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ABSTRACT Quasi-continuous system identification of time-variant linear acoustic systems can be applied
in various audio signal processing applications when numerous acoustic transfer functions must be
measured. A prominent application is measuring head-related transfer functions. We treat the underlying
multiple-input-multiple-output (MIMO) system identification problem in a state-space model as a joint
estimation problem for states, representing impulse responses, and state-space model parameters using the
expectation maximization (EM) algorithm. We address limitations of prior work by imposing different
model structures, especially for dependencies within a (transformed) state vector. This results in block
diagonal matrix structures, for which we derive M-step update rules. Making assumptions about this
model structure and choosing a block size for a given application define the computational complexity. In
examples, we found that applying this framework yields improvements of up to 10 dB in relative system
distance in comparison to a conventional method.

INDEX TERMS expectation maximization, state-space model, system identification

I. INTRODUCTION

IDENTIFYING acoustic systems is required in many au-
dio signal processing applications. Characterizing linear

acoustic systems or transfer paths using measurements is
an essential step before designing filters for applications,
such as feed-forward active noise control (ANC) [1], per-
sonal sound zones [2], crosstalk cancellation [3], or when
measuring head-related transfer functions (HRTFs) for bin-
aural synthesis [4], [5]. In these measurements, control over
the playback signal, which is fed into the system, can
be assumed. In some applications, such as acoustic echo
control (AEC), it is required to identify acoustic systems at
runtime, and the playback signal cannot be controlled; these
applications are not the primary focus of this contribution.

Two main approaches for measurements of linear acoustic
systems exist. On the one hand, in static measurements
acoustic impulse responses (IRs) are measured for one
specific configuration between transmitter(s) and receiver(s).
This type of measurement is often conducted using expo-

nential sweeps [6]–[9]. On the other hand, quasi-continuous
measurements aim at identifying time-variant acoustic sys-
tems that slowly change over time. This offers the possi-
bility to measure numerous spatial configurations between
transmitter(s) and receiver(s) in a short time, and to simulate
time-variant systems, as in [10], [11].

The quasi-continuous measurements, especially of HRTFs,
have become popular due to a reduced measurement dura-
tion [5], [12], [13]. In this application, one or more loud-
speakers reproduce a predefined signal while microphones
in the ear canals of a subject capture signals that are filtered
with the desired acoustic system’s responses. To obtain a spa-
tially dense grid of head-related impulse responses (HRIRs)
the subject is either rotated on a turntable, as in [14]–[19], or
can move freely [20]–[24]. Adaptive filtering method, such
as the normalized least-mean-square (NLMS) algorithm or
variants thereof are often applied to estimate the IRs. The
NLMS algorithm can also be related to deconvolution used
in static measurements [25].
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Some other adaptive filtering methods can be interpreted
as state estimation techniques [26] to obtain IRs as state esti-
mates, as, for example, applied in the time domain for ANC
in [27] or in the discrete Fourier transform (DFT) domain
for AEC in [26]. For the latter application, a variant of the
expectation maximization (EM) algorithm has been adopted
to learn the measurement noise covariance and process noise
covariance for a DFT-domain adaptive filter [28]. While [28]
focuses on online processing, which is required in AEC,
in measurement applications, however, online filtering poses
an unnecessarily strict requirement. In constrast to adaptive
filtering, offline processing or algorithms that require a large
lookahead can be applied without restrictions once recording
the signals is completed, as in [29]. In [30], the EM algorithm
has been applied to identify time-invariant multiple-input-
multiple-output (MIMO) systems in the frequency domain.
We proposed to apply the EM algorithm offline to estimate
time-variant IRs in HRTF measurements, and to learn the
parameters of the corresponding state-space model inde-
pendently on overlapping sequences [31]. While the results
indicate a large potential, the applicability of this approach to
real-world measurements with higher sampling rates, longer
IRs and more loudspeakers in parallel is limited due to the
excessive computational complexity and memory demand.

In this contribution, we present a flexible framework
which applies EM-based joint learning of state-space model
parameters and IRs for application in quasi-continuous sys-
tem identification of time-variant linear acoustic systems so
that the limitations of [31] can be overcome. This flexible
framework allows to estimate time-domain finite impulse
response (FIR) coefficients, a DFT-domain state representa-
tion, or any other transformed state representation obtained
from a linear invertible transform. Moreover, the proposed
framework employs blockwise processing and allows to
treat multiple microphones jointly in a MIMO system [32].
Imposing different coupling models for dependencies within
the state vector can yield block diagonal matrix structures
with various levels of computational complexity. As a result,
a wider range of applications can be tackled, e.g., measuring
time-variant IRs of ANC headphones, as conducted in [33]
for a single reference microphone, could be improved and
extended to multi-microphone setups, as discussed in [1].

This contribution is structured as follows: Sec. II presents
the state-space system model while Sec. III describes the EM
algorithm for the joint estimation of states and parameters
for this model. In Sec. IV and Sec. V, we present specialized
model structures and derive variants of M-step update rules
for various models. Examples are provided in Sec. VI, and
Sec. VII concludes the paper.

