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ABSTRACT The edge flow reconstruction task consists of retreiving edge flow signals from corrupted
or incomplete measurements. This is typically solved by a regularized optimization problem on higher-
order networks such as simplicial complexes and the corresponding regularizers are chosen based on prior
knowledge. Tailoring this prior to the setting of interest can be challenging or it may not even be possible.
Thus, we consider to learn this prior knowledge via a model-based deep learning approach. We propose
a new regularized optimization problem for the simplicial edge flow reconstruction task, the simplicial
ElasticNet, which combines the advantages of the ℓ1 and ℓ2 norms. We solve the simplicial ElasticNet
problem via the multi-block alternating direction method of multipliers (ADMM) algorithm and provide
conditions on its convergence. By unrolling the ADMM iterative steps, we develop a model-based neural
network with a low requirement on the number of training data. This unrolling network replaces the fixed
parameters in the iterative algorithm by learnable weights, thus exploiting the neural network’s learning
capability while preserving the iterative algorithm’s interpretability. We enhance this unrolling network
via simplicial convolutional filters to aggregate information from the edge flow neighbors, ultimately,
improving the network learning expressivity. Extensive experiments on real-world and synthetic datasets
validate the proposed approaches and show considerable improvements over both baselines and traditional
non-model-based neural networks.

INDEX TERMS Signal processing over higher-order networks, simplicial convolutional filters, topological
signal processing.

I. INTRODUCTION
Reconstructing signals from noisy or partial measurements
is a long-lasting challenge in signal processing. This task
requires exploiting a particular signal behavior w.r.t. the
underlying medium, which typically resorts to framing a
structure-based regularized problem [1] [2] [3]. Regularizers
introduce a bias between the solution and the actual value,
and they possess distinct characteristics. For example, in
graph signal processing (GSP) [4], where the data is defined
on the nodes of a graph, the Tikhonov regularizer is used
to recover the graph signal based on the assumption that
connected nodes have similar values [5] [6]. When the signal
is piece-wise smooth, graph trend filtering with an ℓ1 norm
regularizer is more effective as it promotes sparsity in the
signal difference of connected nodes [7] [8].

In many applications, we are interested in signals defined
on the edges of a network such as in transportation, water,
or power networks. Therefore, data defined on higher-order
networks have been studied recently [9] [10]. One effective
way to represent the structure of these flow data is via sim-
plicial complexes [10] which is an algebraic tool to capture
multi-way relationships where edge flows can be seen as
data over one-simplices [11]. Such oberved edge flows are

in practice noisy or have missing values, thus we need to
reconstruct them by means of simplicial-based regularized
problems. Prior information or physical constraints about the
flow behaviour could be used to frame regularized problems
so as to estimate the true signal. The papers [12] and [13]
respectively solve the edge flow denoising and interpolation
task in simplicial complexes based on Tikhonov principles.

However, they only penalize the flow divergence com-
ponent but not their curl component. This makes them
suboptimal as edge flows are often not only divergence-free,
but also curl-free which means the net flows circulating along
all the triangles are zero, such as currency exchange flows
[13]. Secondly, Tikhonov regularizers can only smoothen the
divergence and curl components but are unsuitable when the
signals present sudden jumps, which commonly occurs in the
case of local (i.e., only in a few close-by edges) divergence-
free and curl-free flows [8]. Therefore, this paper proposes a
simplicial ElasticNet that combines the Tikhonov regularizer
with the ℓ1 regularizer to solve the reconstruction task. The
simplicial ElasticNet has a broader range of applications. It
is a convex problem and can be solved by various standard
iterative algorithms, such as the alternating direction method
of multipliers (ADMM) [14] [15].
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The regularizers are determined based on the prior knowl-
edge which can often be challenging to obtain [16]. There-
fore, it is a viable scheme to learn the prior, which is
typically done via model-based neural networks. One such
method is the unrolling technique which maps each iteration
of the optimization algorithm into a neural network layer
[16]. It has been successfully applied in medical imaging
[17], power grids [18], remote sensing [19] and graph
signal denoising [20]. Compared with unrolling networks,
standard neural network models have a black-box nature and
are entirely data-driven. Since they are not tailored to the
reconstruction task, they need more training data as their
function spaces are larger. When the training data is limited,
the unrolling network is advantageous because it restricts
effectively the function search space by leveraging the priors
in the optimization problem and the iterative solutions.

We build unrolling networks for the simplicial Elastic-
Net via its ADMM block structure. We replace the fixed
parameters with learnable simplicial convolutional filters to
aggregate information from the neighbors of the edge flow
[21]. Consequently, we improve the expressive ability of
the unrolling network. Therefore, we make the following
contributions:

• We propose an ElasticNet problem for the simplicial
edge flow reconstruction task. The regularizer is based
on both the ℓ1 and ℓ2 norm. It generalizes existing regu-
larization approaches and reconstructs both global and
local divergence-free and/or curl-free edge flows. We
solve this convex problem by the multi-block ADMM
algorithm and provide conditions on its convergence.

• We build the corresponding unrolling network for sim-
plicial ElasticNet (USEN). It is based on the ADMM
equations and on simplicial convolutional filters which
aggregate information from the neighbors of the edge
flow. This also provides a new perspective on simplicial
edge flow reconstruction tasks.

We conduct numerical experiments on synthetic and real
datasets to corroborate the proposed methods and show their
superior performance compared to state-of-the-art simplicial-
based regularizers and neural network solutions.

This paper is organized as follows. Section II illustrates
some preliminary concepts. In Section III, we propose our
simplicial ElasticNet and the corresponding ADMM solution
with the convergence analysis. In Section IV, we propose the
simplicial unrolling network based on the ADMM steps of
the simplicial ElasticNet. Section V shows some experimen-
tal results. Finally, Section VI concludes the paper. All proofs
are collected in the appendix.

