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ABSTRACT The decomposition of a multivariate signal is an important tool for the analysis of measured
or simulated data leading to possible detection of the relevant subspace or the sources of the signal. A new
method – dynamical component analysis (DyCA) – is based on modeling the signal by a set of coupled
ordinary differential equations. Its derivation and its features are presented in-depth. The corresponding
algorithm is nearly as simple as principal component analysis (PCA). The results obtained by DyCA however
yield a deeper insight into the underlying dynamics of the data. To illustrate the broad area of possible
applications a set of examples of analyzing data by DyCA is presented - involving both measured EEG,
motion and ECG data as well as data obtained from stochastic differential equations. Thereby our alternative
tool for dimensionality reduction is compared toresults obtained PCA and ICA and demonstrate the gain of
this approach.

INDEX TERMS Biomedical data, blind source separation, differential equations, dimensionality reduction,
dynamical component analysis, independent component analysis, low dimensional dynamics, motion detec-
tion, principal component analysis.

I. INTRODUCTION
Even though many aspects of data science and signal process-
ing are nowadays dominated by the usage of machine learning
tools, and neural networks in particular, there is still a great
interest in deterministic (and thus interpretable) tools for the
processing of signals. Indeed it has been argued recently [1]
that trying to explain black box models might maintain bad
practices and potentially cause problems in healthcare, crimi-
nal justice and other critical domains.

In this paper we present a dimensionality reduction method
– dynamical component analysis (DyCA) – introduced in the
preliminaries works of Seifert et al. [2] and Korn et al. [3].
The proposed method is governed by the assumption that
a multivariate measurement of a dynamical system can be
split into a deterministic part, which can be described by a
system of differential equations, and independent noise com-
ponents. This is for example the case for EEG data of epileptic

seizures, which can approximately be described by a system
of ordinary differential equations consisting of two linear and
one non-linear equations, as shown in [3], [4]. This approach
has similarities to the method of PIPs (principal interacting
patterns) and POPs (principal oscillating patterns) introduced
by Hasselmann [5] and further developed by Kwasniok [6],
[7]. Compared to [2], [3] we present the proposed method
more in-depth and detailed and present a broad spectrum of
possible applications.

A. RELATED WORK
Principal component analysis (PCA) has been widely used
in a broad spectrum of possible applications, also under dif-
ferent names like empirical orthogonal function (EOF) anal-
ysis, proper orthogonal decomposition or Karhunen-Loéve
expansion, maximizing the variance of the principal compo-
nents [8], [9].
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In geophysical applications EOF analysis have been ap-
plied to spatio-temporal climate data to obtain data-driven
models [10] and have been further developed in different
directions like independent subspace analysis [11], linear and
nonlinear dynamical mode decomposition [12], [13] to name
only a few.

In the field of chemometrics and process controling dy-
namic PCA [14], [15] and dynamic-inner PCA [16] have
been introduced and applied considering the data matrix and
augmented time-lagged values of the data. Recursive PCA
methods [17], [18] allow an efficient recursive updating of the
principal components.

PCA extensions like robust subspace tracking and learn-
ing [19]–[22] can be found in video analytics applications
(foreground - background separation). These aim at detecting
and tracking of low-dimensional subspaces slowly changing
in time corrupted by sparse outliers.

Independent component analysis (ICA) [23]–[25] is based
on the statistical assumption that the relevant components of
the signals are statistically independent non-Gaussian signals.
It has been applied in different scientific fields [26], e.g. also
in the field of neuroscience to analyze EEG- and fMRI-signals
(e.g. [27]–[29]). By detecting independent sources ICA fa-
cilitates artifact-removal and reveals interesting insights to
understand brain sources.

By introducing DyCA, we provide an alternative method
for subspace detection and source separation focusing on
sources which are not statistically independent but dynam-
ically coupled by a set of ODE. To achieve this, the time
derivative of the signal is considered as well, which in return
corresponds to the analysis of the its time-lagged represen-
tation. DyCA aims at the detection of low-dimensional sub-
spaces containing the dynamics of the signal corrupted by -
what we call - noise components.

Other related methods are given by dynamic mode de-
composition (DMD) [30] searching for modes with a fixed
growth rate and oscillation frequency, forecastable compo-
nent analysis (ForeCA) [31] decomposing the signal in am-
plitudes optimized to forecasting, and multivariate empirical
mode decomposition (multivariate EMD) [32] aiming at the
extraction of common rotational modes. Further approaches
in the time-frequency domain are variational mode decom-
postion (VMD) [33], multivariate variational mode decompo-
sition [34] and a decomposition of multichannel nonstation-
ary multicomponent signals presented in [35]. These methods
pursue the same goal as DyCA, which is to extract multivari-
ate multicomponent signals, but they differ in their approach.
Our proposed method is not based in the time-frequency do-
main but rather focusing on the coupling of the components
in terms of differential equations.

Two other methods share the name dynamical compo-
nent(s) analysis. In [36] first a temporal and then kernelized
spatial PCA is performed to obtain dynamical components
of fMRI data. In [37] the subspace with maximal predictive
information is obtained using a Gaussian approximation of the
data.

