
<Society logo(s) and publica-
tion title will appear here.>

Received 08 August, 2023; revised 20 November, 2023; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version 20 November, 2023.

Digital Object Identifier 10.1109/XXXX.XXXX.XXXXXXX

Attention and Sequence Modeling for
Match-Mismatch Classification of

Speech Stimulus and EEG Response
Marvin Borsdorf1, Siqi Cai2, Member, IEEE, Saurav Pahuja1, Dashanka De Silva1,

Haizhou Li3,1,2, Fellow, IEEE, and Tanja Schultz4, Fellow, IEEE
1Machine Listening Lab (MLL), University of Bremen, Germany

2Department of Electrical and Computer Engineering, National University of Singapore, Singapore
3Shenzhen Research Institute of Big Data, School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen),

China
4Cognitive Systems Lab (CSL), University of Bremen, Germany

(Invited Paper)

Corresponding author: Marvin Borsdorf (email: marvin.borsdorf@uni-bremen.de).

This research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy (University Allowance, EXC 2077, University of Bremen)

ABSTRACT For the development of neuro-steered hearing aids, it is important to study the relationship
between a speech stimulus and the elicited EEG response of a human listener. The recent Auditory
EEG Decoding Challenge 2023 (Signal Processing Grand Challenge, IEEE International Conference on
Acoustics, Speech and Signal Processing) dealt with this relationship in the context of a match-mismatch
classification task. The challenge’s task was to find the speech stimulus that elicited a specific EEG response
from two given speech stimuli. Participating in the challenge, we adopted the challenge’s baseline model
and explored an attention encoder to replace the spatial convolution in the EEG processing pipeline,
as well as additional sequence modeling methods based on RNN, LSTM, and GRU to preprocess the
speech stimuli. We compared speech envelopes and mel-spectrograms as two different types of input
speech stimulus and evaluated our models on a test set as well as held-out stories and held-out subjects
benchmark sets. In this work, we show that the mel-spectrograms generally offer better results. Replacing
the spatial convolution with an attention encoder helps to capture better spatial and temporal information
in the EEG response. Additionally, the sequence modeling methods can further enhance the performance,
when mel-spectrograms are used. Consequently, both lead to higher performances on the test set and
held-out stories benchmark set. Our best model outperforms the baseline by 1.91 % on the test set and
1.35 % on the total ranking score. We ranked second in the challenge.

INDEX TERMS Auditory system, EEG decoding, match-mismatch classification, speech envelope, speech
stimulus

I. INTRODUCTION

THE human brain possesses the extraordinary ability
to selectively focus on a specific speaker’s voice in

a crowded scenario, commonly called “the cocktail party
effect” [1], [2]. Recent advancements made in fields such
as psychoacoustics, biophysiology, and neurosciences have
provided valuable insights into the mechanisms underlying
auditory attention in the human brain. Notably, recent studies

have demonstrated that auditory attention can be decoded
from recordings of brain activity, such as electrocorticogra-
phy (ECoG) [3], magnetoencephalography (MEG) [4], and
electroencephalography (EEG) [5], [6] in a cocktail party
scenario.

While the selective listening ability can be performed eas-
ily and without much effort, people suffering from hearing
loss experience severe difficulties in performing this task.
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Over the past decade, there has been remarkable progress
in equipping machines with this ability, paving the way for
being integrated into hearing aids. Those algorithms usually
rely on a reference cue of the to-be-extracted target speech
signal, commonly given as speech signal [7]–[12], or based
on a different modality such as face [13]–[15], text [16], [17],
or even gesture [18] information. However, in real-world
conversational situations, it might be hard to acquire those
cues and the quality may also vary due to occlusion, changes
in the light setting, body movement, or interfering signals.
This makes it really hard to select the speaker of interest.
The EEG signal of a human listener, on the other hand, is
connected to the auditory system and directly responds when
attention is paid to incoming sounds. This relationship makes
the EEG signal quite suitable for being used as a reference
cue to steer hearing aids. Furthermore, in the realm of brain-
computer interfaces (BCIs), EEG has garnered significant at-
tention due to its non-invasive nature, cost-effectiveness, ease
of use, and ability to provide high temporal resolution [19].
These advantages have positioned EEG as a highly suitable
modality [5], facilitating its integration into various domains.

For the development of neuro-steered hearing aids, it is
crucial to understand the fundamental relationship between
a speech stimulus and the EEG response of a human lis-
tener attending to the speech signal. The recent Auditory
EEG Decoding Challenge 20231 (Signal Processing Grand
Challenge, IEEE International Conference on Acoustics,
Speech and Signal Processing, 2023) dealt with this rela-
tionship. One of the challenge’s tasks was designed as a
match-mismatch classification task for speech stimulus and
EEG response in a single-talker scenario. To be more precise,
given two speech stimuli and one EEG response, the task
was to classify which stimulus elicited the EEG response
(see Fig. 1). The match-mismatch task holds great promise
for advancements in hearing aid technology through the
implementation of cognitive control [20], [21].