II. STATE-SPACE MODEL
Quasi-continuous MIMO system identification aims at esti-
mating IRs of an acoustic system with very high temporal
resolution, resulting in either one estimate per sample or
per every few milliseconds. We assume that T transmitters

(loudspeakers) simultaneously play back signals xt(k) , t =
1, . . . , T , such that R receivers (microphones) receive sig-
nals yr(k) , r = 1, . . . , R. The IR between receiver r and
transmitter t at time k is modeled as an FIR filter hrt,k(ℓ).

To completely represent this linear acoustic MIMO system
at time k, we define the state vector at time k, comprising
the IRs valid at this time instance, as

zk =
[
hT
11,k . . . hT

1T,k . . . hT
RT,k

]T ∈ RRTL, (1)

where hrt,k = [hrt,k (0) , . . . , hrt,k (L− 1)]
T is a length-

L coefficient vector for each IR hrt,k(ℓ). The order of the
state-space system is given by the number of states Nz =
RTL. To describe the state-space model, we define the state
equation, now using a frame index n, similarly to [31], as

zn = Azn−1 + qn. (2)

(2) describes the evolution of the IRs over time. Here, A is
the state transition matrix, and qn is the process noise, which
is assumed to be zero-mean Gaussian with covariance Γ.

The observation equation describes how the current state,
the IRs, relate to the observations, i.e., the recorded signal
samples. We extend the observation model from the block
time-domain Kalman filter in [34] such that multiple re-
ceivers are considered jointly in a multiple-output system.
This leads to the observation equation

yn =
[
yT
1,n . . . yT

R,n

]T
= Cnzn + νn ∈ RRNo , (3)

where No is the number of samples that form an observation
vector yr,n = [yr (nNo − 1) , . . . , yr (nNo −No)]

T ∈ RNo

for receiver r. νn models additive zero-mean Gaussian
measurement noise that is assumed to have covariance Σ.
The frame index n is a time index, similar to k, that is tem-
porally down-sampled by a factor of No, and it ranges from
n = 1, . . . , N . The choice of No allows to control how many
received signal samples form one observation, and hence de-
fines the temporal resolution of the changes modeled by the
state equation (2) and of the IR estimates. The observation
matrix Cn, relating IRs and the recorded signal samples, im-
plements the convolution between the IRs and the playback
signals. The vector xt,k = [xt (k) , . . . , xt (k − L+ 1)]

T

contains the L most recent samples of xt at time k. This
allows to write the observation matrix as

Cn =

C11,n . . . C1T,n 0 . . . 0
. . .

0 . . . 0 CR1,n . . . CRT,n

 ∈ RRNo×RTL,

where Crt,n =
[
xt,n·No−1 . . . xt,n·No−No

]T ∈ RNo×L.
Note that Cn is a block diagonal matrix with R blocks.
(2) and (3) completely specify the state-space model with
appropriate model parameters A, Γ and Σ.

III. EM-BASED STATE AND PARAMETER ESTIMATION
Given a sequence of observations Y = {y1, . . . ,yN}, we
want to jointly estimates the sequence of hidden states, i.e.,
the IRs, Z = {z1, . . . , zN} and the set of state-space model
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parameters θ = {A,Γ,Σ,µ0,P0}. Here µ0 is the initial
mean state vector and P0 is the associated initial a priori
state covariance matrix. The EM algorithm for state-space
models [35] conducts this joint optimization by maximizing
the expected log-likelihood, which is given by

Q (θ) = −1

2
log (det (P0))−

N − 1

2
log (det (Γ))

− E
{
1

2
(z1 − µ0)

T
P−1

0 (z1 − µ0)

}
− E

{
1

2

N∑
n=2

(zn −Azn−1)
T
Γ−1 (zn −Azn−1)

}

− E

{
1

2

N∑
n=1

(yn −Cnzn)
T
Σ−1 (yn −Cnzn)

}
− N

2
log (det (Σ)) + const. (4)

for the above state-space model. Here det (·) denotes the
determinant of a matrix and E {·} is the expectation operator.
Note that, in contrast to [35], the observation matrix is time-
dependent, as in [36], but defined by the playback signals.

The EM algorithm iterates between E-step and M-step to
find a locally optimal solution for both state and parameter
estimates. The E-step calculates the maximum-likelihood
state estimates for a fixed set of parameters θ, and is given
by the recursive Kalman filtering and Kalman smoothing
equations, which involve the following quantities: the a
priori state covariance matrix Pn, the Kalman gain Kn, the
filtered state estimate µn, the a posteriori state covariance
matrix Vn, the Kalman smoother gain Jn, the smoothed state
estimate µ̂n, and the smoothed a posteriori state covariance
matrix V̂n. The Kalman filtering equations [35] are

Pn−1 =

{
P0 if n = 1,

AVn−1A
T + Γ otherwise,

(5a)

Kn = Pn−1C
T
n

(
CnPn−1C

T
n +Σ

)−1
, (5b)

