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ABSTRACT Moving object detection in a given video sequence is a pivotal step in many computer vision
applications such as video surveillance. Robust Principal Component Analysis (RPCA) performs low-rank
and sparse decomposition to accomplish such a task when the background is stationary and the foreground
is dynamic and relatively small. A fundamental issue with the RPCA is the assumption that the low-rank
and sparse components are added at each pixel, whereas in reality, the moving foreground is overlaid on the
background. We propose the masked decomposition (i.e. an overlaying model) where each element either
belongs to the low-rank or the sparse component, decided by a mask. We introduce the Masked-RPCA (MR-
PCA) algorithm to recover the mask (hence the sparse object) and the low-rank components simultaneously,
via a non-convex formulation. An adapted version of the Douglas–Rachford splitting algorithm is utilized to
solve the proposed formulation. Our experiments using real-world video sequences show consistently better
performance for both cases of static and dynamic background videos compared to RPCA and its variants
based on the additive model. Additionally, we show that utilizing non-convex priors in our formulation leads
to improved results without any added complexity compared to a relaxed formulation using convex surrogates
and methods based on the additive model.

INDEX TERMS Moving object detection, foreground-background subtraction, nuclear-norm minimization,
low-rank matrices, sparsity, �0-pseudo-norm minimization, video surveillance.

I. INTRODUCTION
A. MOTIVATION AND PRIOR WORK
Moving object detection is the initial step to many video
analysis applications. Given a sequence of video frames, the
goal is to separate the moving object (called the “foreground”)
from the static parts of each frame (called the “background”).
For instance, in video surveillance applications, we may need
to detect the activities that stand out from the background.
Many different approaches have been proposed over the past
two decades to tackle this problem. Initial approach was
to model the static background using Principal Component
Analysis (PCA) [1]. This method provides a model for the
background and the foreground detection is consequently
achieved by thresholding the difference between the original
frame and the generated background.

Let us consider the matrix M ∈ Rmn×k constructed by vec-
torizing the video frames of size m × n in to mn-vectors and

FIGURE 1. Frames of a video stacked as the columns of the matrix M.
RPCA models the background as a low-rank matrix (L) and the moving
object as addivive purturbations (S) to the background, i.e. M = L + S.

stacking them as columns of the matrix M (see Fig. 1). The
matrix M should approximately be low-rank (in an extreme
case that the video is captured from an static scene, the
columns of matrix M are nearly identical). The classical PCA
approach seeks the best low-rank matrix L to approximate M
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by solving

minimize
L

‖M − L‖2 subject to rank(L) ≤ k (1)

where ‖X‖2 denotes the 2-norm of a matrix X (largest singular
value of X ).

Although PCA is a very powerful technique for data anal-
ysis, its limitations with respect to outliers and noise put its
validity for the moving object detection task in question. PCA
models the cases where small, i.i.d Gaussian perturbations
are applied to an underlying low-rank matrix. Considering
the moving objects as the perturbations to the low-rank back-
ground, one can observe that the changes can often have large
magnitude and do not necessarily follow a Gaussian distri-
bution. Several PCA improvements have been proposed to
address these limitations [2].

Another approach to improve over the PCA formulation
is to decompose the data matrix M into two components,
one low-rank and the other sparse [3], [4]. Robust Principal
Component Analysis (RPCA) [3] attempts to efficiently find
matrices L and S such that M = L + S with L as the low-rank
and S as the sparse component (as in Fig. 1). RPCA has no
particular assumption on the magnitude of the perturbation.
Additionally, there is no need to know the locations of the
perturbations, the only requirement is the perturbations to be
sparse. Although it might seem surprising from the classi-
cal statistics point of view, this separation was proved to be
possible via a convex optimization program[3] (see Theorem
1.1). The notion of incoherence introduced in [5] for the ma-
trix completion problem and briefly discussed in [3] provides
a condition that makes the separation problem meaningful.
Without going into details, the incoherence condition asserts
that the underlying low-rank component is not sparse [3].

The foreground-background subtraction via RPCA model
can be achieved by solving the convex optimization problem
as

minimize
L,S

‖L‖∗ + λ‖S‖1 subject to M = L + S (2)

with variables L and S, where ‖X‖∗ denotes the nuclear norm
(sum of singular values), ‖X‖1 denotes the sum of absolute
value of the entries (not the �1-norm in the matrix sense), and
λ is a regularization parameter. This formulation is also known
as principal component pursuit (PCP) method in the literature
and can be solved by utilizing the augmented Lagrange mul-
tiplier (ALM) method [6], [7]. A sample result obtained by
applying the PCP on 100 frames of the “Pedestrians” video
[8] is shown in Fig. 2.

There has been several improvements over the PCP formu-
lation in the past few years [9], [10]. One limitation of the
formulation as in (2) is the fact that the presence of noise or
dynamic changes in the background is not modeled. In real
application, video sequence is also corrupted with entry-wise
noise or there might be small dynamic changes in the back-
ground. Stable principal component pursuit (SPCP) [11] was
proposed to solve the following optimization problem as an

FIGURE 2. Sample result after applying the PCP algorithm reshaped into
images. (left to right) original frame, recovered low-rank background, and
foreground object are shown.

stable version of the PCP:

minimize
L,S

‖L‖∗ + λ‖S‖1 subject to ‖M − L − S‖F ≤ δ. (3)

This formulation assumes that M = L + S + E where in this
case E represents the i.i.d. noise present on each entry of the
matrix. In order to address the presence of quantization error,
a similar inequality constraint approach is proposed in [12].
Furthermore, tensor based decomposition methods have been
studied to improve the stability of the algorithms when noise
is present [13], [14].

