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ABSTRACT In Monte Carlo based importance sampling estimations, Effective Sample Size (ESS) is an im-
portant index of simulation efficiency, since ESS can measure the divergence between the target distribution
and the proposal distribution effectively, and thus is widely used to decide whether resampling is needed
or not. Among several well-known variants of ESS, the Shannon entropy based perplexity has been widely
used. In this paper, however, we propose a new ESS function (E-MIM) by using the message importance
measure (MIM) instead of Shannon entropy. We show that E-MIM satisfies all of the five conditions
for ESS generalizations. We also propose an MIM based divergence and investigate its approximation to
E-MIM. Moreover, we present a resampling threshold selection method for the ratio between E-MIM and
the corresponding actual sample size. Finally, we investigate the performance of E-MIM and other ESS
functions through numerical simulations. By a particle filter experiment, we show that E-MIM outperforms
other ESS functions in terms of mean-squared error.

INDEX TERMS Effective sample size, message importance measure, particle filter, sequential Monte Carlo.

I. INTRODUCTION
Sequential Monte Carlo (SMC), also called bootstrap filter or
particle filter, is an important tool for Bayesian inference [1],
which is widely applied in statistics [2]–[4], signal processing
[5]–[7] and economics [8]–[10]. One of the key factors for the
success of the SMC method is the use of resampling, with-
out which the SMC method will suffer from serious weight
degeneracy [11]–[13]. However, the resampling method also
introduces some side effect, such as loss of diversity in parti-
cles and extra computational cost [12]. Therefore, resampling
should be performed only when it is necessary, and it is impor-
tant to schedule the sampling process and determine whether
resampling is need or not [11]. In particular, existing sched-
ules mainly fall into two categories, deterministic ones and
adaptive ones [11]. In a deterministic schedule, resampling is
used at some fixed time epochs (usually with equal intervals)
[11]; in an adaptive schedule, resampling is performed only
if the effectiveness of current particles is below a certian

threshold [11]. Due to its flexibility, most adaptive schedules
perform better than deterministic schedules [14].

Effective Sample Size (ESS) is a widely used criteria to
measure the efficiency of different Monte Carlo methods [13],
[15]–[19], such as importance sampling (IS) and Markov
Chain Monte Carlo (MCMC). ESS is also referred to as the
measurement of particle degeneracy (MPD) in particle filter-
ing [20]. ESS is theoretically defined as the equivalent number
of samples independently drawn from the target distribution,
performing the same efficiency with the estimation obtained
by IS or MCMC methods [12]. One explicit definition of ESS
in mathematics is the ratio between the variance of the ideal
samples directly drawn from the target distribution, and the
variance of IS or MCMC estimators [18].

In general, it is difficult to obtain ESS explicitly [11],
[12]. In importance sampling, a well-known approximation is
ÊSS = (

∑n
n=1 w̄2

n )−1 [11]–[13], [21], in which w̄n is the nor-
malized importance weights, for n = 1, 2, . . . , N . Although
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widely used in practice, the derivation of this approximation
involves several steps and assumptions, which prohibits accu-
rate estimations of ESS, except in some specific cases [12].
It was discussed in [22] what undesirable consequences will
be caused using the expression and the authors also showed
even in toy models, assumptions involved in the deviation can
be unrealistic, leading to poor approximation results .For this
reason, several other expressions of ESS have been proposed.
For instance, perplexity was proposed by using the discrete
entropy [23] of the normalized importance weights [3], [14],
[24]. Moreover, three approximation formulas were proposed
in [25], based on the minimum variance rule and the min-
imum bias rule, respectively. In [26], the authors defined a
family of ESS functions called p-ESS controlled by a pa-
rameter p > 0, and proved that the standard approximation
ÊSS = (

∑n
n=1 w̄2

n )−1 is a special case of p-ESS with p = 2 .
Based on aforementioned considerations on ESS, the gen-

eralized effective sample size (G-ESS) was proposed, and
five necessary conditions for G-ESS functions were presented
[12]. To be specific, each ESS function should fully charac-
terize the divergence between the proposal distribution and
the target distribution of IS methods [12]. It has been shown
that in certain scenarios, there exist differences among the
performances of different ESS functions [12].