µn =

{
µ0 +K1 (y1 −C1µ0) if n = 1,

Aµn−1 +Kn

(
yn −CnAµn−1

)
otherwise,

(5c)
Vn = (INz

−KnCn)Pn−1, (5d)

with the Nz × Nz identity matrix INz , and they are eval-
uated recursively for n = 1, . . . , N . The Kalman smoother
equations [35]

Jn = VnA
TP−1

n , (6a)

µ̂n =

{
µn if n = N,

µn + Jn

(
µ̂n+1 −Aµn

)
otherwise,

(6b)

V̂n =

{
Vn if n = N,

Vn + Jn

(
V̂n+1 −Pn

)
JT
n otherwise,

(6c)

are evaluated for n = N, . . . , 1.
Then, the M-step updates the parameters θ for the fixed

set of estimates (from the E-step). Assuming the above state-
space model and that all matrices are fully populated, the

M-step update equations yield the updated quantities, which
are highlighted by ⋆, as [35]

A⋆ =

(
N∑

n=2

E
{
znz

T
n−1

})( N∑
n=2

E
{
zn−1z

T
n−1

})−1

, (7)

Γ⋆ =
1

N − 1

N∑
n=2

Gn, (8) Σ⋆ =
1

N

N∑
n=1

Mn, (9)

µ⋆
0 = µ̂1, (10) P⋆

0 = V̂1 (11)

with the auxiliary definitions

Gn = E
{
znz

T
n

}
− E

{
znz

T
n−1

}
A⋆T

−A⋆E
{
zn−1z

T
n

}
+A⋆E

{
zn−1z

T
n−1

}
A⋆T, (12)

Mn = yny
T
n − ynE

{
zTn
}
CT

n

−CnE {zn}yT
n +CnE

{
znz

T
n

}
CT

n . (13)

Evaluating (7) to (9), requires the following equa-
tions [35]:

E
{
znz

T
n

}
= V̂n + µ̂nµ̂

T
n , (14)

E
{
znz

T
n−1

}
= V̂nJ

T
n−1 + µ̂nµ̂

T
n−1. (15)

For each sequence Y, I EM iterations are conducted.
These sequences are overlapping signal segments of the
entire recorded signal, and each sequence consists of a
lookback part, a central part and lookahead part, as in [31].
To finally provide IR estimates for each No-th sample of the
entire recorded signal, the estimates, obtained independently
on each sequence, are combined [31].

As the state and parameter estimates resulting from the
iterative EM algorithm depend on the choice of initial
parameters [35], we provide a rule of thumb on how
to choose an initial set of parameters θ(0). As a result
of offline processing conducted in measurements, we can
assume that preliminary estimates of the IRs (states) can
be obtained for a given sequence, e.g., using the NLMS
algorithm. These states shall be denotes as z̊n, n = 1, . . . , N
corresponding to time samples k = 1 · No − 1, . . . , N ·
No − 1. Then, we can compute the initial mean state
vector and the initial a priori state covariance matrix as the
maximum-likelihood estimates of mean and covariance of
these preliminary IRs as µ

(0)
0 = N−1

∑N
n=1 z̊n and P

(0)
0 =

N−1
∑N

n=1

(̊
zn − µ

(0)
0

)(̊
zn − µ

(0)
0

)T
, respectively. Simi-

larly, with the initial assumption A(0) = I, we can obtain
a maximum-likelihood estimate of the process noise covari-
ance from realizations of the process noise q̊n = z̊n − z̊n−1

corresponding to the preliminary state estimates, similar to
(2), as Γ(0) = (N − 1)

−1∑N
n=2

(̊
qn − ¯̊q

) (̊
qn − ¯̊q

)T
, with

the mean process noise corresponding to the preliminary
state estimates given by ¯̊q = (N − 1)

−1∑N
n=2 z̊n. An initial

measurement noise covariance matrix Σ(0) can similarly be
obtained from a background noise recording.
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ID description NBz Bz slow-to-fast indexing order

1 full 1 RTL any

2 independent receivers R TL r-t-ℓ or r-ℓ-t

3 independent transmitters T RL t-r-ℓ or t-ℓ-r

4 independent coefficients L RT ℓ-t-r or ℓ-r-t

5 within-receiver coupling TL R t-ℓ-r or ℓ-t-r

6 within-transmitter coupling RL T r-ℓ-t or ℓ-r-t

7 independent IRs (within-coefficients coupling) RT L r-t-ℓ or t-r-ℓ

8 fully independent RTL 1 any

9 complex-valued: independent coefficients RTL/2 2 ∗-ζ

10 complex-valued: within-receiver coupling TL/2 2R ∗-r-ζ or ∗-ζ-r

11 complex-valued: within-transmitter coupling RL/2 2T ∗-t-ζ or ∗-ζ-t

12 complex-valued: within-frequency coupling L/2 2RT ℓ-∗

TABLE 1. Coupling models for state vector with NBz blocks of size Bz . The indexing order can be modified by means of a permutation matrix P . The

default slow-to-fast indexing order, as in (1), is receiver index r (changes slowest), transmitter index t, coefficient index ℓ (changes fastest), and it is

denotes as r-t-ℓ. For complex-valued transforms there are L/2 coefficients, which are also represented by index ℓ. Additionally, ζ represents the index

required to differentiate between real and imaginary part of complex coefficients. Star ∗ represents arbitrary indexing order in the remaining indices.