B. ORGANIZATION OF PAPER
The paper is organized as follows. In Section II we deduce
DyCA in detail, discuss the properties and present the algo-
rithm. The application of DyCA to different kind of data sets
is presented Section III and a comparison to PCA and ICA is
shown. Finally we conclude our results in Section IV followed
by an Appendix providing the basic theorems required for the
derivation of DyCA.

II. DYNAMICAL COMPONENT ANALYSIS (DyCA)
A. ASSUMPTIONS AND GOAL
Starting point is a multivariate time series q(t ) ∈ RN with N
vector components and t representing the time in a discretized
manner: t = t1, t2, . . . , tT with T ≥ N . It is assumed that un-
der ideal conditions the signal q(t ) can be decomposed into
deterministic components

q(t ) =
n∑

i=1

xi(t )wi. (1)

In practice, however, the time series is often contaminated
with noise components

∑p
j=1 ξ j (t )ψ j , i.e.

q(t ) =
n∑

i=1

xi(t )wi +
p∑

j=1

ξ j (t )ψ j with n+ p ≤ N (2)

and wi, ψ j ∈ RN being linearly independent for i = 1, . . ., n
and j = 1, . . ., p. This assumption of linear independent com-
ponents leads to the above mentioned relation n+ p ≤ N .

The deterministic amplitudes xi(t ) are assumed to obey a
set of ordinary differential equations (ODE), of which m are
linear

ẋ1(t ) =
n∑

k=1

a1,kxk (t )

...

ẋm(t ) =
n∑

k=1

am,kxk (t ),

(3)

with m ≥ n
2 . The corresponding coefficient matrix,

A :=

⎡
⎢⎢⎢⎢⎣

a1,1 · · · a1,m a1,m+1 · · · a1,n

a2,1 · · · a2,m a2,m+1 · · · a2,n
...

. . .
...

...
. . .

...

am,1 · · · am,m am,m+1 · · · am,n

⎤
⎥⎥⎥⎥⎦ ,

︸ ︷︷ ︸
=: A1∈Rm×m

︸ ︷︷ ︸
=: A2∈Rm×(n−m)

(4)

can be written as indicated by two submatrices A = [A1,A2] ∈
Rm×n. The remaining n− m ODEs are non-linear, i.e.

ẋm+1(t ) = fm+1(x1(t ), x2(t ), . . . , xn(t ))

...

ẋn(t ) = fn(x1(t ), x2(t ), . . . , xn(t )),

(5)
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whereupon fm+1, . . ., fn are unknown, non-linear, smooth
functions. These functions are mentioned in this context to
fully represent the assumed dynamics. However, the proposed
algorithm is able to extract not only the amplitudes x1, . . . , xm

but also the amplitudes xm+1, . . . , xn although the non-linear
functions fm+1, . . . , fn remain unknown in our context. This
is achieved by considering only the linear differential equa-
tions (3).

The amplitudes ξ j (t ) are considered to be of stochastic
character. Based on these assumptions we are dealing with
stationary signals, non-stationarities can only be considered if
they occur in the stochastic components.

In terms of matrix notation we can rewrite (2) as

Q =W X +��, (6)

with

Q =

⎡
⎢⎣

∣∣ ∣∣ ∣∣
q(t1) q(t2) · · · q(tT )∣∣ ∣∣ ∣∣

⎤
⎥⎦ ∈ RN×T ,

W =

⎡
⎢⎣

∣∣ ∣∣ ∣∣
w1 w2 · · · wn∣∣ ∣∣ ∣∣

⎤
⎥⎦ ∈ RN×n,

X =

⎡
⎢⎢⎣

x1(t1) x1(t2) · · · x1(tT )
...

...
. . .

...

xn(t1) xn(t2) · · · xn(tT )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1(t )
...

xn(t )

⎤
⎥⎥⎦ ∈ Rn×T ,

(7)

as well as

� =

⎡
⎢⎣

∣∣ ∣∣ ∣∣
ψ1 ψ2 · · · ψp∣∣ ∣∣ ∣∣

⎤
⎥⎦ ∈ RN×p, and

� =

⎡
⎢⎢⎣
ξ1(t1) ξ1(t2) · · · ξ1(tT )

...
...

. . .
...

ξp(t1) ξp(t2) · · · ξp(tT )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ξ1(t )

...

ξp(t )

⎤
⎥⎥⎦ ∈ Rp×T .

As an additional condition we must assume that the data
matrix Q and its time derivative Q̇ are of full rank N . The
goal of DyCA is to perform a dimensionality reduction of
the signal q(t ) such that the underlying dynamics of the ODE
system are captured in the best possible way and hence the
deterministic part of the signal W X can be separated from the
stochastic part ��. The method strongly utilizes the fact that
the amplitudes xi(t ) representing the matrix X are governed
by a set of differential equations (3) and (5).

We would like to emphasize at this point that one does
not need to know neither the exact parameters ai,k of the
system, nor the dimensions n and m. Rather, after applying
DyCA we obtain not only estimates x̃i(t ) and w̃i for the actual
amplitudes xi(t ) and DyCA components wi, but also estimates
for the possibly unknown parameters ai,k , n and m. However,
to estimate the number n of differential equations we need the
additional condition that the submatrix A2 of the coefficient
matrix of the ODE (4) has full rank n− m.