The match-mismatch classification task can be considered
as an important aspect to be addressed in the emerging
field of auditory attention detection (AAD). Recently, AAD
has opened up new opportunities for the cognitive control
of hearing aids, known as neuro-steered hearing aids [21].
To address EEG-based AAD tasks, various approaches, and
techniques have been developed, which can be explored in
detail in a comprehensive review by Geirnaert et al. [22].

In this paper, we focus on the match-mismatch classifi-
cation task in the single-talker scenario, where we match
an EEG response with given speech stimuli, while AAD
aims at identifying attention when listening to multiple
speech stimuli simultaneously. We present our approach to
solve the match-mismatch classification task offered by the
Auditory EEG Decoding Challenge, 2023. We start from
the challenge’s baseline model [23] in which the feature
extraction for both speech data and EEG data is purely based
on convolutional methods (see Section IV).

1https://exporl.github.io/auditory-eeg-challenge-2023/

FIGURE 1. Block diagram of the match-mismatch classification task of
the Auditory EEG Decoding Challenge, 2023. The classification system
receives an EEG response as well as two speech stimuli and predicts
whether speech stimulus 1 or 2 has elicited the EEG response.

For speech processing tasks, sequence modeling ap-
proaches based on recurrent neural networks (RNNs), long
short-term memory (LSTM), and gated recurrent units
(GRUs) have shown to be effective [24]–[33]. Recent works
which studied the relationship between speech stimulus and
EEG response successfully applied LSTM-based methods to
process the speech data [34], [35]. Therefore, we study the
integration of RNN, LSTM, and GRU into the processing
pipeline of the speech stimulus. In addition, we consider
the bidirectional variants of those, referred to as BiRNN,
BiLSTM, and BiGRU. Due to the success of attention-based
decoding of EEG signals [36]–[41], we study to replace the
spatial convolution in the EEG processing pipeline with an
attention encoder (AE). In addition, the baseline model pro-
cesses the speech stimulus given as a speech envelope. The
speech envelope lacks crucial features of the original speech
stimulus, such as formants, prosody, and pitch [42]. Recently,
the mel-spectrogram representation has been shown to be
beneficial for the match-mismatch classification of speech
stimulus and EEG response in the single-talker task [35].
Consequently, we compare the classification performance for
speech envelope and mel-spectrogram as input speech stim-
ulus types (SSTs). In a comprehensive study, we train and
evaluate nine different models, respectively for the speech
envelope and for the mel-spectrogram as input SST, leading
to eighteen models in total. We evaluate the performance
on a test set and two benchmark sets (held-out stories and
held-out subjects).

Our experimental results show that using
mel-spectrograms instead of speech envelopes as input
SST consistently improves the performance on the test
set and mostly on both benchmark sets. The application
of additional sequence modeling methods such as RNN,
LSTM, and GRU benefits from the use of mel-spectrograms
and shows enhanced performance on both the test set and
the held-out stories benchmark set. Applying an AE to
extract the spatial and temporal features of the EEG data
boosts the performance on the test set and the held-out
stories benchmark set. Our best model shows improvements
of 1.91 % accuracy on the test set and 1.35 % accuracy on
the total ranking score (weighted sum of both benchmark
sets) compared to the baseline model. This work represents
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an extension of our previously published Auditory EEG
Decoding Challenge conference paper [43]. We study
additional sequence modeling methods for processing the
speech stimulus signal and delve into our results in a more
detailed analysis to gain better insights.

The rest of the paper is organized as follows: Section
II provides an overview of the related work. Section III
describes the data set used in this study and provides
details on the applied preprocessing techniques. Section IV
explains the baseline architecture and our extension. Section
V presents the experimental setup. Section VI illustrates and
discusses the results. Finally, Section VII concludes the study
and highlights some future work. We make all information
and scripts available2.

II. RELATED WORK
As highlighted in the introduction, relating single-talker
speech to the elicited EEG response of a human listener
plays a critical role in developing BCI applications. This has
been comprehensively discussed in a recent review paper
by Puffay et al. [44]. Notably, convolutional-based meth-
ods [23], [45] as well as sequence modelling techniques [34],
[35] have been proposed to solve this task. Alongside the
match-mismatch classification, decoding of the speech is a
related task that aims at estimating a single-talker speech
signal based on a neural response [46]–[48]. As already
described, the single-talker match-mismatch classification
task represents an aspect of the widely studied AAD task.