Another RPCA based method is DEtecting Contiguous
Outliers in the LOw-rank Representation (DECOLOR) [15].
In this formulation, spatial continuity of the moving object
is considered and graph-cut algorithm is used efficiently find
the moving object mask [15]. In order to overcome the chal-
lenges arising from larger datasets, superpixel-based method
that better regularizes the sparse term are utilized [16]. Addi-
tionally, the idea of total variation regularization of the sparse
component is investigated in total variation regularized RPCA
(TVRPCA) algorithm [17]. In addition, other regularization
techniques regarding the completeness of the moving object
especially in cases of a moving background have been ex-
plored in the literature [18]–[20]. Furthermore, in cases where
the background illumination changes, decomposition into
more than two components has shown promising results [14],
[21], [22]. Other extensions such as considering camera mo-
tion with RPCA model have also been studied in the literature
[23]. Further discussion and survey of other improvements are
provided in [9], [10], [24]–[26].

B. CONTRIBUTION OF THIS STUDY
The RPCA model as presented in (2) assumes that the fore-
ground object is added to the static background. Although
this assumption might be true for many other applications
of low-rank and sparse decomposition, additive perturbation
is not a realistic assumption in video foreground-background
decomposition. One immediate consequence of the additive
model is that the recovered foreground object would not have
the correct color, as clearly demonstrated in Fig. 2.

In this study, we forgo the additive assumption and in-
stead propose a formulation of an overlaying model, which
acknowledges that the foreground object is overlaid on top
of the background and is occluding it (rather than simply
being added). In our model each pixel either belongs to the
foreground or to the background. We use a binary mask W to
encode the foreground object location, and require the mask to
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be sparse and the background to be low rank. Mathematically,
our model can be described by M = (1 − W ) ◦ L + W ◦ S
where ◦ denotes the elementwise matrix multiplication. In
order to find the components introduced by the mask decom-
position model, we formulate an optimization problem.

Note that imposing constraints on the support of the sparse
component (especially connectivity of the support as a region)
has been previously studied [15], [18], [19]. As we show in
Section II, we forgo solving for the sparse component and
directly solve for the mask of the moving object. Assisting and
restricting the search for the moving object via saliency map
[27] or mask obtained via optical flow [28] have been also
studied in the literature. Additionally, finding a binary mask
by utilizing a first-order Markov random field and refining the
background in cases where dynamic background changes are
present has shown effective [29]. Rather than precomputing
and utilizing a mask, we will try to directly find the mask of
the moving object.

Note that the idea of an overlaying model or masked de-
composition is first introduced in [30] in the context of sep-
arating foreground text or graphics from the background in
images. There, the background is assumed to belong to a
subspace specified by a known set of bases. The problem is
then to find the sparse mask and the subspace coefficients
for the background. For separating moving objects from sta-
tionary background in a video, the low rank assumption on
the background is more appropriate. However, simultaneously
imposing the low rank prior on the background, sparsity prior
on the mask, and the overlaying model constraint leads to a
challenging optimization problem. Recently, Jin et al. [31]
proposed a masked model where both �1-norm of the mask
and the sparse component are considered in the optimization
formulation. Additionally, nuclear norm has been utilized as
a surrogate for the rank. The formulation as presented in
[31] involves combinatorial optimization and is not robust to
dynamic changes or noise in the background.

In our formulation, we will use the �0-pseudo-norm instead
of the �1-norm of the mask as the regularizer to get better
sparsity properties and relax the problem in hand from an
integer program. Additionally, rank(·) and nuclear-norm will
be considered and compared when imposing the low-rank
prior on the background component. Furthermore, robustness
to dynamic changes in the background and noise has been
considered in our proposed formulation. The formulated op-
timization problem is nonconvex and not differentiable. An
adapted version of the Douglas–Rachford splitting algorithm
for a class of nonconvex problems [32] is utilized to solve
the formulated problem. All required sub-problems are stud-
ied and solved by efficient algorithms. Finally, the proposed
method and algorithmic solution are tested on different real-
world video sequences and promising performance is shown.

C. ORGANIZATION OF THE PAPER
The rest of this paper is organized as follows. In Section II,
we will present the overlaying model and discuss how the
problem is formulated as a nonconvex optimization problem.

In Section II-B, we will review the Douglas-Rachford method
for a class of nonconvex problems and we will utilize this
approach in Section II-C. In Section III, we present results for
different video sequences and discuss our findings. Finally, in
Section IV we concludes the paper. Additionally, some proofs
and numerical experiments that help us better understand the
sub-problems required for our method are provided in the
appendix section.

D. NOTATION
For a matrix X ∈ Rm×n, ‖X‖∗ denotes the nuclear norm of X
(sum of singular values), and ‖X‖F denotes the the Frobenius
norm of X . Additionally, ‖X‖1 = ∑

i, j |Xi j | denotes the �1-
norm of vectorized form of X . ‖X‖0 = #{Xi j �= 0} denotes the
�0-pseudo-norm (number of non-zero elements). We further
introduce the following indicator functions for a set A and
any given scalar x:

1A(x) :=
{

1 if x ∈ A,

0 if x /∈ A and ιA(x) :=
{

0 if x ∈ A,

∞ if x /∈ A .

For matrix X , we denote ιA(X ) = ∑
i, j ιA(Xi j ).

