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Abstract—This paper presents a neural-enhanced probabilis-
tic model and corresponding factor graph-based sum-product
algorithm for robust localization and tracking in multipath-
prone environments. The introduced hybrid probabilistic model
consists of physics-based and data-driven measurement models
capturing the information contained in both, the line-of-sight
(LOS) component as well as in multipath components (NLOS
components). The physics-based and data-driven models are
embedded in a joint Bayesian framework allowing to derive
from first principles a factor graph-based algorithm that fuses
the information of these models. The proposed algorithm uses
radio signal measurements from multiple base stations to robustly
estimate the mobile agent’s position together with all model
parameters. It provides high localization accuracy by exploiting
the position-related information of the LOS component via the
physics-based model and robustness by exploiting the geometric
imprint of multipath components independent of the propagation
channel via the data-driven model. In a challenging numerical
experiment involving obstructed LOS situations to all anchors,
we show that the proposed sequential algorithm significantly
outperforms state-of-the-art methods and attains the posterior
Cramér-Rao lower bound even with training data limited to local
regions.

Index Terms—Obstructed Line-Of-Sight, Non LOS, NLOS,
Multipath, Sum product algorithm, Probabilistic Data Associ-
ation, Belief Propagation

I. INTRODUCTION

Localization of mobile agents using radio signals is still
a challenging task in environments such as indoor or urban
territories [1]–[3]. These environments are characterized by
strong multipath propagation and frequent obstructed line-
of-sight (OLOS) situations, which can prevent the correct
extraction of information contained in the line-of-sight (LOS)
component1. There exist many safety- and security-critical
applications, such as autonomous driving [4], medical services
[5], or keyless entry systems [6], where robustness of the
position estimate (i.e, no lost tracks) is of critical importance.

A. State-of-the-Art Methods

New localization and tracking approaches within the context
of 6G localization [7] take advantage of large measurement
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National Foundation for Research, Technology and Development is gratefully
acknowledged.

1Throughout this paper we use the terms “multipath component (MPC)”
and “NLOS components” interchangeably to refer to all received signal
components except the LOS component. Also, we use the term “obstructed
LOS” (OLOS), to refer to situations, where the LOS component is blocked or
cannot be detected. We distinguish between partial and full OLOS situations,
where the LOS component of some or all anchors is unavailable.
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CEDA channel estimation and detection algorithm
feat. extr. (AE) autoencoder-based feature extraction
physics-based meas. model physics-based measurement model that facilitates the

LOS component
data-driven meas. model data-driven measurement model that facilitates NLOS

propagation using Gaussian process regression (GPR)
factor graph-based algorithm joint Bayesian inference using the sum-product algo-

rithm (SPA)
PDA probabilistic data association involving both, the

physics-based and the data-driven measurement model
LOS prob. model dynamic model for the LOS existence probability

Fig. 1. Flowchart illustrating the main components of the proposed method.
For each base station j ∈ {1, ..., J} we observe a baseband radio signal
signal vector r(j)

n which is independently pre-processed into signal component
measurements z

(j)
n (LOS component and MPCs) and feature measurements

z
(j)
fn . The factor graph-based algorithm uses these measurements and the

distributions of agent state, amplitude state, and LOS probability state at
the previous time step, given as f(xn−1), f(un−1), p(qn−1), to infer the
posterior distributions f(xn), f(un), p(qn) at the current time step. For
simplicity, we omit conditional dependencies of the distributions.

apertures as ultra wide band (UWB) systems [8], [9] or
mmWave systems [10], which allow the received radio signal
to be resolved into a superposition of a finite number of spec-
ular multipath components (MPCs) [8], [11]–[13]. Such novel
approaches try to mitigate the effect of multipath propagation
[14] and OLOS situations [13], [15] or even take advantage
of MPCs by exploiting inherent position information, turn-
ing multipath from impairment to an asset [1], [16], [17].
Prominent examples of such approaches are multipath-based
methods that take advantage of multipath by estimating MPCs
and associating them to virtual anchors (VAs) representing
the location of the mirror image of a base station (anchor)
on a reflecting surface. The locations of VAs are assumed to
be know a priori [18] or estimated jointly with the position
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of the agent using multipath-based SLAM (MP-SLAM) [16],
[19], [20]. MP-SLAM provides high-accuracy position esti-
mates even in OLOS situations. However, it requires specular,
resolved MPCs caused by environments consistent with the
VA model, i.e, flat surfaces of sufficient extend [21]–[23].
Other methods exploit cooperation among individual agents
[3], [24], [25], or perform robust signal processing against
multipath propagation and clutter measurements in general.
The latter comprise heuristics [8], [26], machine learning-
based approaches [15], [27] as well as Bayesian methods [23],
[28]–[30], and hybrids thereof [3], [31]–[33]. In particular,
the methods introduced in [34] and [23], [29], [30] perform
MP-SLAM or robust positioning considering delay dispersion
and non-resolvable dense MPC [22]. In recent years, machine
learning-based approaches have grown increasingly popular.
Typically, they extract specific features from the radio channel,
applying model-agnostic supervised regression methods on
these features [15], [27]. While these approaches potentially
provide high accuracy estimates at low computational demand
(after training), they suffer from their dependence on a large
representative measurement database and can fail in scenarios
that are not sufficiently represented by the training data.
This is why recent algorithms facilitate deep learning and
autoencoder-based, unsupervised methods [35]–[40] or try to
incorporate physics-based information in a systematic manner
[41]–[44] to reduce the dependence on training data .