To achieve those goals, we are seeking a generalized left
inverse W− ∈ Rn×N of W , i.e. W−W = In, such that

X =W−Q. (8)

Due to the assumption of linearly independent vectors
(modes) wi we can consider the rows in W− to be a set
of linearly independent projecting vectors {u�1 , . . ., u�n } (see
lemma IV.3). Hence, the amplitudes xi(t ) can be calculated by
the scalar product

xi(t ) = u�i q(t ) = q(t )�ui. (9)

The time derivative of (9) is given by

ẋi(t ) = q̇(t )�ui. (10)

DyCA aims at estimating these projecting vectors ui first and
approximating the corresponding modes wi in a second step.

B. DERIVATION OF DyCA
The basic idea of DyCA can be described as follows: Using
conditions (9) and (10), we fit the data to the linear part of the
ODE (3) in the Euclidean norm. This leads via a least squares
minimization problem to a generalized eigenvalue problem.
By solving this eigenvalue problem and introducing a suitable
threshold, we obtain an estimate for the number of ui for
which this linear approximation is well suited, i.e. for which
the error of the fitting is small, as well as an estimation for
those first ui themselves. The condition to the rank of A2 then
yields the missing ui. We will now derive that procedure in
detail.

By considering the linear differential equations (3), i.e.
ẋi(t ) =∑n

k=1 ai,kxk (t ) for i = 1, . . .,m, and inserting projec-
tions (9) and their time derivatives (10) we obtain

q̇(t )�ui =
n∑

k=1

ai,kq(t )�uk = q(t )�vi (11)

with vi :=∑n
k=1 ai,kuk for i = 1, . . . ,m.

For the estimation of the projecting vectors ui and vi we use
a least squares approach that is generally well-suited for data
with additional noise. We first define the error function

D(ui, vi ) = 〈‖q̇(t )�ui − q(t )�vi‖2〉
〈‖q̇(t )�ui‖2〉 (12)

for all i = 1, . . .,m with ‖ · ‖ denoting the Euclidean norm
and compute the approximation vectors ũi, ṽi as a solution of
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the least squares problem

ũ1, . . ., ũm,

ṽ1, . . ., ṽm

= arg min
u1,...,um∈RN

v1,...,vm∈RN

m∑
i=1

〈‖q̇(t )�ui − q(t )�vi‖2〉
〈‖q̇(t )�ui‖2〉 (13)

subject to the ui being pairwise linearly independent.1

We would like to highlight that for minimizing (13),
we have to minimize each of the m summands, i.e.
D(u1, v1), . . .,D(um, vm), while obeying the condition that
the ui are linearly independent. Since these summands are
each of the same nature, we neglect the index i for rea-
sons of simplicity and only examine a general error function

D(u, v) = 〈‖q̇(t )�u−q(t )�v‖2〉
〈‖q̇(t )�u‖2〉 for minima. Introducing the cor-

relation matrices

C0 = 〈q(t )q(t )�〉 = 1

T
QQ�

C1 = 〈q̇(t )q(t )�〉 = 1

T
Q̇Q�

C2 = 〈q̇(t )q̇(t )�〉 = 1

T
Q̇Q̇�

(14)

the error functions (12) can be rewritten as

D(u, v) = 〈(q̇(t )�u− q(t )�v)�(q̇(t )�u− q(t )�v)〉
〈(q̇(t )�u)�(q̇(t )�u)〉

D(u, v) = u�C2 u− 2 u�C1v + v�C0v

u�C2 u

D(u, v) = 1− 2 u�C1v − v�C0v

u�C2 u
. (15)

Variation of (15) with respect to v and setting zero yields

∂D

∂v
= 0 ⇒ 2 u�C1 = v�(C0 +C�0 )

C�1 u = C0v, (16)

since the correlation matrix C0 is symmetric. Variation with
respect to u we obtain

2(u�C2 u)v�C�1 = (2 u�C1v − v�C0v)u�(C2 +C�2 )

C1v = λC2 u (17)

since C2 = C�2 with

λ = 2 u�C1v − v�C0v

u�C2 u
. (18)

As we assumed the data matrix Q and its time derivative Q̇
to be of full rank N , the correlations matrices C0 and C2 are
positive definite and hence, regular with inverses C−1

0 and
C−1

2 . Inverting (15) to

v = C−1
0 C�1 u (19)

1Note that 〈c(t )〉 := 1
T

∑T
j=1 c(t j ) defines the time average of some vector

c(t ) ∈ RN over all time points t = t1, . . ., tT .

and inserting (18) into (16) leads to a generalized eigenvalue
problem for the projecting vectors u

C1C−1
0 C�1 u = λC2 u (20)

In case of singular matrices C0 and C2, i.e. if the data ma-
trix Q and its time derivative Q̇ are not of full rank N , the
original signal q(t ) has to be preprocessed by projecting into
an non-redundant subspace by PCA projection neglecting the
components with minimal contribution to the signal.

