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ABSTRACT
The LMS algorithm is widely employed in adaptive systems due to its robustness, simplicity, and reasonable
performance. However, it is well known that this algorithm suffers from a slow convergence speed when
dealing with colored reference signals. Numerous variants and alternative algorithms have been proposed
to address this issue, though all of them entail an increase in computational cost. Among the proposed
alternatives, the affine projection algorithm stands out. This algorithm has the peculiarity of starting from
N data vectors of the reference signal. It transforms these vectors into as many data vectors suitably
normalized in energy and mutually orthogonal. In this work, we propose a version of the LMS algorithm
that, similar to the affine projection algorithm, starts from N data vectors of the reference signal but
corrects them by using only a scalar factor that functions as a convergence step. Our goal is to align
the behavior of this algorithm with the behavior of the affine projection algorithm without significantly
increasing the computational cost of the LMS.

INDEX TERMS Adaptive filters, affine projection algorithm, variable step-size.

I. Introduction

THE LMS algorithm [1] is one of the most widely used
adaptive algorithms in signal processing and other fields

to iteratively reach the solution of a mimicking problem.
This algorithm has become the reference algorithm for
problems that allow an iterative solution, as it is a simple
and efficient method. However, a notable drawback emerges
when the input signal is colored, leading to a reduction in its
convergence speed [2]. Consequently, alternative algorithms
or modified LMS versions have arisen, aiming to enhance
its robustness and speed in the presence of colored signals.
Among these alternatives is the Affine Projection (AP)
algorithm [3], which allows the algorithm’s behaviour to be
adjusted through the parameter projection order, denoted as
N . As N increases, so does the computational cost, with
the cost increasing in a cubic fashion with N . However,
this increase in computational demand is justified by the

significantly improved convergence speed, achieved by using
a matrix correction in the coefficient fitting to orthogonalize
the reference signal data, even when the reference signal is
colored. Several AP-based algorithms have been proposed
to overcome its computational burden, [4], [5], [6], [7], or
other issues as the trade-off between convergence speed and
misadjustment, [8], [9], or its robustness against impulsive
noise, [10], [11], [12], [13], [14]. Our objective is to enhance
the performance of the LMS algorithm in a similar way
to the affine projection algorithm, but without incurring a
significant increase in computational cost. To this end, we
introduce an extended LMS algorithm that operates on N
vectors from the reference signal. We achieve this with
reduced computational cost by using only a single scalar to
control its adaptation equation, which could be understood as
a variable step-size algorithm. Several approaches of variable
step-size algorithms have been proposed for the LMS, [15],
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[16], [17], [18], and for the AP, [8], [19], [20], [21]. Our
proposal integrates elements from both algorithms.

The outline of this paper is as follows: In Section II,
we review the algorithms and versions of the algorithms
most related to the new approach. The proposed algorithm is
described in Section III, followed by a discussion on its per-
formance in Section IV. The theoretical mean convergence
analysis and its mean square performance are both presented
in Sections V and VI, respectively. Finally, some simulation
results and conclusions are included in Sections VII and VIII,
respectively.

II. LMS, NLMS, Affine Projection and Affine Projection
like algorithms
Given a system in which the goal is to estimate a desired
signal d(n) from the filtering of a reference signal x(n) by
an FIR filter with L coefficients (w(n)), the LMS algorithm
proposes to find the solution to this problem by iteratively
adjusting the coefficients of the filter w(n) according to:

w(n) = w(n− 1) + µxL(n)e
a(n), (1)

where xL(n) is a vector containing the last L samples of the
reference signal, and ea(n) = d(n) − xL

T (n)w(n − 1) is
usually called the a priori error signal. µ is a positive constant
that controls how fast the algorithm can modify its current
solution, related to the speed and convergence conditions of
the algorithm, and is usually called the convergence step.
This equation allows, under certain conditions, to estimate
the optimal coefficients wopt(n) that minimise the mean
power of the error signal, defined as e(n) = d(n)−xT

L(n)w,
which is expressed as

wopt = min
w

{
1

2
E
{
(d(n)− xT

L(n)w)2
}}

. (2)

The LMS algorithm avoids the direct solution of (2),
which requires knowledge of signal statistics. Instead, it
achieves an iterative solution through a stochastic gradient
algorithm, relying only on the instantaneous data of the
signals to iteratively approach the optimal solution of the
problem. The use of instantaneous data to solve a statistical
problem has the disadvantage of its variance, but it can be
shown that on average the solution obtained by the LMS
algorithm coincides with the optimal solution given by (2).