II. PRELIMINARY
In this section, we introduce some concepts related to
simplicial complexes and signals.

A. SIMPLICIAL COMPLEXES
Given a finite set of vertices V , a k-simplex Sk is a subset
of V with cardinality k+1. A simplicial complex of order K,
XK , is a finite collection of k-simplices Sk for k = 0, 1, ...,K

satisfying the inclusion property: for any Sk ∈ XK , all of
its subsets Sk−1 ⊂ Sk satisfy Sk−1 ∈ XK . The number of
k-simplices in a simplicial complex is denoted by Nk. For
example, a node is a 0-simplex, an edge is a 1-simplex, and
a (filled) triangle is a 2-simplex, as shown in Figure 1. A
graph is therefore a simplicial complex of order K = 1.

We can represent the adjacencies between different sim-
plices via the incidence matrices Bk ∈ RNk−1×Nk which
capture the relationship between (k-1)-simplices and k-
simplices [10]. Matrix B1 is the node-to-edge incidence
matrix, B2 is the edge-to-triangle incidence matrix, and so
on. The whole simplicial complex structure can then be
represented by the Hodge Laplacian matrices

L0 = B1B
⊤
1

Lk = B⊤
k Bk +Bk+1B

⊤
k+1, k = 1, . . . ,K − 1

LK = B⊤
KBK .

(1)

Except for L0 and LK , all other matrices can be decom-
posed into the sum of two terms: the lower Laplacian
Lk,ℓ = B⊤

k Bk and the upper Laplacian Lk,u = Bk+1B
⊤
k+1.

The lower Laplacian represents the lower adjacencies of k-
simplices (e.g., how two edges are adjacent via a common
node), while the upper Laplacian represents the upper adja-
cencies (e.g., how two edges are adjacent by being the faces
of the same triangle).

B. SIMPLICIAL SIGNALS
A k−simplicial signal, for short k−signal, is a mapping from
the k−simplex to the set of real numbers. We collect the
k−signal into the vector sk =

[
sk1 , . . . , s

k
Nk

]⊤ ∈ RNk where
entry ski corresponds to the ith k-simplex [10]. In this paper,
we are interested in processing edge flows; hence, we will
deal with simplicial complexes of order K = 2. Thus, we
denote the 0-signal as v := s0 = [v1, . . . , vN0

]
⊤ ∈ RN0 ,

the 1-signal as f := s1 = [f1, . . . , fN1 ]
⊤ ∈ RN1 , and the

2-signal as t := s2 = [t1, . . . , tN2
]
⊤ ∈ RN2 . A simplex

can have two orientations. The orientations of the edges in
the graph are set based on the labeling of vertices. If the
value of the edge signal is positive, the set orientations are
consistent with the real situation. If it is negative, the set
orientations are opposite. For processing purposes, we define
an arbitrary reference orientation of each simplex and follow
for simplicity the lexicographical ordering of the vertices.

The space of the simplicial edge flow signal RN1 can be
decomposed into three orthogonal subspaces

RN1 ≡ im
(
B⊤

1

)
⊕ ker (L1)⊕ im (B2) (2)

where im(·) and ker(·) are the image and kernel spaces of
a matrix and ⊕ is the direct sum. That is, for any edge flow
signal f , there exist three simplicial signals of orders 0, 1,
and 2 so that we can decompose the edge flow as

f = B⊤
1 v + fH +B2t. (3)

This Hodge decomposition expresses the relationship be-
tween different orders of simplicial signals [10]. It implies
that the edge flow can be written as a sum of three flows
f = fG + fC + fH (see also Figure 1) with the explanation:
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(a) Edge flow f . (b) fG. (c) fC. (d) fH.
FIGURE 1. Decomposition of the edge flow. The simplicial complex
contains seven nodes, nine edges, and two (filled) triangles. The edge
signals can be decomposed into three different components fG, fC and
fH : fG is the gradient component; fC is the curl component; and fH is
the harmonic component.

• Gradient component: fG = B⊤
1 v ∈ im(B⊤

1 ) is an edge
flow induced by taking the difference between the two
node signals at the extremities of the edge. Operator
B⊤

1 is the gradient operator and the space im (B⊤
1 ) is

the gradient space.
• Curl component: fC = B2t ∈ im(B2) is a curl flow

locally circulating along the edges of triangles induced
by a triangle signal t. Operator B2 is the curl adjoint
and the space im (B2) is the curl space.

• Harmonic component: fH ∈ ker(L1) is the part of the
edge flow that satisfies L1fH = 0. The space ker (L1)
is called the harmonic space.

For future reference, we define the following two operators:
• Curl operator: curl(f) = B⊤

2 f which yields a triangle
signal that measures the curl of an edge flow. The ith
element corresponds to the sum of the flow of each
edge forming the ith triangle. If the curl of an edge
flow is zero at each triangle, it is curl-free. The gradient
component fG and the harmonic component fH are curl-
free by definition [10].

• Divergence operator: div(f) = B1f which yields a
node signal and measures the divergence of an edge
flow. The ith element corresponds to the flow passing
through the ith node. If the divergence of an edge flow
is zero at each node, it is divergence-free. The curl
component fC and the harmonic component fH are
divergence-free by definition [10].