C. SOLVING THE LEAST SQUARES PROBLEM
By solving the generalized eigenvalue problem (19) we re-
ceive N eigenvalues λi, i = 1, . . .,N as well as N associated
eigenvectors ũi. Due to the symmetry of C1C−1

0 C�1 and the
positive definiteness of C2, all eigenvalues λi and thus also
the eigenvectors ũi are real. In addition, the ũi are linearly
independent and pairwise orthogonal in the scalar product
(·, ·)C2 and therefore form a basis of RN .2 Furthermore, we
immediately obtain N corresponding vectors ṽi from equa-
tion (19). Our task now is to find from these N candidates
(ũi, ṽi ) that one which actually minimizes the error function
D(u, v). In order to do so, we first sort the eigenvalues λi in
descending order

λ1 ≥ λ2 ≥ · · · ≥ λN (21)

and sort the ũi and ṽi accordingly. Considering again the
definition of λ in (18) one can easily notice that

D(u, v) = 1− λ (22)

which is obviously minimal for the largest eigenvalue λ1. All
in all, it holds that

min
u,v∈RN

D(u, v) = 1− λ1 (23)

arg min
u,v∈RN

D(u, v) = (ũ1, ṽ1). (24)

Through this insight, we now directly obtain the first m eigen-
vectors ũi of (20) with corresponding ṽi as solution of the
original least squares problem (13). It holds that

arg min
u1,...,um∈RN

v1,...,vm∈RN

m∑
i=1

D(ui, vi ) = (ũ1, . . ., ũm, ṽ1, . . ., ṽm) (25)

min
u1,...,um∈RN

v1,...,vm∈RN

m∑
i=1

D(ui, vi ) =
m∑

i=1

(1− λi ). (26)

D. PROPERTIES OF DyCA
1) EIGENVALUES λi AND ESTIMATION OF m
Considering (26) one can easily see that each single error
function D(ui, vi ) measures the quality of the fit with the help

2Note that each symmetric positive definite matrix B ∈ RN×N defines a
scalar product by (x, y)B = x�By for some vectors x, y ∈ RN .
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Algorithm 1: Dynamical Component Analysis.
1: function DyCAQ, α
2: Q̇← time-derivative of input signal
3: C0 ← 1

T QQ� �Compute auto-correlation of the signal
4: C1 ← 1

T Q̇Q� �Compute cross-correlation of the signal and its time-derivative
5: C2 ← 1

T Q̇Q̇� �Compute auto-correlation of the time-derivative
6: λ, ũ← solutions of C1C−1

0 C�1 u = λC2 u �solve generalized eigenvalue problem
7: Sort s.t. λ1 ≥ λ2 ≥ · · · ≥ λN

8: m̃← |{λi
∣∣ λi ≥ α}| �Estimate significant subspace for linear equations (3)

9: ṽi ← C−1
0 C�1 ũi �Calculate projection vectors for non-linear equations (5)

10: ñ← dim(span{ũ1, . . ., ũm̃, ṽ1, . . ., ṽm̃}) �Estimate dimensionality of significant subspace
11: W̃− ← [ũ1, . . . , ũm̃, ṽk1 , . . . , ṽkñ−m̃ ]� �Choose minimal spanning set of significant subspace Rñ

12: X̃ ← W̃−Q �Compute projected time-series
13: CX̃ ← 1

T X̃ X̃� �Compute auto-correlation of projected signal
14: W̃ ← 1

T QX̃�C−1
X̃

�Estimate pseudoinverse of W̃−

15: Q̃← W̃ X̃ �Compute reconstructed time-series
16: Ũ ← [ũ1, . . ., ũm̃]�
17: Ã← 1

T Ũ Q̇X̃�C−1
X̃

�Estimate coefficient matrix (4) of the ordinary differential-equation

18: return X̃ ,W̃ , Ã
19: end Function

of the corresponding eigenvalue λi:

min
ui,vi∈RN

D(ui, vi ) = D(ũi, ṽi ) = 1− λi, (27)

i.e. for eigenvalues λi ≈ 1 the linear approximation in terms
of (3) is well-suited. These eigenvalues correspond to ampli-
tudes x̃i(t ) = q(t )�ũi with its time derivative ˙̃xi(t ) approxi-
mating the left-hand side of one of the assumed linear differ-
ential equations (3). The right-hand side is approximated by
q(t )�ṽi due to equation (11) calculated by the eigenvectors
ũi and equation (19). The number m̃ of eigenvalues λi close to
one is an estimate for the actual number m of linear differential
equations occurring in the dynamic model. For a threshold
value α > 0 it holds:

m̃ = ∣∣{λi
∣∣ λi ≥ α}

∣∣ (28)

2) ESTIMATION OF THE PARAMETER n
Furthermore we now also get an estimate for the parameter
n, which we call ñ. In order to explain the idea behind this
estimation procedure, however, we first return to the original
ui and vi from (9) and (11). In consequence of the linear
independence of {u1, . . ., un} this set forms a basis of an
n-dimensional subspace of RN . Due to the definition of the
vi =

∑n
k=1 ai,kuk , i = 1, . . .,m as a linear combination of the

{u1, . . ., un} it is obvious that

{v1, . . ., vm} ⊆ span{u1, . . ., un}. (29)

As a result of the assumption that the matrix A2 of the ODE
coefficient matrix A = [A1,A2] has full rank n− m, it fol-
lows that rank(A) ≥ n− m. This guarantees the linear inde-
pendence of at least n− m vectors of the {v1, . . ., vm} (see
lemma IV.4). Furthermore, the condition to the rank of A2

indicates that n− m elements of the set of vectors vi cannot be
represented by a linear combination of only the first m vectors
ui but also require contributions from um+1, . . ., un. As a result
of lemma IV.5 and the Steinitz exchange lemma IV.6 as well
as the condition m ≥ n

2 it is possible to replace um+1, . . ., un

with suitable, linearly independent vi. After renumbering the
vi appropriately the following holds:

span{u1, . . ., un} = span{u1, . . ., um, vm+1, . . ., vn} ∼= Rn.