Multipath-based localization [16], [19], [23], [45],
multiobject-tracking [46]–[48], and parametric channel
tracking [49] are applications that pose common challenges
such as for example uncertainties beyond Gaussian noise,
like missed detections and clutter, an uncertain origin of
measurements, and unknown and time-varying numbers of
objects to be localized and tracked. These challenges are well
addressed by Bayesian inference leveraging graphical models
to perform joint detection and estimation. In particular, the
probabilistic data association (PDA) algorithm [46], [50]
represents a low-complexity Bayesian method for robust
localization and tracking with extension to multiple-sensors
PDA [51] and amplitude information [52].

B. Problem Statement and Contributions
The problem studied in this paper can be summarized as

follows.
Estimate the time-varying location of a mobile agent using
LOS propagation and multipath propagation of radio signals
with emphasis on overcoming OLOS situations.

We propose a neural-enhanced sum-product algorithm
(SPA) for robust radio signal-based localization and tracking
in multipath-prone envirnoments. The proposed algorithm
performs joint probabilistic data association and sequential
estimation of a mobile agent state together with all relevant
model-parameters (amplitude state, LOS probability, data as-
sociation variable) using message passing by means of the SPA
on a factor graph [53]. The main components of the proposed
algorithm are illustrated in the flowchart provided in Fig. 1.
We introduce a hybrid physics-based and data-driven model,
which allows the proposed sequential algorithm to leverage the

information contained in both, the LOS component and MPCs
(NLOS components) of multiple base stations to robustly
estimate the mobile agent’s position. Similar to other “two-
step approaches” [16], [19], [47], [48], the proposed algorithm
uses signal component measurements consisting of delays and
corresponding amplitudes estimated out of the received base-
band signal by a snapshot-based parametric channel estimation
and detection algorithm (CEDA). Additionally, our hybrid
method uses feature measurements extracted out of the re-
ceived baseband signal by an autoencoder deep neural network
(AE-DNN) [43], [54]. Using the measurements provided by
the CEDA, our physics-based model allows the algorithm to
facilitate the position-related information contained in the LOS
component with high accuracy and without the need of training
data. The data-driven model, which is based on Gaussian
process regression (GPR) [55], uses the feature measurements
extracted by the AE-DNN to leverage the complex position-
related information inherently contained in multipath compo-
nents regardless of the source of multipath (e.g. flat walls and
point scatters, but also curved and rough walls as well as
irregular objects such as shelves or pillars). The introduced
physics-based and data-driven models interact through a joint
probabilistic data association model [19], [47] and a dynamic
LOS existence probability model [23], [56]. This allows the
algorithm to robustly fuse the information contained in both,
the LOS component and MPCs and, thus, to operate accurately
and reliably within challenging environments, characterized by
strong multipath propagation and OLOS situations.

The key contributions of this paper are as follows:
• We introduce a novel Bayesian model for MPC-aided

sequential inference of the agent position consisting of a
hybrid physics-based and data-driven measurement model.

• We present an SPA based on the factor graph representa-
tion of the estimation problem, which efficiently infers all
parameters of the introduced joint probabilistic model.

• We demonstrate that our algorithm robustly and accu-
rately fuses the information contained the presented hybrid
model. It outperforms state-of-the-art methods for non-
LOS (NLOS) mitigation [15], [23], [43] and constantly
attains the posterior Cramér-Rao lower bound (P-CRLB)
[57].

II. OVERVIEW

The problem considered is the sequential estimation of the
agent state xn, while the agent is moving along an unknown
trajectory. The current state of the agent is described by
the state vector xn = [pT

n vT
n]

T, which is composed of
the mobile agent’s position pn = [pxn pyn]

T and velocity
vn = [vxn vyn]

T. At each discrete time n, the mobile agent
transmits a signal and each anchor (base station) j∈{1, ..., J}
at anchor position p

(j)
A = [p

(j)
Ax p

(j)
Ay ]

T acts as a receiver. For
each anchor, we obtain the complex baseband signal vector
r
(j)
n ∈ CNs with Ns being the number of signal samples. Fig. 1

shows the main components of the proposed algorithm. In a
pre-processing stage, we apply to r

(j)
n both, a CEDA and an

AE-DNN to obtain signal component measurements zn and
feature measurements zfn, respectively. The agent state can be
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sequentially estimated in a Bayesian sense using all available
measurements z1:n, zf1:n of all anchors up to time n by using
the minimum mean-square error (MMSE) estimator [58]

x̂MMSE
n ≜

∫
xn f(xn|z1:n, zf1:n) dxn . (1)

with x̂MMSE
n = [p̂MMSE T

n v̂MMSE T
n ]T being the MMSE estimate.

The proposed factor graph-based algorithm infers the
marginal posterior distribution f(xn|z1:n, zf1:n) by executing
the SPA on the factor graph that represents the hybrid prob-
abilistic model introduced in this work. The structure of the
following two sections, which present the introduced system
model, aligns with the main components illustrated in Fig. 1.

