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Abstract—In this paper, we consider using time-of-arrival
(TOA) measurements from a single moving receiver to locate
a moving target at constant velocity that emits a periodic signal
with unknown signal period. First, we give the TOA measurement
model and deduce the Cramér-Rao lower bounds (CRLB). Then,
we formulate a nonlinear least squares (NLS) problem to estimate
the unknown parameters. We use semidefinite programming
(SDP) techniques to relax the nonconvex NLS problem. However,
it is shown that the SDP localization algorithm cannot provide
a high-quality solution. Subsequently, we develop a fixed point
iteration (FPI) method to improve the performance of the SDP
algorithm. In addition, we also consider the presence of receiver
position errors and develop the corresponding localization al-
gorithm. Numerical simulations are conducted to demonstrate
the localization performance of the proposed algorithms by
comparing them with the CRLB.

Index Term-Fixed point iteration (FPI), semidefinite program-
ming (SDP), single moving receiver, target localization, time-of-
arrival (TOA).

I. INTRODUCTION

TARGET localization has received tremendous interest in
many fields, such as radar, sonar, wireless communica-

tion, and sensor networks [1]–[4].
Modern wireless localization systems often use several

spatially separated receivers to cooperatively locate the source.
Commonly used measurement parameters include time of
arrival (TOA), time-difference of arrival (TDOA), angle of
arrival (AOA), received signal strength (RSS), frequency-
difference of arrival (FDOA), and their combinations [5]–[7].
The TOA and TDOA systems require timing synchronization
between the spatially separated receivers [8] and need at least
three receivers to locate the target. The AOA systems typically
use an antenna array for direction estimation and also need
at least two receivers to locate the target [9]. Compared to
the multiple platform localization system, a single moving
platform localization system has the merit of fast deployment,
and data communication between platforms is also exempt
[10]–[13].

Using a single moving receiver to locate a stationary emitter
(referring to the position of the emitter is fixed in the process
of localization) with bearing-only measurements, Doppler-
only measurements, or a combination of bearing and Doppler
measurements has been well studied in the literature [14]–
[17]. Recently, TOA-based localization with a single moving
receiver has also received a great deal of attention [18]–[22].
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In [18], Tzoreff et al. developed a localization method for
stationary emitters by using TOA measurements, in which
the emitter transmits a periodic signal. It is assumed that
the waveform and period are known to the receiver, then the
periodicity is exploited to relate consecutive interceptions of
the signal that occur at different locations. In other words,
the signal periodicity compensates for the absence of simul-
taneous measurements collected by multiple sensors, and the
localization problem will be equivalent to asynchronous TOA
or TDOA localization [23], [24].

In [21], the authors investigated a new problem in which
the signal period is unknown and the existence of missed
detections of signal emissions is also considered. The authors
proposed a two-step localization algorithm for the problem.
In its first step, the signal propagation delay is ignored,
and some existing period estimation techniques are used to
roughly identify the period. In the second step, using an
iterative method to jointly estimate the source position and
the signal period. In [22], Zou et al. proposed a semidefinite
programming (SDP)-based algorithm to jointly estimate source
position and the period. Then, the SDP-based algorithm is
extended to the presence of receiver position uncertainties. In
[13], Feng et al. developed a 1-D search approach to estimate
the target position, which has low computational complexity
compared with the SDP-based algorithm in [22].

A drawback with the above mentioned works is that they are
not applicable to the case of moving target. In [19], Madadi et
al. extended the work in [18] by considering that the target is
also moving. And the authors proposed an extended Kalman
filter (EKF) to estimate the local oscillator (LO) offset, skew,
target position, and speed simultaneously. However, it still
assumes that the signal period is known. In the case of non-
cooperative target localization, the signal period is usually
unknown and also needs to be estimated.