(30)
For the projection vectors ũi, ṽi with i = 1, . . ., m̃ obtained

from DyCA, we also pursue the idea of considering the ṽi as a
replacement for the missing ñ− m̃ vectors ũi and thus obtain
a basis of an ñ-dimensional subspace of RN consisting of the
m̃ pairs of projection vectors ũi and suitable ṽi. Therefore we
consider the linear hull of all ũi, ṽi

span{ũ1, . . ., ũm̃, ṽ1, . . ., ṽm̃}, (31)

that spans an ñ-dimensional subspace of RN and define

ñ := dim(span{ũ1, . . ., ũm̃, ṽ1, . . ., ṽm̃}) (32)

as an estimate of n.

E. ESTIMATION OF THE DyCA COMPONENTS wi AND
RECONSTRUCTION OF THE SIGNAL q(t )
Reconsidering (31) and (32) we obtain a basis for the relevant
subspace by choosing a minimal subset of vectors ṽi linearly
independent to all ũi, spanning Rñ, and renaming the selected
ṽi as ũm̃+1, . . ., ũñ, i.e.

span{ũ1, . . ., ũm̃, ũm̃+1, . . ., ũñ} ∼= Rñ (33)

In the following we transpose the vectors ũ1, . . ., ũñ and define
them as row vectors of a matrix W̃− ∈ Rñ×N .
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The estimates x̃i(t ) of the amplitudes xi(t ) of (2) are given
by

x̃i(t ) = q(t )�ũi (34)

or in matrix notation

X̃ = W̃−Q ∈ Rñ×T . (35)

To estimate the DyCA components wi of (2), we compute a
right inverse W̃ ∈ RN×ñ of W̃− such that the data matrix Q
(or resp. the signal q(t )) is represented best in the Euclidean
norm. This leads to solving again a least squares problem

arg min
w̃1,...,w̃ñ∈RN

〈‖q(t )−
ñ∑

i=1

x̃i(t )w̃i‖2〉 (36)

that reads

arg min
W̃∈RN×ñ

‖Q− W̃ X̃‖2F (37)

in matrix notation with ‖ · ‖F denoting the Frobenius norm.
Defining CX̃ := 1

T X̃ X̃� ∈ Rñ×ñ,

W̃ = 1

T
QX̃�C−1

X̃
(38)

is a solution of (37) that reads

w̃i =
ñ∑

j=1

(
C−1

X̃

)
i j
〈̃x j (t )q(t )〉 (39)

in vector notation (see theorem IV.7). Please note that the
inverse C−1

X̃
exists since the choice of the minimal subset of ṽi

leads to a regular correlation matrix CX̃ . The column vectors
w̃i of W̃ are called DyCA components. By

W̃−W̃ = 1

T
W̃−QX̃�C−1

X̃

= 1

T
X̃ X̃�C−1

X̃

= CX̃C−1
X̃

= Ĩn

one can easily see that W̃− indeed is a left inverse of W̃ .
The signal q(t ) can then be reconstructed by

q̃(t ) =
ñ∑

i=1

x̃i(t )w̃i (40)

or Q̃ = W̃ X̃ in matrix notation.
In addition, by solving a third least squares problem

arg min
Ã∈Rm̃×ñ

‖Ũ Q̇− ÃX̃‖2F (41)

with Ũ consisting of the first m̃ rows of W̃−, i.e. of the vectors
ũ�1 , . . ., ũ�m̃ , we obtain an estimation of the ODE parameters
ai,k of (3) by the solution

Ã = 1

T
ŨQ̇X̃�C−1

X̃
. (42)

FIGURE 1. The results of DyCA and PCA on icEEG data recorded during a
seizure, 3 dimensions of every subspace are drawn, color indicates time
evolution.

FIGURE 2. Eight second sample of motion data recorded during jogging,
subject: male, weight: 102 kg, height: 1,88 m, age 46 years, reconstructed
signal using DyCA (red) and raw signal (black) for comparison.

F. DyCA ALGORITHM
Overall we have deduced and analyzed the Algorithm 1.

III. EXAMPLE APPLICATIONS
In this section data sets from various origins are investigated
using DyCA. These examples came from different scientific
fields and are intended to illustrate the usefulness of DyCA
as a signal processing tool. We show how the properties of
DyCA described in Section II-D can be used to gain further
insights into the data sets studied.