II. OVERLAYING MODEL, PROBLEM FORMULATION,
AND SOLUTION
A. MASKED ROBUST PRINCIPAL COMPONENT ANALYSIS
Given a video sequence, let matrix M ∈ Rmn×k denote the
matrix obtained by vectorizing and concatenating the frames
as columns of M. Additionally, let W ∈ {0, 1}mn×k be a bi-
nary mask encoding the foreground (foreground support). As
briefly discussed in Section I-B, a plausible decomposition
(the overlaying model) is M = (1 − W ) ◦ L + W ◦ S where,
L ∈ Rmn×k has low-rank and S ∈ Rmn×k encodes the moving
object. Note that given a foreground mask W one can obtain
the moving object as S = M ◦ W . As a result, the variable S
can be omitted from the model to remove redundancy and the
sparsity prior could be directly applied to the mask.

Following our discussions, the goal is to find matrices L ∈
Rmn×k (with low-rank structure) and W ∈ {0, 1}mn×k (with
sparse structure) such that the overlaying model is satisfied.
A plausible formulation of such problem can be written as

minimize
L,W

�(L) + λ�(W )

subject to (1 − W ) ◦ (M − L) = 0, W ∈ {0, 1}mn×k (4)

where �(·) and �(·) encode our prior knowledge of L (e.g.
low-rank assumption) and W (e.g. sparsity), respectively. Ad-
ditionally, λ is a regularization hyper-parameter. The equal-
ity constraint in (4) is the key to the overlaying model. To
reiterate, for pixels in which the mask is inactive (indicating
background), the constraint is only satisfied when L matches
the value of M in that entry. On the other hand, for pixels
where the mask is active (indicating foreground) the constraint
is satisfied and value of L can defer from M.

The problem as formulated in (4) is not tractable. The bi-
nary nature of the variable W requires solving a combinatorial
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problem. To make the problem more tractable, the variable W
can be relaxed to take values inside the interval of zero and
one namely, W ∈ [0, 1]mn×k . Consequently, we can write the
relaxed problem as

minimize
L,W

�(L) + λ�(W )

subject to (1 − W ) ◦ (M − L) = 0, W ∈ [0, 1]mn×k . (5)

The formulation in (5) is prone to similar problem as the
original RPCA (2) in presence of additive Gaussian noise or
dynamic background (such as water waves, tree leaves). In
this paper, we use the term “noise” to refer to both types of
small temporal variations of the background. Consider a case
where such noises are present as part of the background. In
the original RPCA formulation such changes would be mod-
eled as dynamic perturbations to the static background and
will be separated to the sparse component [11]. Similarly, the
formulation in (5) is susceptible to such problem. Note that for
small values of λ there is less weight on the sparsity of the W
and many isolated pixels in the background (caused by noise)
would be considered as in the foreground. On the other hand,
for large values of λ, such perturbations and possibly parts of
the moving object would be decomposed incorrectly into the
low-rank term L. As a result, in the presence of background
noise, formulation in (5) does not achieve desired results.

In order to make the solution robust to additive noise (or
dynamics in the background), we model the noise as an extra
error term. In other words, instead of equating the constraint
to zero, we can consider (1 − W ) ◦ (M − L) = E where E is
the error term associated with the noise. Now we can penalize
the effect of the noise. Since we have the i.i.d Gaussian prior
assumption about the noise, the summation of squared error
terms (‖E‖2

F ) can be used as the penalty function.
In our formulation, we require the recovered mask to be

sparse and we use a sparsity inducing function as the regu-
larization term on W . Here, we choose the �0-pseudo-norm
which is known to give sparse solutions [33]. In order to
impose the low-rank structure of L, we can either consider
rank(·) or nuclear-norm (‖L‖∗) [3], [34]. Consequently, we
consider the following two formulations in Lagrangian form

(MRPCA1)

minimize
L,W

‖L‖∗ + λ‖W ‖0 + ι[0,1](W )

+ ρ

2
‖(W − 1) ◦ (L − M )‖2

F

(6)

and

(MRPCA2)

minimize
L,W

rank(L) + λ‖W ‖0 + ι[0,1](W )

+ ρ

2
‖(W − 1) ◦ (L − M )‖2

F

(7)

where λ is a regularization parameter and ρ is a penalty
parameter. The indicator function ι[0,1](W ) ensures W ∈
[0, 1]mn×k . These problems are nonconvex and parts of the
objective functions are not differentiable so the algorithm to
solve them is not immediately apparent. Recently, Li et al.
adapted the Douglas–Rachford (DR) splitting for a class of

nonconvex optimization problems [32]. In the following sec-
tions we will first review the DR splitting method and then
derive an algorithmic solution for our problems (6) and (7).

B. REVIEW OF DOUGLAS–RACHFORD SPLITTING FOR
NONCONVEX OPTIMIZATION
In this section, we briefly review the Douglas-Rachford (DR)
splitting method that was recently adapted for a class of non-
convex problems by Li et al. [32]. Further details can be found
in [32]. Consider the optimization problem

minimize
u

f (u) + g(u)

where f is differentiable and is assumed to have Lipschitz
continuous gradient and g is a proper closed function. Ad-
ditionally, assume that for any given parameter γ > 0, the
proximal mapping of γ g, is well defined and easy to compute.
In other words, the minimizer of the problem

proxγ g(x) = arg min
z

γ g(z) + 1

2
‖z − x‖2

exists and is easy to compute for different values of γ and x.
The adaptation of the Douglas–Rachford algorithm for this

class of problems is presented in Algorithm 1. Motivated by
the notion of DR envelope as in [35], the DR merit function
for the nonconvex case [32] can be defined as

Dγ (y, z, x) = f (y) + g(z) + 1

2γ

(‖x − y‖2 − ‖x − z‖2) (8)

where γ > 0. Note that γ is the step-size in algorithm 1.
Theorem 1 in [32] shows that for sufficiently small γ > 0 and
variables (yt , zt , xt ) generated by algorithm 1, the sequence
{Dγ (yt , zt , xt )}t≥1 is nonincreasing.