Real edge flows tend to be divergence-free or curl-free. For
example, the traffic flow entering into a junction in a road
network is equal to the traffic flow out going that junction,
which means it is divergence-free. Another example is the
principle of non-arbitrage in the foreign exchange market,
which implies that the conversion between exchange rates
should be curl-free [13].
III. SIMPLICIAL ELASTICNET
Consider the edge flow reconstruction task from noisy or
partial measurements y. The goal is to estimate an edge flow
signal f̂ by leveraging a particular prior of the edge flows

such as curl-free or divergence-free. This can be framed as
a regularized optimization problem

argmin
f̂∈RN1

∥P(f̂ − y)∥22 +
∑n

i=1 ri(f̂ ,S1) (4)

where ∥P(f̂ − y)∥22 is the data-fitting term. The terms
ri(f̂ ,S1) represent the regularizers, which are monotone
non-decreasing functions that penalize a particular behavior
of the edge flows w.r.t. the 1-simplex S1. We consider prob-
lem (4) as a unified formulation for two particular settings:
i) signal denoising when all edge flows are observed but the
measurements are noisy; ii) signal reconstruction, when the
edge flows are observed on a subset of the edges. When
P = I and y = f0+n is a noisy edge flow, the optimization
problem corresponds to the denoising task. Here, f0 is the
real edge flow and n is the additive Gaussian noise. When
P ∈ {0, 1}M×N1 is a sampling matrix with M ≤ N1

sampled values, the optimization problem corresponds to the
interpolation task.

A. SIMPLICIAL ELASTICNET PROBLEM
To regularize problem (4) with a simplicial prior, we consider
the ElasticNet [22] principle w.r.t. the three signal compo-
nents in (3) which contains both ℓ1 and ℓ2 norm regularizers

argmin
f̂∈RN1

∥P(f̂ − y)∥22 + α1∥B1f̂∥1 + α2∥B1f̂∥22 + β1∥B⊤
2 f̂∥1

+ β2∥B⊤
2 f̂∥22 + γ1∥f̂∥1 + γ2∥f̂∥22

(5)

where α1, α2, β1, β2, γ1, γ2 are all positive constants. There
are three regularization pairs in (5) that are reminiscent of
the Hodge decomposition in (3):

• The first pair α1∥B1f̂∥1 + α2∥B1f̂∥22 regularizes the
divergence component of the edge flows by promoting
the divergence to be sparse via the ℓ1 norm and low-
energy via the ℓ2 norm.

• The second pair β1∥B⊤
2 f̂∥1 + β2∥B⊤

2 f̂∥22 regularizes
the curl component of the edge flows. The ℓ1 norm
promotes the sparsity of the curl on the triangles while
the ℓ2 norm reduces the total curl of the recovered
signal globally.

• The last pair γ1∥f̂∥1 + γ2∥f̂∥22 contains the additional
regularizers that guarantee the completes of the opti-
mization problem; that is, having an overall signal that
is either sparse or of low energy. In most tasks, these
two terms are redundant, hence, γ1 and γ2 can be set
to zero.

Scalars α1, α2, β1, β2, γ1, and γ2 control the trade-off
between the fidelity, the divergence, and the curl of the
recovered signal. Problem (5) generalizes two existing edge
flow reconstruction problems.

Tikhonov regularizer [12] [13]. When the parameters α1 =
β1 = γ1 = γ2 = 0, a common optimization problem for the
edge flow recovery becomes

argmin
f̂∈RN1

∥P(f̂ − y)∥22 + α2∥B1f̂∥22 + β2∥B⊤
2 f̂∥22 (6)
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where the regularizers force the recovered signal to have low
divergence and curl.

Simplicial trend filtering [23]1 When we consider only
the sparsity of the divergence and curl of the edge flow,
the ℓ1 norm regularizer should be considered. Setting α2 =
β2 = γ1 = γ2 = 0, the simplicial ElasticNet reduces to the
simplicial trend filtering problem

argmin
f̂∈RN1

∥P(f̂ − y)∥22 + α1∥B1f̂∥1 + β1∥B⊤
2 f̂∥1 (7)

When the prior knowledge (curl-free or divergence-free) is
explicit, simplicial trend filtering is more advantageous com-
pared to Tikhonov regularization. The properties of the ℓ2
norm regularizers are suboptimal for some tasks because they
can only reduce the divergence and curl of the reconstructed
signal globally but cannot reconstruct the divergence-free
and curl-free edge flow exactly.

The ElasticNet benefits from both regularizers and it is
of interest when: (i) the data are approximately curl-free or
divergence-free; (ii) the noise level is comparable to that of
the clean signal; and (iii) excessive flows are missing. The
reason is that the ElasticNet makes a trade-off between the
ℓ1 norm and ℓ2 norm.

B. ADMM SOLUTION FOR SIMPLICIAL ELASTICNET
The optimization problem in (5) is a convex problem and
there are several blocks in its objective function. It can be
solved by a multi-block ADMM algorithm [24]. Consider
the auxiliary variables z1 = B1f̂ , z2 = B⊤

2 f̂ and z3 = f̂ for
the regularizers so that problem (5) reformulates as

argmin
f̂∈RN1

∥P(f̂ − y)∥22 + α1∥z1∥1 + α2∥z1∥22 + β1∥z2∥1

+ β2∥z2∥22 + γ1∥z3∥1 + γ2∥z3∥22

subject to B1f̂ = z1,B
⊤
2 f̂ = z2, f̂ = z3.

(8)

The corresponding augmented Lagrangian is

L =∥P(f̂ − y)∥22 + α1∥z1∥1 + α2∥z1∥22 + β1∥z2∥1
+ β2∥z2∥22 + γ1∥z3∥1 + γ2∥z3∥22 − λ⊤

1 (B1f̂ − z1)

− λ⊤
2 (B

⊤
2 f̂ − z2)− λ⊤

3 (f̂ − z3) +
ρ

2
∥B1f̂ − z1∥22

+
ρ

2
∥B⊤

2 f̂ − z2∥22 +
ρ

2
∥f̂ − z3∥22

(9)

where λ1 ∈ RN0 , λ2 ∈ RN2 and λ3 ∈ RN1 are the
Lagrangian multipliers and ρ is the penalty parameter. There
are four blocks in this problem: ∥P(f̂ − y)∥22; α1∥z1∥1 +
α2∥z1∥22; β1∥z2∥1 + β2∥z2∥22 and γ1∥z3∥1 + γ2∥z3∥22. The