A. icEEG-DATA
Four intracranial EEG (icEEG) recordings of focal epileptic
seizures recorded with 512 or 1024 samples per second by 111
to 165 sensors are investigated with DyCA. In all recordings
we obtained two eigenvalues close to 1 (λ1 ≈ 0.88 and λ2 ≈
0.86) and a clear structure of the trajectories during seizure.
To construct a projection-matrix W̃−, the vectors ũ1, ũ2 and ṽ1

were chosen ((31), (32) and (35)). The use of this projection
allows an enormous reduction of the dimensionality from 165
to only 3 dimensions. Fig. 1 shows the trajectories for one
typical dataset comparing DyCA and PCA. The structure of
the signal is obviously better observable by DyCA than by
PCA. We did not include ICA trajectories, since we could
not find any clear structured trajectories out of the numerous
possible combinations of ICA-amplitudes.
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FIGURE 3. The results of different dimensionality reduction methods on motion sense data recorded during jogging, 3 dimensions of every subspace are
drawn, color indicates time evolution.

The analysis of EEG-data recorded with 256 samples per
second by 25 sensors during an epileptic seizure was the
motivating application to introduce DyCA in the first place,
see [2]. We demonstrated the application of DyCA as a suit-
able preprocessing tool for dimension reduction, similar to the
above mentioned analysis of icEEG data.

In [3] the eigenvalues (Property II-D1) were used as a
feature to classify windows of the time series as seizure or
non-seizure events. The rationality behind this was motivated
by [38] and [39] suggesting that epileptic seizures exhibit
Shilnikov chaos. A system giving rise to Shilnikov chaos can
be described by a set of ordinary differential equations (ODE),
as formulated in Section II with (2) and (3) with two linear and
one non-linear ODE. This assumed form of the ODEs was
confirmed by the resulting eigenvalues with the two largest
generalized DyCA eigenvalues during seizure were found to
be close to 1.

Another example of the application of DyCA on EEG data
is given in [40]. Different approaches are investigated to test
multivariate EEG data for determinism by the Kaplan-Glass
determinism test [41]. The study demonstrated that DyCA is
an efficient way to preprocess the data for the determinism test
providing evidence for deterministic chaos in certain types of
epileptic seizures.

B. MOTION SENSE DATASET
In this section the application of DyCA to a motion sense
dataset publicly available [42] is presented. The data consists
of sensor measurements with smartphones’ accelerator and
gyroscope sensors during various activities. The time series
is 11-dimensional and recorded at 25 samples per second.
During some activities, e.g. jogging, the recorded motion
can be described as being quasi-periodic (Fig. 2, black line).
Therefore we assume the data can be described by a system
of (non-)linear ordinary differential equations as given by (2)
and (3). This hypothesis is tested by applying DyCA to the
data.

As a preprocessing step the signals are high-pass filtered
with a cut-off frequency of 0.5 Hz. The time series is par-
titioned into non overlapping windows of 8 seconds length.
The projections of DyCA, PCA and ICA are computed on the

FIGURE 4. Time series generated by SDE, real part of the time series.

first window of the time series. They are used in a second step
to project all windows of the time series. The results for a
48 s long cutout (leaving out the first and last window) of the
original time series are displayed in Fig. 3. Note that due to
illustration limitations, only the first three dimensions of the
subspace are drawn. The dimension of the subspace obtained
by DyCA depends on the chosen threshold for the eigenvalues
according to (31). For this example the threshold was chosen
to include the three eigenvalues closest to 1. The structure of
the trajectories obtained by DyCA show a more intelligible
structure than those obtained by PCA and ICA.

Using the inverse projection as described in Section II-E,
a signal reconstructed from the subspace is obtained. This
reconstruction can be seen for one window in Fig. 2 by the red
dotted line and demonstrates a good match with the original
signal (black line, relative error of reconstruction: 84%). I.e.
fitting the linear part (3) of the underlying dynamics leads to
a possible decomposition (1) of the multivariate data. When
calculating the relative error of the reconstruction for all sub-
jects and windows of the dataset, the reconstruction by the
deterministic amplitudes reproduces on average 74% of the
original data (802 windows of 8 seconds length, mean value:
74%, standard deviation: 8%).

C. EARTHS MAGNETIC FIELD REVERSAL
In this example a univariate time series generated by a model
derived in [43] based on a stochastic differential equation
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FIGURE 5. DyCA, ICA and PCA trajectories of 3 successive windows of the magnetic time series, 3 dimensions of every subspace are drawn, color
indicates time evolution.

(SDE) is investigated. The real-world background for this
model is the irregular switching behavior of the earths mag-
netic field discovered by paleomagnetic studies.

A similar switching behavior could be reproduced with
an experimental turbulent dynamo in [44]. Related to this
experiment the model in [43] was derived. In this model the
magnetic field A is assumed as the sum of two components, a
dipolar D and a quadrupolar Q. The field A is then defined as
A = D+ iQ. The two modes are governed by the following
differential equation:

Ȧ = μA+ vĀ+ β1 A3 + β2 A2Ā+ β3 AĀ2 + β4Ā3 + f .
(43)

The stochastic forcing term f is used to model turbulent fluc-
tuations on the dynamo and is given by:

f = (br1ζ1 + ibr3ζ3) Re(A)+ (br2ζ2 + ibr4ζ4) Im(A)
FIGURE 6. Eigenvalues of DyCA calculated on each window of 6000
samples length (12 seconds).