In the field of EEG-based AAD, various methods have
been developed to interpret EEG signals and determine
auditory attention. Traditional AAD approaches primarily
focused on decoding the speech envelope of the attended
speaker. These methods relied on clean speech signals and
involved comparing reconstructed speech with individual
sources in multi-speaker environments [5]. In line with the
concept of stimulus reconstruction, various linear decoders
have been devised for AAD tasks [49], [50]. However,
the correlation between the reconstructed speech envelope
and the attended speech is generally weak, which may be
attributed to the oversimplified linear computational model.

Considering the inherent non-linear processing of acoustic
signals along the auditory pathway [51], Taillez et al. [6]
firstly studied a non-linear neural network to map EEG
signals to speech envelopes in a cocktail party scenario, that
outperforms the linear model baseline. Recently, convolu-
tional neural network (CNN) models [52]–[54] were studied
to detect the attended speakers directly from the EEG and
audio signals. However, these AAD models mentioned above
predominantly utilize CNN architectures, which may not be
the most suitable option for capturing the temporal dynamics
of brain signals.

Given that speech stimuli and neural responses are inher-
ently time-varying processes, RNNs have demonstrated their
effectiveness in capturing the temporal dynamics of EEG

2https://github.com/mborsdorf/ICASSP2023SPGC AuditoryEEG

signals in numerous studies [55]. Therefore, it is worthwhile
to explore the potential benefits of employing RNN-based
architectures for AAD.

The recent success of Transformers [56] in various re-
search areas has also made its way into the field of EEG
processing. They have been used to decode the EEG signal,
e.g., for motor imagery [36]–[38], [40], human brain-visual
image classification [37], [39], steady-state visual evoked
potential analysis [41], and emotion recognition [40].

To sum up, we propose a model that combines attention
and sequence modeling with dilation-based convolutional
layers to capture the spatial and temporal dynamics in both
the speech stimulus and the EEG response to improve the
match-mismatch classification performance.

III. DATA SET
The data set [57], [58] used in the Auditory EEG Decoding
Challenge comprises EEG data that was obtained from 85
young adults who are Dutch native speakers and have nor-
mal hearing capabilities. Throughout the experiment, each
participant engaged in approximately 8 to 10 trials, with
each trial lasting around 15 minutes. To avoid any potential
biases and promote diversity, the order of the trials was
randomized for each participant. The stimuli utilized in
this experiment consisted of single-speaker stories presented
in Flemish (Belgian Dutch), narrated by a native Flemish
speaker. The stimuli comprised podcasts and audiobooks,
with some audiobooks exceeding the 15-minute duration. In
such cases, the longer audiobooks were divided into two
consecutive trials, ensuring continuity for the participants.
The data set provides the narrated stories that were presented
to the subjects, referred to as speech stimuli, and the EEG
responses of the subjects acquired while listening. In total,
the data set comprises 157 hours of parallel data, i.e.,
speech stimuli and EEG responses. In the following, we
will describe the preprocessing of the data as well as the
construction of both the development set and the benchmark
set.

A. SPEECH STIMULUS
Each speech stimulus is given as a story (podcast or audio-
book), narrated by a native Flemish speaker, and recorded
with a sampling rate of 48 kHz. The match-mismatch
classification task initially uses the speech envelope of the
original speech stimulus, according to the following pro-
cessing steps [48]: First, a gammatone filterbank with 28
subbands is applied to the raw audio signal. The bandwidth
is equally spaced with center frequencies of 50 Hz to 5 kHz.
Second, the absolute value is calculated for each sample
and exponentiated with 0.6. Third, the speech envelope
is obtained by averaging all subbands. Fourth, the speech
envelope is downsampled to 64 Hz.

The speech envelope is a less complex representation of
the raw speech signal and, due to its slow rate of change,
it is easy to handle and to process. However, the speech
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FIGURE 2. The model architecture used in our experiments. The box with the solid line shows the baseline architecture [23]. The spatial convolution
(SC) is only used in the baseline architecture and removed in all other models that adopt the baseline architecture. The dashed box shows our model
extension. We add sequence modeling (SM) methods to preprocess the speech stimuli. The SM is based on RNN, LSTM, GRU, BiRNN, BiLSTM, or
BiGRU, respectively. The construction of the AE is shown in the dotted box.