1This can be considered as a preliminary version of this paper presented
at Asilomar. The previous work contains only ℓ1 terms. Therefore, this
approach is an extension of this previous work, which contains both the ℓ1
and ℓ2 terms to promote the sparsity and keep the low energy, respectively.
The work in [23] does not focus on the unrolling technique as we do here.

iterative steps of the related four-block ADMM comprise

f̂ (k+1) =(2P⊤P+ ρB⊤
1 B1 + ρB2B

⊤
2 + ρI)−1

(2P⊤Py +B⊤
1 λ

(k)
1 +B2λ

(k)
2 + λ

(k)
3

+ ρB⊤
1 z

(k)
1 + ρB2z

(k)
2 + ρz

(k)
3 )

z
(k+1)
1 =S α1

2α2+ρ

(
1

2α2 + ρ
(ρB1f̂

(k+1) − λ
(k)
1 )

)
z
(k+1)
2 =S β1

2β2+ρ

(
1

2β2 + ρ
(ρB⊤

2 f̂
(k+1) − λ

(k)
2 )

)
z
(k+1)
3 =S γ1

2γ2+ρ

(
1

2γ2 + ρ
(ρf̂ (k+1) − λ

(k)
3 )

)
λ
(k+1)
1 =λ

(k)
1 − ρ(B1f̂

(k+1) − z
(k+1)
1 )

λ
(k+1)
2 =λ

(k)
2 − ρ(B⊤

2 f̂
(k+1) − z

(k+1)
2 )

λ
(k+1)
3 =λ

(k)
3 − ρ(f̂ (k+1) − z

(k+1)
3 )

(10)

where Sδ(·) is the element-wise soft-thresholding function
with threshold δ. The following proposition provides a
sufficient condition for the convergence of the ADMM.
Proposition 1 (convergence): Assume that P⊤P is a positive
definite matrix and there exists a constant µ1 > 0 satisfying
P⊤P ⪰ µ1I. Each regularization block in the cost function
is a strongly convex function with modulus µi [24] satisfying
µ2 = 2α2, µ3 = 2β2, µ4 = 2γ2. Consider also the matrices
Ai related to the equality constraints of (8) defined as

A1 =
[
B1,B

⊤
2 , I
]
∈ R(N0+N1+N2)×N1 (11a)

A2 = [−I, 0, 0] ∈ R(N0+N1+N2)×N0 (11b)

A3 = [0, −I, 0] ∈ R(N0+N1+N2)×N2 (11c)

A4 = [0, 0, −I] ∈ R(N0+N1+N2)×N1 . (11d)

If the penalty parameter ρ satisfies

0 < ρ < min
1≤i≤4

{
2µi

9∥Ai∥22

}
, (12)

the four-block ADMM iterative steps converge to the optimal
solution of the problem (5).
Proof. See Appendix A.

When we specify (5) as the reconstruction task, this
proposition only works for the denoising task as P⊤P is
positive semidefinite in the interpolation task.

IV. SIMPLICIAL UNROLLING NETWORKS
Choosing appropriate regularization coefficients is critical
to achieve a satisfactory performance by solving problem
(5). However, such a prior knowledge may be unavailable or
unclear to be framed as an explicit regularizer. In these cases,
the regularization coefficients need to be selected empirically
which often leads to a gap between the obtained and opti-
mal solutions. This problem can be avoided by exploiting
the learning ability of an unrolling network. The unrolling
network maps each iteration of the iterative algorithm into
one neural network layer and replaces the fixed parameters
with learnable ones [16]. Therefore, it leads to an architecture
that is tailored to the problem at hand. The unrolling network
restricts the degrees of freedom by using such an iteration
as inductive bias, ultimately, demanding less training data.

4 ,
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Algorithm 1: Learning framework of the USEN
Input : P, y, f0, L
Output: f̂ (L)

1 Function USEN(P,y, f0, L);
2 for l = 1 : L do
3 update f̂ (l+1), z(l+1)

i and λ
(l+1)
i by (13);

4 end
5 Minimize ∥f̂ (L) − f0∥22 and update all weights;

One of the most straightforward ways to construct an
unrolling network is to use the iterative step in (10) and
learn the scalars in it. However, this involves an inverse
operation, which increases the computational complexity.
Instead, we want to avoid it and use simplicial convolutional
filters to learn the propagation rule in the f̂ -update. The
corresponding lth layer of the unrolling network for the
simplicial ElasticNet (USEN) can then be computed as

f̂ (l+1) =H1P
⊤Py +H2B

⊤
1 λ

(l)
1 +H3B2λ

(l)
2 +H4λ

(l)
3

+H5B
⊤
1 z

(l)
1 +H6B2z

(l)
2 +H7z

(k)
3

z
(l+1)
1 =S a1

2a2+r1

(
1

2a2 + r1
(r1B1f̂

(l+1) − λ
(l)
1 )

)
z
(l+1)
2 =S b1

2b2+r2

(
1

2b2 + r2
(r2B

⊤
2 f̂

(l+1) − λ
(l)
2 )

)
z
(l+1)
3 =S c1

2c2+r3

(
1

2c2 + r3
(r3f̂

(l+1) − λ
(l)
3 )

)
λ
(l+1)
1 =λ

(l)
1 − r1(B1f̂

(l+1) − z
(l+1)
1 )

λ
(l+1)
2 =λ

(l)
2 − r2(B

⊤
2 f̂

(l+1) − z
(l+1)
2 )

λ
(l+1)
3 =λ

(l)
3 − r3(f̂

(l+1) − z
(l+1)
3 )