VOLUME 1, 2020 237



UHL ET AL.: SUBSPACE DETECTION AND BLIND SOURCE SEPARATION OF MULTIVARIATE SIGNALS BY DyCA

FIGURE 7. The results of different dimensionality reduction methods on ECG-data data recorded from healthy patients, 3 dimensions of every subspace
are drawn, color indicates time evolution.

Variables ζi are Gaussian random variables. The other param-
eters are given by μ = 1, v = 0, β1 = −0.4605i, β2 = −1+
0.12i, β3 = 0.4395i, β4 = −0.06− 0.12i, br1 = br4 = 0.25
and br2 = br3 = 0.07.

The simulated time series (component D) is shown in Fig. 4
with the typical stochastic switching between two states.

Takens time-delay coordinates [45] have been used to trans-
fer the signal into a multi-variate signal and, as in the pre-
vious section, the time series is partitioned into three non
overlapping windows of 3333 samples length. The projections
are obtained by applying DyCA, ICA and PCA on the three
windows, the results are shown in Fig. 5. For this example,
the ICA algorithm used differential entropy (negentropy) as a
measurement of non-gaussianity. For every window the DyCA
trajectories (Fig. 5(a), 5(d), 5(g) have a clear structure in con-
trast to varying results obtained by ICA (Fig. 5(b), 5(e), 5(h).
Furthermore DyCA does not require the selection of suitable
components for each window to achieve satisfactory results.

The PCA trajectories (Fig. 5(c), 5(f), 5(i) show a different
but similar structure for each window. But they do not show
the transition between two different states as clearly as shown
in the DyCA case. This characteristic is “better” represented
by DyCA due to its aim of describing the dynamics.

D. ECG-DATA
Finally an ECG data set publicly available [46] is investigated.
It contains electrocardiograms of various patients recorded at
500 samples per second with a conventional 12 lead ECG
setup. For this example ECG-recordings from healthy subjects
are used.

As a pre-processing step, linear trends were removed from
the signal. The time series is partitioned into non overlapping
windows of 6000 samples (12 seconds) length. For each of
these windows the DyCA-algorithm is applied and the three
largest eigenvalues are displayed in Fig. 6.

For each window we obtain one eigenvalue close to 1 and
a second eigenvalue in the interval [0.55; 0.7]. This indi-
cates a possible modeling based on a set of coupled ODEs
with one linear equation. One of the first models based on
a set of ODEs was developed by Zeeman [47] considering a
three-dimensional set with two linear equation, and has been

developed into different directions, the most prominent one
by McSharry et al. [48], but also other interesting approaches,
like an extension of the Zeeman model [49] and a model based
on fractional dynamics [50]. None of these models has exactly
one linear ODE and therefore do not confirm our finding at
first sight. This discrepancy will be investigated in future work
and might be due to a linear approximation of the non-linear
equations or even the potential to model the signal with an
alternative set of coupled differential equations.

The projections obtained by DyCA (Fig. 7) show a distinc-
tive pattern, so that we conclude that the DyCA is a suitable
tool for reducing the dimensionality of ECG data. The pro-
jection obtained by PCA shows a similar pattern, whereas the
ICA projection looks quite different. This might be due to the
choice of projection vectors, selected by visual inspection of
the trajectory in phase space.

IV. CONCLUSION
Dynamical Component Analysis (DyCA), a method to de-
compose a multivariate signal into time-dependent amplitudes
and corresponding multivariate modes (40), was presented.
Thereby the amplitudes are estimated with the goal of opti-
mally obeying a set of coupled ODEs. If the signal consists
of linear independent deterministic sources and noisy compo-
nents and if the underlying model of the signal has more linear
than non-linear differential equations, the relevant subspace
of the signal can be detected by DyCA representing a blind
source separation. The theory behind the method was shown
and the corresponding algorithm is presented.

The presented examples demonstrate a wide variety of pos-
sible applications of DyCA in different scientific fields:
� dimension reduction to obtain low-dimensional trajecto-

ries describing the dynamics
� the DyCA eigenvalue spectrum as a feature for classifi-

cation tasks
� filtering the signal by eliminating noisy components
� embedding univariate data by delay coordinates and

DyCA projections
� data driven approach to model signals.
With this broad field of possible applications we are

convinced that DyCA represents a valuable alternative tool
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besides PCA and ICA to help researches to establish a deeper
insight in their investigation of complex systems.

APPENDIX
A. BASICS AND FURTHER THEORY
In this section we provide the basic theorems that are required
for the derivation of DyCA. First of all, we want to remind the
reader of the definition of a generalized inverse.

Definition IV.1 (Generalized Inverse): Let A ∈ Rn×m. Then
A− ∈ Rm×n is called generalized inverse of A, if the following
holds:

AA−A = A

For each matrix A ∈ Rn×m there exists always a generalized
inverse that is, however, not necessarily unique. If A−A = Im

holds in addition to the above definition, we call A− a (gen-
eralized) left inverse of A. If on the other hand it holds that
AA− = In, then A− is called (generalized) right inverse of A.
If A is regular, then A− = A−1. Regarding the rank of A and
A− the following theorem holds:

Theorem IV.2: Let A− ∈ Rm×n be a generalized inverse of
A ∈ Rn×m. Then:
� rank(A) = rank(AA−) = rank(A−A)
� rank(A) ≤ rank(A−)
By the help of the last theorem it immediately follows that:
Lemma IV.3: Let n ≥ m and let A ∈ Rn×m have pairwise

linearly independent column vectors ai, i = 1, . . .,m. Then
the row vectors b�i , i = 1, . . .,m of a generalized left inverse
A− of A are also linearly independent.