The LMS algorithm gives rise to a large family of variants,
most notably its normalised version, NLMS (Normalised
Least Mean Square Algorithm) [22]:

w(n) = w(n− 1) +
1

xT
L(n)xL(n)

xL(n)e
a(n). (3)

The NLMS algorithm can be understood as the LMS,
where the convergence step used in (1) is the one that
minimises the instantaneous power of the a posteriori error
signal, defined as ep(n) = d(n)− xT

L(n)w(n). This version
of the LMS algorithm makes it possible to automatically ad-
just the value of the convergence step, thereby maximising its
convergence speed and enhancing the algorithm’s adaptibil-
ity to potential changes in the energy of the reference signal.

It can be shown that when the data between xL(n) and
xL(n − 1) are orthogonal (xT

L(n)xL(n − 1) ≈ 0), the
convergence speed of this algorithm is maximal. However,
when there is a correlation between them, the convergence
speed decreases.

Among the many alternatives proposed to address the con-
vergence speed issue in LMS-derived algorithms, especially
when dealing with highly colored reference signals, the AP
algorithm proposed in [3] stands out. This algorithm solves
the problem of modeling the variation of the coefficients
between iterations, denoted as ∥w(n)−w(n− 1)∥2, subject
to the N constraints given by d(n−k) = xT

L(n−k)w(n) (for
0 ≤ k ≤ N − 1). It is sometimes considered an extension of
the NLMS algorithm, as when N = 1, it coincides with that
algorithm. Both the AP algorithm and its variants are widely
used in several applications, such as: echo cancellation [23],
[24], active noise control (ANC) [25], [26], [27], [28], noise
reduction [29], system identification [30], [31], beamforming
[32], [33], [34] and acoustic feedback cancellation [35], [36],
[37], among others.

Equation (4) represents the equation used to update the
coefficients of the AP algorithm. It is worth noting that this
expression entails much higher computational cost compared
to the expressions of the LMS, as shown in (1), and the
NLMS, as shown in (3):

w(n) = w(n− 1) +X(n)[XT (n)X(n)]−1ea(n). (4)

The a priori error vector used in (4) is defined as ea(n) =
d(n) −XT (n)w(n − 1), being d(n) a vector with the last
N (N ≤ L) samples of the signal d(n) and X(n) =
[xL(n),xL(n−1), · · · ,xL(n−N+1)] a data matrix of size
L×N . The convergence speed of the AP algorithm increases
with N , but so does the computational complexity and
numerical instability of the computation (XT (n)X(n))−1.
Equation (4) is usually modified by introducing two param-
eters with practical meaning: a convergence step 0 < µ ≤ 1
and a regularisation factor δ. The modified equation is then
given by

w(n) = w(n− 1) + µX(n)[XT (n)X(n) + δIN ]−1ea(n),
(5)

where IN is the identity matrix of size N ×N . The regular-
isation factor is necessary to avoid instability in the matrix
inversion, especially when the data in the columns of X(n)
are closely related to linear combinations of other columns,
resulting in an ill-conditioned matrix that is challenging to
invert numerically (or even non-invertible) in practice. This
may happen when dealing with highly correlated signals. If
the value of δ required to guarantee matrix inversion is large,
regularised matrix inversion introduces a bias in the optimal
solution for the filter coefficients and also a deviation in the
behaviour of the algorithm during convergence, which may
require the use of a value of µ < 1 to avoid divergence.
For small δ, the algorithm usually converges for µ = 1. The
consequences of using the regularisation factor are analysed
in [38]–[41]. These works also proposed several strategies to

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2023.3340106

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



<Society logo(s) and publication title will appear here.>

identify the regularisation factor by optimising the behaviour
of the AP algorithm.

Considering that the most significant computational cost
in (4) and (5) lies in the matrix inversion, it is desirable to
either avoid or optimise this process. There are a number of
proposals in this regard, including methods for obtaining the
exact matrix inversion [42]–[46] as well as for introducing
certain approximations [47]–[51]. In [52], an alternative
class of algorithms called affine projection-like (APL) is
proposed. In these algorithms, the update equation avoids
matrix inversion and is given by

w(n) = w(n− 1) + µ(n)X(n)ea(n). (6)

This update expression is obtained by solving a minimisation
problem similar to (2), but considering instantaneous values
and a number of samples of the signal d(n) and vectors of
the reference signal equal to N , i.e:

wopt
APL = min

w

{
1

2
[d(n)−XT (n)w]T [d(n)−XT (n)w]

}
.