envelope lacks of important speech characteristics such as
formants, prosody, and pitch [42]. Therefore, we use the
mel-spectrogram representation of the speech stimulus as the
input signal. The mel-spectrogram displays the speech signal
in the time-frequency domain using a non-linear scale based
on human auditory perception. This provides a more infor-
mative signal representation to the model. The calculation of
the mel-spectrogram follows the preprocessing carried out by
the challenge organizers to ensure compatibility between the
data sets. Accordingly, the following preprocessing steps are
performed: First, the DC component of the speech stimulus
signal is removed. Second, a fast Fourier transform (FFT) is
applied with a hop length of 750 samples (15.625 ms) and
a Hamming window of 1,200 samples (25 ms) length. To
match a total FFT length of 2,048 samples, the Hamming
window is padded with zeros. In total, 28 mel-frequency
bands are applied with a minimum center frequency of
-4.2735 Hz and a maximum center frequency of 5,444 Hz.
Third, the resulting mel-spectrogram is exponentiated with
0.6.

B. EEG RESPONSE
The EEG data was recorded with a sampling frequency of
8,192 Hz in a soundproof and electromagnetically shielded
booth, using a high-quality 64-channel Biosemi ActiveTwo
EEG recording system. All 64 active Ag-AgCl electrodes
were placed according to international 10-20 standards. Be-
fore utilization, the EEG data is preprocessed as follows [48]:
First, a 1st order Butterworth high-pass filter with a cut-off
frequency of 0.5 Hz is applied to the data. The filtering is
done in both forward direction and backward direction to
enable zero-phase filtering. Second, the data is downsampled
to 1,024 Hz. Third, artifacts due to eye-blink are removed
by using a multi-channel Wiener filter [59]. Fourth, the EEG
data is re-referenced to a common average. Fifth, the data is
downsampled to a frequency of 64 Hz.

C. DATA SPLITTING
The data set is split up into development data and benchmark
data. The development data comprises 71 out of the 85
subjects. The remaining 14 subjects are reserved for bench-

marking only. The development data is split up into training,
validation, and test sets with 80 %, 10 %, and 10 % of the
data, respectively. All sets share the same 71 subjects.

During the Auditory EEG Decoding Challenge, the bench-
mark data was used to compare the models of the different
competing teams. We use this data to compare our models
with each other. The benchmark data is split up into two
sets. Benchmark set 1 contains 70 subjects that are also
part of the development data, but with different stories to
determine the performance for held-out stories. We only have
70 subjects in the benchmark set 1, as no benchmark data
is available for subject 1. As the test set of the development
data contains 10 % of each story, it is also considered
as held-out stories condition, similar to benchmark set 1.
Even though both study the same condition, the stories are
different. Therefore, we keep both, as we have more data for
our analysis. Benchmark set 2 consists of the 14 separated
subjects but with the same stories as in the development data
to determine the performance for held-out subjects.

IV. MODEL ARCHITECTURE
Our solution starts from the challenge’s baseline architec-
ture [23], illustrated in Fig. 2. The baseline model receives
the EEG response as well as two speech stimuli of which
one is the matching signal, that elicited the EEG response,
and one is the mismatching signal. The EEG signal is first
processed by spatial convolution (SC) to process temporal
and spatial features. The SC is implemented as a convo-
lutional 1D layer with 8 filters and a kernel size of 1.
Subsequently, the signal is fed into a stacked block of three
dilated convolution (DC) layers. Each layer has 16 filters,
a kernel size of 3, a stride of 1, and a dilation rate that
grows with the kernel size exponentiated by the respective
layer index. The speech stimuli are directly processed by
stacked DC blocks that share the parameters. The DC blocks
have the same settings as the DC block which processes the
EEG signal. The processed EEG signal is compared with
each processed speech stimulus by calculating the respective
cosine similarity (CS) as follows:
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cos(θ) =
E · S

||E|| ||S||
(1)

with E being the EEG signal representation, S being one
of the speech stimulus representations, “ · ” being the dot
product, and “|| ||” being the norm. The cosine similarity
value ranges in the interval of [−1, 1]. The closer the value
is to 1, the more similar E and S are. Both results are
concatenated and fed into a fully connected (FC) layer with
a single neuron and Sigmoid activation function. The FC
layer’s output yields the prediction about which of the speech
stimuli has elicited the EEG response.

We adopt the general baseline architecture but replace
the SC with an attention encoder (AE). The AE consists
of a multi-head attention (MHA) layer with two attention
heads and an embedding dimension of 64, followed by a
dropout(0.5) layer, layer norm, two FC layers with 32 and 64
neurons, respectively, dropout(0.5), and a final layer norm.
The structure is shown in Fig. 2. The AE operates across
the EEG channel dimension. As described in Section I,
RNNs are shown to be effective for speech processing tasks.
Therefore, we add an RNN to extract features from the
sequential speech stimulus data. For a comprehensive study,
we also investigate variants of the RNN architecture, namely
LSTM, GRU, BiRNN, BiLSTM, and BiGRU. This leads to
seven new architectures in total. The model architectures are
slightly changed according to the number of channels of the
respective input speech stimulus type (SST) (1 channel for
speech envelope and 28 channels for mel-spectrogram).