C. NONCONVEX DR SPLITTING APPLIED TO MRPCA
In this section, we adopt the DR splitting method, solve the
required sub-problems, and provide the algorithmic solution.
Considering the general form our formulation as

minimize �(L) + λ�(W )︸ ︷︷ ︸
g(L,W )–non differentiable

+ ρ

2
‖(W − 1) ◦ (L − M )‖2

F︸ ︷︷ ︸
f (L,W )–differentiable

,

we can use the DR splitting algorithm by defining

f (L,W ) := ρ

2
‖(W − 1) ◦ (L − M )‖2

F , (9)
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and in the case of solving MRPCA1 (6)

g(L,W ) := ‖L‖∗ + λ‖W ‖0 + ι[0,1](W ), (10)

and in the case of solving MRPCA2 (7)

g(L,W ) := rank(L) + λ‖W ‖0 + ι[0,1](W ). (11)

Note that, our iterates in this case are the ordered pair
Y = (Ly,Wy) and Z = (Lz,Wz ). Also, X = (Xl , Xw ) are dual
varibles of the DR algorithm. Let the superscript t denote the
variable in iteration t , then the main steps of the DR algorithm
are as follows

(Lt+1
y ,W t+1

y ) = arg min
L,W

f (L,W )

+ 1

2γ

∥∥L − Xt
l

∥∥2
F + 1

2γ

∥∥W − Xt
w

∥∥2
F

(Lt+1
z ,W t+1

z ) = arg min
L,W

g(L,W )

+ 1

2γ

[∥∥∥L−2Lt+1
y +Xt

l

∥∥∥2

F
+
∥∥∥W −2W t+1

y +Xt
w

∥∥∥2

F

]
(
Xt+1

l , Xt+1
w

) = (
Xt

l , Xt
w

)+[(Lt+1
z ,W t+1

z

)−(Lt+1
y ,W t+1

y

)]
.

Here, we investigate each of the sub-problems and intro-
duce efficient algorithm for solving them. The update for
(Ly,Wy) involves solving the minimization problem

arg min
L,W

ρ

2
‖(W − 1) ◦ (L − M )‖2

F

+ 1

2γ

∥∥L − Xt
l

∥∥2
F + 1

2γ

∥∥W − Xt
w

∥∥2
F . (12)

This problem is separable for entries of the matrices L and
W so we can separately solve for the pairs (Li j,Wi j ) for all
entries i, j. The reduced two variable problem can be written
as

arg min
Li j ,Wi j

ρ

2

((
Wi j − 1

) (
Li j − Mi j

))2
+ 1

2γ

(
Li j − Xt

li j

)2 + 1

2γ

(
Wi j − Xt

wi j

)2
. (13)

A simple approach for solving this problem is to use the
nonlinear Gauss–Seidel method [36] to find the solution. In
this method, we fix one variable and solve for the other until
convergence. The update rules are formulated by equating the
derivative with respect to each variable to zero.

L+
i j =

Xt
li j

+ γ ρ
(
Wi j − 1

)2
Mi j

γ ρ
(
Wi j − 1

)2 + 1
,

W +
i j =

Xt
wi j

+ γ ρ
(

L+
i j − Mi j

)2

γ ρ
(

L+
i j − Mi j

)2 + 1
. (14)

Note that these updates can be implemented as element-wise
operations on matrices. Additionally, each update reduces the

objective value in (13) and every limit point of the sequence
is a critical point of the objective [36, Corollary 2]. Steps of
the algorithm are summarized in Algorithm 2. Comparison of
this method with some Newton based methods with numerical
results for example cases of the function are provided in the
appendix section. As our numerical comparisons on some
small problems show, this easy method has good performance,
is easy to implement for large-scale matrices and does not add
extra parameters (like step-size, etc.) to the problem. Note that
the resulting Wy found by Gauss-Seidel iteration does not nec-
essarily satisfy the constraint Wy ∈ [0, 1]mn×k . A projection
onto the set can be utilized to satisfy the constraint.

The update rule for pair (Lz,Wz ) involves solving the opti-
mization problem

arg min
L,W

‖L‖∗ + λ‖W ‖0 + ι[0,1](W )

+ 1

2γ

[∥∥∥L − 2Lt+1
y + Xt

l

∥∥∥2

F
+
∥∥∥W − 2W t+1

y + Xt
w

∥∥∥2

F

]
(15)

in the case of (6) and

arg min
L,W

rank(L) + λ‖W ‖0 + ι[0,1](W )

+ 1

2γ

[∥∥∥L − 2Lt+1
y + Xt

l

∥∥∥2

F
+
∥∥∥W − 2W t+1

y + Xt
w

∥∥∥2

F

]
(16)

in the case of (7). These problems can be solved separately for
variables L and W and close form solution in each case exists
as a proximal operator. We first introduce these operators for
nuclear norm, rank, and �0-pseudo-norm. Then, we can write
the closed form solution for (15) and (16).