In this paper, we consider using TOA measurements from a
single moving receiver to locate a moving target with unknown
signal period, which has not been studied so far. It is assumed
that the target is moving at constant velocity, which is a
common pattern in practice [19], [25]. It is worth noting that
when the receiver receivers signals from more than one target,
some off-the-shelf methods can be used to solved the problem
of pulse match and signal separation [26]–[28], and then
multiple targets localization can be processed separately. In the
problem of localization a moving target at constant velocity
using TOA measurements from a single moving receiver, the
unknown parameters include start transmission time, signal
period, target position at start transmission time, and target
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velocity. We formulate the localization problem as a nonlinear
least-square (NLS) problem, but it is highly nonlinear and
nonconvex, which leads to a closed-form solution is hard to
obtain.

The main contributions of this paper are as follows:
• This is the first effort, to the best of our knowledge, to

develop a TOA-based moving target at constant velocity
localization model using a single moving receiver with
an unknown signal period.

• We develop an SDP-based algorithm for the NLS prob-
lem, and design a fixed point iteration (FPI) method to
improve the performance of the SDP algorithm.

• The proposed algorithm is extended to the case of receiver
position errors.

The rest of this paper is organized as follows. Section II
describes the pseudo-range measurement model, and derives
the Cramér-Rao lower bounds (CRLB). In Section III, we
first derive an SDP-based algorithm when receiver position
are accurately known. Then, we develop an improved solution
by FPI method. In Section IV, We extend the algorithm to
address the receiver position uncertainties. Simulation results
are presented in Section V to evaluate the estimation accuracy
of the proposed algorithms and compare them with the CRLB.

Notation: Bold uppercase and bold lowercase letters denote
matrices and vectors, respectively. Im is the m ×m identity
matrix, 1m is the column vector of m ones, and 0m,n is the
m× n zero matrix. ‖·‖ denotes the Euclidean distance, ‖ · ‖F
denotes the Frobenius norm, and [·]T denotes the transpose
operation. For symmetric matrices A and B, A � B means
that A−B is positive semidefinite.

II. TOA MEASUREMENTS MODEL AND CRLB
Consider a moving target at constant velocity transmitting

periodic signal with an unknown period τ . Assuming the
moving target begins to transmit periodic signal at t0 and the
unknown initial position of target at t0 is u0 = [x0, y0]T (for
simplicity, we consider the 2-D scenario, the extension to the
3-D case is straight-forward), and the moving receiver receives
the signal waveform at t1. The position of the moving receiver
at t1 is s1 = [x1, y1]T which is known, for example, from the
GPS. After counting N waveforms, the receiver receives the
new signal waveform at t2, and the position of the moving
receiver at t2 is s2 = [x2, y2]T . The rest can be done in
the same manner, after counting N(M − 1) waveforms, the
receiver receives the new waveform at tM , and the position of
the moving receiver at tM is sM = [xM , yM ]T . For simplicity,
we setting T = Nτ in the followings.

In Fig. 1, we present a diagram to illustrate the motion
models and measurement models of the target and receiver. We
can write the following expression (in this paper, we assume
that the TOA is estimated, and our focus is using the estimated
TOA to locate the position of the target) [5]:

ti = t0 + (i− 1)T +
‖ui−1 − si‖

c
+ ei, i = 1, 2, . . . ,M. (1)

where c is the signal propagation speed, and ei is the receiver
TOA measurement noise at si. In order to eliminate ambiguity,
it is assumed that ‖ui−1 − si‖ < τc, i = 1, . . . ,M [18].

Fig. 1: The diagram of moving target at constant velocity
localization using TOA measurements from single moving
receiver. The plane denotes the single moving receiver, and

the car denotes the moving target with constant velocity.

We assume that the target is moving with a constant velocity
v = [vx, vy]T , then the target location at t0 + (i− 1)T can be
expressed as

ui−1 = u0 + (i− 1)Tv, i = 1, 2, . . . ,M. (2)

Putting (2) into (1) and multiplying both sides by c yield

ri = tic = t0c+(i−1)Tc+‖u0 + (i− 1)Tv − si‖+ni (3)

where ri is pseudo-range measurement, and ni = eic. For ease
of analysis, we assume that ni is a zero-mean white Gaussian
variable with variance σ2

i .
From Eq. (3), we can write the non-linear least squares

(NLS) problem:

min
u0,v,
t0,T

M∑
i=1

(
ri−‖u0 + (i− 1)Tv − si‖−t0c−(i−1)Tc

)2
(4)

where u0, v, t0, and T are the optimization parameters.
Since the above problem is highly nonlinear and nonconvex, a
closed-form solution is hard to find. Exhaustive search in the
solution space is directly, but its computational complexity is
huge, making it impracticable to implement.