III. PRE-PROCESSING

A. Channel Estimation and Detection
We independently apply, at each time n and for each anchor

j, a parametric CEDA [11], [23], [59], [60] to the complex
baseband signal vector r(j)n . The CEDA decomposes r

(j)
n into

individual components, yielding a number of M
(j)
n measure-

ments denoted by z
(j)
m,n with m ∈ M(j)

n ≜ {1, . . . ,M (j)
n }

that are collected by the vector z
(j)
n = [z

(j)T
1,n · · · z(j)T

M
(j)
n ,n

]T.

Each z
(j)
m,n = [z

(j)
dm,n

z
(j)
um,n]

T represents a signal compo-
nent parameter estimate, containing a distance measurement
zd

(j)
m,n ∈ [0, dmax] and a normalized amplitude measurement

z
(j)
um,n ∈ [γ,∞), where dmax is the maximum possible distance

and γ is the detection threshold of the CEDA, which is a
constant to be chosen2. Here, “normalized amplitude” refers
to the square root of the signal-to-noise-ratio (SNR) of the
signal component. See [49] for details on the signal model
underlying a CEDA. The stacked vector zn = [z

(1) T
n ... z

(J) T
n ]T

is used by the proposed algorithm as a noisy measurement. We
also define the vector Mn = [M

(1)
n ...M

(J)
n ]T.

B. AE-based Feature Extraction
At each time n and for each anchor j we independently ap-

ply a pre-trained autoencoder deep neural network (AE-DNN)
[54], [61] where the complex baseband signal vector r(j)n acts
as the decoded input3. We use the mean squared error (MSE)
between the training inputs and the predictions of the decoder
network of the AE-DNN as a loss function for training.
The latent (encoded) space of the AE-DNN consists of F

feature measurements denoted by z
(j)
f i,n collected by the vector

z
(j)
fn = [z

(j)
f1,n ... z

(j)
fF,n]

T, where i is the feature index. Since we
choose F ≪ Ns, the AE-DNN can be said to compress the
information contained in the received signal vector into z

(j)
fn .

The encoder-decoder architecture of the AE-DNNs enables
unsupervised training using unlabeled samples of baseband
signals collected in the set {r(j)n′ }N

′
n′=1, where N ′ is the number

of training samples. The stacked vector zfn = [z
(1) T
fn ... z

(J) T
fn ]T

2Note that a low value for γ results in an increased number of false alarms,
but allows the detection of low amplitude MPCs. See [60] for determining γ
from the desired false alarm probability.

3As suggested in [43], we used the magnitudes of the complex baseband
signal. However, our work could be extended to complex neural networks
along the lines of [62], [63].

is used by the proposed algorithm as an additional noisy
measurement.

IV. FACTOR GRAPH-BASED ALGORITHM

A. Random Variables and Assumptions
The current state of the agent xn is the primary random

variable to be inferred by the proposed factor graph-based
algorithm. Additionally, we define the auxiliary state variables
u
(j)
n , q(j)n , and a

(j)
n , which denote the normalized amplitude,

LOS probability and association variable, respectively, and are
modeled separately for all anchors. The presented measure-
ment model consists of a physics-based measurement model,
which uses the signal component measurements z

(j)
n obtained

by the CEDA, and a data-driven measurement model, which
uses the autoencoder (AE)-based feature measurements z

(j)
fn .

Our model is based on the assumptions that
(I) CEDA-based signal component measurements are unin-

formative with respect to NLOS components (MPCs)4.
(II) AE-based feature measurements are uninformative with

respect to the LOS component5.
(III) CEDA-based measurements and feature-based measure-

ments are conditionally independent for different values
of m [19], [47] and i [43], [64] given the state variables.

B. Physics-based Measurement Model
The LOS likelihood function (LHF) of an individual dis-

tance measurement z(j)dm,n
is given by

fL(z
(j)
dm,n

|pn, u(j)
n ) ≜ fN(z

(j)
dm,n

; d
(j)
LOS(pn), σd(u

(j)
n )) (2)

where fN(·) denotes a Gaussian probability density function
(PDF) of the random variable (RV) z(j)dm,n

with mean d
(j)
LOS(pn)

and variance σ2
d (u

(j)
n ). The mean is physically related to the

agent position via d
(j)
LOS(pn) = ∥pn − p

(j)
A ∥. The variance is

determined by the Fisher information given by σ2
d (u

(j)
n ) =

c2/(8π2 β2
bw u

(j)2
n ) [12], where βbw is the root mean squared

bandwidth [1], [65] and u
(j)
n is the normalized amplitude [23],

[49]. The LOS LHF of the normalized amplitude measurement
z
(j)
um,n is modeled as [45], [49]

fL(z
(j)
um,n|u

(j)
n ) ≜ fTRice(z

(j)
um,n;σu(u

(j)
n ), u(j)

n , γ) (3)

with fTRice(·) being a truncated Rician PDF [23] with non-
centrality parameter u

(j)
n and threshold value corresponding

to γ (see Sec. III-A). The scale parameter is again deter-
mined by the Fisher information and given as σ2

u(u
(j)
n ) =

1/2 + u
(j)2
n /(4Ns). See [49] for a detailed derivation. Since

we assume CEDA-based measurements to be uninformative
with respect to NLOS propagation (Assumption I), the NLOS

4Assumption I is commonly used in PDA [50] representing the least
informative model for clutter measurements. Although it does not consider
the precise statistics of measurements originating from MPCs, it does not
affect the estimate as it does not impose curvature on the likelihood model.

