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ABSTRACT Spectral clustering techniques are valuable tools in signal processing and machine learning for
partitioning complex data sets. The effectiveness of spectral clustering stems from constructing a non-linear
embedding based on creating a similarity graph and computing the spectral decomposition of the Laplacian
matrix. However, spectral clustering methods fail to scale to large data sets because of high computational
cost and memory usage. A popular approach for addressing these problems utilizes the Nyström method,
an efficient sampling-based algorithm for computing low-rank approximations to large positive semi-definite
matrices. This paper demonstrates how the previously popular approach of Nyström-based spectral clustering
has severe limitations. Existing time-efficient methods ignore critical information by prematurely reducing
the rank of the similarity matrix associated with sampled points. Also, current understanding is limited
regarding how utilizing the Nyström approximation will affect the quality of spectral embedding approxima-
tions. To address the limitations, this work presents a principled spectral clustering algorithm that exploits
spectral properties of the similarity matrix associated with sampled points to regulate accuracy-efficiency
trade-offs. We provide theoretical results to reduce the current gap and present numerical experiments
with real and synthetic data. Empirical results demonstrate the efficacy and efficiency of the proposed
method compared to existing spectral clustering techniques based on the Nyström method and other efficient
methods. The overarching goal of this work is to provide an improved baseline for future research directions
to accelerate spectral clustering.

INDEX TERMS Approximation methods, clustering algorithms, computational complexity, sampling
methods.

I. INTRODUCTION
Cluster analysis is a fundamental problem in signal process-
ing and exploratory data analysis that divides a data set into
several groups using the information found only in the data.
Among several techniques [1], [2], spectral clustering [3],
[4] is one of the most prominent and successful methods to
capture complex structures, such as non-spherical clusters.
In these scenarios, spectral clustering outperforms popular
Euclidean clustering techniques, such as K-means cluster-
ing [5], [6]. Hence, spectral clustering has found applications
in various domains, including computer vision [7]–[9], biol-
ogy [10], neuroscience [11], recommender systems [12], and
blind source separation [13].

Spectral clustering expresses data clustering as a graph
partitioning problem by constructing an undirected similarity
graph with each point in the data set being a node. A popular
connectivity measure employs the radial basis kernel function
of the form κ (xi, x j ) = exp(−‖xi − x j‖2

2/σ
2), where X =

{x1, . . . , xn} is the set of n data points in Rd to be partitioned
into k clusters, and σ > 0 is the bandwidth parameter. Thus,
the first step of spectral clustering involves forming a positive
semi-definite kernel matrix K ∈ Rn×n with the (i, j)-th entry
[K]i j = κ (xi, x j ), which describes similarities among n input
data points. Therefore, a significant challenge in applying
spectral clustering is the computation and storage of the entire
kernel matrix, which requires O(n2d ) time and O(n2) space.
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The quadratic complexity in the number of input data points
renders spectral clustering intractable for large data sets.

In this work, we focus on the popular method of normalized
cut [7], [14] to partition the resulting similarity graph. This
method forms the normalized Laplacian matrix as follows:

L = D−1/2(D − K)D−1/2 = In − D−1/2KD−1/2, (1)

where D = diag(K1n) ∈ Rn×n is the diagonal degree matrix
associated with K, In is the identity matrix, and 1n is the vector
of all ones. The spectral embedding of the original data X
is then obtained by solving the following trace minimization
problem:

arg min
H∈Rn×k , HT H=Ik

tr
(
HT LH

)
, (2)

where tr(·) represents the matrix trace. The above optimiza-
tion problem has a closed-form solution; its optimizer is ob-
tained by eigenvectors corresponding to the k smallest eigen-
values of the Laplacian matrix L. Thus, spectral clustering
learns a non-linear map that embeds the original data into the
eigenspace of L for uncovering the intrinsic structure of the
input data.

We can also view the spectral embedding process as solving
a low-rank approximation problem [15]. To this end, we sub-
stitute L from (1) into the above minimization problem. Using
the constraint HT H = Ik allows rewriting the minimization
problem in (2) as follows:

arg max
H∈Rn×k , HT H=Ik

tr
(
HT MH

)
, (3)

where we used the fact that tr(HT H) = k is a constant, and
introduced the modified kernel matrix:

M := D−1/2KD−1/2 ∈ Rn×n. (4)

The solution of this maximization problem is obtained by
computing eigenvectors corresponding to the k largest eigen-
values of M, denoted by UM,k ∈ Rn×k . That is, we should
compute the rank-k approximation of M to map the original
data from Rd into Rk . The computational complexity associ-
ated with finding the k leading eigenvectors of the modified
kernel matrix is O(n2k) without making assumptions on the
structure of the kernel matrix, such as K being sparse [16].
When the number of data points n is large, the exact solution
of this step becomes computationally prohibitive and suffers
from large memory overhead.

The third step of spectral clustering is to partition the n rows
of UM,k using K-means clustering [17], where the goal is to
find k centroids and assign each embedded point to the closest
centroid for partitioning the original data. Although solving
this problem is NP-hard [18], it is common to use iterative al-
gorithms that lead to expected approximation guarantees [19],
[20]. As these algorithms should compute distances between
n data points and k centroids in Rk , the third step requires
O(nk2) operations per iteration, and a few tens of iterations
typically suffice to cluster the data. Since the third step takes
linear time in the number of data points, the central challenge

that arises in large-scale data settings is computing the leading
eigenvectors of the modified kernel matrix M, which is the
main focus of this paper.

While other variants exist in the literature, including robust
methods to noisy data [21], [22], this work focuses on the stan-
dard formulation of spectral clustering. Alg. 1 summarizes the
three main steps of prototypical spectral clustering. Empirical
evidence suggests that normalizing the rows of UM,k improves
stability and accuracy [4]. As these row vectors are in Rk , the
normalization cost scales linearly in terms of the number of
data points. Using cross-validation is a common technique for
selecting the kernel parameter σ .

Algorithm 1: Prototypical Spectral Clustering (SC).
Input: data set X = {x1, . . . , xn}, kernel parameter σ ,
number of clusters k.

1: function SC(X , σ, k)
2: Form the kernel matrix K ∈ Rn×n;
3: Construct M = D−1/2KD−1/2 ∈ Rn×n, where

D = diag(K1n);
4: Compute the k leading eigenvectors of M to obtain

the spectral embedding UM,k ∈ Rn×k ;
5: Normalize each row of UM,k to have unit length;
6: Perform K-means clustering over the rows of the

normalized matrix UM,k ;
return Clustering results.

end function

A. RELATED WORK ON ACCELERATING
SPECTRAL CLUSTERING
Various methods have been proposed to accelerate spectral
clustering by computing an approximate spectral embedding
of the original data. Recent work [23] presented an excellent
review of the literature on this topic for interested readers.
In this paper, we divide the related work into two main cat-
egories: (1) methods that circumvent the computation of the
full kernel matrix, and (2) techniques that consider the similar-
ity graph as one of the inputs to spectral clustering and, thus,
ignore the cost associated with step 3 of Alg. 1. The former
is more realistic since constructing full kernel matrices is
computationally prohibitive, even for medium-sized data. We
further divide the first line of work into three sub-categories:

1) explicit approximation of the kernel matrix;
2) random Fourier features to approximate the radial basis

kernel function;
3) forming a sparse similarity graph.
The Nyström method is one of the most popular techniques

for approximating positive semi-definite matrices. In a nut-
shell, the Nyström method [24] selects m < n points from the
original data set X using a sampling strategy, such as uniform
sampling or a more complicated non-uniform selection tech-
nique [25]–[27]. After choosing a subset of the data, the so-
called landmarks which we denote them by Z = {z1, . . . , zm},
one should compute similarities between the original data X
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and Z , as well as pairwise similarities among the elements
of Z . Hence, the Nyström method constructs two matrices
C ∈ Rn×m and W ∈ Rm×m such that [C]i j = κ (xi, z j ) and
[W]i j = κ (zi, z j ), which takes O(nmd ) time. We then obtain
an approximation of the kernel matrix in the form of:

K ≈ K̂ = CW†CT , (5)

where W† is the pseudo-inverse of W.
When employing the Nyström method, the number of land-

marks should exceed k, i.e., the desired number of clusters,
and increasing m is a common practice to improve accu-
racy [28], [29]. The Nyström approximation results in linear
time complexity in the size of the original data for a fixed
landmark set [30]. However, a critical task is to efficiently
integrate the Nyström method with spectral clustering because
the ultimate goal is to estimate the k leading eigenvectors of
the modified kernel matrix M in linear time (instead of K).
Therefore, several variants of Nyström-based spectral clus-
tering have been proposed [31]–[33], where the underlying
theme is to compute the spectral decomposition of the inner
matrix W to save on computational resources and lift the
solution from Rm back to Rn. Although these methods reduce
time complexity, a downside is the lack of a theoretical frame-
work and understanding concerning how the Nyström method
affects the quality of resulting spectral embedding.

The second sub-category seeks to directly approximate
the radial basis kernel function in the form of κ (xi, x j ) ≈
φ(xi )T φ(x j ), where φ(x) ∈ RD is known as the random
Fourier feature vector [34]. The main idea behind this ap-
proach is to use the Fourier transform of shift-invariant kernel
functions, including Gaussian kernels, for the efficient compu-
tation of feature vectors [35]–[37]. Recent work [38] utilized
this strategy to implicitly approximate the kernel matrix K for
performing spectral clustering in linear time. The introduced
method requires the dimension of feature vectors D to be
significantly greater than the ambient dimension d . However,
each feature vector should contain only a few non-zero entries
to reduce the subsequent eigenvalue decomposition cost.

The third sub-category utilizes fast nearest neighbor search
algorithms [39] to form similarity graphs with sparse kernel
matrices, which may substantially reduce the computational
and memory complexities associated with the spectral decom-
position step [40], [41]. In this case, the number of nearest
neighbors is an additional tuning parameter that remarkably
impacts the connectivity of the similarity graph and the fol-
lowing spectral embedding.

The second class of accelerated spectral clustering tech-
niques assumes that the similarity graph is one of the inputs.
Therefore, the main task is to compute the eigenvalue decom-
position of the modified kernel matrix M, which is assumed to
be available at no cost. A possible solution focuses on utilizing
tools from the randomized numerical linear algebra literature,
such as randomized subspace iteration [42]. These methods
typically employ random projections to identify a subspace
that approximately captures the range of M [43]. Another
approach seeks to form a sparse similarity matrix according

to the effective resistances of all nodes [44], which can be
approximated in nearly linear time. However, these techniques
are practical only when kernel matrices are accessible.

B. MAIN CONTRIBUTIONS
In this paper, we design and study an efficient method for
incorporating the Nyström approximation into prototypical
spectral clustering. The main feature of the proposed approach
is to exploit spectral properties of the inner matrix W, allow-
ing us to regulate accuracy-efficiency trade-offs. Hence, our
approach is suitable for clustering complex data sets contain-
ing tens or hundreds of thousands of samples.

As we will discuss in detail, efficient Nyström-based spec-
tral clustering methods take a two-step approach, which en-
tails restricting the rank of the kernel matrix associated with
the landmark set, followed by lifting the solution back to
the original space. The disentanglement of the two similarity
matrices C and W for computing the spectral decomposition
gives rise to several issues. First, performing the rank reduc-
tion step too early adversely affects the spectral embedding
process. Second, the produced eigenvectors are not necessar-
ily orthogonal, which will require additional orthogonaliza-
tion steps. Third, providing theoretical guarantees to under-
stand the relationship between the Nyström approximation
error and the quality of resulting spectral embedding becomes
complicated. A serious concern is that a small perturbation of
the kernel matrix K may have an out-sized influence on the
modified kernel matrix M = D−1/2KD−1/2 due to the pertur-
bation of the degree matrix D, which is used for normalizing
the row and columns of the kernel matrix.

This work improves Nyström-based spectral clustering by
utilizing both matrices C and W at the same time. Our pro-
posed approach automatically exploits decay in the spectrum
of the inner matrix W to regulate accuracy-efficiency trade-
offs, instead of enforcing its rank to be k as prescribed by
the prior work. We then implicitly form the modified kernel
matrix M and compute its leading eigenvectors.

A further advantage of the proposed approach is reducing
the current gap in the literature between a provably good
low-rank approximation of the kernel matrix K to a provably
accurate estimation of M. We derive an upper bound for the
perturbation of the modified kernel matrix due to the Nyström
method by making use of the Taylor series expansion for
matrix functions [45]. Our analysis shows that a relatively
small perturbation of the kernel matrix results in a practical
upper bound for approximating the modified kernel matrix,
or equivalently the normalized Laplacian matrix. We present
numerical experiments to understand the main assumptions
and bounds involved in our theoretical results.

Finally, we present an extensive empirical evaluation of
the proposed approach, using both synthetic and real data.
We compare our introduced method with other state-of-the-
art approximate spectral clustering methods that circumvent
the formation of the entire similarity graph, including tech-
niques based on random Fourier features and sparse similarity
graphs. We also corroborate the scalability of our proposed
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spectral clustering method concerning the size of input data
and the number of landmarks.

C. PAPER ORGANIZATION
The rest of the paper is outlined as follows. We first thor-
oughly review the related work on Nyström-based spectral
clustering and exemplify several drawbacks in Section II.
Then, Section III explains our proposed scalable approach for
improving Nyström-based spectral clustering while provid-
ing new theoretical results to reduce the current gap in the
literature. We also present numerical experiments to verify
the assumptions made in our analysis. Section IV empiri-
cally demonstrates trade-offs between accuracy and efficiency
of the proposed Nyström-based spectral clustering method
on benchmark data sets. We present concluding remarks in
Section V.