Given the TOA measurement model in (3), the performance
of any unbiased estimate of ζ = [uT

0 ,v
T , t0,T]T ∈ R6×1

would be limited by the CRLB. The Fisher information matrix
is calculated as [29]

I(ζ) = H(ζ)TQH(ζ) (5)

where Q = diag([σ−21 , σ−22 , . . . , σ−2M ]),
and the i th row of H(ζ) ∈ RM×6 is

[

(
u0+(i−1)Tv−si

)T
‖u0+(i−1)Tv−si‖ ,

(i−1)T
(
u0+(i−1)Tv−si

)T
‖u0+(i−1)Tv−si‖ , c, (i − 1)c +

(i−1)vT
(
u0+(i−1)Tv−si

)
‖u0+(i−1)Tv−si‖ ]. As a result, the CRLB of u0, v,

t0, and T are computed as

Var(u0) ≥ [I−1(ζ)]1,1 + [I−1(ζ)]2,2, (6a)

Var(v) ≥ [I−1(ζ)]3,3 + [I−1(ζ)]4,4, (6b)

Var(t0) ≥ [I−1(ζ)]5,5, (6c)

Var(T) ≥ [I−1(ζ)]6,6. (6d)
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III. LOCALIZATION WITH ACCURATE RECEIVER’S
POSITIONS

A. Original Solution By SDP

In this section, we describe how an SDP method can be
used to solve the NLS problem in Eq. (4). Note that Eq. (4)
can be expressed as the matrix-vector form

min
u0,v,d,t0,T

‖r− d− t0c1M − Tcq‖2 (7a)

s. t. di = ‖u0 + (i− 1)Tv − si‖ , i = 1, 2, . . . ,M.
(7b)

where d = [d1, d2, . . . , dM ]T , r = [r1, r2, . . . , rM ]T , q =
[0, 1, . . . ,M − 1]T . Set h = [t0,T]T ∈ R2×1, F = [1M ,q] ∈
RM×2, fi = [1, i − 1]T ∈ R2×1, and X = [u0,Tv] ∈ R2×2.
Therefore, Eq. (7) can be expressed as

min
X,d,h

‖r− d− cFh‖2 (8a)

s. t. di = ‖Xfi − si‖ (8b)

Instead of finding X, d, and h jointly, we find the optimum
h as a dependent function of d. Letting the gradient of the
objective function in Eq. (8a) with respect to h to zero, then
gives

−2cFT (r− d− cFh) = 0 (9)

As a result, the optimum estimation of h is

h =
1

c
(FTF)−1FT (r− d) (10)

Next, substituting the above h into Eq. (8) yields

min
X,d

(r− d)TG(r− d) (11a)

s. t. di = ‖Xfi − si‖ . (11b)

where G = IM − F(FTF)−1FT . It can be seen that (11a)
is convex with respect to the unknown variable d. However,
(11b) is nonconvex with respect to the unknown variables d
and X. Next, we use the semidefinite positive relaxation (SDR)
[30] techniques to relax Eq. (11).

Let D = ddT and Y = XTX. The objective function in
(11a) can be changed to

tr(DG)− 2rTGd + rTGr. (12)

And the non-convex constraints in Eq. (11b) can be relaxed
to

Di,i = d2i = tr(fifTi Y)− 2fTi XT si + sTi si. (13)

Finally, we obtain an SDP-based algorithm

min
d,D,X,Y

tr(DG)− 2rTGd + rTGr (14a)

s. t. Di,i = tr(fifTi Y)− 2fTi XT si + sTi si, (14b)[
D d
dT 1

]
� 0M+1,M+1, (14c)[

Y XT

X I2

]
� 04,4. (14d)