(13)
where the Hi := H(L1,l,L1,u) are simplicial convolutional
filters defined as follows. Given a simplicial edge flow f
and Laplacians L1,ℓ and L1,u, the simplicial convolutional
filtering operation is defined as

y =

(
L1∑

l1=0

αl1L
l1
1,ℓ +

L2∑
l2=0

βl2L
l2
1,u

)
f (14)

where y is the filter output, L1 and L2 are the convolution
orders, and αl1 , βl2 are the coefficients. A simplicial convo-
lutional filter is thus defined as

H :=

(
L1∑

l1=0

αl1L
l1
1,ℓ +

L2∑
l2=0

βl2L
l2
1,u

)
(15)

which allows writing (15) as y = Hf . This convolution
operator propagates the edge flow signal f via upper and
lower neighbors, weighs differently each shift, and sums all
the shifted signals. Specifically, operations

∑L1

l1=0 αl1L
l1
1,ℓ

and
∑L2

l2=0 βl2L
l2
1,u gather the information from the lower-

and the upper-adjacencies up to L1 and L2 hops away,
respectively [21]. The learning framework of the USEN is
shown in Algorithm 1 where P is the sampling matrix, y

TABLE 1. Properties of the datasets.

Datasets Nodes Edges Triangles Property

Forex 25 300 2300 curl-free
Lastfm 657 1997 1276 divergence-free
Chicago 546 1088 122 divergence-free

collects the measurement, f0 is the clean signal, and L is the
number of layers.

This USEN replaces the update step of f̂ with train-
able simplicial convolutional filters. This allows learning
the influence of the multi-hop edge flow neightbors into
reconstructing the signal by acting on the respective Hodge
decomposition spectrum. The USEN also replaces ρ at
different positions with three different trainable parameters
r1, r2 and r3. The fixed parameters αi, βi and γi in ADMM
are replaced by the trainable weights ai, bi and ci. Each
convolutional filter has 1 +L1 +L2 parameters. Thus, each
layer has 19+7L1+7L2 parameters in total. These parame-
ters ensure that USEN is flexible and expressive. The major
complexity comes from the computation of convolutional
filters, which is a weighted linear combination of different
shifts of edge flow signals. Therefore, the complexity of
one layer of the USEN is O ((L1 + L2)D) where D is
the dimension of the input data. This complexity grows L
times with the depth. The unrolling network based on trend
filtering is shown in Appendix B.

V. EXPERIMENTAL RESULTS
This section evaluates the proposed approaches on the edge
flow recovery task.

A. DATASETS
In this section we give an overview of the datasets that are
considered. The properties are summarized in Table 1.
Foreign Currency Exchange (Forex) [13]. We consider
pairwise currency exchanges between 25 different curren-
cies. This can be modeled as a network where the edge
flow is the logarithm of the exchange rate. This exchange
rate value must guarantee the no-arbitrage condition, i.e.,
an income cannot be obtained through repeated exchange
between currency pairs. For currencies A and B, the ex-
change rate is rA/B and the no-arbitrage condition implies
rA/BrB/C = rA/C . If we use the logarithm to describe
the edge flow, we obtain f[A,B] = log

(
rA/B

)
and the

no-arbitrage condition means that the edge flow is curl-
free. Therefore, an arbitrage-free exchange setting satisfies∥∥B⊤

2 f
∥∥
1
= 0 or

∥∥B⊤
2 f
∥∥2
2
= 0. We model the dataset as

a simplicial complex with 25 nodes, 300 edges, and 2300
triangles. Our task is to recover the exchange rates under the
arbitrary free condition which is relevant in noisy fluctuation
settings or when anomalies may be present.
Lastfm [13]. The Lastfm dataset records the process of users
switching artists while playing music. Each distinct artist
can be modeled as a node and an edge models the switch
between two adjacent artists. When the user switches from
artist A to B, we add a unit on the edge flow from A to
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B. Edge flows modeled in this way should be approximately
divergence-free. Only the nodes where the user starts and
ends have nonzero divergence whereas the rest of the nodes
are divergence-free. Therefore, we can constrain the edge
flow to satisfy ∥B1f∥1 = 0 or ∥B1f∥22 = 0. The Last-
fam dataset can be modeled as a simplicial complex with
657 nodes, 1997 edges, and 1276 triangles. We generate
a synthetic (divergence-free) curl component based on this
topology by B2t where t is a random triangle signal. The
task consists of recovering edge flows from noisy or partial
measurements which are typical when the information of
users is inaccurate.
Chicago road network [21]. This is the road network of
the city of Chicago and contains 546 nodes, 1088 edges
and 112 triangles. Junctions are modeled as nodes, roads
as edges and the area enclosed by three roads as triangles.
We generate divergence-free edge flows. Specifically, we
perform random walks on the topology and record the
number of walks on each edge to simulate the flow on
the traffic road. The edge flow constructed in this way is
roughly divergence-free. Gaussian noise or sampling is then
considered to corrupt the original edge-flow signal. The task
here consists of estimating the edge flows from noisy and
partial measurements which is relevant for traffic monitoring
from a few sensors.
B. EXPERIMENTAL SETUP

We compare different iterative models including:
• ADMM-SEN: ADMM for simplicial ElasticNet in (12).
• ADMM-STF [23]: ADMM for simplicial trend filter-

ing in (18). This acts as a baseline for the proposed
ADMM-SEN and has shown a superior performance
than the Tikhonov counterpart (6).

• USEN: Simplicial unrolling network for ElasticNet
(15).

• USTF: Simplicial unrolling network for trend filtering
in (19). This model unrolls the ADMM-STF and has
fewer trainable weights than USEN.

• MLP [25]: Multilayer perceptrons are fully connected
neural networks which act as a baseline that ignores
any signal structure.

• SNN [26]: Simplicial neural networks developed for
processing simplicial signals which are non-model-
based neural networks.