(7)
We can interpret this solution as an extension of the LMS
algorithm using more than one dimension (N > 1), or as
a version of the unconstrained affine projection algorithm.
It can also be considered as an approximate version of the
AP algorithm by replacing the matrix [XT (n)X(n)]−1 with
the identity matrix IN . This approximation is quite accurate
when the reference signal is white noise of unit average
power.

Although (6) can converge faster than the NLMS, its
convergence speed is limited by the dispersion of the N non-
zero (and positive) eigenvalues of the [L × L]-size matrix,
X(n)XT (n). It is suggested in [52] that:

0 < µ(n) < µmax(n) =
2

λmax(n)
, (8)

where λmax(n) is the maximum eigenvalue of X(n)XT (n),
which can be bounded by the sum of the non-zero eigen-
values of X(n)XT (n), given by λΣ(n) =

∑N
l=1 λl(n).

Although satisfying the upper bound of (8) is not a nec-
essary condition to guarantee convergence, it is a sufficient
condition.

When the signal is highly colored, λmax(n) → λΣ(n),
while when the signal is white, λmax(n) → λΣ(n)/N .
That is, the maximum convergence step that would give
the highest convergence speed while satisfying a sufficient
stability condition must be in the range:

2

λΣ(n)
≤ µmax(n) ≤

2N

λΣ(n)
. (9)

Therefore, the APL reduces the computational cost of the AP
at the expense of slower convergence as the reference signal
becomes more colored (up to a maximum of N times).

The calculation of λΣ(n) can be performed using the
reference signal data as:

λΣ(n) = Tr
{
XT (n)X(n)

}
=

N−1∑
p=0

xT
L(n− p)xL(n− p),

(10)
where the operator denoted by Tr {A} gives the trace of a
given matrix A.

The APL algorithm applies a µ(n) value of µmax(n)/2
when N = 1, which aligns it with NLMS (when dealing with
white signals, λΣ(n) ≈ NxT

L(n)xL(n), with µmax(n) =
2/xT

L(n)xL(n)). In the event that the nature of the reference
signal is unknown, it is imperative to limit the convergence
step to the worst-case scenario. This leads to a slower
convergence rate compared to its maximum speed when the
reference signal lacks coloration, as well as a slower rate
compared to the AP algorithm. It is suggested in [52] to use
the value of µ(n) that minimises the squared 2-norm of the
a posteriori error vector (∥ep(n)∥2) to address this reduction
in convergence speed (the a posteriori error vector is equal
to zero in the AP algorithm). This means

µI(n) = min
µ(n)

{
1

2
∥d(n)−XT (n)w(n)∥2

}
, (11)

which is given by

µI(n) =
∥X(n)ea(n)∥2

∥XT (n)X(n)ea(n)∥2
, (12)

and defines the algorithm called affine-like-I (APL-I) [52].
The affine-like-I algorithm requires 2LN + 3N multipli-

cations to update the coefficients, which is an intermediary
cost between the NLMS algorithm (2L) and the exact AP
(N3+N2(L+1)+LN ). It is considered that the calculation
for matrix inversion with a size of N × N requires N3

multiplications.

III. Variable step-size LMS with maximum similarity to the
AP algorithm
It may be inferred that an adaptive algorithm would exhibit
similar behaviour to a given one if its coefficients were very
close at each algorithm iteration. Therefore, we propose the
use of a variable convergence step that minimises the squared
2-norm of the difference between the coefficients of the exact
AP algorithm (with µ = 1 for clarity and without loss of
generality), denoted as wAP (n) and shown in (4), and the
approximate version, denoted as wAPL(n) and shown in (6).
This means

µ̃(n) = argminµ(n)
{
∥wAP (n)−wAPL(n)∥2

}
, (13)

or equivalently

µ̃(n) = argminµ(n)
{
∥X(n)(X(n)TX(n))−1 − µ(n)X(n))ea(n)∥2

}
,

(14)
which is given by

µ̃(n) =
(ea(n))Tea(n)

[X(n)ea(n)]TX(n)ea(n)
=

∥ea(n)∥2

∥ea(n)∥2Σ(n)

, (15)
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where Σ(n) = X(n)TX(n). Thus, the proposed approach
uses the update equation in (6), just like the AP and the
APL-I, except that the convergence step is obtained by
solving the minimization problem in (13). This approach
would require LN + 3N multiplications for updating the
coefficients, which is a lower count compared to the AP and
the APL-I algorithms.