After the above convex problem has been solved, we can
obtain the estimation X̂, and then the parameters can be
calculated as:

û0 = X̂(:, 1) (15a)

d̂i =
∥∥∥X̂fi − si

∥∥∥ , (15b)

ĥ =
1

c
(FTF)−1FT (r− d̂), (15c)

t̂0 = ĥ(1), (15d)

T̂ = ĥ(2), (15e)

v̂ =
X̂(:, 2)

T̂
. (15f)

In the section of simulation, we also find that the SDP algo-
rithm with second-order cone (SOC) constraints and penalty
term still cannot reach the CRLB.

B. Improved Solution by FPI

Although the SDP-based algorithm in Eq. (14) can provide
an estimate for the unknown parameter vector ζ, the estimate
cannot reach the CRLB. This is due to the fact that the
two rank constraints (rank(D) = 1, and rank(Y) = 2)
are discarded and matrix G is singular [24], [31]. Next, we
develop an FPI method to improve its solution. Actually, there
also exist other methods that can improve the accuracy of the
SDP-based algorithm, for example, Gauss-Newton method and
SDP algorithm with second-order cone (SOC) constraints and
penalty term [22]. However, the Gauss-Newton method has
inferior performance due to its first-order approximation in
the derivations [32]. And the SDP algorithm with second-order
cone (SOC) constraints and penalty term is still sub-optimal as
shown in the section of simulation results. As will be shown
below, there is no first-order approximation in the derivations
of the FPI. As a result, we choose the FPI algorithm to improve
the accuracy of the SDP-based algorithm.

Let θ = [uT
0 ,TvT ]T ∈ R4×1, the optimization problem in

Eq. (11) can be rewritten as:

min
θ,d

(r− d)TG(r− d) (16a)

s.t. di = ‖Piθ − si‖ . (16b)

where

Pi =

[
1 0 i− 1 0
0 1 0 i− 1

]
. (17)

Eq. (16) can also be written as the unconstrained optimization
problem

min
θ

M∑
i=1

M∑
j=1

Gij

(
ri − ‖Piθ − si‖

)(
rj − ‖Pjθ − sj‖

)
(18)

Taking the derivative of the objective function in (18) with
respect to θ, we obtain the gradient

g1 =

M∑
i=1

M∑
j=1

−2Gij

(
ri − ‖Piθ − si‖

)PT
j (Pjθ − sj)

‖Pjθ − sj‖
(19)
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where 2 is derived from the fact that G is a symmetric matrix.
Letting g1 equal zero, we obtain

θ = f1(θ) = (

M∑
i=1

GiiP
T
i Pi)

−1·

( M∑
i=1

GiiP
T
i

(
si + ri

Piθ − si
‖Piθ − si‖

)
+

M∑
i=1

M∑
j 6=i

Gij

(
ri − ‖Piθ − si‖

) Pjθ − sj
‖Pjθ − sj‖

)
. (20)

From Eq. (20), we developed an FPI method to update θ. We
choose the solution from the SDP algorithm in Eq. (14) as
the initial value, i.e., θ0 = [X̂(:, 1)T , X̂(:, 2)T ]T , and θ is
updating as follows:

θk = f1(θk−1). (21)

A limit on the number of iterations, Kmax, should be applied
for practical scenarios. One proper criterion to stop the itera-
tion is when the following condition is met:

‖θk − θk−1‖ ≤ ε (22)

where ε is a predetermined threshold. Unfortunately, the
theoretical convergence proof of the FPI is difficult. Here, we
provide a numerical simulation result to show the convergence
of the FPI (the simulation settings are given in Section V).
From Fig. 2, it can be seen that the estimation of θ provided by
the FPI is converging to the true θ as the number of iterations
increases.
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Fig. 2: ‖θk − θk−1‖ and ‖θk − θ‖ vs. iteration number k.