Considering the application of discrete entropy in the as-
sessment of ESS [12], [14] and adaptive importance sampling
[24], [27], it is promising to use information theory tools in
SMC. Message importance measure was introduced to deal
with minority subsets in big data [28]. Different from Shan-
non entropy [29] and Renyi entropy [30], MIM adopted an
exponential form of probability to emphasize the influence
of the small probability events, and used a positive impor-
tance coefficient ω̄ to enable MIM with more flexibility [28].
Several recent results confirmed the applications of MIM in
various scenarios and showed that MIM could focus on dif-
ferent probability events through certain parameter selection
[31]. By generalizing the domain of the importance coef-
ficient, it has been shown that the parameter ω̄ acts as a
switch of user’s interests. That is, when ω̄ > 0, MIM focuses
on small-probability events and when ω̄ < 0, MIM focuses
on big-probability events [32]. Since sampling can also be
considered as the process of collecting the information of the
target distribution, MIM would also be a promising method in
resampling. In this paper, therefore, we propose an effective
sample size measure based on the message importance mea-
sure, which is referred as E-MIM. E-MIM is a new family of
ESS functions with an adjustble parameter α. We prove that
E-MIM satisfies all of the five conditions for the generalized
effective sample size, and explore its relationship with former
ESS functions. Furthermore, inspired by the K-L divergence
based on the Shannon entropy, we propose a MIM divergence
and show its approximation to E-MIM.

The rest of this paper is organized as follows. First, we
present a brief introduction of importance sampling and some
widely used ESS functions in Section II. Section III present
the definition of E-MIM. In Section IV, the properties of

E-MIM are discussed. Then, we explore the relationship be-
tween E-MIM and former ESS functions in Section V. In
Section VI, we present a threshold selection method of E-
MIM to determine the time for resampling. Some numerical
results are given in Section VII. Finally, we complete the
paper with conclusions in Section VIII.

II. IMPRTANCE SAMPLING AND EFFECTIVE SAMPLE SIZE
In this section, we present a brief introduction of importance
sampling and effective sample size.

Let us denote the target distribution as π̄ (x) ∝ π (x) for x ∈
X , which is known up to a normalizing constant. We denote
h(x) as a square-integrable function on X . We define

I =
∫
X

h(x)π̄ (x)dx (1)

and shall approximate the integral through the Monte Carlo
methods. We draw N samples x1, x2, . . . , xN from π̄ indepen-
dently and approximate I by

Î = 1

N

N∑
n=1

h(xn). (2)

However, it is usually difficult to sample from the target
distribution π̄ (x) directly. Thus, we shall draw N samples
x1, x2, . . . , xN from a simpler proposal distribution q(x) in-
stead. According to the importance sampling, we assign each
sample with the weight wn = π (xn)/q(xn), n = 1, . . . , N . By
using the following normalized importance weight

w̄n = wn∑N
n=1 wn

n = 1, . . . , N, (3)

the approximation of the IS estimator can be expressed as

Ĩ =
N∑

n=1

w̄nh(xn) ≈ I. (4)

Generally speaking, the performance of Ĩ will be not so
good as Î , since the samples are not drawn directly from
the target distribution π̄ (x). In practical implementations [7],
[21], [27], therefore, it is necessary to measure the loss in
efficiency when IS methods are used [12]. To this end, the
Effective Sample Size (ESS) was defined as the ratio between
the variances of the two approximation results [33]. That is,

ESS = N
Varπ (Î )

Varq(Ĩ )
. (5)

ESS measures the equivalent number of samples needed to
be drawn directly from π̄ (x) to achieve the same efficiency
as that of the IS estimator, which draws N samples from
the proposal distribution q(x). Since the definition is related
with both the target distribution and proposal distribution, as
well as the function h(x), it is generally difficult to obtain
the theoretical value of ESS [11]. Thus, approximation based
methods are used as alternative solutions in practice.