5Assumption II is not true in LOS situations, which leads to an overconfi-
dent estimate (reduced position uncertainty) of the agent posterior. However,
this is counteracted by the LOS probability model that “deactivates” the
feature-based likelihood in LOS condition by causing the existence probability
pE(u

(j)
n , q

(j)
n ) (see Sec. IV-D) to approach 1.
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LHF of an individual distance measurement z
(j)
dm,n

is given

as [46], [50] fNL(z
(j)
dm,n

) ≜ fU(z
(j)
dm,n

; 0, dmax) where fU(·)
denotes a uniform PDF of the RV z

(j)
dm,n

with the limits 0
and dmax corresponding to the distance measurement range
of the CEDA. In correspondence to (3), the NLOS LHF of an
individual normalized amplitude measurement z(j)um,n is given
as [45], [49] fNL(z

(j)
um,n) ≜ fTRayl(z

(j)
um,n;

√
1/2, γ) where

fTRayl(·) is a truncated Rayleigh PDF with scale parameter
of

√
1/2 and threshold value corresponding to γ.

C. Data-driven Measurement Model
The NLOS LHF of individual feature measurements z

(j)
f i,n

is modeled as

fNL(z
(j)
f i,n|pn) ≜ fN(z

(j)
f i,n; µ

(j)
GPi(pn), σ

(j)
GPi(pn)) (4)

with µ
(j)
GPi(pn) and σ

(j)2
GPi (pn) being the predicted mean and

predicted variance, respectively, of a Gaussian process re-
gression (GPR) model6 [55]. We train the GPR model us-
ing labeled data consisting of duples of feature measure-
ments and according position labels collected in the set
{(z(j)

fn′′ ,p
(j)
n′′)}N

′′
n′′=1, where N ′′ is the number of training

samples. Since we assume the AE-based feature measurements
z
(j)
f i,n to be non-informative with respect to LOS propagation

(Assumption II), the LOS LHF of individual z
(j)
f i,n is given

by fL(z
(j)
f i,n) ≜ fU(z

(j)
f i,n; l

(j)
mini, l

(j)
maxi), where l

(j)
mini and l

(j)
maxi are

the lower and upper limits of the feature measurement range,
respectively7.

D. Probabilistic Data Association (PDA) Model
At each time n and for each anchor j, the CEDA mea-

surements, i.e., the components of z
(j)
n are subject to data

association uncertainty. Thus, it is not known which measure-
ment z

(j)
m,n originated from the LOS, or which one is due

to a “NLOS measurement”, i.e., a measurement originating
from an MPC or a false alarm (FA). Based on the concept
of probabilistic data association (PDA) [50], we define the
association variable a

(j)
n as

a(j)n =

{
m∈M(j)

n , z
(j)
m,n is the LOS measurement in z

(j)
n

0 , there is no LOS measurement in z
(j)
n

.

(5)
Using no prior knowledge about the mean rate of NLOS
measurements (so called “non-parametric model” [50]), the
joint probability mass function (PMF) of a

(j)
n and M

(j)
n can

be shown to be proportional to the function [50, Sec. 3.4.3]

h(a(j)n ,M (j)
n ;u(j)

n , q(j)n ) =


pE(u

(j)
n ,q

(j)
n )

M
(j)
n

, a
(j)
n ∈ M(j)

n

1−pE(u
(j)
n , q

(j)
n ) , a

(j)
n = 0

(6)

6This choice leads to a computational complexity of the proposed method
given as O(N ′′2JIF ) [55] per time n, since the GPR-based likelihood
function in (4) must be evaluated for each feature, particle, and anchor, which
leads to high runtimes for large sets of training data.

7For implementation, we normalize the latent variables using the “pre-
training” dataset (see Sec. V-A) to obtain the feature-based measurements
z
(j)
fi,n, thus, l(j)mini = 0 and l(j)maxi = 1 for all i and j.

σ
(j)
d (u(j)

n )

0 d
(j)
LOS(pn)

dmax

distance meas. z(j)dm,n

L
H

F

a
(j)
n =m a

(j)
n ̸=m

0γ u(j)
n

norm. ampl. meas. z(j)um,n

a
(j)
n =m a

(j)
n ̸=m

σ
(j)
GPi(pn)

0 µ
(j)
GPi(pn) l

(j)
maxi

feature meas. z(j)fi,n

a
(j)
n =0 a

(j)
n ̸=0

Fig. 2. Graphical representation of the stochastic models constituting the
overall LHF for a single measurement.

where the LOS existence probability pE(u
(j)
n , q

(j)
n ) denotes the

probability that there is a LOS measurement for the current set
of measurements. It is given as pE(u

(j)
n , q

(j)
n ) ≜ pD(u

(j)
n ) q

(j)
n

with q
(j)
n being the probability of the event that the LOS is

not obstructed, which we refer to as LOS probability, and
pD(u

(j)
n ) being the detection probability, i.e., the probability

that at time n and for anchor j the agent generates a radio
signal component whose amplitude is high enough so that it
leads to an LOS measurement. The LOS probability q

(j)
n is

modeled as a discrete RV taking its values from the finite set
Q = {λ1, ... , λQ}, where λi ∈ (0, 1]. See [23, Sec. IV-D] for
details. We also define the joint vector an = [a

(1)
n ... a

(J)
n ]T.