Remark 1: [37, Theorem 2.1] Let Sτ : R → R be the soft-
thresholding operator Sτ (x) = sgn(x) max{|x| − τ, 0} and
similarly for matrices applied element-wise. Let Dτ (X ) de-
note the singular value thresholding operator of matrix X as
Dτ (X ) = USτ (�)V ∗, where X = U�V ∗ is the singular value
decomposition. Then,

Dτ (Y ) = arg min
X

1

2
‖X − Y ‖2

F + τ‖X‖∗.
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Remark 2: [33] Let H√
2τ

(x) = 1|x|≥√
2τ

x be the hard-
thresholding operator and similarly extend for matrices by
applying element-wise. Then,

H√
2τ

(Y ) = arg min
X

1

2
‖X − Y ‖2

F + τ‖X‖0.

Remark 3: [38]–[40] Let Fτ (X ) = UHτ (�)V ∗ be the
hard-thresholding on the singular values where X = U�V ∗
is the singular value decomposition, then

F√
2τ

(Y ) = arg min
X

rank(X ) + 1

2τ
‖X − Y ‖2

F .

Remark 4: Let H[0,1]
τ (y) be defined as

H[0,1]
τ (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y if 0 ≤ y ≤ 1 and y ≥ √
2τ

0 if 0 ≤ y ≤ 1 and y ≤ √
2τ

1 if y ≥ 1 and y ≥ 1
2 + τ

0 if y ≥ 1 and y ≤ 1
2 + τ

0 if y ≤ 0

and extended similarly for matrices by applying element-wise.
Then,

H[0,1]
τ (Y ) = arg min

X

1

2
‖X − Y ‖2

F + ι[0,1](X ) + τ‖X‖0.

Using these results, we can write the close form for the
update of (Lz,Wz ) when solving for (6) as

Lt+1
z = arg min

L
‖L‖∗ + 1

2γ

∥∥∥L − 2Lt+1
y + Xt

l

∥∥∥2

F

= Dγ

(
2Lt+1

y − Xt
l

)
, and (17)

W t+1
z = arg min

W
λ‖W ‖0 + ι[0,1](W )

+ 1

2γ

∥∥∥W − 2W t+1
y + Xt

w

∥∥∥2

F
= H[0,1]

2γ λ

(
2W t+1

y − Xt
w

)
.

(18)

When solving for (7) the update for Wz is similar and the
update for Lz can be written as

Lt+1
z = arg min

L
rank(L) + 1

2γ

∥∥∥L − 2Lt+1
y + Xt

l

∥∥∥2

F

= F√
2γ

(
2Lt+1

y − Xt
l

)
. (19)

The parameter γ plays the role of the step-size in our
algorithm. We empirically initialize γ to be one and as sug-
gested in [32], decrease the value by a constant ratio at each
iteration. Parameters λ and ρ are tunable hyper-parameters
controlling the effect of each regularization term. We provide
some heuristic values for these parameters in Section III. The
DR splitting algorithm applied to the MRPCA problem (6)
and (7) is summarized in Algorithm 3.

D. COMPUTATIONAL COMPLEXITY
Considering k frames of size m × n of a video, the data matrix
M is of size mn × k. The update for variables Ly and Wy

is iterative but only involves element-wise operations. The
updates for variables Wz has a simple closed form involv-
ing element-wise operation. The closed form update for Lz

involves finding the singular value decomposition (SVD) of
a matrix of size mn × k which is the most computationally
demanding step of the algorithm. Assuming there are less
frames in the video than the number of pixels in each frame
(mn > k), the complexity of computing the SVD is O(mnk2)
[41]. Otherwise, in general, the computational complexity of
the SVD is O(min{mnk2, m2n2k}) [41].

Note that the computational complexity of most RPCA-
based methods is also similar to or more than the proposed
algorithm. This is due to the fact that all these methods also
need to calculate the SVD of a similarly sized matrix at every
iteration. Additionally, more advanced techniques for comput-
ing the SVD such as the algorithms proposed in [42]–[45] can
be adopted in our proposed framework to reduce the compu-
tation cost of SVD.

III. EXPERIMENTAL RESULTS
In this section, we provide results of the proposed algorithm
on real-world videos. The videos used are from the change de-
tection (CDnet) dataset [8] and I2R dataset [46]. We will use
both visual and statistical measures to evaluate the recovery
results. To quantify the goodness of the recovered mask we
use the F-measure. Considering the number of true positive
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TABLE 1. Heuristic values for λ and ρ given a data matrix M ∈ R
mn×k

(tp), true negative (tn), false positive (fp), and false nega-
tive (fn), these statistical measures are defined as Recall =

tp
tp+fn , Precision = tp

tp+fp , and

F–measure = 2
Precision × Recall

Precision + Recall
.

We provide results for both proposed formulation. Here,
MRPCA1 and MRPCA2 refer to the formulations in (6) and
(7), respectively. In order to show the effect of non-convex
priors in these formulations we provide comparisons with a
relaxation of the model formulated as

(MRPCA3)

minimize
L,W

‖L‖∗ + λ‖W ‖1 + ι[0,1](W )

+ ρ

2
‖(W − 1) ◦ (L − M )‖2

F .

(20)

Note that nuclear norm and �1-norm are used in this formula-
tion which are convex surrogates for rank(·) and �0-pseudo-
norm, respectively. Note that MRPCA3 can be also solved via
similar DR framework as in algorithm 3 or other techniques
such as linearizing the augmented Lagrangian [47], [48]. In
our experiments we use the DR framework for MRPCA3.