D. NOTATION AND PRELIMINARIES
We denote column vectors with lower-case bold letters and
matrices with upper-case bold letters. We take 1n to be the
n-dimensional vector of all ones and In represents the n × n
identity matrix. For a vector x ∈ Rn, let ‖x‖2 be the Euclidean
norm and diag(x) returns a diagonal matrix with the elements
of x on the main diagonal. Given a matrix A ∈ Rn×m, the
(i, j)-th element is denoted by [A]i j and AT is the trans-
pose of A. The matrix A admits a factorization, known as
the truncated singular value decomposition (SVD), in the
form of A = UA�AVT

A, where UA ∈ Rn×r and VA ∈ Rm×r

are matrices with orthonormal columns referred to as the left
singular vectors and right singular vectors, respectively. The
parameter r < min{n, m} represents the rank of A and the
diagonal matrix �A = diag([σ1(A), . . . , σr (A)]) contains the
singular values of A in descending order, i.e., σ1(A) ≥ . . . ≥
σr (A) > 0. In this paper, the expression “A has rank r” means
that the rank of A does not exceed r. Using this factorization,
we can define several standard matrix norms, including the
Frobenius norm ‖A‖2

F := ∑r
i=1 σi(A)2 and the spectral norm

‖A‖2 := σ1(A).
If A ∈ Rn×n is symmetric positive semi-definite, we have

UA = VA in the previous factorization, which is called the
reduced eigenvalue decomposition (EVD) or spectral de-
composition. The columns of UA ∈ Rn×r are the eigenvec-
tors of A and �A contains the corresponding eigenvalues
in descending order. Thus, we get A = UA�AUT

A, where
UT

AUA = Ir . The Moore-Penrose pseudo-inverse of A can be
obtained from the EVD as A† = UA�−1

A UT
A, where �−1

A =
diag([σ1(A)−1, . . . , σr (A)−1]). When A is full rank, i.e., r =
n, we have A† = A−1. The trace of A is equal to the sum
of its eigenvalues, i.e., tr(A) = ∑r

i=1 σi(A). The matrix A is
positive semi-definite of rank r if and only if there exists a
matrix B of rank r such that A = BBT .

In this paper, given an integer k that does not exceed the
rank parameter r, we denote the first k columns of UA, i.e.,
the k leading eigenvectors of A, by UA,k ∈ Rn×k . Similarly,
�A,k ∈ Rk×k represents a diagonal sub-matrix that contains

the k largest eigenvalues of A. Based on the Eckart-Young-
Mirsky theorem, [[A]]k := UA,k�A,kUT

A,k is the best rank-k
approximation to A because it minimizes the approximation
error ‖A − Â‖ for any unitarily invariant norm over all matri-
ces Â of rank k. The error incurred in the spectral norm by the
best rank-k approximation can be identified as:

‖A − [[A]]k‖2 = σk+1(A). (6)

II. REVIEW OF SPECTRAL CLUSTERING USING NYSTRÖM
APPROXIMATION
Previous research on integrating the Nyström method with
spectral clustering has proposed several techniques to com-
pute an approximate spectral embedding in linear time con-
cerning the data size n. The key challenge is how to uti-
lize the Nyström approximation of the kernel matrix, i.e.,
K̂ = CW†CT , to compute the top eigenvectors of the ap-
proximate modified kernel matrix M̂ = D̂−1/2K̂D̂−1/2, where
D̂ = diag(K̂1n). Obviously, the desired linear complexity in
terms of time and space does not permit forming square ma-
trices of size n × n. Thus, the previous research focused on
constructing a small matrix of size m × m as a proxy for the
kernel matrix K. Although this strategy reduces the cost, a ma-
jor concern is that critical information regarding the structure
of the matrix C ∈ Rn×m may be ignored during this process,
adversely impacting the accuracy of spectral clustering. In this
section, we review two relevant prior techniques and highlight
their limitations to motivate our proposed approach.

Exploiting the Nyström approximation for estimating the
leading eigenvectors of the modified kernel matrix was first
introduced in [31]. The main idea behind this approach is to
find the exact EVD of an m × m matrix, where m refers to the
number of selected landmarks. Then, a linear transformation
from Rm to Rn generates an approximate spectral embedding
of the original data. Let us write the Nyström approximation
K̂ = CW−1CT using two sub-matrices W and B:

K̂ =
[

W
BT

]
W−1

[
W B

]
=

[
W B
BT BT W−1B

]
, (7)

where W ∈ Rm×m representing similarities between m dis-
tinct landmark points using the Gaussian kernel function has
full rank [46], which allows calculating the inverse of W
(this discussion also holds when using pseudo-inverse). Sim-
ilarly, the information regarding connectivity measures be-
tween Z and the remaining data points X \ Z is encoded
in B ∈ Rm×(n−m). One can compute and decompose the ap-
proximate degree matrix D̂ = diag(K̂1n) into two diagonal
sub-matrices as follows:

D̂1 = diag(W1m + B1n−m) ∈ Rm×m,

D̂2 = diag(BT 1m + BT W−1B1n−m) ∈ R(n−m)×(n−m). (8)

Thus, we can compute two normalized matrices W̃ :=
D̂−1/2

1 WD̂−1/2
1 and B̃ := D̂−1/2

1 BD̂−1/2
2 . The next step is to
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FIGURE 1. Comparing accuracy and time complexity of our approach with the previous research (Approach 1 and 2 refer to [31] and [32], respectively).

define R ∈ Rm×m and calculate its EVD:

R := W̃ + W̃−1/2B̃B̃T W̃−1/2 = UR�RUT
R. (9)

The last step is to find the relationship between the spectral
decomposition of R and the modified kernel matrix M̂:

Ûnys1
M :=

[
W̃
B̃T

]
W̃−1/2UR�

−1/2
R ∈ Rn×m, �̂

nys1
M := �R.

(10)
Thus, the main contribution of [31] was to generate a factor-
ization of M̂ without explicitly computing all its entries:

M̂ = Ûnys1
M �̂

nys1
M

(
Ûnys1

M

)T
. (11)

Although this technique estimates the leading eigenvectors of
the modified kernel matrix, a significant downside is the need
to use B̃, or equivalently C, more than once to form the matrix
R and map its eigenspace from Rm to Rn via (10). Hence, this
method incurs high computational complexity and memory
overhead for clustering huge data sets.

In order to improve the scalability of integrating the Nys-
tröm method with spectral clustering, another approach was
proposed in [32]. The main idea is to treat the inner matrix W
as a proxy for the full kernel matrix. That is, one computes
the best rank-k approximation of the normalized matrix W
and then the solution will be lifted from Rm back to Rn while
using the matrix C ∈ Rn×m only once. To be formal, the first
step is to compute the following EVD:

W := D−1/2
m WD−1/2

m = UW�WUT
W

, (12)

where Dm = diag(W1m) ∈ Rm×m is the degree matrix associ-
ated with W. This approach then immediately utilizes the best
rank-k approximation of W to generate a rank-k approxima-
tion of the modified kernel matrix M̂ as follows:

Ûnys2
M := D−1/2

n Q ∈ Rn×k, �̂
nys2
M := �W,k ∈ Rk×k . (13)

In this equation, we defined the following matrix, which con-
sists of multiplication of the matrix C by the leading eigenval-
ues and eigenvectors of the normalized matrix W:

Q := CD−1/2
m UW,k�

−1
W,k

∈ Rn×k, (14)

and Dn = diag(Q�W,kQT 1n) ∈ Rn×n is a diagonal degree
matrix, which takes linear time concerning the data size n.