Incorporating a
(j)
n into the model, we define the overall LHF

for individual distance measurements, given as

f(z
(j)
dm,n

|pn, u(j)
n , a(j)n ) =

{
fL(z

(j)
dm,n

|pn,u(j)
n ), a

(j)
n = m

fNL(z
(j)
dm,n

), a
(j)
n ̸= m

(7)
and the overall LHF for individual normalized amplitude
measurements, given as

f(z(j)um,n|u
(j)
n , a(j)n ) =

{
fL(z

(j)
um,n|u

(j)
n ), a

(j)
n = m

fNL(z
(j)
um,n), a

(j)
n ̸= m

. (8)

We seek to utilize the information contained in the data-driven
model (i.e., NLOS information) only in situations where the
LOS is not available. Therefore, we define the overall LHF
for individual feature measurements as

f(z
(j)
f i,n|pn, a

(j)
n ) =

{
fNL(z

(j)
f i,n|pn), a

(j)
n = 0

fL(z
(j)
f i,n), a

(j)
n ̸= 0

. (9)

The shapes of (7) , (8) , and (9) are depicted in Fig. 2. By
assuming conditional independence of CEDA-based measure-
ments and feature-based measurements (Assumption I and II)
and conditional independence of measurements for different
values of m and i (Assumption III), the joint LHF for all
measurements per anchor j and time n is given as

f(z(j)
n , z

(j)
fn |pn, u(j)

n , a(j)n )

=
(M(j)

n∏
m=1

f(z
(j)
dm,n

|pn, u(j)
n , a(j)n ) f(z(j)um,n|u

(j)
n , a(j)n )

)
×

( F∏
i=1

f(z
(j)
f i,n|pn, a

(j)
n )

)
. (10)

E. State Transition Model
We model the evolution over time n of xn and u

(j)
n and q

(j)
n

as first-order Markov processes which are distributed indepen-
dently, i.e., f(xn,un, qn|xn−1,un−1, qn−1) = f(xn|xn−1)
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j = J

q
(J)
0

u
(J)
0

Ψ q(j)n

ḡ(j)na(j)n

p̃(j)qn

Φ u(j)
n

f̃(j)
un
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Fig. 3. Factor graph representing the factorization of the joint posterior PDF
in (11) and the respective messages according to the SPA. The following
short notations are used for the marginal posterior messages: f̆xn ≜ f̆x(xn),
f̆
(j)
yn ≜ f̆y(u

(j)
n ), p̆(j)qn ≜ p̆q(q

(j)
n ). See [23, Sec. VI] for details regarding the

messages ηn, ϕ(j)n , ψ(j)
n , ξ(j)n , χ(j)

n , ν(j)n , β(j)
n , and χ(j)

n .∏J
j=1 f(u

(j)
n |u(j)

n−1) p(q
(j)
n |q(j)n−1) with the joint vectors un =

[u
(1)T
n ... u
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n ]T, and qn = [q
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n ... q
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n ]T.

F. Joint Posterior and Factor Graph
Let z1:n=[zT

1 ... z
T
n]

T, zf1:n=[zT
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T
fn]

T, x1:n=[xT
1 ...x

T
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T,
a1:n=[aT

1 ...a
T
n]

T, u1:n=[uT
1 ...u

T
n]

T, q1:n=[qT
1 ... q

T
n]

T, M1:n=
[MT

1 ...MT
n ]

T. By applying Bayes’ rule, the joint posterior
PDF of all state variables up to time n and all J anchors is
given (up to irrelevant constant terms) as
f(x1:n,a1:n,u1:n,q1:n,M1:n|z1:n, zf1:n)

∝ f(x0)

J∏
j=1

p(q
(j)
0 ) f(u

(j)
0 )

n∏
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n′ , z

(j)
fn′ ;pn′ , u

(j)
n′ , a
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n′ ) , (11)

where we introduced the state-transition functions
Υ(xn|xn−1) ≜ f(xn|xn−1), Φ(u

(j)
n |u(j)

n−1) ≜ f(u
(j)
n |u(j)

n−1),
and Ψ(q

(j)
n |q(j)n−1) ≜ p(q

(j)
n |q(j)n−1). We also introduced the

pseudo likelihood function ḡ(z
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(j)
fn ;pn,u

(j)
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(j)
n ,q

(j)
n ) ≜
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(j)
n ;u

(j)
n , q

(j)
n ) g(z

(j)
n , z

(j)
fn ;pn,u

(j)
n ,a

(j)
n ), where we define

g(z(j)
n , z

(j)
fn ;pn, u

(j)
n , a(j)n ) ∝ f(z(j)

n , z
(j)
fn |pn, u(j)

n , a(j)n )