IV. Convergence discussion
Equation (15) is a generalised Rayleigh quotient [53]. When
Σ(n) is positive definite, its maximum and minimum bounds
are determined by the maximum and minimum eigenvalues
of (Σ(n))−1, which are equal to the inverses of the eigen-
values of Σ(n). This ensures that the following boundaries
are satisfied

1

λmax(n)
= λmin(Σ−1) ≤ µ̃(n) ≤ λmax(Σ−1) =

1

λmin(n)
.

(16)
Equation (16) is also fulfilled by µI(n) suggested by

APL-I in (12), since the same relation can also be obtained
through the use of the generalized Rayleigh quotient with
the eigenvalues of

(
Σ2

)−1
Σ (which is equal to Σ−1).

The proposed convergence step, µ̃(n), cannot ensure that
(8) is fulfilled unless λmax(n)/λmin(n) < 2. Therefore, we
can only guarantee that (8) is fulfilled when the eigenvalues
of the matrix XT (n)X(n) are not sparse. Nevertheless the
nature of the reference signal and the values of L and N
influence these eigenvalues. This influence arises because
the eigenvalues are computed from the N initial values of
the temporal autocorrelation of the reference signal, which
is windowed with a sliding rectangular window of size L. To
reduce the time dependency of (16) for stationary signals, a
large L value should be used.

However, the breach of λmax(n)/λmin(n) < 2 does
not indicate whether the convergence step satisfies (8) or
not. Furthermore, failing to satisfy (8) does not necessarily
indicate algorithm divergence. Consequently, analysing the
long-term convergence of the algorithm is challenging.

On the other hand, the similarity condition, given by the
difference between the coefficients of the proposed algorithm
and the AP (see (13)), can be considered as an indicator of
the deviation in the convergence behaviour of the proposed
algorithm and the AP. It can be shown that this difference
can be bounded by substituting (15) into (14) and calculating
the energy of this difference as

∥wAP (n)−wAPL(n)∥2 = (ea(n))T [XT (n)X(n)]−1ea(n)

− (∥ea(n)∥2)2

(ea(n))TXT (n)X(n)ea(n)
≤ 2

∥ea(n)∥2

λmin(n)
.

(17)
Therefore, as the minimum eigenvalue λmin(n) increases, the
difference between the coefficient vectors decreases. Since
the energy of the a priori error signal decreases over time
(indicating algorithm convergence), the algorithm becomes
more sensitive to the appearance of small λmin(n) values in
the initial stages (during the transient period). When the a

priori error energy becomes small, the proposed algorithm
tends to exhibit behavior similar to the AP, regardless of
the reference signal. That is, the largest differences can
occur during the transient period when small λmin(n) values
appear. Note that for colored signals, increasing the value of
N does not necessarily improve the behavior of the proposed
algorithm. In such cases, the dispersion of the eigenvalues
may increase with higher values of N .

Equation (15) can be rewritten as

µ̃(n) =
∥ea(n)∥2∑N

k=1 λk(n)|uT
k (n)e

a(n)|2

=
1∑N

k=1 λk(n)(cos θk(n))2
,

(18)

where λk(n) and uk(n) (1 ≤ k ≤ N ) are respectively
the eigenvalues and eigenvectors of the Σ(n) matrix, which
depend only on the reference signal data at n time instant.
The angle θk(n) (for 1 ≤ k ≤ N ) is the angle that creates
the a priori error vector with each of the eigenvectors of
matrix Σ(n).

When N = 1, the proposed convergence parameter
coincides with the NLMS and consequently only depends
on the reference signal data. In contrast, as N increases,
its dependence on the a priori error signal increases. This
dependence will be greater if the reference signal is highly
colored because the eigenvalues of Σ(n) will be more sparse.
In the particular case of a low colored signal, it is satisfied
that λk(n) ≈ λmax(n),∀k, and therefore:

µ̃(n) ≈ 1

λmax(n)
∑N

k=1(cos θk(n))
2
=

1

λmax(n)
, (19)

being µ̃(n) dominated only by the data of the reference sig-
nal. On the other hand, in the case of a highly colored signal,
it holds for small values of N that

∑N
k=1 λk(n)(cos θk)

2 ≈
λmax(n)(cos θkmax)

2, where kmax is the index that deter-
mines the maximum eigenvalue and therefore:

µ̃(n) ≈ 1

λmax(n)(cos θkmax(n))
2
. (20)

In this case, the value of µ̃(n) is found to be more dependent
on the a priori error, which can lead to undesired results in
the behaviour of the algorithm in time periods where the a
priori error is not small (during transients). This dependence
on the a priori error will be greater as N increases, since
more angle-dependent terms θk(n) will be included in the
denominator of (20). This circumstance can be minimised
by pre-whitening the reference signal or by adding a reg-
ularisation factor to the calculation of the denominator of
(15).