• SCNN [27]: Simplicial convolutional neural networks.
Differently from [26], it puts different weights on the
lower and upper edge flow propagations. Together with
the SNN it acts as a baseline to highlight the importance
of a model-based approach over simplices.

• GUTF [20]: Graph unrolling network for trend filtering.
We build a line graph [12] where edges become nodes
and viceversa and consider the edge flows as node
signals. Then we deploy the approach of [20] to show
the reconstruction performance.

The ratio of training, validation, and testing samples is
1:1:10. Hyperparameters such as the number of layers and
learning rate lr are shown in Tables 2 and 3. The number

of layers is searched from 1 to 6, and the learning rate
lr ranges from 0.001 to 0.1. The batch size is 1 for all
experiments. The number of layers in the MLP is 5, and the
number of neurons in each layer is 16, 128, 128, 16, 1. The
number of layers of SNN and SCNN is 3, and the number
of features output from each layer is 2, 2, 1, respectively.
The order of the filters in SNN is k = 1 and in SCNN are
L1 = L2 = 1. K is the number of iterations in ADMM.
The Adam optimizer is used in all experiments to update
the learnable weights. All neural networks are trained using
one-shot learning (i.e., with a single training point). We ran
all methods until convergence and the convergence criterion
is the maximum number of iterations K.

We add zero mean Gaussian noise with SNRs ranging
from 0dB to 10 dB. For the interpolation task, we sample the
edge flows randomly with a sampling rate from 20% to 90%.
We evaluate the denoising performance via the normalized
mean squared error (NMSE) and the interpolation perfor-
mance via the Pearson correlation coefficient between the
recovered and clean true signal as in [13]. In denoising tasks,
the NMSE measures the difference between the denoised
signal and the real signal. The Pearson correlation coefficient
measures the degree of correlation between the reconstructed
signal and the real signal. We test the performance of the
models on ten different noisy realizations and report the
average values.

C. PERFORMANCE COMPARISON
Table 2 shows the NMSE of the edge flow denoising
task. Table 3 shows the Pearson correlation coefficients for
the edge flow interpolation. Overall, ADMM-SEN achieves
close or slightly better results than ADMM-STF. This is
because ADMM-SEN adds regularizers based on the ℓ2
norm, which makes the recovered signal have a lower
divergence or curl. It is worth noting that ADMM-SEN
requires fewer iterations to converge for the Forex dataset.
The proposed unrolling networks USEN and USTF achieve
a significantly better performance than the non-model-based
neural networks. The need for substantial amounts of labeled
data makes it challenging for standard neural networks
to achieve satisfactory results. The unrolling networks are
designed based on the mathematical models that are tailored
to specific inverse problems on simplices. This indicates that
unrolling networks will search a much smaller function space
than other neural networks. Compared with the iterative
algorithms, the unrolling network works better when the
prior is inaccurate. The advantage of the unrolling network
is more apparent when the SNR is close to zero or sampling
rate is close to 20% because it can capture the patterns in
the signal more accurately even with a significant noise or
low sampling rate.

We note that the two ADMM iterative algorithms perform
significantly better on the Forex dataset than the others. The
reason is that the curl-free property of the Forex dataset
provides more practical information than the divergence-free
property of the Lastfm and Chicago dataset. Curl-free is
defined for triangles; thus, when there are more triangles
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TABLE 2. NMSE of denoising task. The SNR ranges from 0dB to 10dB. The

unrolling networks achieve the best denoising effect.

FOREX Parameter 0dB 2dB 4dB 6dB 8dB 10dB

MLP[25] L = 5,lr = 0.01 0.71 0.52 0.39 0.28 0.24 0.12
SNN[26] L = 3,lr = 0.01 0.49 0.39 0.31 0.20 0.13 0.09
SCNN[27] L = 3,lr = 0.01 0.11 0.08 0.07 0.04 0.03 0.01
GUTF[20] L = 2,lr = 0.001 0.46 0.36 0.28 0.19 0.14 0.09
ADMM-STF[23] K = 100 0.07 0.04 0.03 0.02 0.01 0.01
ADMM-SEN(ours) K = 50 0.07 0.04 0.03 0.02 0.01 0.01
USEN(ours) L = 4,lr = 0.01 0.07 0.04 0.03 0.02 0.01 0.01
USTF(ours) L = 6,lr = 0.001 0.07 0.04 0.03 0.02 0.01 0.01

LASTFM Parameter 0dB 2dB 4dB 6dB 8dB 10dB

MLP[25] L = 5,lr = 0.01 0.39 0.30 0.22 0.16 0.11 0.07
SNN[26] L = 3,lr = 0.001 0.27 0.21 0.16 0.12 0.09 0.07
SCNN[27] L = 3,lr = 0.01 0.21 0.19 0.12 0.11 0.07 0.05
GUTF[20] L = 2,lr = 0.01 0.87 0.87 0.87 0.87 0.87 0.86
ADMM-STF[23] K = 100 0.66 0.42 0.26 0.16 0.10 0.06
ADMM-SEN(ours) K = 100 0.66 0.42 0.26 0.16 0.10 0.06
USEN(ours) L = 2,lr = 0.03 0.09 0.08 0.06 0.05 0.04 0.03
USTF(ours) L = 2,lr = 0.001 0.09 0.08 0.07 0.06 0.05 0.04

CHICAGO Parameter 0dB 2dB 4dB 6dB 8dB 10dB

MLP[25] L = 5,lr = 0.01 0.53 0.40 0.30 0.21 0.14 0.09
SNN[26] L = 3,lr = 0.01 0.44 0.33 0.25 0.18 0.13 0.10
SCNN[27] L = 3,lr = 0.01 0.37 0.26 0.20 0.15 0.08 0.05
GUTF[20] L = 2,lr = 0.01 0.76 0.70 0.65 0.61 0.58 0.55
ADMM-STF[23] K = 100 0.49 0.31 0.19 0.12 0.07 0.04
ADMM-SEN(ours) K = 100 0.49 0.31 0.19 0.12 0.07 0.04
USEN(ours) L = 6,lr = 0.05 0.34 0.24 0.17 0.11 0.07 0.05
USTF(ours) L = 4,lr = 0.01 0.35 0.25 0.17 0.11 0.08 0.05

in simplicial complexes, the curl-free property provides
more information. Furthermore, the topology of the Forex
dataset is a complete simplicial complex, meaning a filled
triangle exists among any three nodes. Therefore, the curl-
free property is a solid prior for it.