=

{∏ F
i=1 fNL(z

(j)
f i,n|pn)/fL(z

(j)
f i,n), a

(j)
n = 0

Λ(z
(j)

a
(j)
n ,n

|pn, u(j)
n ), a

(j)
n ∈ M(j)

n
(12)

by neglecting the constant terms in (10), where

Λ(z(j)
m,n|pn, u(j)

n ) =
fL(z

(j)
dm,n

|pn,u(j)
n ) fL(z

(j)
um,n|u

(j)
n )

fNL(z
(j)
dm,n

) fNL(z
(j)
um,n)

(13)

is the likelihood ratio of signal component measurements8.
Note that M1:n is fixed and thus constant, as it is defined
implicitly by the measurements z1:n, thus, h(a(j)n ;u

(j)
n , q

(j)
n ) ≡

h(a
(j)
n ,M

(j)
n ;u

(j)
n , q

(j)
n ). The joint posterior PDF in (11) is

represented by the factor graph shown in Fig. 3.

8For a(j)n = 0, (12) is determined by the likelihood ratio of the feature
measurements and, thus, information is gained from the data-driven model.
When a(j)n = m ∈ M(j)

n (not zero), (12) is determined by the likelihood
ratio of signal component measurements and, thus, information is gained from
the physics-based model w.r.t. the m-th signal component measurement.
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Fig. 4. Graphical representation of the investigated synthetic experiment:
Fig. (a) shows the simulated trajectory, anchor positions, walls, and OLOS
intervals. Figs. (b) and (c) show the positions of all simulated training datasets.

G. Algorithm

The problem considered is the sequential estimation of the
agent state x̂MMSE

n through the MMSE estimate given by (1).
Furthermore, we also calculate MMSE estimates of normalized
amplitude û

(j)MMSE
n ≜

∫
u
(j)
n f(u

(j)
n |z1:n, zf1:n)du

(j)
n and LOS

probability q̂
(j)MMSE
n ≜

∑
ωi∈Qωi p(q

(j)
n =ωi|z1:n, zf1:n) .

In order to obtain these quantities, the respective marginal
posterior PDFs need to be calculated from the joint posterior
PDF in (11). In general this is computationally infeasible [47].
Therefore, we use message passing by means of the SPA
rules [53] on the factor graph in Fig. 3 that represents a
factorization of the joint posterior PDF. Since the integrals
involved in the calculations of the SPA messages cannot
be obtained analytically, we use a computationally efficient,
sequential particle-based implementation that provides approx-
imate results. See [23, Sec. VI] for details concerning SPA,
particle-based implementation and the determination of the
initial distributions, i.e., f(x0), f(u

(j)
0 ), p(q

(j)
0 ) 9. Note that

f̆x(xn) ∝ f(xn|z1:n, zf1:n), f̆y(u
(j)
n ) ∝ f(u

(j)
n |z1:n, zf1:n),

p̆q(q
(j)
n ) ∝ p(q

(j)
n |z1:n, zf1:n) in Fig. 3 denote the messages

9The factorization structure given in [23, Sec. VI] is identical to the problem
at hand, when replacing x̄n with xn and y

(j)
n with u(j)n . We introduce the

additional approximation that the LOS existence probability pE(u
(j)
n , q

(j)
n ) is

only affected by the physics-based model, i.e., when evaluating the messages
ν(u

(j)
n ), and β(q(j)n ), we set f(z(j)fi,n|pn, a

(j)
n ) ≜ 1 for all i.
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corresponding to the marginal posterior distributions.

V. COMPUTATIONAL RESULTS

A. Simulation Setup and Scenario

We evaluate the proposed algorithm using synthetic radio
measurements, generated according to the scenario presented
in Fig. 4a, where the agent moves along a trajectory with two
distinct direction changes. It is observed at 190 discrete time
steps at a constant observation rate of ∆T = 100ms. The
ground truth VA positions and corresponding MPC distances
are calculated based on the floor plan of Fig. 4a (W1 to
W4) using the image source model [21], [66]. The normalized
amplitudes of the LOS component as well as the MPCs are
assumed to follow free-space path loss according to their
individual propagation paths, and are set to 38 dB at a distance
of 1 m. The normalized amplitudes of MPCs are additionally
attenuated by 3 dB per reflection. The anchors are obstructed
by an obstacle (W5), which leads to partial and full OLOS
situations in the center of the track. We choose the transmitted
signal to be of root-raised-cosine shape with a roll-off factor
of 0.6 and a 3-dB bandwidth of 500MHz. The received
baseband signal is critically sampled, i.e., Ts = 1.25 ns,
with a total number of Ns = 81 samples, amounting to a
maximum distance dmax = 30m. We use the CEDA from
the supplementary material of [23] with detection threshold
of γ = 2 (corresponding to 6 dB). The AE-DNN is set up as
suggested in [43]: We use feed-forward networks with three
convolutional layers for both, encoder and decoder. The en-
coder is set up as 27×17−ELU, 27×13−ReLU, 16×5−ELU,
which denotes the number of convolutional kernels times filter
size and the respective activations, and applies max pooling
of size 2 after all activation functions. It uses the magnitudes
of the baseband signal vector |r(j)n | as an input and has
a latent space of 4 variables. The decoder network mirrors
the encoder network. For implementation we used Python
along with TensorFlow/Keras and optimized using Adam with
learning rate of 2 · 10−3, using the MSE of measured and
predicted values of r