Note that this dependence of the convergence step on the
a priori error is not as significant in the APL-I algorithm,
where:

µI(n) =

∑N
k=1 λk(n)(cos θk)

2∑N
k=1(λk(n))2(cos θk)2

, (21)

that for both low colored and highly colored signals provides
a convergence step value that depends only on the reference
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signal as

µI(n) ≈
1

λmax(n)
. (22)

Therefore, it is recommended to incorporate a regular-
ization factor 0 < α < 1 in the product XT (n)X(n) of
the denominator of (15) for highly colored signals and high
values of N . This would give rise to the following equation:

µ̃α(n) =
∥ea(n)∥2

∥ea(n)∥2Σ+αI

=
∥ea(n)∥2

∥ea(n)∥2Σ + α∥ea(n)∥2
, (23)

and the convergence parameter boundaries in (16) can be
rewritten as

1

λmax(n) + α
≤ µ̃α(n) ≤

1

λmin(n) + α
. (24)

Hence the difference between the algorithms given by (17)
becomes less dependent on λmin(n) at the expense of
decreasing the convergence speed.

V. Mean convergence analysis
Considering that d(n) = XT (n)wo, and defining w̃(n) =
wo − w(n), (6) can be rewritten for the proposed variable
convergence step as

w̃(n) = (I− µ̃(n)X(n)XT (n))w̃(n− 1). (25)

Taking mean values and assuming statistical independence
between the reference signal data and the shifted coefficient
vectors, w̃(n) and w̃(n− 1), we obtain

E{w̃(n)} = (I−E{µ̃(n)X(n)XT (n)})E{w̃(n−1)}, (26)

where the mathematical expectation is denoted by E{·}.
We define E{µ̃(n)X(n)XT (n)} = QΛQT , being Λ a di-

agonal matrix with the eigenvalues of E{µ̃(n)X(n)XT (n)}
along its diagonal. Then the rotation of (26) by the unitary
matrix QT gives

w̃′(n) = (I−Λ) w̃′(n− 1), (27)

which can be recursively expressed starting from an arbitrary
initialisation of the weights as

w̃′(n) = (I−Λ)
n
w̃′(0). (28)

As discussed in Section II, (8) presents a sufficient
condition for the convergence of APL algorithms, which
is the type proposed here. This is because the eigenval-
ues of E{µ̃(n)X(n)XT (n)} will all be less than 2, and
limn→∞ w̃′(n) = 0 in (28). Using (16), the sufficient
condition in this case can be expressed as the quotient
λmax(n)/λmin(n) ≤ 2, or λmax(n)/(λmin(n) + α) ≤ 2
with regularization. This condition is met for low colored
signals, since its eigenvalue ratio is close to one regardless
of the value of N , provided that L is sufficiently large. For
colored signals, it is not possible to approximate µ̃ using the
equation given in (19) and the sufficient condition cannot be
guaranteed for all values of n.

For small values of ea(n), it is possible to consider
the error as independent of the data, so that a statistical

independence can be assumed between the reference signal
data and the convergence step µ̃(n), that is

E
{
µ̃(n)X(n)XT (n)

}
= E {µ̃(n)}E

{
X(n)XT (n)

}
.
(29)

For these small values of ea(n) the values of µ̃(n) are small
and very close (always positive), so it is possible to make
the following approximation using (18) [54]:

E {µ̃(n)} ≈ 1

E
{∑N

k=1 λk(n)[cos(θk(n))]2
} . (30)

In this case of independence between the a priori error
and the reference signal data, θk(n) can be considered a
random variable uniformly distributed between −π and π
and independent of the reference signal, hence it follows
that:

E {µ̃(n)} ≈ 2∑N
k=1 E{λk(n)}

<
2

λmax
, (31)

where λmax is the maximum eigenvalue of
E
{
X(n)XT (n)

}
. In this way, the convergence in mean of

the proposed algorithm is proved in this case, since (28)
tends to zero with n → ∞ when E {µ̃(n)} < 2/λmax.