Therefore, unlike the approach in [31], this method requires
a single pass over the matrix C, which is a notable gain when
the number of samples n is large. However, this reduction
of time complexity leads to two drawbacks. Information loss
may occur because of performing the strict rank reduction
step on the inner matrix W without taking into consideration
the structure of C. Also, the produced eigenvectors Ûnys2

M in
(13) are not guaranteed to be orthogonal. The authors in [32]
proposed an orthogonalization step to tackle this problem.

In a nutshell, we discussed two related Nyström-based tech-
niques that seek to accelerate the prototypical spectral cluster-
ing algorithm. The first approach builds on the exact spectral
decomposition of the modified kernel matrix. In contrast, the
second approach reduces the computational complexity while
compromising accuracy by prematurely restricting the rank of
the kernel matrix associated with the landmark set. To further
illustrate the merits and limitations of these two approaches,
we present a numerical experiment to report both accuracy
and time complexity as the number of landmarks increases.
In this experiment, we use a benchmark data set from LIB-
SVM [47], named mushrooms, which consists of n = 8,124
samples with d = 112 attributes. In Fig. 1, we report the
results of our accuracy and timing comparison as a function of
the number of landmarks m. Since the landmark selection pro-
cess involves uniform sampling, we use 50 independent trials
for each value of m, and we fix the kernel parameter σ = 3.5.
Moreover, the mushrooms data set contains two classes, i.e.,
k = 2, and we thus investigate the accuracy of estimating the
two leading eigenvectors of the modified kernel matrix M as
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follows [31]:

1

2
‖
(

Ûnys
M,2

)T
UM,2‖2

F . (15)

When the two matrices Ûnys
M,2, UM,2 ∈ Rn×2 comprising the

leading eigenvectors are identical, this metric reaches its max-
imum and is equal to 1. Also, higher values indicate more
accurate estimates of the leading eigenvectors for partitioning
the embedded data in the last step of spectral clustering.

Fig. 1a shows that the first approach achieves higher ac-
curacy levels than the second method introduced in [32]. This
observation is consistent with our previous discussion because
the method proposed in [31] does not enforce a strict rank
reduction step. However, according to Fig. 1b, the first ap-
proach suffers from high computational complexity, which is
a scalability barrier for clustering massive data sets.

To be formal, let us compare the time complexity of these
two approaches. We ignore the shared cost of forming C and
W in the Nyström method, which is O(nmd ) arithmetic op-
erations. Moreover, we only report dominant costs involving
the number of data points n (e.g., we remove O(m3) for the
EVD of m × m matrices). The time complexity of the first
approach is O(nm2) to form R and the estimated eigenvec-
tors based on (9) and (10). However, the second approach
takes O(nmk) operations based on (13). Although the cost of
both approaches scales linearly as a function of n, the time
complexity of the first approach scales quadratically with the
number of landmarks m. To address this problem, we pro-
pose a new approach that provides tunable trade-offs between
accuracy and efficiency. As we see in Fig. 1, our approach
generates accurate estimates of the leading eigenvectors, and
its time complexity is similar to that of the efficient approach
in [32]. Another shortcoming of the previous research is the
lack of theoretical guarantees for the perturbation analysis of
the modified kernel matrix M and its eigenvectors because of
leveraging the Nyström approximation.

III. PROPOSED METHOD
This paper presents a systematic treatment of utilizing the
Nyström method for improving the accuracy and scalability
of approximate spectral clustering. The proposed approach
replaces the kernel matrix K in Alg. 1 with its Nyström ap-
proximation and automatically exploits decay in the spectrum
of the inner matrix W. We will take advantage of the extracted
information to construct an approximation of the modified
kernel matrix in the form of M ≈ G̃G̃T , where G̃ ∈ Rn×l

and l represents the underlying low-rank structure of W. This
strategy allows us to use standard SVD solvers for computing
the k leading left singular vectors of G̃ to obtain the spectral
embedding of the original data in linear time concerning both
the number of data points and the size of the landmark set. We
also offer new theoretical results for the perturbation analysis
of the (modified) kernel matrix due to exploiting the low-rank
structure of W and utilizing the Nyström method CW†CT .
Furthermore, we present two numerical experiments to ver-
ify the assumptions made in the analysis and investigate the

obtained upper bounds. While the presented results are based
on the spectral norm, our analysis can be easily generalized
to other unitarily invariant matrix norms, including the Frobe-
nius norm.

A. PROPOSED SCALABLE SPECTRAL CLUSTERING
ALGORITHM
The first step of our proposed approach exploits decay in the
spectrum of the inner matrix W ∈ Rm×m, which is obtained
from the Nyström approximation K̂ = CW†CT , by comput-
ing its spectral decomposition as follows:

W = UW�WUT
W, (16)

where the matrix �W = diag([σ1(W), . . . , σm(W)]) contains
the decaying spectrum of W. A key aspect of our approach is
that eigenvectors corresponding to small eigenvalues generate
very little error for a low-rank approximation of W. There-
fore, we propose to retain eigenvectors whose corresponding
eigenvalues are above a threshold 0 < γ < 1:

l = max

{
i ∈ N :

σi(W)

σ1(W)
≥ γ , i ≤ m

}
. (17)

The parameter γ should be chosen so that the obtained l
exceeds the number of clusters k. Hence, the first step of our
approach utilizes the decaying spectrum of the inner matrix
for replacing W with its best rank-l approximation [[W]]l =
UW,l�W,l UT

W,l , where UW,l ∈ Rm×l and �W,l ∈ Rl×l are the
l leading eigenvectors and eigenvalues, respectively. There-
fore, the parameter γ allows controlling the amount of spectral
energy captured by the low-rank approximation (note that
‖W‖2 = σ1(W)):

‖W − [[W]]l‖2 = σl+1(W) < γ ‖W‖2. (18)

Next, we generate an approximation of K̂ as follows:

K̂ ≈ C[[W]]†
l CT = GGT , G := CUW,l�

−1/2
W,l ∈ Rn×l .

(19)
The next step is to find the diagonal degree matrix D̂ without
explicitly computing GGT :

D̂ = diag
(
G

(
GT 1n

)) ∈ Rn×n, (20)

which shows that we can compute D̂ by two matrix-vector
multiplications. We thus approximate the modified kernel ma-
trix using the two matrices G and D̂ in the following form:

M ≈ G̃G̃T , G̃ := D̂−1/2G ∈ Rn×l . (21)

The last step involves computing the k leading left singular
vectors of G̃ due to the following relationship between the
SVD of G̃ = UG̃�G̃VT

G̃
and the EVD of G̃G̃T :

G̃G̃T = UG̃�2
G̃

UT
G̃
, UT

G̃
UG̃ = Il . (22)

The proposed spectral clustering algorithm is summarized
in Alg. 2. The key advantage of our approach is that it requires
a single pass over the matrix C ∈ Rn×m, which encodes sim-
ilarities between all the input data points and the landmark
set. Given C and W, the dominant computational cost for
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forming the matrix G in (19) is O(nml ) arithmetic operations.
Moreover, unlike the previous approach in [32], we do not
enforce a strict rank-k approximation of the inner matrix W.
Instead, we exploit decay in the spectrum of W, and the cost
of forming G scales linearly with the underlying structure of
the matrix W. Also, it takes linear time in n to compute the
k leading left singular vectors of G̃. Hence, the parameter γ

provides tunable trade-offs between efficiency and accuracy
of the produced spectral embedding for large data sets. While
we assumed that the computational cost of steps that do not
involve n is not a scalability barrier, one can utilize fast solvers
for accelerating the computation of the spectral decomposi-
tion of the inner matrix W in the first step of our approach. For
example, the previous work [48] employed randomized low-
rank matrix approximation algorithms to compute the spectral
decomposition of W in the Nyström method. Thus, we can
apply the same strategy to further accelerate our proposed
spectral clustering algorithm.