IV. SPECIALIZED MODEL STRUCTURES
The state and parameter estimation described above is similar
to the one in [31], except that we consider a MIMO system
instead of a MISO system and that we use blockwise
processing. If the IRs to be estimated are relatively long
and/or the number of transmitters and/or receivers is high,
the number of states Nz becomes large. As a result, the
computational complexity and memory demand of the E-step
and the M-step can become very large. To reduce the number
of model parameters and the computational complexity,
we propose to impose specific structures for the matrix-
valued parameters A,Γ,Σ, and P0. For example, imposing a
(block) diagonal structure on the covariance matrices implies
that the cross-covariances between particular states are zero,
i.e., the states are assumed to be statistically independent.

A. Motivational Examples
The first example corresponds to combining two decoupled
multiple-input-single-output (MISO) systems: The state co-
variance matrices Pn,Vn, V̂n, and the process noise covari-
ance matrix Γ are then set up as block diagonal matrices with
R blocks of size TL×TL such that the IRs to each receiver
are modeled as independent but the cross-covariances within
the TL samples of the T IRs of length L are considered (cf.
Table 1, ID 2). The state-transition matrix should also reflect
this block diagonal structure.

Second example: Correlation between IRs to the different
receivers can be assumed if they are physically close to each
other, especially in freefield-like conditions. The direct path
to a linear array with closely-spaced microphones for low
frequencies can be expected to change in a similar fashion
for adjacent microphones. In case of HRTF measurements,
the two microphones in the subject’s ear are physically
connected through the head and jointly move. Then, depen-
dencies between receivers for a specific frequency could be

modeled by applying a frequency-domain transform and a
permutation such that the coefficients corresponding to a
given frequency appear as groups in the state vector. This
requires to reorder the state vector. In (1) the coefficient
index changes fastest and the receiver index changes slowest.
To form the groups in this example that model within-
receiver coupling for a fixed frequency, the receiver index
should change fastest. This would result in TL/2 blocks of
size 2R× 2R (cf. Table 1, ID 10) for two coefficients (real
and imaginary part) per DFT bin. By considering the cross-
covariance between real and imaginary parts of a DFT bin,
each DFT coefficient is modeled as an improper complex
Gaussian random variable [37]. The DC and the Nyquist bin
(for even L) are considered jointly in one 2× 2 block.

The third example considers distance changes between
receiver(s) and transmitter(s). Cyclically shifting and scaling
an IR can be represented as a complex-valued pointwise
multiplication in the DFT domain. This can be achieved by
applying the DFT to the state vector and by using a state
transition matrix with 2×2 blocks to implement the complex-
valued multiplications. Depending on the application, a
meaningful coupling model can be chosen. See Table 1 for
a list of suggested coupling models.

B. Further Approximations and State Transform
When independent blocks in the state are assumed, the
block diagonal structure is preserved through the recursive
Kalman filtering and Kalman smoothing equations, except
in (5d), (14) and (15). Therefore, we suggest the following
approximations that maintain the block diagonal structure:

Vn ≈ (I− blkdiag {KnCn})Pn−1, (16)

E
{
znz

T
n

}
≈ V̂n + blkdiag

{
µ̂nµ̂

T
n

}
, (17)

E
{
znz

T
n−1

}
≈ V̂nJ

T
n−1 + blkdiag

{
µ̂nµ̂

T
n−1

}
. (18)
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Here, blkdiag {·} extracts a block diagonal matrix from a
matrix. The block size should be clear from context. (16) is
structurally similar to the covariance update in the subdiago-
nal DFT-domain multi-transmitter Kalman filter [38] and in
the time-domain broadband Kalman filter [39]. It is worth
noting that using these approximations it is no longer guar-
anteed that the expected log-likelihood does not decrease–
in contrast to the regular EM algorithm, which provides
this guarantee [36]. Yet, we found that these approximations
yield useful results.

Instead of using a time-domain FIR coefficient represen-
tation of the IRs in the state vector, we can apply any linear
transform to represent the IR coefficients hrt,k in a different
basis, such as real and imaginary parts of an L-point DFT.
This transform, applied to each IR separately, shall be given
by an invertible matrix T of size L× L. To implement the
reordering of the states according to the indexing order in
Table 1, a permutation matrix P is introduced. The permuted
and transformed state can then be described as

z̃n = P (IRT ⊗T) zn = Wzn. (19)

Here, ⊗ denotes the Kronecker product. As the observation
vectors remain in the time domain, the observation matrix
that would be multiplied with the transformed state vector
from the right is given by C̃n = CnW

−1. When the state
dimension Nz becomes large, it can be advantageous to
exploit that W−1 =

(
IRT ⊗T−1

)
PT can be calculated

more efficiently than simply inverting the large matrix W.
If a transform-domain state representation is considered

in the EM algorithm, the initial values can be transformed
using the relations Ã = WAW−1 and Γ̃ = WΓW−1 and
the IR estimates can be reconstructed using (19).