In our experiments, we will provide examples for both static
and dynamic background situations. In the static case, the
background is not changing and only foreground is moving
and Gaussian noise might also be present. In the dynamic
case, there are changes in the background which are not part
of the moving object. For example, waves on water, moving
leaves, and motion of water fountains. In the dynamic case,
ideally we want to detect the moving object but not the motion
related to the dynamics of background. We will provide results
for both scenarios. The code for the proposed algorithms are
available here[49].

For both cases of static and dynamic background, we pro-
vide visual and statistical comparisons between the proposed
models and PCP [3], SPCP [11], and DeColor [15] (as im-
plemented in [50]). The hyper-parameters of each model are
tuned by a grid search. Note that theoretical value for param-
eter λ in the PCP formulation is discussed in [3], [51], [52].
The threshold for getting the mask for PCP and SPCP are cal-
culated by grid search around the threshold given by the Otsu
algorithm [53] to maximize the F-measure. DeColor provides
the mask by utilizing the graph-cut algorithm [54] and the
associated hyper-parameter is tuned for the best performing
F-measure. Heuristic rules for setting hyper-parameters for
MRPCA1 (6) and MRPCA2 (7) are given in Table I. We
use a grid search around these heuristic values to find the
best performing models. Additionally, by investigating the

FIGURE 3. Comparison of the results for MRPCA1 (6), MRPCA2 (7), and
MRPCA3 (20) for static background.

F-measure around these heuristic values (similar to the exper-
iment in [14]) we observe that the results are stable around the
proposed heuristics.

Note that the proposed formulations (6) and (7) are not
convex and can benefit from a good initialization point. In our
experiments, we use the median filter over all video frames
to get a robust estimate of the background for initialization
[55]. The mask is then initialized by subtracting this estimated
background from each frame.

A. STATIC BACKGROUND
In this section, we consider the static background videos from
the CDnet dataset[8] and provide results for the proposed
model as well as some RPCA based models for comparison.
A frame of the resulting background and mask for MRPCA1
(6), MRPCA2 (7), and MRPCA3 (20) are shown in Fig. 3.
Additionally, last row of Fig. 3 shows the duality gap be-
tween the split variables Zt and Y t per iteration. The value
of ‖Zt − Y t‖F is an indicator for the convergence of the algo-
rithm showing that all proposed methods converge within few
tens of iterations.

Histogram of the recovered mask for all different methods
is shown in Fig. 3. As we can observe, the non-convex priors
lead to a separation of the {0, 1} values. This effect is not
observed when solving the relaxed problem as MRPCA3 (20).
As a result, non-convex priors in the model lead to a solution
closer to the desired binary mask without any added complex-
ity. Note that in most of the RPCA-based methods the mask is
obtained by thresholding the recovered sparse component. As
shown in Fig. 3, the result of the proposed method (MRPCA1
or MRPCA2) is not sensitive to such threshold values and we
set the value of 0.5 in our experiments whereas the optimal
threshold needs to be found for most of the RPCA-based
methods.

Visual and statistical comparison of the proposed models
with RPCA-based methods are shown in Fig. 4 and Table II
for static background videos. The proposed overlaying model
performs better than other methods both in terms of visual
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FIGURE 4. Sample results comparing PCP [3], SPCP [11], and DeColor [15]
with MRPCA1 (6) and MRPCA2 (7). Recovered background and detected
moving object mask are shown for example frames of several static
background videos.

TABLE 2. F-measure for static background video sequences

TABLE 3. F-measure for dynamic background video sequences

and F-measure results. As the results for the “Office” sequence
illustrate, the proposed model provides a more complete mask
for the case where the person is standing relatively still over
some video frames. The background recovered by the over-
laying model is visually more appealing compared to the other
models and better separation of the moving object is observed.

B. DYNAMIC BACKGROUND
In this section, we consider dynamic background videos from
the CDnet [8] and I2R datasets [46]. We compare the proposed
models with the RPCA-based approaches. As for the static
background case, the comparison between MRPCA1 (6), MR-
PCA2 (7), and the relaxation as in MRPCA3 (20) are shown
in Fig. 5. Similar convergence behavior and separation of the
mask into {0, 1} values is observed in the dynamic case as
well.

Comparison of the proposed formulations with other meth-
ods is shown in Table III, Fig. 6, and Fig. 7. The proposed
model outperforms the other models visually and numerically.
In the case of the “WaterSurface” sequence, Fig. 6, the motion

FIGURE 5. Comparison of the results for MRPCA1 (6), MRPCA2 (7), and
MRPCA3 (20) for dynamic background.

FIGURE 6. Sample results comparing PCP [3], SPCP [11], and DeColor [15]
with MRPCA1 (6) and MRPCA2 (7). Recovered background and detected
moving object mask are shown for two frames of the “WaterSurface” video
with dynamic background (ground-truth is only provided for a selection of
frames with a moving object in the dataset).

FIGURE 7. Sample results comparing PCP [3], SPCP [11], and DeColor [15]
with MRPCA1 (6) and MRPCA2 (7). Recovered background and detected
moving object mask are shown for a frame of the dynamic background
videos.

on the water follows the Gaussian assumption and is removed
from the mask effectively. Additionally, for the frames where
the moving person stops, the proposed method provides a
more consistent mask. Less artifact from the dynamics of the
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background are present on the mask detected by MRPCA2
compared to MRPCA1.

