.774 0.999 0.00109 0.967 0.777 0.943 0.00238

TABLE 1: Evaluation Statistics for the Jazz Piano dataset (B = Bar, T = Tatum). Animated dataset results available here

Genre No. of Extracts F-measure

ChaChaCha 111 0.954
Jive 60 0.944
Quickstep 82 0.963
Rumba-American 7 0.907
Rumba-International 51 0.956
Rumba-Misc 40 0.878
Samba 86 0.920
Tango 86 0.894
VienneseWaltz 65 0.917
Waltz 110 0.817

Total 698 0.913

TABLE 2: F-measure scores for the Ballroom Dataset,
broken down by genre for our method

Method F-measure

Our Method 0.913
Krebs et al. [45] 0.855
Multi-Model + DBN [42] 0.910†

Zapata et al. [46] 0.767
Davies and Böck [36] 0.933†

BeatNet [39] 0.774⋆

Elowsson [37] 0.925†

Aubio [40] 0.567⋆

Spectral TCN [35] 0.956†

Böck et al. [38] 0.938†

IBT [41] 0.708⋆

TABLE 3: Comparison of F-measure scores: † refers to
8-fold cross-validated models, and ⋆ are online methods
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[38] S. Böck, F. Krebs, and G. Widmer, “Joint beat and downbeat tracking
with recurrent neural networks,” in Proc. of the 17th Intl. Society for
Music Information Retrieval Conf., 2016, pp. 255–261.

[39] M. Heydari, F. Cwitkowitz, and Z. Duan, “BeatNet: CRNN and
Particle Filtering for Online Joint Beat Downbeat and Meter Tracking,”
arXiv preprint arXiv:2108.03576, 2021.

[40] P. M. Brossier, “Automatic annotation of musical audio for interactive
applications,” P. dissertation, Ed., Queen Marry University, London,
UK, August 2006, pp. 58–102.

[41] J. L. Oliveira, F. Gouyon, L. G. Martins, , and L. P. Reis, “IBT: A
real-time tempo and beat tracking system,” in In Proc. of the 11th Intl.
Conf. on Music Information Retrieval (ISMIR), 2014, pp. 291–296.
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