C. Computational Complexity and Memory Requirements
The dominant term of the computational complexity of
one EM iteration in Sec. III stems from the matrix-matrix
multiplications of Nz ×Nz matrices. For a signal sequence
of length Nx = N · No, the number of operations is
in the order of O

(
Nx

No
N3

z

)
. Assuming that the matrices

A,Γ,Σ, and P0 are block diagonal with NBz
blocks of

size Bz×Bz , the number of operations for the above matrix-
matrix multiplications reduces to O

(
Nx

No
NBz

B3
z

)
1. Further,

it is required to store O
(

Nx

No
N2

z

)
elements of the a posteriori

state covariance matrices in Sec. III. This number reduces to
O
(

Nx

No
NBz

B2
z

)
for block diagonal matrices.

Note that both the computational complexity terms above
and the memory requirements are inversely proportional to
the block size No. Therefore, assuming constant IRs for

1For small block sizes, a different term could dominante the overall
complexity. A comprehensive analysis of the exact computational complex-
ity seems impractical here due to the variety of relationships between the
parameters R, T, L,No, NBz , NBy and N that, together with the choice
of M-step update equations, determine the block matrix dimensions and the
number of computations per iteration.

several time instances in the observation model in (3) can
result in large savings compared to [31] where No = 1.

V. DERIVED M-STEP UPDATE RULES
To decrease the number of model parameters and/or to
impose a block diagonal structure, we now derive the M-
step update rules for numerous assumptions about the matrix-
valued parameters’ structure. Therefore, the derivative of the
expected log-likelihood Q (θ) in (4) w.r.t. the parameter is
calculated and set to zero, analogously to the derivations
in [35], [36]. Irrespective of the assumption about the struc-
tures, the update rules for the initial a priori state (10) and
for the initial state covariance matrix (11) hold.

A. State Transition Update Rules
Assuming a scaled identity state transition matrix A = aI
yields

a⋆ =
tr
{
Γ−1∑N

n=2 E
{
znz

T
n−1

}}
tr
{
Γ−1∑N

n=2 E
{
zn−1zTn−1

}} . (20)

Here, tr {·} denotes the trace operator. This model corre-
sponds to the scalar fading factor Markov model as found in
many Kalman filtering approaches, e.g., in [26], [40]–[42].

Assuming a diagonal state transition matrix A = diag {a}
with a ∈ RNz yields

a⋆ =

(
Γ−1 ⊙

N∑
n=2

E
{
zn−1z

T
n−1

})−1

·diag

{
Γ−1

N∑
n=2

E
{
znz

T
n−1

}}
, (21)

where diag {·} converts a vector into a diagonal matrix or
extracts the main diagonal from a matrix, and ⊙ represents
elementwise multiplication. In combination with a DFT-
transformed state vector, this model allows for frequency-
dependent fading factors. This could be assumed when the
physical distance between transmitter(s) and receiver(s) is
expected to change. This would result in slower changes in
lower frequencies and faster changes in higher frequencies,
i.e., different fading-factor time constants per frequency.

Next, a block diagonal state transition matrix

A =

Π1

. . .
ΠNBz

 = mkblkdiag {Π} (22)

with NBz blocks of size Bz = Nz/NBz is assumed, and the
auxiliary matrix

Π =
[
ΠT

1 . . . ΠT
NBz

]T
∈ RNBzBz×Bz (23)

allows use the mkblkdiag {·} operator, which ”makes” a
block diagonal matrix and which can be understood as

A =

NBz∑
b=1

EbΠET
b (24)
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with a block matrix

Ei =


0

. . .
IBz

. . .
0

 ∈ RNBzBz×NBzBz (25)

that has an identity matrix of size Bz × Bz in block row i
and block column i, and a unit vector-like matrix

Ei =
[
0 . . . IBz

. . . 0
]
∈ RBz×NBzBz (26)

that has an identity matrix in block column i. To derive
the update rule for Π, which contains all the parameters
describing A, we set ∂Q

∂Π

!
= 0, which yields the condition

blkdiag

{
Γ−1

N∑
n=2

E
{
znz

T
n−1

}} !
=

blkdiag

{
Γ−1 mkblkdiag {Π}

N∑
n=2

E
{
zn−1z

T
n−1

}}
. (27)

A system of the form

blkdiag {A} = blkdiag {Bmkblkdiag {X}C} (28)

for matrices A,B,C ∈ RNBzBz×NBzBz and X ∈
RNBzBz×Bz can be rewritten using a vectorized represen-
tation of the block matrices using vec {·}, i.e., stacking all
matrix elements into a column vector, as

vec {A} = S (B,C) vec {X} , (29)

where S (B,C) is a matrix that implements (28). Eventually,
to find a representation of Π, we solve

vec {Π⋆} = S

(
Γ−1,

N∑
n=2

E
{
zn−1z

T
n−1

})−1

vec

{
blkdiag

{
Γ−1

N∑
n=2

E
{
znz

T
n−1

}}}
(30)

and undo the vectorize operation. The update rule (30)
requires solving a linear system of equations with NBz

B2
z

variables, which can become impractically large. Note that
(20) and (21) also can involve large matrix multiplications.