Examples of the cases where the dynamics of the back-
ground does not follow the Gaussian assumption are shown in
Fig. 7 (motion of top of the fountain or motion of the clusters
of leaves). In such cases, all models suffer from artifacts in
the recovered masks. As shown in Fig. 7, MRPCA2 leads to
a more connected mask with less false positives compared to
MRPCA1 and other compared methods and it is less affected
by the background dynamics.

C. DISCUSSION
From all the experiment results presented, we observe that
the MRPCA1 (6) and MRPCA2 (7) perform closely for the
static background cases. For the videos with dynamic back-
ground, there is a slight advantage for the MRPCA2 (7) and
the resulting masks are less affected by the dynamics of the
background. Furthermore, for both static and dynamic cases,
the recovered mask via the non-convex priors (e.g. MRPCA1
and MRPCA2) is closer to the desired binary solution without
any added computational complexity compared to the relaxed
formulation as MRPCA3 (20). In terms of computational
complexity the proposed algorithms are similar to or better
than the RPCA-based methods. Note that the recovered sparse
component from the additive models need to be converted
to the mask via thresholding and an optimal threshold needs
to be found. Whereas in the overlaying model, we directly
solve for the mask and the non-convex formulation leads to a
close to binary solution. As a result, searching for the optimal
threshold value is not required in this case.

In comparison to the results of the RPCA-based methods,
the proposed overlaying model outperforms in both static and
dynamic background scenarios. As visually shown, the pro-
posed model provides a better recovery of the background and
better separation of the moving object from the background.
Additionally, non-convexities in the formulation help us to
better mask the moving object while keeping the estimated
background low-rank. This leads to a more complete mask
compared to the other additive models in challenging cases.
For instance, when the moving object stays still over a period
of time we observe a more complete mask. Furthermore, in
the presence of dynamic changes, MRPCA can recover the
mask with less artifacts from the background. Whereas in
RPCA-based methods, the false positives due to the dynamics
of the background (even when total variation of the support of
sparse component is regularized) are present over the recov-
ered results.

IV. CONCLUSION
In this study, we considered the moving object detection prob-
lem using low-rank and sparse decomposition. We formulated
the problem as an overlaying model where we simultane-
ously recover the low-rank background and the mask of the
moving object. The proposed formulation is non-convex and
we provided an algorithmic solution via an adaptation of the
Douglas-Rachford method. The experimental results showed

FIGURE 8. Different cases possible for the objective function in (21) for
y > 0.

effective recovery in both dynamic and static background sce-
narios. We empirically showed that solving for the non-convex
priors leads to a closer to binary mask without any added
computational complexity compared to solving for the relaxed
priors with convex surrogates. The proposed algorithm out-
performs the models based on the additive assumption with
similar or lower complexity.

In future work, we aim to investigate the effect of utilizing
other regularization terms in the formulation to tackle more
complex scenarios. For example, videos with camera motion
(either shift of view or jitter) can be interesting for investi-
gation. Additionally, proposed framework can be adopted for
other applications where the overlaying model is valid such as
waterfall artifacts in electron microscopy images.

APPENDIX
A. PROOF FOR DOMAIN CONSTRAINED
HARD-THRESHOLDING
In this section we provide the proof for Remark 4. Note that
the problem

arg min
X

1

2
‖X − Y ‖2

F + ι[0,1](X ) + τ‖X‖0

is separable for each element of the matrix X as

x∗ = arg min
x

1

2
(x − y)2 + ι[0,1](x) + τ‖x‖0. (21)

Note that ‖x‖0 = 1 for any x �= 0 and is only zero for x = 0.
Additionally, the indicator function ι[0,1](x) ensures that the
minimizer is in the interval [0,1]. Since the only other term
is a quadratic function, the solution to the problem can be
found by considering all possible values of y and τ and their
relative relation. These possible cases are shown in Fig. 8. The
resulting minimizer can be written as the following function
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based on different values of y and τ .

x∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y if 0 ≤ y ≤ 1 and y ≥ √
2τ (case 1)

0 if 0 ≤ y ≤ 1 and y ≤ √
2τ (case 2)

1 if y ≥ 1 and y ≥ 1
2 + τ (case 3)

0 if y ≥ 1 and y ≤ 1
2 + τ (case 4)

0 if y ≤ 0 (case 5)

B. INVESTIGATING THE 2 DIMENSIONAL PROBLEM
In this section, we consider the problem in (12) and inves-
tigate the behavior of the function and different minimization
methods for the two dimensional reduced problem. With some
basic change of variables the general problem can be rewritten
as

minimize
ρ

2
‖W ◦ L‖2

F + 1

2γ
‖L − Xl‖2

F + 1

2γ
‖W − Xw‖2

F .

Since this problem is separable for each entry of L and W , we
can consider the two dimensional problem as

minimize
ρ

2
w2l2 + 1

2γ
(l − xl )

2 + 1

2γ
(w − xw )2,

or equivalently,

minimize
1

2
w2l2 + c

2
(l − xl )

2 + c

2
(w − xw )2 (22)

where c = 1

γ ρ
(note that we use lower-case letters to empha-

size that the variables are scalar valued in this case). Consid-
ering the objective function

h(l,w) = 1

2
w2l2 + c

2

[
(l − xl )

2 + (w − xw )2] ,
we have the following expressions for the gradient and the
Hessain

∇h(l,w) =
(

w2l + c (l − xl )

l2w + c (w − xw )

)
(23)

∇2h(l,w) =
(

w2 + c 2wl

2wl l2 + c

)
. (24)

Note that the determinant of the Hessian is

det(∇2h) = (
l2 + c

) (
w2 + c

)− 4 w2 l2 (25)

and we have

∇2h  0 ⇔ c > −1

2

(
w2 + l2)+

√
3 w2 l2 + 1

4

(
w2 + l2

)2
.