(j)
n as loss function. To implement the

feature measurement model of (4) we utilized MATLAB’s
GPR toolbox, where we employed the “Matern52” kernel
function [43]. The state transition PDF f(xn|xn−1) of the
agent state xn is described by a linear, constant-velocity and
stochastic-acceleration model [67, p. 273], given as xn =
Axn−1 +Bwn with the acceleration process wn being i.i.d.
across n, zero mean, and Gaussian with covariance matrix
σ2

a I2, the acceleration standard deviation σa, and A ∈ R4x4

and B ∈ R4x2 being defined according to [67, p. 273]. The
state transition of the normalized amplitude un, i.e., the state
transition PDF f(un|un−1), is chosen as u

(j)
n = u

(j)
n−1 + ϵ

(j)
un ,

where the noise ϵ
(j)
un is i.i.d. across n, zero mean, Gaussian,

with variance σ2
u. The state transition variances are set as

σa = 2 m/s2 and σu = 0.05 û
(j)MMSE
n−1 . The set of possible

LOS probabilities Q and the elements of the state transition
PMF p(q

(j)
n |q(j)n−1) are set in accordance to [23, Sec. VII-

A]. The number of particles to represent the “stacked state”
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[19], [23], [47, Sec. VI] consisting of all random variables
dependent over time n was set to I = 5000.

B. Reference Methods

We compare the performance of the proposed method
to a particle-based variant of the multi-sensor amplitude-
information PDA (AIPDA) [51], the NLOS cluster based
algorithm as presented in [23], and the machine learning based
methods from [43] and [15]. Since the methods from [43] and
[15] do not perform data association, we estimate the LOS
component distance using a search-forward approach [8]. On
the interpolated Bartlett spectrum [68], we search for the first
maximum that exceeds a threshold, which we chose as six
times the noise variance of the received baseband signal. The
search-forward approach enables correctly identifying the LOS
component (i.e., the first visible signal component), even when
there are MPCs with amplitudes higher than that of the LOS
component. For the method from [43] we set up the AE-DNN
and the GPR with identical configurations as the proposed
algorithm (corresponding to the suggestions in [43]). Initial
distribution as well as state transition model of the agent state
were also set in accordance with the proposed algorithm. To
ensure fair comparison, we used Fisher information based vari-
ances for the delay likelihood model instead of heuristically set
values. Note that this method performs “anomaly detection”,
i.e, a data-driven identification of OLOS situations, using a
beta variational AE-DNN [35] that is implemented using the
configuration suggested in [36], [43]10. For the method from
[15], we provide results using the setup referred to as “GP”,
which learns a bias correction term using GPR based on
the six parametric features suggested by the authors.11 After
error correction of the distance measurements according to

10The authors suggest to use feed-forward networks with three dense
layers for both, encoder and decoder. The encoder uses the stacked real and
imaginary parts of the baseband signal vector as an input. It consists of 100,
80, and 60 neurons, respectively, all with ReLU activation functions, and it
has two latent variables. The decoder mirrors the encoder. The regularization
hyper parameter is set to β = 10−3 and the MSE is used as a data
reconstruction loss. As suggested, we used the “time index signal strength
indicator” for predicting the anomaly score and compared to the optimum
detection threshold being set to the intersection point of the histograms of the
agent trajectory data (which is not available in reality).

11Note that the approach based on support vector machines (termed “SVM”
in [15]) did not yield stable results for the investigated experiment. Using
logarithmic features (“log-GP”) also did not improve the results, while this
variant is prohibitive when negative bias values occur.
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Fig. 6. Exemplary illustration of the latent space representation learned by the AE-DNN in Fig. (a) along with the mapping learned by GPR for feature i = 1
of anchor j = 1, where Figs. (b) and (c) represent the GPR mean and Figs. (d) and (e) represent the GPR standard deviation for the two datasets shown in
Fig. 4b that are used for training of the proposed algorithm. The “full” dataset is used for Figs. (b) and (d) and the “sparse” dataset for Figs. (c) and (e).

[15], for fair comparison, we infer the agent position using a
particle filter with identical configuration (initial distributions,
state transition model) as the proposed method instead of
using the suggested maximum likelihood positioning. Also, in
accordance with the proposed method, the likelihood variances
are determined from the Fisher information.

C. Training procedure
Training of the proposed algorithm involves a two step

procedure. First, the AE-DNN learns a low dimensional latent
representation of the received signal (“pre-training”). We used
N ′ = 6400 unlabeled samples that cover the entire floorplan
constituting a two-dimensional grid from −10 m to 10 m
in px and py directions with 0.25 m spacing. Second, GPR
is used to learn the mapping in (4). We provide results for
two sets of training data as depicted in Fig. 4b: A dataset
covering the entire floorplan with 1 m grid spacing (“full”)
and a small dataset covering only the OLOS regions of the
respective anchors (“sparse”).