To avoid them, we can, instead of full coupling between
all states, assume independent blocks of Bz states in the state
vector. Then, the condition in (27) simplifies, and we obtain
NBz

separate matrix-valued equations with B2
z variables

each and obtain the update rule for the block with index
b as

Π⋆
b =

(
N∑

n=2

E
{[

znz
T
n−1

]
bb

})

·

(
N∑

n=2

E
{[

zn−1z
T
n−1

]
bb

})−1

, (31)

where [·]ij denotes the block in the i-th block row and j-
th block column. Instead of dealing with matrices of size

NBzB
2
z ×NBzB

2
z and Nz ×Nz in (30), the matrices in (31)

are only of size Bz ×Bz .
This block structure can be applied to model that all IRs

change independently, for instance, when the transmitters are
spatially far apart from each other, or to model that complex-
valued frequencies bins change independently (for Bz = 2).

B. Process Noise Update Rules
Assuming a scaled identity matrix Γ = γI yields

γ⋆ =
1

Nz (N − 1)

N∑
n=2

tr {Gn} . (32)

This model resembles the so-called broadband Kalman filter
in [39]. In combination with T as the real-valued DFT,
the model could also be applied when assuming that all
frequencies change by similar amounts.

Assuming a diagonal matrix Γ = diag {γ} with γ ∈ RNz

yields

γ⋆ =
1

N − 1

N∑
n=2

diag {Gn} . (33)

With T as the real-valued DFT, this model could be applied
when assuming that all frequencies change by different
amounts. This can be understood as similar to the diagonal
process noise covariance matrix in the DFT-domain Kalman
filter [26]. However, there the state vector results from trans-
forming a zero-padded IR estimate into the DFT domain. In
the time domain, this structure corresponds to the structure
found in the process noise estimation in [27].

Assuming a block diagonal matrix Γ with NBz
blocks

of size Bz × Bz , i.e., Γ = mkblkdiag {G} with G =[
GT

1 . . . GT
NBz

]T ∈ RNBzBz×Bz , containing all the
parameters describing Γ, yields

G⋆ =
1

N − 1

N∑
n=2

blkdiag {Gn} . (34)

For a large number of states Nz , the update rules (32), (33)
and (34) still require computing products of large dense
matrices in (12) before extracting the relevant matrix entries.
If it is instead assumed that independent blocks occur in the
state vector and that the state transition matrix A is modeled
as a block diagonal matrix as well, we can simplify to obtain
the update rule for block b as follows:

G⋆
b =

1

N − 1

N∑
n=2

[
E
{
znz

T
n

}]
bb
−
[
E
{
znz

T
n−1

}]
bb

[
AT
]
bb

− [A]bb
[
E
{
zn−1z

T
n

}]
bb

+ [A]bb
[
E
{
zn−1z

T
n−1

}]
bb

[
AT
]
bb
. (35)

Note that the matrices in (35) are only of size Bz×Bz . This
model is conceptually similar to the so-called submatrix-
diagonal form for MISO systems in [38], where depen-
dencies between transmitters for a fixed frequency bin are
considered.
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C. Measurement Noise Update Rules
Assuming a scaled identity measurement noise covariance
matrix Σ = sINo yields

s⋆ =
1

NNo

N∑
n=1

tr {Mn} . (36)

This corresponds to modeling additive white noise with
identical variance for all receivers.

Assuming a diagonal measurement noise covariance ma-
trix Σ = diag {s} with s ∈ RNo yields

s⋆ =
1

N

N∑
n=1

diag {Mn} . (37)

With samplewise processing, i.e., No = 1, a different amount
of additive white noise in each receiver could be modeled.

Assuming a block diagonal measurement noise covariance
with NBy

blocks of size By × By with By = RNo/NBy
,

i.e., Σ = mkblkdiag {S} with S =
[
ST
1 . . . ST

NBy

]T
∈

RNByBy×By yields

S⋆ =
1

N

N∑
n=1

blkdiag {Mn} . (38)

For No > 1, this allows to model additive noise with
correlation between noise samples, e.g., differently colored
noise at each receiver. The larger No, the longer temporal
correlations in the measurement noise can be modeled.

Assuming independent blocks in the observations yn, (38)
can further be simplified as follows:

S⋆
b =

1

N

N∑
n=1

[
yny

T
n

]
bb
− [yn]b1 E

{
zTn
}
[Cn]

T
b:

− [Cn]b: E {zn} [yn]
T
b1 + [Cn]b: E

{
znz

T
n

}
[Cn]

T
b: , (39)

where [Cn]b: denotes the b-th block row and all (block)
columns of Cn. In contrast to the fully populated measure-
ment noise covariance matrix in (9), which would also try
to jointly model measurement noise at different receivers—
a reasonable assumption if there is an external noise source
that affects all receivers—(39) allows to model colored mea-
surement noise independently at each receivers, for instance,
microphone self-noise.