V. EXPERIMENTAL SETUP
In our experiments, we develop seven new model archi-
tectures and compare them to the challenge baseline archi-
tecture [23]. The experiments and models are implemented
in Python using the Tensorflow-Keras framework. In the
following, we describe the details of how the experiments
are conducted as well as the metrics used for testing and
benchmarking.

A. IMPLEMENTATION DETAILS
To construct the new models, we adopt the baseline archi-
tecture except for the SC. Instead, we add an AE into the
processing pipeline of the EEG response. Furthermore, we
add a sequence modeling block, based on RNN, LSTM,
GRU, BiRNN, BiLSTM, or BiGRU, respectively, to the
beginning of the speech stimulus processing pipeline. The
input speech stimulus type is given as either a speech
envelope or a mel-spectrogram.

The data fed to the models is constructed as tuples. Each
tuple consists of an EEG response, two speech stimuli, and
the true class label of which stimulus has elicited the EEG
response (label “0”: speech stimulus 1; label “1”: speech
stimulus 2). The tuples are constructed as follows: First, a
three-second long EEG segment is obtained (192 samples).

Second, the respective three-second long matching speech
stimulus segment is extracted (either speech envelope or
mel-spectrogram). Third, a three-second long mismatching
speech stimulus segment is chosen randomly, either starting
four seconds before the matching segment starts or one
second after the matching segment ends. This shift ensures
a one-second long distance between both speech stimuli
segments, i.e., they are different but temporally close. The
data generator uses each EEG segment twice and the position
of the matching and mismatching speech stimuli inside
the data tuple permute. Consequently, the true class label
changes as well.

1) (EEG response, matching speech stimulus, mismatch-
ing speech stimulus, label: “0”)

2) (EEG response, mismatching speech stimulus, match-
ing speech stimulus, label: “1”)

Following this method naturally doubles the batch size. In
addition, the data generation makes sure that mismatching
speech stimulus segments are also matching segments to
EEG responses in other data tuples. This algorithm helps
the model to better generalize to the test and benchmark
data.

During training, the model receives the input data and
predicts whether speech stimulus 1 or speech stimulus 2
has elicited the EEG response. We apply Adam [60] as the
optimizer and use a learning rate scheduler (LRS) which
divides the learning rate by ten, if the validation loss does
not decrease within two subsequent epochs. Each model
is trained for a maximum of 100 epochs, but we stop
the training if there is no improvement in the validation
loss within six consecutive epochs. The batch size fed to
the model is 128 after using the batch duplication method
as described above. During training, we apply the binary
cross-entropy as loss function:

LBCE = − 1

N

N∑
n=1

[Ynlog(Ŷn) + (1− Yn)log(1− Ŷn)] (2)

with Ŷ being the probability for the predicted class, Y
being the true class label {0,1} (ground truth), and N being
the number of samples.

B. EVALUATION
The models are evaluated on the test set and the two
benchmark sets (held-out stories and held-out subjects). The
results on the test set are reported as mean BCE loss and
mean accuracy (%). To obtain the results for both the held-
out stories and the held-out subjects benchmark sets, we
first calculate the mean accuracy for each subject in both
benchmark sets as follows:

Accs =
1

ns

ns∑
i=0

[Ŷi == Yi] (3)
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with s being the subject number, ns being the number of
samples for each subject, and Ŷi and Yi being the model’s
prediction and the true class label, respectively. Next, we
determine the mean accuracy for the held-out stories set
(Eq. 4) and the held-out subjects (Eq. 5) set, respectively. In
addition, we calculate the total ranking score (TRS) as the
weighted sum of both benchmark scores (Eq. 6). The TRS is
used to rank the different models in the scope of the Auditory
EEG Decoding Challenge. Since the EEG responses, speech
stimuli, and speech envelopes for benchmarking are already
cut to a length of 3 seconds, the speech stimuli are padded
with zeros when calculating the mel-spectrograms such that
the latter corresponds to a duration of 3 seconds.