After θ̂ has been obtained, the parameters can be obtained
from

û0 = θ̂(1 : 2) (23a)

d̂i =
∥∥∥θ̂(1 : 2)− si

∥∥∥ , (23b)

ĥ =
1

c
(FTF)−1FT (r− d̂), (23c)

t̂0 = ĥ(1), (23d)

T̂ = ĥ(2), (23e)

v̂ =
θ̂(3 : 4)

T̂
. (23f)

IV. LOCALIZATION WITH NON-ACCURATE RECEIVER
POSITIONS

In the preceding development of Eqs. (14) and (20), we
assume that the positions of receiver are accurate. However,
in practice, the receiver positions may not be exact because of
the imperfection of the navigation system. In this section, we
will focus on developing robust localization algorithm in the
presence of receiver position errors.

Under the condition of receiver position errors, the receiver
positions can be expressed as [33]

ai = si + βi, i = 1, 2, . . . ,M. (24)

where βi denotes the zero-mean white Gaussian vector with
covariance δ2i I2. Besides, ni and βi are mutually independent.
We can write the NLS estimator:

min
u0,v,
si,t0,T

M∑
i=1

(ri − ‖u0 + (i− 1)Tv − si‖ − t0c− (i− 1)Tc)2

+

M∑
i=1

‖ai − si‖2 (25)

where u0, v, si, t0, and T are the optimization parameters.
Next, we will deduce the CRLB under receiver posi-

tion errors. Set the unknown parameter vector as κ =
[uT

0 ,v
T , t0,T, s

T
1 , s

T
2 , . . . , s

T
M ]T ∈ R(6+2M)×1. The Fisher

information matrix of κ is calculated as [29]

I(κ) = I1(κ) + I2(κ) (26)

where I1(κ) = P1(κ)QPT
1 (κ), I2(κ) = P2(κ)WPT

2 (κ),
W = diag([δ−21 , δ−21 , δ−22 , δ−22 , . . . , δ−2M , δ−2M ]),

P1(κ) =

[
H(ζ)T

H0

]
(27)

H0 =
− u0−s1
‖u0−s1‖ 02,1 . . . 02,1

02,1 − u0+Tv−s2
‖u0+Tv−s2‖ . . . 02,1

...
...

. . .
...

02,1 02,1 . . . − u0+(M−1)Tv−sM
‖u0+(M−1)Tv−sM‖


(28)

and

P2(κ) =



02,2 02,2 . . . 02,2

02,2 02,2 . . . 02,2

02,2 02,2 . . . 02,2

I2 02,2 . . . 02,2

02,2 I2 . . . 02,2

...
...

. . .
...

02,2 02,2 . . . I2


. (29)

As a result, the CRLB of u0, v, t0, and T are computed as

Var(u0) ≥ [I−1(κ)]1,1 + [I−1(κ)]2,2, (30a)

Var(v) ≥ [I−1(κ)]3,3 + [I−1(κ)]4,4, (30b)

Var(t0) ≥ [I−1(κ)]5,5, (30c)

Var(T) ≥ [I−1(κ)]6,6. (30d)
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A. Original Solution By SDP

Using the result from Eq. (11), the NLS problem in Eq.
(25) can be written in the matrix-vector form

min
X,d

(r− d)TG(r− d) + ‖(A−X(:, 3 : M + 2))‖2F (31a)

s.t. di = ‖Xqi‖ , i = 1, 2, . . . ,M. (31b)

where A = [a1,a2, . . . ,aM ] ∈ R2×M , X =
[u0,Tv, s1, s2, . . . , sM ] ∈ R2×(M+2), qi = [1, i −
1,01,i−1,−1,01,M−i]

T ∈ R(M+2)×1.
Similar to the derivation of Eq. (14), we can obtain an SDP-

based algorithm with sensor position errors

min
d,D,X,Y

tr(DG)− 2rTGd− 2tr(ATX(:, 3 : M + 2))

+ tr(Y(3 : M + 2, 3 : M + 2)) (32a)

s. t. Di,i = tr(qiq
T
i Y), (32b)[

D d
dT 1

]
� 0M+1,M+1, (32c)[

Y XT

X I2

]
� 0M+4,M+4. (32d)

After the above convex problem has been solved, we can
obtain the estimation X̂, and then the parameters can be
calculated as:

û0 = X̂(:, 1) (33a)

d̂i =
∥∥∥X̂qi

∥∥∥ , (33b)

ĥ =
1

c
(FTF)−1FT (r− d̂), (33c)

t̂0 = ĥ(1), (33d)

T̂ = ĥ(2), (33e)

v̂ =
X̂(:, 2)

T̂
. (33f)

B. Improved Solution by FPI

The estimates from the above SDP algorithm in Eq. (32)
also cannot attain the corresponding CRLB. In order to get a
better solution, an FPI algorithm is attached to the SDP esti-
mation. Next, we will show how to develop the FPI algorithm.
The optimization problem in Eq. (31) can be rewritten as:

min
θ,d

(r− d)TG(r− d) + ‖a−Bθ‖2 (34a)

s.t. di = ‖Riθ‖ . (34b)

where θ = [uT
0 ,TvT , sT1 , s

T
2 , . . . , s

T
M ]T ∈ R(4+2M)×1,

a = [aT1 ,a
T
2 , . . . ,a

T
M ]T ∈ R2M×1, Ri =

[Pi,02,2i−2,−I2,02,2M−2i] ∈ R2×(4+2M), and
B = [02M,4, I2M ] ∈ R2M×(4+2M).

Optimization problem in Eq. (34) can also be written as the
form of unconstrained

min
θ

M∑
i=1

M∑
j=1

Gij

(
ri − ‖Riθ‖

)(
rj − ‖Rjθ‖

)
+

2M∑
i=1

(ai − biθ)2

(35)

where bi is the ith row vector of matrix B, and ai is the
ith entry of vector a. Taking the derivative of the objective
function in (35) with θ, we obtain

g2 =

M∑
i=1

M∑
j=1

−2Gij

(
ri − ‖Riθ‖

)RT
j Rjθ

‖Rjθ‖
+

2M∑
i=1

−2bT
i (ai − biθ) (36)

Letting g2 equal zero, we obtain

θ = f2(θ) = (

M∑
i=1

GiiR
T
i Ri +

2M∑
i=1

bT
i bi)

−1·

( M∑
i=1

GiiriR
T
i

Riθ

‖Riθ‖
+

2M∑
i=1

aib
T
i +

M∑
i=1

M∑
j 6=i

Gij

(
ri − ‖Riθ‖

)
RT

j

Rjθ

‖Rjθ‖

)
(37)

From Eq. (37), we developed an FPI method to estimate the
parameter vector θ. We choose the solution from the SDP
algorithm in Eq. (32) as the initial value, i.e., θ0 = [X̂(:
, 1)T , X̂(:, 2)T , . . . , X̂(:,M + 2)T ]T , and θ is updating as
follows:

θk = f2(θk−1) (38)

The criterion to stop the iteration is same to Eq. (22).

V. SIMULATION RESULTS

In this section, we conduct several numerical simulations to
show the performance of proposed algorithms when receiver
positions are accurate and non-accuratre, respectively. The
initial values from (14) and (32) are labelled as “SDP”,
the improved solutions from (20) and (37) are labelled as
“SDP+FPI”, and the SDP algorithm with SOC constraints and
penalty term is labeled as “SDP+SOC+Penalty” 1 [22]. The
SDP-based algorithms are implemented by the CVX toolbox
[34] using SeDuMi as a solver [35], and the precision is set to
best2. The parameters of the stop criterion for FPI algorithm
are: Kmax = 1000, ε = 10−4. The root-mean-square errors
(RMSEs) are calculated as follows:

RMSE(u0) =

√√√√ 1

Mc

Mc∑
j=1

‖u0 − ûj
0‖2, (39a)

RMSE(v) =

√√√√ 1

Mc

Mc∑
j=1

‖v − v̂j‖2, (39b)

1The “SDP+SOC+Penalty” algorithm has two difference compared with
the “SDP” algorithm: 1) the penalty term ηtr(D) in objective function; 2) the
SOC constraints. It is worth noting that the SOC constraints have two versions,
‖Xfi − si‖ ≤ di when receiver’s positions are accurate, and ‖Xqi‖ ≤ di
when receiver’s positions are non-accurate. In the following simulations, η =
10−7.