Proof: It is obvious that the matrix A is always of rank m
due to its linearly independent columns ai, i = 1, . . .,m. By
theorem IV.2, for a generalized left inverse A− of A it holds
that

rank(A−) ≥ rank(A).

Since A− ∈ Rm×n has the maximum rank m, it holds that
rank(A−) = m and hence, A− has m linearly independent row
vectors b�i . �

The last lemma obviously holds for the matrix W as defined
in (7) as its columns wi, i = 1, . . ., n, are per definition lin-
early independent. Hence, the row vectors u�i , i = 1, . . ., n, of
a generalized left inverse W− are also linearly independent.
We would now like to provide an explanation for the linear
independence of at least n− m of the vi.

Lemma IV.4: Let A = [A1,A2] as defined in (4) with
rank(A2) = n− m. Then at least n− m of the vi as defined
in (11) are linearly independent.

Proof: To prove the above statement we write the vi =∑n
k=1 ai,kuk , i = 1, . . .,m in matrix notation:

V = UA�

with A ∈ Rm×n as in (4), U := (W−)� ∈ RN×n consisting of
the vectors u1, . . ., un, and V ∈ RN×m with the column vec-
tors v1, . . ., vm. Furthermore it holds that rank(U ) = n and we
additionally assume that rank(A) = n− m. Then rank(A�) =

rank(A) = n− m. With Sylvester’s rank inequality it follows
that

rank(U )︸ ︷︷ ︸
=n

+ rank(A�)︸ ︷︷ ︸
=n−m

−n ≤ rank(UA�)

≤ min{rank(U ), rank(A�)}︸ ︷︷ ︸
=n−m

thus n− m ≤ rank(UA�) ≤ n− m and hence, rank(UA�) =
rank(V ) = n− m. Therefore V has n− m linearly indepen-
dent column vectors vi. The total amount of linearly inde-
pendent vi depends on the actual rank of A that is minimum
n− m and maximum m. Indeed, it holds that if rank(A) = j,
j = n− m, . . .,m, then j of the vi are linearly independent
which immediately follows by Sylvester’s rank inequality as
well.

The next lemmas state the prerequisites for exchanging
um+1, . . ., un with suitable vi in (30).

Lemma IV.5: Let Y be a K-vector space, let y1, . . ., yn ∈
Y as well as z =∑n

i=1 λiyi ∈ Y with λ1 �= 0. Then
span{y1, . . ., yn} = span{z, y2, . . ., yn}.

Lemma IV.6 (Steinitz exchange lemma): Let Z =
{z1, . . ., zm} and Y = {y1, . . ., yn} be two finite subsets of
a K-vector space and let z1, . . ., zm be linearly independent.
If Z ⊆ span{y1, . . ., yn}, it holds that m ≤ n and m elements
of Y can be exchanged for the elements of Z with suitable
numbering y1, . . ., ym in such a way that:

span{z1, . . ., zm, ym+1, . . ., yn} = span{y1, . . ., yn}
In order to explain the solution of the least squares prob-

lems (37) and (41) we briefly recall the theory of overde-
termined linear systems of equations and linear regression.
Considering a matrix A ∈ Rn×m and a vector b ∈ Rn, a linear
systems of equations

Ax = b

does in general not have a solution if it is overdetermined,
i.e. if n > m. Therefore one tries to find a vector x ∈ Rm by
means of linear regression, such that Ax = b is still fulfilled
as closely as possible. For this we write

Ax ≈ b

and intend to determine the unknown x ∈ Rm in such a way
that the vector Ax ∈ Rn has the smallest possible distance
from the vector b ∈ Rn in the Euclidean norm. Hence, we
want to find an x ∈ Rm that solves

min
x∈Rm
‖b− Ax‖. (44)

The following theorems answer the questions about existence
and uniqueness of a solution of the linear regression prob-
lem (44).

Theorem IV.7: A vector x̂ ∈ Rm is a solution of the linear
regression problem (44), if and only if it suffices the (Gaus-
sian) normal equation

A�Ax = A�b (45)
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Theorem IV.8: The linear regression problem (44) always
has a solution. The solution is unique if rank(A) = m.

Problem (37) actually intends to solve the linear system of
equations Q = W̃ X̃ that can be considered to be overdeter-
mined by regarding its transpose:

Q� = X̃�W̃�

According to theorem IV.7 we multiply this equation by 1
T X̃

yielding

1

T
X̃ Q� = 1

T
X̃ X̃�W̃�.

As CX̃ := 1
T X̃ X̃� is invertible, we obtain W̃� = 1

T C−1
X̃

X̃Q�.
Transposing a second time yields

W̃ = 1

T
QX̃�C−1

X̃
.

It can be shown by Sylvester’s rank inequality that
rank (X̃�) = ñ and according to theorem IV.8 the solution is
unique. Problem (41) can be solved analogously.
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