S1 =
1

70

70∑
s=1

Accs (4)

S2 =
1

14

85∑
s=72

Accs (5)

TRS =
2

3
S1 +

1

3
S2 (6)

VI. RESULTS AND DISCUSSION
In total, we trained eighteen models and evaluated their
match-mismatch classification performance. Table 1 shows
the results on the test set. The results on the benchmark sets
are given in Table 2 and, to provide a better comparison, as
box plots in Fig. 3 and 4. We conduct statistical analyses
using the IBM SPSS statistics software with a significance
level of 0.05. Descriptive statistics, including means and
standard deviations, are utilized to summarize the data. To
evaluate potential significant improvements between differ-
ent models, we perform non-parametric analyses using the
Wilcoxon signed-rank test with Bonferroni correction. In
addition, we create topographic maps corresponding to the
EEG electrodes based on the EEG response data for some
selected models (Fig. 5). We extract the attention weights
from the AE. Since the model is trained on 71 subjects, the
attention weights can be considered as mean across them.
All 64 EEG electrodes are represented as black dots. The
attention weighting is illustrated using color gradients, with
the red shade indicating a higher weight.

A. MATCH-MISMATCH CLASSIFICATION
1) Test set
Models 1 and 10 provide the baseline results on the test
set for speech envelope and mel-spectrogram as input SST,
respectively (Table 1). Adjusting the learning rate during
training based on an LRS helps to train the model better,
leading to an improved classification performance (models
2 and 11). Replacing the SC with an AE increases the
performance further, showing the benefits of this method

to preprocess the temporal and spatial features in the EEG
response signal (models 3 and 12).

Applying an additional sequence modeling method to
preprocess the speech stimulus does not show to be beneficial
when using the speech envelope as input SST because
models 4-9 show less performance compared to model 3.
Besides model 3, only models 4 and 9 perform better than
the baseline (model 2), highlighting that a larger model with
respect to the number of parameters does not necessarily lead
to better classification performance. Two of the bidirectional
models can outperform their counterparts by a small margin
(models 8 and 9).

When mel-spectrograms are given as input SST, the num-
ber of parameters slightly increases due to a change from
1 channel to 28 channels in the input speech data, and the
performance improves for all models (models 10-18). This
shows the effectiveness of working on a mel-spectrogram
representation for this task. In addition, the sequence mod-
eling methods mostly improve the performance further (mod-
els 14-18) compared to only adding the AE (model 12),
showing their strength on mel-spectrograms as input SST.
The results for the bidirectional models show that only
the BiRNN (model 16) can outperform its non-bidirectional
counterpart (model 13).

While model 3 performs best when using the speech enve-
lope, model 14 shows the highest performance when using
a mel-spectrogram as input SST, leading to an improvement
of 1.91 % compared to the baseline model (model 11).

2) Benchmark set
The results on the benchmark set 1 (held-out stories), given
in Table 2 and Fig. 3, are in line with the test set results,
shown in Table 1. This is as expected, since both sets
represent held-out stories conditions. The performance on
both input SSTs can be improved if the SC is replaced with
an AE (models 3 and 12). Applying additional sequence
modeling methods is not beneficial and the models 5 and 8
are even worse than the baseline model (model 2). Similarly
to our findings in the results for the test data, we see a clear
advantage of using a mel-spectrogram as input SST, since the
performance is generally higher. The only exception is given
by model 11 which, surprisingly, shows a slightly lower
performance compared to its counterpart model (model 2).
All sequence modeling methods (models 13-18) outperform
the baseline models as well as the model that uses an AE.
The BiRNN (model 16) is the only method that shows a
higher performance than its non-bidirectional counterpart.
The highest performance when using a speech envelope is
given by model 3. Model 14 shows the highest performance
when working on a mel-spectrogram. Those are also the best
performing models on the test set for the respective input
SST.

Benchmark set 2 (held-out subjects), see Table 2 and
Fig. 4, determines the generalizability of the models to
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TABLE 1. Results for the match-mismatch classification task for different model architectures on the test data. We provide information about the input

speech stimulus type (SST), the application of a learning rate scheduler (LRS), the composition of both the EEG and speech processing pipelines, and

the total number of model parameters (P). We report the mean loss and mean accuracy on the test data for each model. A dagger (†) indicates the

baseline architecture [23].

Model # SST LRS EEG Branch Speech Branch P Loss Accuracy (%)

†1 Envelope ✗ SC+DC DC 4,633 0.4959 75.25
†2 Envelope ✓ SC+DC DC 4,633 0.4908 75.90
3 Envelope ✓ AE+DC DC 44,465 0.4777 76.78
4 Envelope ✓ AE+DC RNN+DC 44,468 0.4791 76.74
5 Envelope ✓ AE+DC LSTM+DC 44,477 0.5102 74.47
6 Envelope ✓ AE+DC GRU+DC 44,477 0.4937 75.74
7 Envelope ✓ AE+DC BiRNN+DC 44,519 0.4892 75.83
8 Envelope ✓ AE+DC BiLSTM+DC 44,537 0.5019 75.29
9 Envelope ✓ AE+DC BiGRU+DC 44,537 0.4887 75.98