Algorithm 2: Proposed Spectral Clustering Algorithm.
Input: data set X = {x1, . . . , xn}, landmark set
Z = {z1, . . . , zm}, kernel parameter σ , number of clusters
k, threshold parameter γ .

1: function SCNys(X ,Z, σ, k, γ )
2: Form C ∈ Rn×m and W ∈ Rm×m, where

[C]i j = κ (xi, z j ) and [W]i j = κ (zi, z j );
3: Compute the exact (or approximate) EVD of

W = UW�WUT
W and find the value of l as in (17);

4: Construct G = CUW,l�
−1/2
W,l ∈ Rn×l ;

5: Compute the degree matrix D̂ = diag(G(GT 1n));
6: Find the k leading left singular vectors of

G̃ = D̂−1/2G to obtain Ûnys
M = UG̃,k ∈ Rn×k ;

7: Normalize each row of Ûnys
M to have unit length;

8: Perform K-means clustering over the rows of the
normalized matrix Ûnys

M ;
return Clustering results.

end function

B. THEORETICAL RESULTS
The goal of this section is to present theoretical insights and
develop a better understanding of the role of the two low-
rank approximations that we leveraged in our Nyström-based
spectral clustering algorithm. As a reference, the modified
kernel matrix of the original data that we introduced in (4)
is M = D−1/2KD−1/2, and our method substitutes the ker-
nel matrix K with the Nyström approximation K̂ = CW†CT .
While various theoretical guarantees exist on the quality of
the Nyström approximation, e.g., upper bounds for ‖K − K̂‖
with respect to unitarily invariant matrix norms [49], a seri-
ous concern is that utilizing this approximation may have an
out-sized influence on the normalized kernel matrix M due to
the perturbation of the degree matrix. The lack of theoretical
understanding regarding the approximation quality of M is a
critical disadvantage of Nyström-based spectral clustering.

Moreover, the first step of our approach exploits the rank-l
approximation of the inner matrix W. While the incurred error
‖W − [[W]]l‖2 is negligible for small values of γ , this ap-
proximation does not necessarily guarantee that the error term
‖K̂ − C[[W]]†

l CT ‖2 is small. To explain this point, note that
for any invertible matrices A and Â, we have Â−1 − A−1 =
Â−1(A − Â)A−1. Thus, the small norm of (A − Â) cannot
be directly used to conclude their inverses are close to each
other or even bounded. In this section, we start with providing
theoretical guarantees for understanding the influence of the
rank-l approximation of W.

Theorem 1 (Rank-l approximation of W): Consider a set
of n distinct data points X = {x1, . . . , xn} and a landmark
set Z = {z1, . . . , zm} sampled from X using a set of in-
dices I ⊆ {1, . . . , n}. Let K ∈ Rn×n denote the kernel ma-
trix associated with X using the Gaussian kernel function
κ (xi, x j ) = exp(−‖xi − x j‖2

2/σ
2). Also, let P ∈ Rn×m be a

subset of the columns of In selected according to the set of in-
dices I. The Nyström method computes C = KP ∈ Rn×m and
W = PT KP ∈ Rm×m to form CW†CT . The error incurred by
the best rank-l approximation of the inner matrix W can be
characterized as follows for any l < m:

C
(

W† − [[W]]†
l

)
CT = K1/2 (

UFUT
F − UF,l U

T
F,l

)
K1/2,

(23)
where UF ∈ Rn×m represents the left singular vectors of F :=
K1/2P and UF,l ∈ Rn×l denotes its first l columns.

Proof: Let us start with the truncated SVD of F =
UF�FVT

F , which allows us to rewrite C as follows:

C = K1/2(K1/2P) = K1/2F = K1/2UF�FVT
F , (24)

and we get the following representation for W:

W = (PT K1/2)(K1/2P) = FT F = VF�2
FVT

F . (25)

Using (24) and (25), it is straightforward to show that:

CW†CT = K1/2UFUT
F K1/2, (26)

where we used VT
F VF = VFVT

F = Im since the kernel matrix
W associated with Z is full-rank when employing the Gaus-
sian kernel function on a set of distinct data points.

Next, we use the best rank-l approximation of W, i.e.,
[[W]]l = VF,l�

2
F,l V

T
F,l , to simplify the Nyström approxima-

tion after replacing W with [[W]]l as follows:

C[[W]]†
l CT = K1/2UFTUT

F K1/2, (27)

where T := �FVT
F VF,l�

−2
F,l V

T
F,l VF�F ∈ Rm×m. Note that the

right singular vectors of F can be decomposed as:

VT
F,l VF =

[
VT

F,l VF,l VT
F,l V

⊥
F,l

]
=

[
Il 0l×(m−l )

]
, (28)

where V⊥
F,l ∈ Rm×(m−l ) represents the tailing (m − l ) right

singular vectors of F and we used the fact that the columns of
VF are orthogonal. Hence, we see that T has a block structure:

T =
[

Il×l 0l×(m−l )

0(m−l )×l 0(m−l )×(m−l )

]
. (29)
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FIGURE 2. Investigating the influence of the threshold parameter γ on the
normalized approximation error for fixed m = 200.

As a result, we have C[[W]]†
l CT = K1/2UF,l UT

F,l K
1/2, which

completes the proof. �
The presented result in (23) allows us to develop a better

understanding of utilizing the rank-l approximation of W via
the SVD of F without any matrix inversion. Based on this
result and using standard inequalities for the spectral norm,
we conclude the error incurred by the low-rank approximation
is always bounded for any value of l ∈ {1, 2, . . . , m}:

‖C
(

W† − [[W]]†
l

)
CT ‖2 ≤ ‖K1/2‖2

2︸ ︷︷ ︸
=‖K‖2

‖UFUT
F − UF,l U

T
F,l‖2︸ ︷︷ ︸

=1

,

(30)
which can be simplified as:

‖C
(

W† − [[W]]†
l

)
CT ‖2

‖K‖2
≤ 1. (31)

A significant advantage of this upper bound compared to prior
results, such as the bound presented in [50], is that our theoret-
ical analysis does not make any assumptions on the landmark
selection process involved in the Nyström method.

We provide numerical evidence measuring the normalized
approximation error in (31) using the mushrooms data set
that we considered in Section II. Fig. 2 reports the mean
approximation error over 50 independent trials with fixed
m = 200 and varying values of the threshold parameter γ ∈
{10−3, 10−2, 10−1, 100}. As discussed before, the normalized
approximation error is less than 1 even when we set the thresh-
old parameter γ = 1, yielding the rank-1 approximation of W
under the assumption that σ1(W) > σ2(W). In practice, one
has the flexibility to reduce the value of γ to lower the result-
ing rank-l approximation error, achieving a trade-off between
accuracy and scalability. As we increase γ in this experiment,
the mean values of the rank parameter l are 196.6, 76.6, 6.2,
and 1, respectively.