GUTF transforms the edge flow signals into node signals
in the corresponding line graph and is a graph unrolling
network based on the trend filtering to complete the edge
flow reconstruction task. It achieves unsatisfactory results
because the underlying optimization problem does not use
the topology of simplicial complexes. Graph trend filtering
forces the differences of the recovered graph signals between
connected nodes to be sparse, which implies that the recon-
structed neighboring edge flows are close, which is not real-
istic. Real-world edge flows tend to be curl- or divergence-
free; hence, advocating simplicial-based alternatives.

D. EFFECT OF SIMPLICIAL CONVOLUTIONAL FILTERS

We verify the contribution of adding trainable simplicial con-
volutional filters in the unrolling network. Figure 2 shows the
effect of trainable filters in the denoising and interpolation
tasks, respectively. We take the results on the Lastfm dataset
as an example because the difference between its curves
is the most obvious and more noticeable compared to the
Forex and Chicago datasets. When the filters are removed,
the reconstruction becomes worse because the simplicial
convolutional filters improve the learning ability as they
aggregate the information of the edge flow and its neighbors
at each layer. The gap is larger for the USTF, especially for
low SNR or low sampling rates which indicates that USEN
can capture the patterns in the signal more accurately than
USTF even in a more challenging setting.

E. CONVERGENCE
We check the convergence of the multi-block ADMM algo-
rithm with the penalty parameter ρ varying from 0.1 to 0.4.
The experimental results are shown in Figure 3 (top), where

TABLE 3. Pearson correlation coefficient of interpolation task. The sam-

pling rate ranges from 20% to 90%. The ADMM performs best on the Forex

and Chicago datasets while the USEN performs best on the Lastfm dataset.

FOREX Parameter 20% 30% 40% 50% 60% 70% 80% 90%

MLP[25] L = 5,lr = 0.01 0.44 0.54 0.63 0.69 0.76 0.83 0.89 0.94
SNN[26] L = 3,lr = 0.001 0.44 0.53 0.62 0.68 0.76 0.82 0.88 0.94
SCNN[27] L = 3,lr = 0.001 0.79 0.90 0.93 0.97 0.97 0.97 0.96 0.98
GUTF[20] L = 2,lr = 0.001 0.48 0.57 0.65 0.70 0.78 0.83 0.89 0.94
ADMM-STF[23] K = 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
ADMM-SEN(ours) K = 300 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
USEN(ours) L = 6,lr = 0.001 0.85 0.89 0.95 0.97 0.98 0.98 0.99 0.99
USTF(ours) L = 4,lr = 0.001 0.86 0.90 0.96 0.97 0.98 0.98 0.99 0.99

LASTFM Parameters 20% 30% 40% 50% 60% 70% 80% 90%

MLP[25] L = 5,lr = 0.01 0.43 0.53 0.61 0.69 0.77 0.83 0.90 0.95
SNN[26] L = 3,lr = 0.01 0.44 0.55 0.62 0.71 0.78 0.84 0.90 0.95
SCNN[27] L = 3,lr = 0.05 0.30 0.60 0.68 0.70 0.77 0.87 0.88 0.94
GUTF[20] L = 2,lr = 0.1 0.15 0.18 0.21 0.23 0.24 0.25 0.26 0.27
ADMM-STF[23] K = 50 0.26 0.36 0.44 0.54 0.63 0.76 0.85 0.98
ADMM-SEN(ours) K = 50 0.26 0.36 0.44 0.54 0.63 0.76 0.85 0.98
USEN(ours) L = 2,lr = 0.01 0.92 0.92 0.92 0.93 0.93 0.94 0.95 0.97
USTF(ours) L = 2,lr = 0.001 0.92 0.92 0.92 0.93 0.93 0.94 0.95 0.97

CHICAGO Parameters 20% 30% 40% 50% 60% 70% 80% 90%

MLP[25] L = 5,lr = 0.01 0.45 0.55 0.64 0.71 0.78 0.84 0.90 0.95
SNN[26] L = 3,lr = 0.1 0.53 0.63 0.73 0.81 0.83 0.91 0.91 0.96
SCNN[27] L = 3,lr = 0.1 0.51 0.67 0.74 0.80 0.85 0.92 0.94 0.97
GUTF[20] L = 2,lr = 0.01 0.30 0.36 0.42 0.47 0.52 0.57 0.62 0.66
ADMM-STF[23] K = 100 0.60 0.74 0.83 0.92 0.97 0.99 0.99 0.99
ADMM-SEN(ours) K = 100 0.60 0.74 0.83 0.92 0.97 0.99 0.99 0.99
USEN(ours) L = 3,lr = 0.01 0.56 0.66 0.75 0.81 0.86 0.90 0.94 0.97
USTF(ours) L = 3,lr = 0.01 0.56 0.66 0.74 0.80 0.85 0.90 0.94 0.97

the multi-block ADMM algorithm is always guaranteed to
converge as ρ varies. The larger ρ, the faster the convergence.
As for USEN, we conduct experiments on all the datasets.
We check the output of each layer and the number of layers is
gradually increased. The convergence results of USEN are
shown in Figure 3 (bottom). The NMSE and the Pearson
correlation coefficients of the recovered edge flow generated
by USEN converge gradually as the number of layers is
gradually increased. The convergence property of USEN has
some similarities with the ADMM because it is constructed
based on its iterative steps.