In the case of large values of ea(n) and small values of
N , the parameter µ̃(n) is governed by (20). Then the a priori
error can be considered to be highly data-dependent and
is aligned with the eigenvalue corresponding to the largest
eigenvalue of X(n)XT (n), accordingly:

µ̃(n) ≈ 1

λmax(n)
, (32)

which ensures convergence in this case.
Finally, when the signal is highly colored and N is large,

the algorithm’s behaviour may deviate from the desired
outcome during convergence. Unlike the AP algorithm,
whose behaviour remains stable as N increases for colored
signals, this algorithm may worsen its convergence during
the transient phase as N increases above the value that
saturates the convergence speed of the AP algorithm. This
effect is less pronounced when regularisation is employed.

VI. Mean square error performance
The steady-state mean squared error (MSE) of the proposed
algorithm is defined as: MSE = limn→∞ E

{
(e(n))2

}
,

where e(n) is the first element of the error vector in (6),
given by e(n) = d(n) + v(n)−x(n)Tw(n− 1). Here, v(n)
is an additive zero-mean measurement noise that accounts
for modeling errors. The error vector and the convergence
parameter become, respectively:

e(n) = d(n)−XT (n)w(n− 1) + v(n) (33)

and

µ̃(n) =
eT (n)e(n)

eT (n)XT (n)X(n)e(n)
. (34)

Equation (6) can be expressed as a function of the coef-
ficients w̃(n), resulting in:

w̃(n) = w̃(n− 1)− µ̃(n)X(n)e(n). (35)
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By defining ẽp(n) = XT (n)w̃(n) and ẽa(n) =
XT (n)w̃(n− 1), the relationship between the error vectors
becomes:

ẽp(n) = ẽa(n)− µ̃(n)XT (n)X(n)e(n), (36)

and
e(n) = ẽa(n) + v(n). (37)

After inserting the cleared value of e(n) from (36) into
(35), the following expression is obtained:

w̃(n) +X(n)(XT (n)X(n))−1ẽa(n)

= w̃(n− 1) +X(n)(XT (n)X(n))−1ẽp(n),
(38)

and then, the following energy equality [55] should hold:

||w̃(n)||2 + (ẽa(n))T (XT (n)X(n))−1ẽa(n)

= ||w̃(n− 1)||2 + (ẽp(n))T (XT (n)X(n))−1ẽp(n).
(39)

Assuming after convergence that limn→∞ ||w̃(n)||2 =
limn→∞ ||w̃(n− 1)||2, (39) becomes

limn→∞(ẽa(n))T (XT (n)X(n))−1ẽa(n)

= limn→∞(ẽp(n))T (XT (n)X(n))−1ẽp(n)
. (40)

Substituting (36) into (40) gives

lim
n→∞

µ̃(n) = lim
n→∞

2(ẽa(n))Te(n)

e(n)TXT (n)X(n)e(n)
, (41)

which, after specifying µ̃(n) to the value given by (34) and
taking mean values, yields

lim
n→∞

E
{
eT (n)e(n)

}
= lim

n→∞
E
{
2(ẽa(n))Te(n)

}
. (42)

For convenience, we express eT (n)e(n) =
Tr

{
e(n)eT (n)

}
as in [55], and use (37) in (42) obtaining

lim
n→∞

Tr
{
E
{
ẽa(n)(ẽa(n))T

}}
+ lim

n→∞
Tr

{
E
{
v(n)vT (n)

}}
= lim

n→∞
E
{
2(ẽa(n))T ẽa(n)

}
,

(43)
where independence between the measurement
noise, v(n), and ea(n) has been considered.
It can be assumed during the steady-state that
Tr

{
E
{
ẽa(n)(ẽa(n))T

}}
≈ E

{
(ẽa(n))2

}
for large

convergence steps, whereas Tr
{
E
{
ẽa(n)(ẽa(n))T

}}
tends

to NE
{
(ẽa(n))2

}
for small values of the convergence

steps, as it is shown in [55]. Therefore (43) can be expressed
as

lim
n→∞

E
{
(ẽa(n))2

}
+Nσ2

v ≈ lim
n→∞

(2N)E
{
(ẽa(n))2

}
,

(44)
where σ2

v is the mean power of the measurement noise.
The expression limn→∞ E

{
(ẽa(n))2

}
denotes the excess

mean squared error (EMSE) and, since e(n) = ẽa(n)+v(n),
its relation with the MSE is given by: MSE = EMSE+ σ2

v .
Hence, the MSE can be approximated finally as

MSE ≈ σ2
v + σ2

v

N

2N− 1
= σ2

v

3N− 1

2N− 1
, (45)

and MSE < 2σ2
v . This bound arises when only very small

values of the convergence steps are considered.