Our second theoretical analysis focuses on developing an
upper bound for the spectral norm of the perturbation on the
modified kernel matrix M when utilizing the Nyström approx-
imation. Therefore, our theoretical result reduces the current

gap between a high-quality approximation of the kernel ma-
trix K to a provably reasonable estimate of M. Since we have
the following relationship between the modified kernel matrix
and the graph Laplacian matrix L = In − M, our result im-
mediately translates to the perturbation analysis of the graph
Laplacian under the Nyström approximation K̂ = CW†CT .

Theorem 2 (Low-rank approximation of K): Consider the
kernel matrix K ∈ Rn×n representing pairwise similarities
and the modified kernel matrix M = D−1/2KD−1/2, where
D = diag(K1n) is the diagonal degree matrix. Let K̂ = K + E
and D̂ = D + � denote the perturbed kernel matrix and its
diagonal degree matrix, respectively. If the amount of pertur-
bation is small in the sense that η := ‖�D−1‖2 < 1, then the
normalized difference between M̂ := D̂−1/2K̂D̂−1/2 and M is
bounded in the spectral norm as follows:

‖M − M̂‖2

‖M‖2
≤ f1 + f2, (32)

where

f1 := (1 + η + O(η2))
‖D−1/2ED−1/2‖2

‖M‖2
, (33)

and

f2 := η + O(η2). (34)

Proof: Using K̂ and D̂, we express the perturbed modified
kernel matrix M̂ in the following form:

(In + �D−1)−1/2D−1/2(K + E)D−1/2(In + �D−1)−1/2,

(35)
where we used the following relationship:

D + � = D(In + D−1�) = (In + �D−1)D. (36)

and D−1� = �D−1 because both D and � are diagonal ma-
trices. Also, for any invertible matrices A and B, the matrix
product is invertible and we have (AB)−1 = B−1A−1.

Next, we use the Taylor series for matrix functions under
the assumption that the perturbation amount on the degree
matrix satisfies η = ‖�D−1‖2 < 1, which yields [51]:

(I + �D−1)−1/2 = In − 1

2
�D−1 + O((�D−1)2). (37)

We then substitute (37) in the expression for the perturbed
modified kernel matrix M̂ given in (35). It is straightforward
to show that M̂ = g1 + g2 + g3, where we have:

g1 = M + Ẽ − 1

2
M(�D−1) − 1

2
Ẽ(�D−1)

+ MO((�D−1)2) + ẼO((�D−1)2), (38)

and we introduced Ẽ := D−1/2ED−1/2. Similarly, we get:

g2 = − 1

2
(�D−1)M − 1

2
(�D−1)Ẽ + 1

4
(�D−1)M(�D−1)

+ 1

4
(�D−1)Ẽ(�D−1) − 1

2
(�D−1)MO((�D−1)2)

− 1

2
(�D−1)ẼO((�D−1)2), (39)
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and we find the third term:

g3 = O((�D−1)2)M + O((�D−1)2)Ẽ

− 1

2
O((�D−1)2)M(�D−1) − 1

2
O((�D−1)2)Ẽ(�D−1)

+ O((�D−1)2)MO((�D−1)2)

+ O((�D−1)2)ẼO((�D−1)2). (40)

Therefore, we compute M − M̂ and use standard inequalities
for the spectral norm to find the following upper bound:

‖M − M̂‖2 ≤ ‖Ẽ‖2 + η‖Ẽ‖2 + O(η2)‖Ẽ‖2

+ η‖M‖2 + O(η2)‖M‖2, (41)

and we divide both sides by ‖M‖2 to complete the proof. �
This theorem provides an upper bound for the spectral norm

of the perturbation on the modified kernel matrix M. This re-
sult also applies to the perturbation analysis of the normalized
graph Laplacian L. The main underlying assumption is that
the term η = ‖�D−1‖2 should be less than 1, where both
� and D are diagonal matrices. That is, the absolute error
incurred by estimating the degree of each node when utilizing
the perturbed kernel matrix of the similarity graph should be
less than the actual degree of the corresponding node. To
better understand the influence of utilizing an approximate
kernel matrix on the degree matrix, we have the following
connection between E and �:

D̂ = diag(K̂1n) = diag(K1n)︸ ︷︷ ︸
=D

+ diag(E1n)︸ ︷︷ ︸
=�

. (42)

Next, we find an upper bound for the spectral norm of the
diagonal matrix � as follows:

‖�‖2 = ‖E1n‖∞ ≤ ‖E1n‖2 ≤ √
n‖E‖2, (43)

where ‖x‖∞ := maxi |xi| represents the infinity norm for vec-
tors and we used the following inequality for vector norms
‖x‖∞ ≤ ‖x‖2. Therefore, the error associated with estimating
the degree matrix depends on the kernel matrix approximation
error. Furthermore, according to (32), we find out the upper
bound depends on the quality of the Nyström approximation,
i.e., ‖E‖2 = ‖K − CW†CT ‖2. As mentioned before, this er-
ror term is known to be bounded in the Nyström method
for unitarily invariant norms and various landmark selection
strategies such as uniform sampling without replacement [25].

Theorem 2 allows us to show that the distance between
subspaces spanned by the k leading eigenvectors of M and
M̂ is bounded. The well-known Davis-Kahan theorem [52] of
matrix perturbation theory states that the sine of the largest
principal angle between the two subspaces is upper bounded
by the perturbation amount: ‖ sin �(UM,k, UM̂,k )‖2 ≤ ‖M −
M̂‖2/δ, where δ > 0 is an eigenvalue separation parame-
ter [53], [54]. Therefore, the quality of the Nyström-based
spectral embedding improves by reducing the kernel matrix
approximation error ‖E‖2 = ‖K − CW†CT ‖2.

To further explain the assumption made in Theorem 2 and
understand the upper bound for the normalized difference
between M and M̂, we revisit the numerical simulation per-
formed on the mushrooms data set. For varying values of
m, we report the average and standard deviation values of
η = ‖�D−1‖2 and ‖M − M̂‖2/‖M‖2 over 50 independent
trials in Fig. 3a and 3b, respectively. We also set the threshold
parameter γ = 10−2 in our proposed approach to consider
the error introduced by the low-rank approximation of the
inner matrix W. As the number of landmarks m increases,
we observe a decreasing trend for both quantities because of
obtaining more accurate Nyström kernel matrix approxima-
tions. Note that even for small values of m, e.g., m = 40, the
underlying assumption of Theorem 2 is satisfied since η < 1.
We also notice that the normalized approximation error for the
modified kernel matrix M gets close to 0.02 for m = 320.