VI. CONCLUSION
We propose the simplicial ElasticNet for the edge flow
reconstruction task. It contains both the ℓ1 and ℓ2 norm
regularizers which promote sparsity and keep low energy,
respectively. We solve the simplicial ElasticNet and trend
filtering problem by multi-block ADMM iteratively. Then,
we design the corresponding unrolling networks USEN and
USTF based on their ADMM steps. The core idea is mapping
each iteration into a layer of the neural network. Simplicial
convolutional filters are considered in the unrolling networks
to collect information from the neighbors of the edge flows
and we learn the filter parameters to improve the learning
capabilities of the network. Numerical experiments show
that the simplicial unrolling network can achieve better
reconstruction results than non-model-based neural networks
and other unrolling algorithms with limited training data. In
practice, when the prior knowledge is unclear, the learning
ability of an unrolling network can be beneficial. Traditional
iterative algorithms still have advantages when there is no
data to learn from. In future research, an unrolling network
can be developed for different iterative algorithms.
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FIGURE 2. Reconstruction performance of different parametric strategies on the Lastfm dataset. SNR for denoising task is ranging from 0 dB to 10 dB.
Sampling rate for interpolation task is ranging from 20% to 90%. USEN and USTF are unrolling networks containing simplicial convolutional filters,
while USEN without convolution and USTF without convolution are unrolling networks employing scalar weights. The left figures corresponds to the
result of the denoising task and the right to the interpolation task.

FIGURE 3. Convergence property of multi-block ADMM and unrolling
network. The figures on the top show the convergence performance of
4-block ADMM. As ρ changes from small to large, the ADMM algorithm is
converging. The figures on the bottom are convergence performance of
the simplicial unrolling network. We can observe that the network
converges as it becomes deeper.

APPENDIX
A. PROOF OF PROPOSITION 1
Before the proof, we recall this useful lemma from [24].
Lemma 1. If all the blocks in the multi-block ADMM
algorithm are strongly convex functions, the convergence of
multi-block ADMM is guaranteed if the penalty parameter ρ
in the augmented Lagrangian function satisfies the condition

0 < ρ < min
1≤i≤m

{
2µi

3(m− 1)∥Ai∥22

}
(16)

where µi is the strongly convex modulus of each block [24],
m is the number blocks and Ai is the coefficient matrix
related to the ith equality constraint. Optimization problem
(8) can be written as

argmin
f̂∈RN1

∥P(f̂ − y)∥22 + α1∥z1∥1 + α2∥z1∥22 + β1∥z2∥1

+ β2∥z2∥22 + γ1∥z3∥1 + γ2∥z3∥22

subject to A1f̂ +A2z1 +A3z2 +A4z3 = 0
(17)

where the Ai are defined in (11a) - (11d). There are four
different blocks for multi-block ADMM: ∥P(f̂ − y)∥22;
α1∥z1∥1 + α2∥z1∥22; β1∥z2∥1 + β2∥z2∥22 and γ1∥z3∥1 +

γ2∥z3∥22. Considering the condition P⊤P ⪰ µ1I, we have
∇2∥P(f̂ −y)∥22 = 2P⊤P ⪰ 2µ1I. Therefore, the first block
is a strongly convex function with modulu µ1. The other
three components are all strongly convex functions and their
moduli are µ2 = 2α2, µ3 = 2β2, µ4 = 2γ2. This brings us
under the setting of Lemma 1, which under the conditions
in (16) completes the proof.
B. UNROLLING NETWORK FOR TREND FILTERING
The iteration steps of the three-block ADMM related to the
reconstruction task can be described as follows

f̂ (k+1) =(2P⊤P+ ρB⊤
1 B1 + ρB2B

⊤
2 )

−1

(2P⊤Py +B⊤
1 λ

(k)
1 +B2λ

(k)
2

+ ρB⊤
1 z

(k)
1 + ρB2z

(k)
2 )

z
(k+1)
1 =Sα1

αρ
(
1

ρ
(ρB1f̂

(k+1) − λ
(k)
1 ))

z
(k+1)
2 =S β1

αρ
(
1

ρ
(ρB⊤

2 f̂
(k+1) − λ

(k)
2 ))

λ
(k+1)
1 =λ

(k)
1 − ρ(B1f̂

(k+1) − z
(k+1)
1 )

λ
(k+1)
2 =λ

(k)
2 − ρ(B⊤

2 f̂
(k+1) − z

(k+1)
2 )

(18)

To construct a simplicial unrolling network for trend filtering
(USTF), certain iterative parameters should also be substi-
tuted with trainable parameters. By substituting the fixed
parameters with simplicial convolutional filters, the lth layer
of USTF can be represented as follows

f̂ (l+1) =H1P
⊤Py +H2B

⊤
1 λ

(l)
1 +H3B2λ

(l)
2

+H4B
⊤
1 z

(l)
1 +H5B2z

(l)
2

z
(l+1)
1 =S a1

r1

(
1

r1
(r1B1f̂

(l) − λ
(l)
1 ))

z
(l+1)
2 =S b1

r2

(
1

r2
(r2B

⊤
2 f̂

(l) − λ
(l)
2 ))

λ
(l+1)
1 =λ

(l)
1 − r1(B1f̂

(l+1) − z
(l+1)
1 )

λ
(l+1)
2 =λ

(l)
2 − r2(B

⊤
2 f̂

(l+1) − z
(l+1)
2 )

(19)

where the Hi are simplicial convolutional filters which
contain some trainable parameters. Unlike USEN, USTF has
fewer learnable parameters and only constrains the curl and
divergence, but not the regularizers that constrain the signal’s
sparsity.
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