While the multi-sensor AIPDA and the algorithm from [23]
require no training, the method from [43] was trained using
the same training data as the proposed algorithm. However,
this method additionally requires training of the variational
AE-DNN used for “anomaly detection” with LOS only data
(i.e., no OLOS situations). We used 6400 samples generated
at the same positions as for “pre-training” while deactivating
the obstructing wall (W5). Training of the method from [15]
requires only one set of training data labeled with their
respective positions. Here, we instead provide results using
the two datasets depicted in Fig. 4c. The “reduced” dataset
consists of those positions of the “full” dataset, where the
overall received signal power remains within a moderate range.
We found a low received signal power to be detrimental for
this method leading to strong fluctuations of the distance error
for adjacent positions. Additionally, we used an “overfitted”
dataset, which contains only data located around the true agent
trajectory.

D. Numerical Results and Performance Analysis

Fig. 5 shows a single measurement realization and re-
spective MMSE estimates of the proposed method. We show
measurements obtained using both, the CEDA and the search-
forward approach used for the comparison methods. Fig. 6

gives an exemplary illustration of the latent space represen-
tation learned by the AE-DNN as well as the corresponding
mapping of mean and standard deviation learned by GPR as
a function of the agent position pn for the “full” and the
“sparse” dataset (see Sec. V-C). It can be observed that the
GPR mean values in Fig. 6b and Fig. 6c align well with the
abstract feature space. The GPR standard deviations in Fig. 6d
and Fig. 6e remain consistently low in the learned regions
and increase significantly in areas where no training data is
available. Fig. 7 shows the results of the performed numerical
simulation. The results are shown in terms of both, the root
mean squared error (RMSE) of the estimated agent position
over time n given as eRMSE

n =
√

E{∥p̂MMSE
n − pn∥2} and the

cumulative frequency of the magnitude error of the estimated
agent position, and are evaluated using a numerical simulation
with 500 realizations.

As a performance benchmark, we provide the Cramér-Rao
lower bound (CRLB) for a single position measurement with-
out tracking (“SP-CRLB”) as well as the P-CRLB, considering
the dynamic model of the agent state [23], [57]. The “P-CRLB-
LOS” is the P-CRLB assuming the LOS component to all
anchors is always available.

The RMSE of the proposed algorithm attains or even out-
performs the P-CRLB during full OLOS due to the additional
information provided by the geometric imprint of the NLOS
components and shows consistent performance for both, “full”
and “sparse” traning data. While the cluster based approach
from [23] also reaches the P-CRLB in LOS condition and
manages to maintain the track in every single realization, it
shows reduced performance during the OLOS situation. The
method from [43] cannot attain the P-CRLB in LOS condition
as the GPR-based likelihood interferes with the more precise
physical model of the LOS component. It performs moderately
during the OLOS situation, losing the track in many realiza-
tions, showing increased performance when trained with the
“full” dataset compared to training with the “sparse” dataset.
The reduced performance of the method from [43] in OLOS
situation (w.r.t. the proposed algorithm) can be contributed
to (i) the purely Gaussian model of the filter, which offers
reduced numerical stability w.r.t. the heavy-tailed likelihood
of probabilistic data association methods [50] and (ii) the
“anomaly detection” method, which showed a high number
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(c). Different shades of gray represent different numbers of anchors in OLOS
according to Fig. 4.

of false alarms and missed detections in the investigated
experiment. The method from [15], when trained with the
“reduced” dataset, shows significantly reduced performance
even when the LOS to all anchors is available. It looses the
track in many realizations starting at time n = 74 when
the LOS to anchor 1 becomes unavailable. When we use the
“overfitted” dataset, it manages to perform robustly (i.e., no
outliers), confirming its fundamental functionality. However,
the RMSE in LOS condition is still significantly reduced.
The conventional multi-sensor PDA, which does not facilitate
the information contained in MPCs, performs well in LOS
condition, but loses track in many realizations during OLOS
and follows wrong modes.

VI. CONCLUSION

We have presented a neural-enhanced sum-product algo-
rithm (SPA) that sequentially estimates the position of a mobile
agent using radio signal measurements of multiple anchors by
utilizing a hybrid probabilistic model that consists of physics-
based and data-driven measurement models embedded in a
joint Bayesian framework. We analyzed the performance of the
proposed algorithm using numerical simulation in a challeng-
ing scenario involving simultaneous obstructed line-of-sight
(OLOS) to all anchors. We demonstrated that our algorithm

outperforms state-of-the-art methods for robust positioning and
tracking, while consistently attaining the posterior Cramér-
Rao lower bound (P-CRLB) (i.e., no lost tracks) even with
training data limited to local regions by fusing the information
contained in the physics-based and data-driven measurement
models.

Possible directions for future research include investigating
alternative, uncertainty-aware regression methods for the data-
driven measurement model to replace the Gaussian process
regression (GPR)-based likelihood function (LHF). These
methods should address the challenge of generalization to
environments, which are not covered by training data, using
concepts such as transfer learning, and should provide an
efficient prediction step whose computational complexity does
not directly depend on the size of the training data, such as
Bayesian neural networks [69].
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