0 50 100 150 200 250

n

-0.02

-0.01

0

0.01

0.02

0.03
Impulse Response to identify

FIGURE 1. Impulse response of the system to be identified. Measured in a
9.36m × 4.78m × 2.63m listening room.

VII. Results
The proposed algorithm has been employed on a system
identification application. The system (shown in Figure VII)
has been modelled with a FIR filter of 256 coefficients
(although its energy is concentrated within the first 200
coefficients) and an adaptive filter of L = 250 coefficients
is used for its identification.

The performance of the proposed algorithm has been
evaluated against the exact AP method (including projection
order N = 1, equivalent to NLMS) and APL-I algorithms.
Simulations were conducted with projection orders of N ∈
{1, 2, 4, 6, 8, 10, 20}. The reference signal, x(n), was
white Gaussian noise of unit power, n(n), filtered using
the following AR model: x(n) = n(n) − γx(n − 1). The
values of γ used were: 0 (white signal), 0.9, 0.99, 0.999
(low-pass signals, becoming more low-pass as γ approaches
unity), −0.9, −0.99, −0.999 (high-pass signals, becoming
more high-pass as γ approaches unity).

The learning curves of the algorithms have been calculated
by L(n) = 10 log10

[
e2f (n)/d

2
f (n)

]
. Power estimate values

of the signals have been obtained through exponential win-
dowing given by e2f (n) = βe2f (n − 1) + (1 − β)e2(n) and
d2f (n) = βd2f (n − 1) + (1 − β)d2(n), where β = 0.999
has been used. Furthermore, 50 independent trials have been
averaged to smooth these learning curves.

Figure 2 displays the results for the different algorithms
when the reference signal is slightly colored (γ = 0.9) with
a medium-low projection order ((a) N = 4) and a high
projection order ((b) N = 10). It can be observed that the
proposed algorithm performs similarly to the AP, substan-
tially enhancing the convergence speed of the NLMS and,
to a lesser extent, that of the APL-I for N = 4. Furthermore,
the proposed algorithm improves the steady-state behaviour
in both cases. This behaviour becomes more evident when
the reference signal is highly colored, as depicted in Figure
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FIGURE 2. Comparative learning curves and step-size values for: AP,
APL-I and the proposed algorithm using low colored reference signals,
with different projection orders: (a) N = 4 and (b) N = 10.

3, which presents the same data as in Figure 2 but for a
reference signal with γ = −0.999. Figure 3 illustrates that
for N = 4, the proposed algorithm outperforms APL-I.
However, for N = 10, APL-I accelerates its convergence
speed, while the proposed algorithm does not (similar to the
behavior of AP). This difference arises because the proposed
algorithm is more reactive to the a priori error signal for high
projection orders and extremely colored signals than APL-
I. Nonetheless, the performance of the proposed algorithm
remains satisfactory, clearly outperforming the NLMS and
APL-I and matching the performance of the AP without
requiring high values of N to achieve results close to the
best results of the AP.

Figure 4 illustrates the learning curves of the proposed
algorithm for various projection orders for (a) a slightly
colored signal (γ = −0.9) and (b) a highly colored signal
(γ = 0.999), thus showing the behaviour of the new
approach based on the nature of the reference signal. It
is shown that the proposed algorithm behaves similarly to

0 2 4 6 8 10 12

n 104

-80

-60

-40

-20

0

L(
n)

[d
B

]

10-6

10-4

10-2

100

102

104
N=4, model x(n)=n(n)+0.999x(n-1)

Proposed algorithm
AP-like
NLMS
AP

 Proposed algorithm
 AP-like

(a)

0 2 4 6 8 10 12

n 104

-80

-60

-40

-20

0

L(
n)

[d
B

]

10-6

10-4

10-2

100

102

104
N=10, model x(n)=n(n)+0.999x(n-1)

Proposed algorithm
AP-like
NLMS
AP

 Proposed algorithm
 AP-like

(b)

FIGURE 3. Comparative learning curves and step-size values for the AP,
APL-I and the proposed algorithm using high colored reference signals,
for: (a) N = 4 and (b) N = 10.

the AP when the reference signal is slightly colored. It
improves the convergence speed with the projection order or
saturates the convergence speed from a certain order. Thus, in
Figure 4-(a) (slightly colored signal), the proposed algorithm
achieves its maximum speed for N = 4. Subsequently,
it exhibits no visible improvement in performance up to
N = 20, but it does not deteriorate either.