The most popular approximation for ESS is [11], [12], [34]

ÊSS = 1∑N
n=1 w̄2

n

� P(2)
N (w̄).

(6)
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Another approximation method referred to as the perplexity

ÊSS = 2H (w̄)

� PerN (w̄),
(7)

used the discrete entropy of the following normalized weights

H (w̄) = −
N∑

n=1

w̄n log2 w̄n. (8)

More recently, a maximum normalized weight based ESS
function was proposed as [12], [14],

ÊSS = 1

max[w̄1, . . . , w̄N ]

� D(∞)
N (w̄).

(9)

As is shown in [12], this method outperforms the ÊSS =
(
∑n

n=1 w̄2
n )−1 measure in most cases.

The symbols, P(2)
N (w̄), PerN (w̄) and D(∞)

N (w̄) above follow
the statement in previous literatures [12], to distinguish differ-
ent approximation functions of ESS.

III. THE DEFINITION OF E-MIM
In this Section, we present the proposed E-MIM method and
illustrate its relationship with MIM.

A. MIM-BASED EFFECTIVE SAMPLE SIZE
Definition 1: For a given set of normalized importance
weights w̄ = [w̄1, . . . , w̄N ] and importance coefficient α ∈
R, the message importance measure based effective sample
size (E-MIM), is defined as

EN (w̄, α) = − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)
. (10)

B. RELATIONSHIP WITH MIM
For a discrete probability distribution {p1, p2, . . . , pN }, and
a chosen importance coefficient ω̄, the message importance
measure, or MIM, is defined as [28]

L(p, ω̄) = log
N∑

i=1

pi exp(ω̄(1 − pi )). (11)

Since MIM can also be expressed as

L(p, ω̄) = log
N∑

i=1

pi exp (ω̄(1 − pi ))

= log

(
exp(ω̄)

N∑
i=1

pi exp(−ω̄pi )

)

= log

(
N∑

i=1

pi exp(−ω̄pi )

)
+ ω̄,

(12)

E-MIM can be expressed in terms of MIM by

EN (w̄, α) = − Nα

L(w̄, Nα) − Nα
. (13)

IV. PROPERTIES OF E-MIM
In this section, we investigate the property of E-MIM.

A. SYMMETRY
For any permutation of the normalized weights w̄ =
[w̄1, . . . , w̄N ], E-MIM does not change in value, i.e.

EN (w̄, α) = EN (w̄′, α), (14)

in which w̄′ = [w j1, . . . ,w jN ], holds true for any possible set
{ j1, j2, . . . , jN } = {1, 2, . . . , N}.

B. MAXIMUM CONDITION
E-MIM achieves its maximum value N if α < 1 and w̄∗ =
[1/N, . . . , 1/N]. That is

EN (w̄∗, α) = N ≥ EN (w̄, α). (15)

C. MINIMUM CONDITION
When w̄( j) = [w̄1 = 0, . . . , w̄ j = 1, . . . , w̄N = 0], E-MIM
reaches the mininum value 1, i.e.,

EN (w̄( j), α) = 1 ≤ EN (w̄, α). (16)

D. UNIQUENESS OF EXTREME VALUE
If α < 1, E-MIM achieves its maximum value if and only if
w̄ = w̄∗. E-MIM achieves its minimum value 1 if and only if
w̄ = w̄( j), j = 1, 2, . . . , N .

E. STABLITY– INVARIANCE OF THE RATE ESS/N
We consider a vector w̄ = [w1, . . . ,wN ] ∈ RN and a vector

v̄ = [v1, . . . , vMN ] ∈ RMN , M > 1, (17)

which is a normalized repetition of w̄ by M times. That is

v̄ = 1

M
[w̄, . . . , w̄]︸ ︷︷ ︸

Mtimes

. (18)

Since we have
∑MN

n=1 v̄n = 1
M [M

∑N
n=1 w̄n] = 1, the E-

MIM would satisfy
EN (w̄, α)

N
= EMN (v̄, α)

MN
(19)

EN (w̄, α) = 1

M
EMN (v̄, α). (20)