VI. EXAMPLES
To demonstrate the potential of the proposed framework for
the identification of time-variant linear acoustic systems, two
examples are presented.

To judge the IR estimate quality, we evaluate the relative
system distance (also called normalized misalignment) at
frame n between the IR estimates and those of a reference
measurement for one specific position that is also contained
in the continuous measurement, represented by a correspond-
ing state vector z(ref), as

SDn = 20 log10

(∥∥∥µ̂n − z(ref)
∥∥∥ /∥∥∥z(ref)

n

∥∥∥) dB. (40)

Here, µ̂n could also represent the IR estimates of a baseline
algorithm, such as the NLMS algorithm.

A. HRTF Measurement with 37 Channels
In [43], HRTFs were measured using a continuous system
identification approach with T = 37 loudspeakers at different
elevations in an anechoic chamber. Linear sweeps were
played back while a turntable rotated the subject (or dummy
head). The rotation speed was 1.5 ◦ s−1. Each impulse re-
sponse was L = 1024 samples long, resulting in a sweep
period length of TL = 37 888. A reference measurement
of the frontal HRTF for all 37 channels is available as
the dummy head in the example measurement remained
motionless for multiple sweep periods before the rotation
started. Due to the optimal convergence properties of perfect
periodic sequences [44] these IRs can be considered a valid
reference set of HRIRs for this position.

We estimated the HRIRs using the NLMS algorithm
with a step size of 0.5, as used in the original HUTUBS
database [43], and with a step size of 1.0. Then, a com-
parison to the results using the proposed framework with
the following settings was conducted: The segment length
was chosen to be 6 · 37 888 (5.15 s at a sampling rate of
44.1 kHz) with equal lengths of lookback part, central part
and lookahead part, as in [31]. We assumed that the IRs
are constant for about 5.8ms, corresponding to very small
spatial angles, and hence chose No = 256. Independent time-
domain coefficients were assumed (cf. Table 1, ID 8) due to
the high state dimension of Nz = 37 888, and (31), (35),
(10), and (11) were used in the M-step. θ(0) was chosen
based on preliminary estimates obtained with step size 1.0 in
the NLMS algorithm, and I = 2 iterations were conducted.

Following Sec. IV-C, the dominant complexity term for
the formulation in [31] with No = 1 would require about
1.2 · 1019 operations, which is reduced to roughly 3.4 · 107
here due to Bz = 1. The memory requirement decreases
from storing 3.3 · 1014 to 3.4 · 107 elements. This highlights
that the blockwise processing and the assumption of indepen-
dent time-domain coefficients make it feasible to compute a
solution with a reasonable amount of resources.

Figure 1 shows the relative system distance SDn for
the time when the dummy head rotates through the initial
position again after having rotated 360◦. When the dummy
head approaches the initial position, SDn is expected to
decrease until the initial orientation is reached. There SDn is
expected to reach a minimum—the continuous measurement
and the reference measurement match closest. When the
dummy moves away from this orientation, SDn is expected
to increase as the HRIRs begin to deviate again.

The time-dependent relative system distance SDn, com-
paring all 37 IRs, is shown with thin dashed lines and
exhibits the lowest minimum for the proposed method,
corresponding to an improvement of about 4 dB compared
to the NLMS algorithm’s results. Additionally, the relative
system distance for the single IR between the 0◦-elevation
loudspeaker and the left ear, as shown by the thick solid line,
improves by about 10 dB. The staircase-like shapes for the
relative system distances for the NLMS algorithm are a result
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FIGURE 1. Comparison of time-dependent relative system distances for
rotation through initial position for all channels (dashed) and 0◦-elevation
channel (solid).

of the linear sweep excitation signal. The distance between
the jumps matches one period length of 37 888 samples
(0.86 s). The curve for step size 0.5 appears to be slightly
delayed as a result of the implicit temporal smoothing of
the NLMS algorithm for step sizes less than one. Both of
these observations match the analyses in [45]. Overall, this
result demonstrates that a significant improvement can be
achieved with the proposed framework despite the simplify-
ing assumptions about the matrix-valued parameters.