†10 Spectrogram ✗ SC+DC DC 5,929 0.4860 76.04
†11 Spectrogram ✓ SC+DC DC 5,929 0.4771 76.43
12 Spectrogram ✓ AE+DC DC 45,761 0.4627 77.85
13 Spectrogram ✓ AE+DC RNN+DC 47,357 0.4685 77.54
14 Spectrogram ✓ AE+DC LSTM+DC 52,145 0.4577 78.34
15 Spectrogram ✓ AE+DC GRU+DC 50,633 0.4603 78.04
16 Spectrogram ✓ AE+DC BiRNN+DC 50,297 0.4616 77.87
17 Spectrogram ✓ AE+DC BiLSTM+DC 59,873 0.4624 78.22
18 Spectrogram ✓ AE+DC BiGRU+DC 56,849 0.4640 77.92

FIGURE 3. Mean accuracy (%) and standard deviation for each model on the held-out stories benchmark set 1, presented as box plots. The outliers are
removed from this illustration.

unseen subjects, since this set of subjects is disjoint from the
set of subjects in the training. Among all models, the baseline
models (models 1, 2, 10, and 11) always perform best, in-
dependent of the input SST. All other models, especially the
model that applies an AE and that has always outperformed
the baseline models on the test set and benchmark set 1,
show less performance.

In general, the attention mechanism has the ability to learn
global as well as local patterns, which has leveraged the
auditory attention domain already [61], showing substantial

improvements in within-subject tasks. However, as the brain
behavior between individuals differs, applying learned at-
tention patterns to unseen subjects may face limitations. We
believe that training a model on a representative group of
subjects may improve the generalizability in this paradigm.

Comparing the sequence modeling methods to each other,
we find that the RNN (model 4) and the LSTM (model 14)
perform best. The highest classification performance when
using a speech envelope and when using a mel-spectrogram
as input SSTs are given by models 2 and 11, respectively.
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TABLE 2. Results for the match-mismatch classification task for different model architectures on the benchmark data. We provide information about the

input speech stimulus type (SST), the application of a learning rate scheduler (LRS), the composition of both the EEG and speech processing pipelines,

and the total number of model parameters (P). For each model, we report the mean performance (µ) as well as the standard deviation (σ) over all subjects

for both held-out stories and held-out subjects conditions. We denote statistically significant improvements for models 3-9 with respect to model 2 and

for models 12-18 with respect to model 11 (with *p<0.001, after Bonferroni correction). In addition, we provide the total ranking score (TRS). A dagger (†)

indicates the baseline architecture [23].

Model # SST LRS EEG Branch Speech Branch P
Held-out stories (%) Held-out subjects (%)

TRS (%)
µ σ µ σ

†1 Envelope ✗ SC+DC DC 4,633 77.02 8.920 77.56 5.221 77.20
†2 Envelope ✓ SC+DC DC 4,633 77.78 8.255 77.61 5.533 77.73
3 Envelope ✓ AE+DC DC 44,465 *79.17 7.497 76.47 6.633 78.27
4 Envelope ✓ AE+DC RNN+DC 44,468 *78.98 7.261 77.04 5.417 78.33
5 Envelope ✓ AE+DC LSTM+DC 44,477 77.09 7.958 74.92 6.123 76.37
6 Envelope ✓ AE+DC GRU+DC 44,477 78.25 7.235 75.05 8.097 77.18
7 Envelope ✓ AE+DC BiRNN+DC 44,519 78.48 6.810 75.83 6.237 77.60
8 Envelope ✓ AE+DC BiLSTM+DC 44,537 77.66 7.919 74.69 7.201 76.67
9 Envelope ✓ AE+DC BiGRU+DC 44,537 78.06 7.443 75.09 8.321 77.07

†10 Spectrogram ✗ SC+DC DC 5,929 77.72 7.929 78.58 5.598 78.01
†11 Spectrogram ✓ SC+DC DC 5,929 77.49 7.948 79.09 5.594 78.03
12 Spectrogram ✓ AE+DC DC 45,761 *79.28 7.655 77.81 6.859 78.79
13 Spectrogram ✓ AE+DC RNN+DC 47,357 *79.47 8.041 76.64 7.783 78.53
14 Spectrogram ✓ AE+DC LSTM+DC 52,145 *79.98 7.182 78.17 6.534 79.38
15 Spectrogram ✓ AE+DC GRU+DC 50,633 *79.63 7.054 77.95 7.688 79.07
16 Spectrogram ✓ AE+DC BiRNN+DC 50,297 *79.62 7.685 77.80 7.181 79.01
17 Spectrogram ✓ AE+DC BiLSTM+DC 59,873 *79.31 6.570 77.40 6.962 78.67
18 Spectrogram ✓ AE+DC BiGRU+DC 56,849 *79.63 7.758 77.35 7.473 78.87

The TRS is given as a weighted sum of both benchmark
sets (Eq. 6). When the speech envelope is used as input
SST, the highest performance is attained by model 4 with
a TRS of 78.33 %. When working on the mel-spectrogram,
model 14 shows the best classification accuracy with a TRS
of 79.38 %, outperforming the baseline model (model 11)
by 1.35 %.