IV. EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments to assess
the performance and time complexity of the proposed spec-
tral clustering method on several synthetic and real data
sets. We compare our proposed method with other competing
techniques that circumvent the construction of full similarity
graphs in large-scale settings. All the studied spectral clus-
tering methods are implemented in Matlab. In our approach,
Matlab built-in functions are used for computing standard
matrix factorizations, including SVD and EVD. We also use
Matlab’s internal K-means in the last step of spectral clus-
tering to partition the produced spectral embedding into k
clusters. For the K-means algorithm in the last step of spectral
clustering, we set the maximum number of iterations to 10
since increasing the number of iterations does not make any
notable difference based on our evaluation.

This section reports two evaluation metrics to assess the
performance of spectral clustering techniques using ground-
truth labels. Let L1, . . . ,Lk be the ground-truth partition of
the data, and L̂1, . . . , L̂k represent the output of a spectral
clustering algorithm. Thus, ni j = |Li ∩ L̂ j | denotes the num-
ber of shared samples in Li and L̂ j . Hence, pi j = ni j/|L̂ j | and
ri j = ni j/|Li| represent the precision and recall, respectively.
Using these two quantities, the F-score between these two
partitions is defined as Fi j = (2pi jri j )/(pi j + ri j ) [55]. Let
� be the set of all permutations of {1, . . . , k}, the average
F-score that we report in this paper has the following form:

F-score = max
π∈�

1

k

k∑
i=1

Fiπ (i), (44)

where we follow the common practice of permuting the ob-
tained clusters to best match the ground-truth. Another metric
that we use for evaluation of spectral clustering methods is
normalized mutual information (NMI) [56], defined as:

NMI = 2I (L; L̂)

H (L) + H (L̂)
, (45)
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FIGURE 3. Empirical investigation of the main assumption and the upper bound for the normalized approximation error in Theorem 2.

where I (L; L̂) denotes the mutual information between the
ground-truth and returned clusters, and H (·) represents the
entropy of each partition. Both evaluation metrics take values
between zero and one, with a larger score indicating better
clustering performance.

For all Nyström-based spectral clustering algorithms, we
employ uniform sampling without replacement to select the
landmark set. While landmark selection strategies abound in
the literature, the primary purpose of this work is to present
a principled spectral clustering method to optimize accuracy-
efficiency trade-offs for a given Nyström approximation (i.e.,
fixed C and W). Towards this goal, we presented two theoret-
ical results that hold for any landmark selection process and
designing improved landmark selection techniques is out of
the scope of this work. As shown in Theorem 2, a more accu-
rate Nyström approximation results in a smaller perturbation
of the modified kernel matrix in prototypical spectral cluster-
ing. We thus decided to use uniform sampling for simplicity
and ease of implementation. Since the sampling step involves
randomness, we repeat each experiment over 50 independent
trials and report the average values (along with standard de-
viations for cluster quality evaluations). For our approach,
we set the threshold parameter γ , introduced in (17) for the
low-rank approximation of W, to 10−2 unless otherwise spec-
ified. We will present a numerical simulation to investigate
the sensitivity of our method to γ . This section starts with
demonstrating the performance and efficiency of our method
using synthetic data and we then focus on two real data sets,
namely mushrooms and MNIST, from LIBSVM [47].

A. EXPERIMENTS ON SYNTHETIC DATA
In the first experiment, we present a thorough comparison of
our approach with the prior scalable Nyström-based spectral
clustering method that was introduced in [32]. As discussed
in Section II, the prior approximate spectral clustering method
based on the Nyström approximation [31] does not scale well
with the data size due to the quadratic dependence on the

number of landmarks. In our comparison, we consider three
synthetic data sets covering different intrinsic structures in
real data. In Fig. 4a, 4b, and 4c, we plot the three data sets
(named moons, circles, and blobs) that contain n = 100,000
samples in R2 with up to three clusters. To be fair, we set
the kernel parameter σ = 0.2 for all three data sets and both
spectral clustering methods share the same C and W in each
trial.

The mean and standard deviation of the two evaluation
criteria, i.e., F-score and NMI, are shown in Fig. 4 for varying
values of landmarks m from 40 to 200. For all three cases, we
see that our proposed approach outperforms the prior work
on Nyström-based spectral clustering [32] with higher accu-
racy levels and lower standard deviations. Also, the superior
performance of our approach is more significant when m is
relatively small, which is desirable for reducing the memory
overhead associated with storing and processing the matrix
C ∈ Rn×m obtained from the Nyström approximation. For
comparison, we observe that our method provides almost per-
fect clustering of the blobs data set with m = 40 landmarks.
On the other hand, the prior work on Nyström-based spectral
clustering does not have a satisfactory performance on the
same data with m = 200 landmarks, which is five times the
required number of landmarks in our proposed method.

We also present timing results for all three data sets in
Fig. 5. These results confirm that both methods’ computa-
tional cost grows linearly as the number of landmarks m in-
creases. However, for a fixed value of m, the prior work on
spectral clustering is somewhat faster than ours because of
enforcing the strict rank reduction step on W, which compro-
mises the clustering accuracy as demonstrated in Fig. 4. How-
ever, our method exploits the threshold parameter γ and the
decaying spectrum of W to compute its rank-l approximation
to improve the trade-off between accuracy and efficiency. We
draw a dashed horizontal line highlighting the running time of
our method yielding perfect clustering results using the small-
est possible landmark set. This comparison shows that our
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FIGURE 4. Demonstrating the accuracy of our proposed Nyström-based spectral clustering method on three synthetic data sets.

TABLE 1. Average of the Rank Parameter l for Fixed γ = 10−2 on Three
Synthetic Data Sets

approach is more time-efficient than the prior Nyström-based
spectral clustering method to reach a specific accuracy.

Although our approach’s time complexity is a linear func-
tion of m for all three data sets in Fig. 5, we observe that the
running time of the proposed method on the blobs data set
is noticeably higher than the other experiments. To explain
this increase in running time, we report the average value
of l , i.e., the rank of the inner matrix W, in our proposed
method for all three data sets in Table 1. The reported results

reveal that the average number of retained eigenvectors for
the blobs data set is more than the first two data sets because
the resulting matrix W has a slowly decaying spectrum. Thus,
we should automatically increase the value of l to capture its
spectral energy, which justifies our method’s higher time com-
plexity on the blobs data set. This table also exemplifies that
restricting the rank of W to be precise k, as prescribed in the
prior Nyström-based spectral clustering, leads to significant
information loss when the spectrum of W decays slowly.

We further investigate the influence of the threshold pa-
rameter γ on the performance and time complexity of our
approach using the blobs data set, which is more challeng-
ing than the other synthetic data sets we considered in this
section. We fix the number of landmarks m = 200 and con-
sider four different values of γ ∈ {10−3, 5 × 10−3, 10−2, 5 ×
10−2}. We report clustering accuracy and running time results
in Table 2. The proposed spectral clustering method correctly
identifies the k = 3 clusters within the blobs data set for all
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FIGURE 5. Reporting the time complexity of Nyström-based spectral clustering methods on three synthetic data sets.

FIGURE 6. Using the blobs data set to compare our proposed method with the previous work on spectral clustering based on Random Features.