B. Two-Loudspeaker HRTF Measurement
We conducted a continuous measurement of HRTFs from
T = 2 loudspeakers spanning a 60◦ stereo setup at a distance
of 1.75m in a semi-anechoic chamber with a reflective
floor. A noise-like perfect periodic sequence of period length
2L = 9600 was used as excitation signal in accordance
with [44] to identify two IRs of length L = 4800 (100ms at a
sampling rate of 48 kHz) in parallel. We consider the system
as a MIMO setup with R = 2 coupled receivers, represented
by the microphones of the HEAD acoustics HMS II.3
dummy head. It was rotated on a turntable with a rotational
velocity of 1 ◦ s−1. Only coupling between receivers in the
DFT domain (cf. Table 1, ID 10) was assumed as the two
microphones of the dummy head rotate jointly. The M-step
updates (31), (35), (10), and (11) were applied with Bz = 4.
We assumed white measurement noise and hence also chose
(36) in the M-step. It was assumed that the IRs are constant
for durations of 1ms and thus No = 48 was set. A segment
length of 57 600 samples was chosen, and I = 2 iterations
were conducted. The reference IRs at azimuth angle near 0◦,
75◦ and 90◦ were measured using exponential sweeps.

Similarly to above, the dominant complexity term for the
MIMO formulation in Sec. III with No = 1 would require
about 4.1 ·1017 operations, which is reduced to roughly 3.7 ·
108 here due to block size Bz = 4. The memory requirement
decreases from storing 2.1 · 1013 to 9.2 · 107 elements.

Figure 2 shows the time-dependent relative system dis-
tances SDn for the times when the azimuth angle cor-
responding to the continuous rotation passed through the
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FIGURE 2. Comparisons of relative system distances when rotating
through three different example reference measurement positions.

reference azimuth angles, as indicated by the lower plot
that displays the azimuth angle recorded at the reference
position and during the measurement. The minimum relative
system distances, comparing all four IRs, are improved by
about 3 dB to 5 dB compared to the result of applying the
NLMS algorithm with step size 1.0. The minima occur
temporally close to but slightly before the expected position,
which is suspected to be a consequence of the head-tracking
system’s latency and/or mechanical imperfections. The delay
in attaining the minimum SDn with the NLMS algorithm is a
consequence of the systematic delay of half a period length,
i.e., 4800 samples (0.1 s), as also analyzed in [45].

VII. CONCLUSIONS
We have presented a framework for EM-based identification
of time-variant linear acoustic systems. This framework com-
bines the time-domain block observation model for a MIMO
system with a state vector transform, as well as a variety
of coupling models that can yield a block diagonal matrix
structure, for which we have derived M-step update rules.
The choice of model structure and block sizes determines
the computational complexity. This way, tasks that were
previously considered computationally infeasible, such as
HRTF measurements involving numerous channels, can be
successfully addressed with the joint state and parameter
estimation. Our examples illustrate that this framework can
improve the quality of the quasi-continuous IR estimates by
up to 10 dB in relative system distance when comparing to
a reference measurement. The proposed framework hence
enables improved quasi-continuous MIMO system identifi-
cation.
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[30] J. C. Agüero, J. I. Yuz, and G. C. Goodwin, “Frequency domain
identification of MIMO state space models using the EM algorithm,”
in 2007 Eur. Control Conf. (ECC). IEEE, 2007, pp. 5686–5693.

[31] T. Kabzinski and P. Jax, “Towards faster continuous multi-channel
HRTF measurements based on learning system models,” in Int. Conf.
Acoust., Speech, Signal Process. (ICASSP). IEEE, 2022, pp. 436–440.

[32] Y. Huang, J. Benesty, and J. Chen, Acoustic MIMO signal processing.
Berlin, Germany: Springer, 2006.

[33] J. Fabry, D. Hilkert, S. Liebich, and P. Jax, “Time-variant acoustic
front-end measurements of active noise cancellation headphones,” in
Proc. 23rd Int. Congr. on Acoust. (ICA). EAA, 2019, pp. 4326–4333.

[34] T. Kabzinski and P. Jax, “A unified perspective on time-domain and
frequency-domain Kalman filters for acoustic system identification,” in
30th Eur. Signal Process. Conf. (EUSIPCO). IEEE, 2022, pp. 90–94.

[35] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[36] R. H. Shumway and D. S. Stoffer, “An approach to time series
smoothing and forecasting using the EM algorithm,” J. Time Series
Anal., vol. 3, no. 4, pp. 253–264, 1982.

[37] T. Adali, P. J. Schreier, and L. L. Scharf, “Complex-valued signal
processing: The proper way to deal with impropriety,” Trans. Signal
Process., vol. 59, no. 11, pp. 5101–5125, 2011.

[38] S. Malik and G. Enzner, “Recursive Bayesian control of multichannel
acoustic echo cancellation,” Signal Process Lett., vol. 18, no. 11, pp.
619–622, 2011.

[39] G. Enzner, “Bayesian inference model for applications of time-varying
acoustic system identification,” in 18th Eur. Signal Process. Conf.
(EUSIPCO). IEEE, 2010, pp. 2126–2130.

[40] F. Kuech, E. Mabande, and G. Enzner, “State-space architecture of the
partitioned-block-based acoustic echo controller,” in Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP). IEEE, 2014, pp. 1295–1299.

[41] J. Fabry, S. Liebich, P. Vary, and P. Jax, “Active noise control with
reduced-complexity Kalman filter,” in 16th Int. Workshop Acoustic
Signal Enhancement (IWAENC), 2018, pp. 166–170.
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