Remark 1: The properties from A to E are five require-
ments that a G-ESS function should satisfy [12]. Further,
properties B and C show an optimistic approximation of
the theoretical value [12]. When the proposal distribution
is the same as the target distribution, i.e., π̄ (x) = q(x), it
is clear that w̄ = w̄∗ and ESS = N , yet the converse is
not always true, i.e., even if w̄ = w̄∗, the proposal distribu-
tion can be different from the target distribution. Therefore,
ESS ≤ N holds ture in theory. So E-MIM gives an optimistic
approximation in the maximum condition. The other ex-
treme case is when w̄( j) = [w̄1 = 0, . . . , w̄ j = 1, . . . , w̄N =
0], j = 1, . . . , N , i.e., w̄n = 0, for n 
= j, and w̄ j = 1. The
best possible occasion is that the j-th sample is directly drawn
from π̄ (x), i.e., π̄ (x j ) = q(x j ), thus ESS ≤ 1. So E-MIM also
gives an optimistic approximation in the minimum condition.

F. NON-DECREASING IN COEFFICIENT α

For a given normalized weights w̄ = [w̄1, . . . , w̄N ], E-MIM is
monotonically non-decreasing with importance coefficient α.
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Specially, despite when w̄ is uniformly distributed regardless
of zero elements, E-MIM is monotonically increasing with
importance coefficient α.

Remark 2: Property F suggests that the importance coeffi-
cient α characterizes the optimism level of approximation of
ESS or the tolerance for the divergence between the proposal
distribution and the target distribution. More specifically, α

can be a good parameter to balance the approximation and
divergence tolerance between π̄ (x) and q(x).

The proofs of properties A-F are shown in Appendix A.

V. RELATIONSHIP WITH OTHER ESS FUNCTIONS
In this section, we investigate the relationship between E-
MIM and other measures, including P(2)

N (w̄), D(∞)
N (w̄) and

PerN (w̄).

A. WITH COEFFICIENT α = 0
Theorem 1: If α = 0, E-MIM reduces to P(2)

N (w̄).
Proof:

lim
α→0

EN (w̄, α) = − lim
α→0

Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)

= − lim
α→0

N
∑N

n=1 w̄n exp(−Nαw̄n)

−N
∑N

n=1 w̄2
n exp(−Nαw̄n)

= 1∑N
n=1 w̄2

n

. �

(21)

B. WHEN COEFFICIENT α → −∞
Theorem 2: If α = −∞, E-MIM reduces to D(∞)

N (w̄).
Proof:

lim
α→−∞ EN (w̄, α)

= − lim
α→−∞

Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)

= lim
α→−∞

∑N
n=1 w̄n exp(−Nαw̄n)∑N
n=1 w̄2

n exp(−Nαw̄n)

= lim
α→−∞

∑N
n=1 w̄n exp(−Nα(w̄n − max[w̄1, . . . , w̄N ]))∑N
n=1 w̄2

n exp(−Nα(w̄n − max[w̄1, . . . , w̄N ]))

= 1

max[w̄1, . . . , w̄N ]
. �

(22)

Remark 3: Likewise, we have limα→+∞ EN (w̄, α) =
1

min[w̄1,...,w̄N ] , which confirms the conclusion that the impor-
tance coefficient performs like a switch controlling whether
to focus on small-probability events or big-probability events.
When α > 1, however, E-MIM does not satisfy the require-
ment B that a G-ESS function should be no more than N, and
thus is not considered in this paper.

Remark 4: Subsection A and B have shown that E-MIM
can be a generalization of P(2)

N and D(∞)
N , while P(2)

N is the

most widely used approximation and D(∞)
N behaves as a lower

bound of the theoretical value of ESS [12].