2In the numerical simulations, scaling technique is used for the two SDP
based algorithms to avoid the problem of inaccurate results induced from large
numerical value. r, si and ai are shrunk to the values of one in a thousand.
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TABLE I: The average running time [s] of the considered
algorithms with the two scenarios, CPU: i7-10700, 2.9 GHz.

Algorithms
Scenarios 1 2

SDP 0.2586 0.2542
SDP+FPI 0.3764 0.5045

SDP+SOC+Penalty 0.3837 0.3781

RMSE(t0) =

√√√√ 1

Mc

Mc∑
j=1

(t0 − t̂j0)2, (39c)

RMSE(T) =

√√√√ 1

Mc

Mc∑
j=1

(T− T̂j)2, (39d)

where Mc is the number of Monte Carlo runs, ûj
0, v̂j , t̂j0, and

T̂j are respectively, the estimates of u0, v, t0, and T in the
j-th run. In the following simulations, we set Mc = 2000.
The receiver is moving in a 2-dimensional plane, the signal
period τ is set to 1ms, and the number N between two
TOA measurements is set to 60000, so the corresponding
T = N × τ is 60s. The starting transmission time t0 is
drawn from a uniform distribution [0, 1]s. The initial position
of target is u0 = [300, 2600]Tm, and the velocity of target
is v = [15, 25]Tm/s. The moving trajectory of receiver
is a count-clockwise circle, and its center and radius are
[0, 0]Tm and L = 10000m, respectively. The speed of the
moving receiver is w = 200m/s, and the number of TOA
measurements is M = 10. The positions of the receiver at
different measurement time are:

xi = Lcos(
wT(i− 1)

L
), i = 1, 2, . . . ,M (40a)

yi = Lsin(
wT(i− 1)

L
), i = 1, 2, . . . ,M. (40b)

The trajectory of the receiver and target is depicted in Fig.
3. The variances of noise are assumed to be identical, i.e.,
σ2
i = σ2, δ2i = δ2, i = 1, 2, . . . ,M . δ is set to 0.3m in the

presence of receiver position uncertainties.
Fig. 4 to Fig. 7 are, respectively, the RMSE results of u0,

v, t0, and T as the TOA measurement noise variance increase
when receiver’s positions are accurate. From these figures, we
can obtain the following observations: 1) the “SDP” algorithm
cannot reach the CRLB; 2) the “SDP+SOC+Penalty” algo-
rithm has better performance than the “SDP” algorithm, but
it still cannot reach the CRLB; 3) the “SDP+FPI” algorithm
attains the CRLB. This observation validates that the FPI
method converges on the global minimum.

Fig. 8 to Fig. 11 are the four RMSE results obtained
in the presence of receiver position errors. The observation
results are similar to the former case. Besides, in Table I,
the average running time of the three algorithms are provided.
From the table, it is worth noting that the proposed “SDP+FPI”
algorithm costs more running time in the case of receiver
position errors. This is due to the fact that the calculation
of the FPI is more complicated in this case.
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Fig. 3: Performance of the proposed solution when receiver’s
positions are accurate. The red stars denote the positions of

the receiver, the open circles are the true positions of the
moving target, and the crosses denote the estimates from the

proposed algorithm.
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Fig. 8: RMSE of u0 vs. σ2 with δ = 0.3m.

VI. CONCLUSIONS

In this paper, we have investigated the problem of moving
target at constant velocity localization by using a single mov-
ing receiver. We derived an SDP-based algorithm to provide
a rough estimation of unknown parameters, and then an FPI
method was derived to improve the performance of the SDP
algorithm. The algorithm is also extended to take receiver
position uncertainties into consideration. Simulation results
have shown that the proposed algorithms can attain the CRLB.
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Fig. 9: RMSE of v vs. σ2 with δ = 0.3m.
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Fig. 10: RMSE of t0 vs. σ2 with δ = 0.3m.
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