Eigenvalues of the Hessian are

μ1,2 = 1

2

(
w2 + l2 + 2c

)±
√

3 w2 l2 + 1

4

(
w2 + l2

)2
.

As a result, the Newton method with Hessian modification
can be used to solve the problem. Since we want to have a
method which can be extended to many problems solved using
element-wise operations on matrices, we will use simple mod-
ification techniques which involve modifying the eigenvalues

TABLE 4. Different parameters for the first experiment

of the Hessain. These methods are simple enough and can
be extended easily for our general case. In the next section,
we introduce some examples of the methods that can be used
and compare them with the presented nonlinear Gauss-Seidel
method [56].

1) NONLINEAR GAUSS-SEIDEL METHOD COMPARED TO
NEWTON BASED METHODS
A very simple methods for modifying the Hessian is to replace
it by a suitable positive definite matrix H + τ I if the Hessian
H is not positive definite [57]. One simple approach is to set
τ = μmin + δ for some small value of δ. As another approach,
[57, Algorithm 3.3] we can check if the Hessian is positive
definite and if not keep adding τ I to the Hessian for some τ

until the modified matrix becomes positive definite (this was
proposed for the case where you do not know the minimum
eigenvalue and cannot easily be extended to the matrix case
but we will include this method in our comparisons as well).
Another method is to replace the negative eigenvalues by their
absolute value.

We can compare these methods for some prototype prob-
lems (different values of xl , xw, γ , and ρ). The methods
compared here are
� nonlinear Gauss-Seidel– the updates of this method

(as presented in the main text) are obtained by setting
gradient w.r.t. each variable separately and updating the
variables in an alternating way.

� Diagonal loading– in this method, we use the Newton
step with backtracking line-search. In this case, if the
Hessian at a point is not positive definite, we keep adding
τ I (starting with τ = 10−3) to the Hessian until the re-
sulting matrix is positive definite[57, Algorithm 3.3].

� Adding the minimum eigenvalue– in this method, we
use the Newton step with backtracking line-search. If the
Hessian is not positive definite, we add (|μmin + δ|I ) to
the Hessian (we choose δ = 0.01).

� Replace negative eigenvalues with their absolute
valuein this method, we use the Newton step with back-
tracking line-search. If the Hessian is not positive defi-
nite, we replace the negative eigenvalue with its absolute
value.

2) EXAMPLES
Here, we present some examples of the function minimized by
different methods. For all the methods we choose to terminate
the iteration if norm of the gradient is less than a tolerance
(here we set to 1e-9) or a maximum iteration number is
reached (here we choose 100). For example, we set the values
according to the Table IV, V, and VI and results for different
methods are shown in Figures 9, 10, and 11. As we can

VOLUME 1, 2020 283



KHALILIAN-GOURTANI ET AL.: MASKED-RPCA: MOVING OBJECT DETECTION

TABLE 5. Different parameters for the third experiment

TABLE 6. Different parameters for the fourth experiment

FIGURE 9. Results for Example 1: (left) iterates for different methods
plotted over the level-sets of the function (right) norm of the gradient per
iteration for different methods.

FIGURE 10. Results for Example 2: (left) iterates for different methods
plotted over the level-sets of the function (right) norm of the gradient per
iteration for different methods.

FIGURE 11. Results for Example 3: (left) iterates for different methods
plotted over the level-sets of the function (right) norm of the gradient per
iteration for different methods.

observe in Figs. 9 and 10, the Gauss-Seidel approach achieves
the tolerance in less number of iterations. Here, we note that
the Hessian of the function for first few iterations, is not
positive definite and the step obtained from different simple
modification methods are slowly moving toward the solution.
Quadratic convergence can be observed near the optimum
point for Newton based methods.

In Fig. 11, we observe that the Gauss-Seidel method moves
to a close neighborhood of the solution in the first few it-
erations but then it has a very slow convergence. This slow
convergence behavior is due to the fact that the function is

FIGURE 12. Stability wrt hyper-parameters for static background: (left)
stability for λ when ρ is set to heuristic value ρh. (right) stability for ρ when
λ is set to heuristic value λh.

FIGURE 13. Stability wrt hyper-parameters for dynamic background: (left)
stability for λ when ρ is set to heuristic value, ρh. (right) stability for ρ

when λ is set to heuristic value, λh.

very flat near optimum. The Newton based methods do not
move close to the solution at first but show better overall
convergence property. In this case, quadratic convergence is
not observed for Newton based methods.

All in all, we can observe that each iteration of the Gauss-
Seidel method is less computationally demanding than the
Newton based methods and does not require a step-size pa-
rameter to be tuned. This method moves to a close neighbor-
hood of the solution in a few iterations and obtains reasonable
accuracy in few iterations. In some cases the method can be
slow near the optimal point like our last example.

C. STABILITY WITH RESPECT TO HYPER-PARAMETERS
In this section, we show the stability of MRPCA1 (6), and
MRPCA2 (7) w.r.t. the hyper-parameters λ and ρ. Following
the setup in [14] and denoting the heuristic values in Table I
as λh, and ρh, we show the F-measure for different video
sequences around the heuristic values. As shown in figures 12
and 13, the F-measure is stable around the proposed heuristic
values in both cases of static and dynamic background.
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