TABLE 2. Accuracy and Running Time for Varying Values of γ and Fixed
m = 200 on the Blobs Data Set

values of γ ≤ 10−2. Based on this result and similar obser-
vations, we noticed that parameter tuning is not crucial, and
setting γ = 10−2 provides a reasonable trade-off between ac-
curacy and efficiency throughout our experiments. However,
fine-tuning the parameter γ based on the spectrum of W will
provide a significant reduction of time complexity on massive
data sets because the cost is inversely proportional to γ .

Next, we compare our proposed spectral clustering method
based on the Nyström approximation with another competing
technique that circumvents the construction of full similarity
graphs. We consider a method called Random Features [38],
aiming to directly approximate the Gaussian kernel function
based on sampling from an explicit feature map. This method
constructs an approximation of the modified kernel matrix
M ≈ SST with S ∈ Rn×D, resembling that of our approach.
However, the introduced technique in [38] should choose D
so that it significantly exceeds the ambient dimension of the
original data. To alleviate the cost, this method enforces each
row of S to be sparse with a few non-zero entries, and a state-
of-the-art sparse SVD solver is employed. The sparsity of each

row of S is selected to be m for a fair comparison with spectral
clustering methods that utilize the Nyström approximation
with m landmarks to approximate the kernel matrix. We use
the provided code by the authors, which is implemented in
Matlab and uses C Mex functions for computationally expen-
sive parts.

In Fig. 6, we report accuracy and time complexity results
for various values of m on the blobs data set using the same
kernel parameter σ = 0.2. We see that our approach notice-
ably outperforms Random Features for all values of m. Fur-
thermore, our approach is more efficient, and the computa-
tional savings become more prominent as we increase m. We
also compared the Random Features technique with our intro-
duced method on the other synthetic data sets omitted to save
space, revealing the poor performance of Random Features.
The unsatisfactory clustering accuracy of Random Features
in our comparison may be related to the lack of careful ad-
justment of parameters such as the kernel parameter σ and
the number of landmarks m. For example, the reported results
in the original work [38] primarily focused on a relatively
large value of m, such as m = 1,024. Another recent work
also observed that using small values of m adversely affects
the performance of approximate spectral clustering techniques
based on Random Features [37]. However, our method suc-
cessfully clusters the blobs data set in less time with m = 40
landmarks without tuning σ for each experiment separately.
A further advantage of our approach is that it does not require
SVD solvers specifically tailored to large sparse matrices.
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TABLE 3. Comparing Accuracy and Running Time on Real Data Sets for m = 40 and m = 80

B. EXPERIMENTS ON REAL DATA
We investigate the performance and computational cost of our
proposed spectral clustering method on two public benchmark
data sets. For our comparison, we use the prototypical spectral
clustering algorithm depicted in Alg. 1 to obtain baselines for
both evaluation metrics, i.e., F-score and NMI. Therefore, we
consider smaller data sets to run the full spectral clustering
algorithm on a single machine. Like the previous section, we
compare against the prior scalable spectral clustering tech-
nique based on the Nyström method [32]. We use the Matlab
built-in spectral clustering algorithm, called “spectralcluster,”
with default values to perform spectral clustering on the full
data set. The Matlab implementation also allows performing
approximate spectral clustering by forming a sparse nearest
neighbor similarity graph [4]. For this technique, we explore
the influence of the number of nearest neighbors on the clus-
tering accuracy and running time.

As mentioned, we consider two real data sets from LIB-
SVM [47]. The MNIST data set is a collection of handwritten
digit images, where a d = 282 = 784 dimensional vector rep-
resents each image. In this work, we reduce the dimension
of the original data to d = 500 by using principal component
analysis (PCA) [57]. We also consider two subsets of this data
set: (1) k = 2 classes with n = 11,800 samples and (2) k = 3
classes with n = 17,718 samples. The mushrooms data set
contains n = 8,124 samples in R112. Each sample in the data
set contains information that describes the physical character-
istics of a single mushroom. The ground-truth labels provide
information regarding poisonous or edible mushrooms; we
thus have k = 2 clusters. Since these two data sets have a
different range of values and structures, we used the Matlab
built-in support vector machine classifier to find an appropri-
ate value for the kernel parameter σ . While this parameter
tuning requires the ground-truth labels, we do not use them
when performing spectral clustering. We set the threshold
parameter γ = 10−2, which is the same value used in the
previous section for all synthetic data sets.

Table 3 reports the mean and standard deviation of clus-
tering accuracy as well as time complexity for two values
of m = 40 and m = 80. As we see, our proposed approach
consistently outperforms the prior work on Nyström-based

TABLE 4. Average of the Rank Parameter l on Three Real Data Sets

spectral clustering. Our method often reaches the accuracy of
spectral clustering on the full data set with m = 40 landmarks
while reducing the running time by two to three orders of
magnitude. As expected, for a fixed value of m, our method is
slightly slower than the previous Nyström-based spectral clus-
tering technique. However, our method is more time-efficient
when our goal is to reach higher accuracy levels close to
those of the full spectral clustering algorithm. Also, we report
the average value of the rank parameter l in Table 4. These
results confirm that the rank-k approximation of the similarity
matrix W leads to the inferior performance of the previous
Nyström-based spectral clustering method as the spectrum of
W decays slowly. Because of overlapping clusters, we see
that the expected value of l significantly exceeds the num-
ber of clusters k. Therefore, the proposed method provides
an improved trade-off between accuracy and efficiency in all
experiments with real data.

Moreover, we used the mushrooms data set to evaluate the
number of nearest neighbors for forming sparse similarity
graphs to reduce the complexity of prototypical spectral clus-
tering. The Matlab’s default value for the number of neigh-
bors is �log(n). Thus, we considered three values α�log(n),
where α ∈ {1, 10, 100}. The mean F-score values are 0.75,
0.37, and 0.63, respectively. This result shows that increasing
the number of nearest neighbors does not necessarily guaran-
tee an improved clustering quality. Also, the F-score for the
default value is substantially lower than the one obtained via
performing the full spectral clustering algorithm. In terms of
running time, the spectral clustering method based on sparse
similarity graphs takes 2.53, 14.5, and 26.3 seconds, respec-
tively. Thus, in our comparison, another benefit of using the
Nyström approximation is the substantial reduction of time
complexity compared to sparse similarity graphs.
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V. CONCLUSION
In this paper, we presented a principled approximate spectral
clustering algorithm that builds on the Nyström approxima-
tion and provided accuracy-efficiency trade-offs. The pro-
posed method has shown to outperform existing Nyström-
based spectral clustering methods through several detailed
experiments on synthetic and real data. This work also pre-
sented two new theoretical results to understand the influence
of leveraging low-rank kernel matrices in the context of spec-
tral clustering and normalized cut. We envision several future
research directions to improve our proposed approach’s per-
formance, efficiency, and robustness. While uniform sampling
provides satisfactory accuracy and scalability, we suspect that
recent non-uniform sampling strategies, such as coresets, can
offer improved accuracy-efficiency trade-offs. Additionally,
geometry-preserving sampling can be instrumental when the
number of clusters is enormous. Also, utilizing non-uniform
sampling mechanisms with strong theoretical guarantees can
be integrated with our presented perturbation analysis to
achieve tighter upper bounds. Another future research direc-
tion is to extend the current work to handle noisy data sets in
spectral clustering.
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