B. EEG FEATURE EXTRACTION ANALYSIS
We employ models with different processing pipelines for
the speech stimulus, i.e., DC, RNN-DC, LSTM-DC, and
GRU-DC, while the EEG processing pipeline remains un-
changed. In this way, we anticipate to gain insights into the
effects of different speech processing techniques and input
SSTs on the EEG signal processing. We create topographic
attention-based maps (Fig. 5) based on the weights in the
attention layer of the AE. The attention weights are averaged
over time and over the 71 training subjects. We compare the
topographic maps of different models. In this way, we try
to visualize and study the interplay of EEG channels in the
domain of speech perception and speech processing for the
match-mismatch detection.

The salient observation is that the emphasis is consistently
on frontal channels such as F3, F1, Fp1, F6, Fpz, and
F7. These channels, located in the anterior portions of the
brain, play a pivotal role in higher-level cognitive tasks,

attention mechanisms, and executive functions, especially
during speech perception [62]. Also, the importance of
centroparietal channels (such as C4, C5, C6, and C3) in
models that process speech envelopes indicates their great
importance in sensory information, an important factor for
auditory processing. This correlates with previous stud-
ies that highlight the centrality of central parietal regions
in auditory processing and the conception of continuous
speech [63].

Unfortunately, the observed similarities in the topographic
maps calculated from the attention weights make it difficult
to obtain a general understanding of the underlying cognitive
processes.

VII. CONCLUSION AND FUTURE WORK
In this paper, we worked on a solution for the
match-mismatch classification of speech stimulus and EEG
response. The study was done in the context of participation
in the Auditory EEG Decoding Challenge 2023 (Signal
Processing Grand Challenge, IEEE International Conference
on Acoustics, Speech and Signal Processing, 2023).

We adopted the challenge’s baseline model and revised
three parts as follows: (i) We replaced the spatial convolution
in the EEG processing pipeline with an attention encoder.
(ii) We applied additional sequence modeling methods based
on RNN, LSTM, GRU, BiRNN, BiLSTM, and BiGRU,
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FIGURE 4. Mean accuracy (%) and standard deviation for each model on the held-out subjects benchmark set 2, presented as box plots. The outliers
are removed from this illustration.

FIGURE 5. Topographic maps for different model architectures to compare the impact of (a) the input speech stimulus type (SST) and (b) the different
methods in the speech stimulus processing pipeline. While the models in the first-row process the speech stimulus given as a speech envelope, the
models in the second-row process the speech stimulus given as a mel-spectrogram. The results are based on the attention weights of the AE of the
respectively trained model, averaged over time and over the 71 training subjects.

respectively, to preprocess the speech stimulus. (iii) We
changed the input speech stimulus type from speech envelope
to mel-spectrogram.

Our experimental results show that using an attention
encoder instead of spatial convolution helps to capture better
the temporal and spatial features in the EEG data, leading to
an improved classification performance on the test set as well
as on the held-out stories benchmark set. The performance
on both sets can be enhanced by additional sequence mod-
eling methods in the speech stimulus processing pipeline,
if mel-spectrograms are used as input SST. In general,

working with mel-spectrograms enhances the classification
performance for all models on the test set and for almost
all models on the benchmark sets. Our best model shows
improvements of 1.91 % on the test set and 1.35 % on
the total ranking score (weighted sum of both benchmark
sets) compared to the baseline model. Our team reached the
second place in the challenge.

In our future work, we plan to study other methods to
extract features from the speech stimulus data, e.g., with
attention-based algorithms. Secondly, we would like to anal-
yse other attention-based methods in the EEG processing
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pipeline, as we see great potential here. It would be interest-
ing to study how the attention pattern may fluctuate within
subjects during a trial, although this may be more useful for
regression tasks than for classification tasks. In addition, we
plan to explore how the model size can be reduced in terms
of the number of parameters while maintaining the increased
classification performance. Finally, we would like to study
how the two adjacent tasks of match-mismatch classification
and speech envelope reconstruction from EEG can mutually
benefit from each other.
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