However, the previous sections has shown that, as the
signal becomes highly colored, the sensitivity of the algo-
rithm to the a priori error signal becomes more critical, and
the convergence speed may deteriorate for high projection
orders. This is illustrated in Figure 4-(b) for a highly
colored signal, where the proposed algorithm accelerates its
convergence up to N = 8. Nevertheless, its performance
slows down for large N values, as explained in Sections IV
and V.

Figures 2 and 3 display the variable step-size for the
APL-I and the proposed algorithms. It can be observed that
the step-size of the proposed algorithm is slightly higher
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FIGURE 4. Learning curves and step-size values of the proposed
algorithm and different projection orders for: (a) slightly colored reference
signal and (b) highly colored reference signal.

for low projection order and high colored signals, whereas
both step-sizes are similar for high projection order and
low colored signals. Figure 4 also illustrates the temporal
evolution of the variable step-size of the proposed algorithm.
As expected, the step-size exhibits a lower range between
its highest and lowest values when the projection order
increases. This behavior is more evident for low colored
signals. It should be noted that the step-size shows different
ranges during transient and steady states for high colored
signal and high projection order in accordance with the
convergence behavior of the algorithm, which differs from
its behavior for lower orders.

A speech signal has been used as reference in a last
experiment, since one of the most common applications
of system identification by adaptive filtering arises in echo
cancellers. A sudden change in the acoustic path halfway
through the experiment has been brought about to assess the
tracking performance of the proposed algorithm. This change
consisted of the reversal of the sign of the acoustic path
together with an additional delay of two samples. The speech
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FIGURE 5. Behaviour of the AP, APL, NLMS and proposed algorithm
when the reference signal is a speech signal and the unknown system is
suddenly modified at t=1.4s.

signal sample was taken from the TIMIT database [56],
which utters: ‘She had your dark suit in greasy wash water
all year’. Figure 5 shows the desired signal (the speech signal
filtered through the primary path) versus the error signal
(the difference between the desired signal and the signal
filtered through the adaptive filter, which is the estimated
path) for the NLMS, AP, APL, and the proposed algorithm
(the last three with N = 4). The proposed algorithm exhibits
better performance than the NLMS and the APL, and its
performance is close to the AP algorithm. All algorithms are
robust against the sudden change, but the NLMS transient is
slower.

Regarding the steady state performance of the proposed
algorithm, the experimental MSE and the approximated MSE
according to the model of (45) have been depicted in Figure
6 for different values of the measurement noise variance,
σ2
v , and several projection orders. The results have been

obtained using a reference signal based on the AR model
with γ = 0.9. The experimental MSE has been estimated
as the average of the squares of the last 100 samples of
the error signal. The number of samples for each simulation
has been 132, 300 to guarantee reaching the steady state. It
can be observed that the model provided by (45) accurately
predicts the final MSE.
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VIII. Conclusions
In this work, a modification of the LMS algorithm has
been proposed that simultaneously uses N vectors of the
reference signal and a correction factor that, under certain
conditions, allows its behaviour to resemble that of the AP
algorithm with projection order N . The main advantage
of this algorithm is that it avoids the need for matrix
inversion, resulting in a computationally efficient approach
with very low correction calculation costs. In addition, it
enhances the performance of similar methods like APL-I
while maintaining lower computational demands. However,
in cases where the reference signal is highly colored, and
high projection orders are used, the performance of the pro-
posed algorithm may deviate from that of AP and may even
be inferior to APL-I. Therefore, it is advisable, in such cases,
to employ regularisation of the variable step size or limit
the value of N to that of the best algorithm performance.
Nevertheless, it remains a robust algorithm that significantly
improves the performance of NLMS with minimal additional
computational cost and enhances the performance of APL-I
with lower computational requirements.

It should be noted that the proposed algorithm approaches
the behavior of the AP in terms of convergence when the
reference signal is slightly colored and exhibits excellent
performance for colored signals up to the projection or-
ders where the convergence behavior of the AP cannot be
improved either. Therefore, the algorithm’s performance is
significant, and the trade-off between convergence speed and
computational cost is, in most cases, much superior to that
of other similar algorithms such as NLMS or other APL
proposals.
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