C. RELATIONSHIP WITH THE PERPLEXITY AND ENTROPY
CRITERION
The perplexity PerN (w̄) can be related to the entropy criterion
[24] of the SMC methods. The entropy criterion considers the
K-L divergence [35] or the relative entropy of the proposal
distribution and the target distribution to measure the diver-
gence between the two. It is clear that the smaller the relative
entropy is, the closer the proposal distribution is to the target
distribution, and the more efficient the IS estimator is. The
K-L divergence or the relative entropy is defined as

D(π̄ (x) || q(x)) =
∫

π̄ (x) log2
π̄ (x)

q(x)
dx. (23)

Suppose the known distribution satisfies

π (x) = Zπ̄ (x), (24)

in which Z is the normalizing constant, we then have

D(π̄ (x) | q(x)) =
∫

π̄ (x) log2
π (x)

Zq(x)
dx. (25)

Based on the samples x1, x2, . . . , xN from IS estimator, the
approximation of the target distribution can then be expressed
as

ˆ̄π (x) =
N∑

n=1

w̄nδ(x − xn). (26)

The approximation of the constant Z is

Ẑ = 1

N

N∑
n=1

wn. (27)

Thus, the approximation of the K-L divergence between
π̄ (x) and q(x) is

D̂(π̄ (x) || q(x)) =
N∑

n=1

w̄n log2
wn

1
N

∑N
n=1 wn

=
N∑

n=1

w̄n log2 w̄n + log2 N

= log2 N − H (w̄).

(28)

Then, we can obtain the relationship between PerN (w̄) and the
approximation of K-L divergence as

PerN (w̄) = 2H (w̄)

= 2log2 N−D̂(π̄ (x)||q(x))

= N ∗ 2−D̂(π̄ (x)||q(x)),

(29)

i.e.,
PerN (w̄)

N
= 2−D̂(π̄ (x)||q(x)). (30)

Hence, the perplexity PerN (w̄) shows the approximation
of the K-L divergence between the target distribution and
proposal distribution. When π̄ (x) = q(x), the K-L divergence
is zero, and PerN (w̄) reaches the maximum value N.

Likewise, we can define MIM divergence to measure the
divergence between two distributions.
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Definition 2: The MIM divergence between two distribu-
tions, π̄ (x) and q(x), is

DMIM (π̄ (x) | q(x), α)

= − 1

α
log

∫
π̄ (x)exp

(
α

(
1 − π̄ (x)

q(x)

))
dx, (31)

in which, α is the importance coefficient.
Theorem 3: When α < 1

DMIM (π̄ (x) | q(x), α) ≥ 0. (32)

The equality holds if and only if π̄ (x) = q(x)
Similarly with the approximation of K-L divergence, by

substituting (26) and (27) in (31), we have

D̂MIM (π̄ (x) | q(x), α)

= − 1

α
log

N∑
n=1

w̄n exp

(
α

(
1 − wn

1
N

∑N
n=1 wn

))

= − 1

α
log

(
N∑

n=1

w̄n exp(−Nαw̄n)

)
− 1.

(33)

Moreover, the relationship between E-MIM and MIM di-
vergence is

EN (w̄, α) = − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)

= N

D̂MIM (π̄ (x) | q(x), α) + 1
.

(34)

Hence, E-MIM shows the approximation of the MIM di-
vergence between the target distribution and proposal distri-
bution. When π̄ (x) = q(x), the MIM divergence is zero, and
E-MIM reaches the maximum value N.

Through the expression of the MIM divergence, we further
have one understanding about the influence of the importance
coefficient α. When α > 0, the intervals with π̄ (x)/q(x) < 1
will have a greater influence on the MIM divergence, or the
particles with their weights w̄n < 1/N will contribute more
to the approximation of ESS. When α < 0, the intervals with
π̄ (x)/q(x) > 1 will have a greater influence on the MIM di-
vergence, or the particles with their weights w̄n > 1/N will
contribute more to the approximation of ESS. In extreme cases
like in Subsection A and B, when α → −∞, EN (w̄, α) →
1/ max[w̄1, . . . , w̄1], E-MIM is dominated by the parti-
cle with maximum weight, when α → +∞, EN (w̄, α) →
1/ min[w̄1, . . . , w̄1], E-MIM is dominated by the particle with
minimum weight. This property coordinates with the switch-
like property of the importance coefficient in MIM, which
can provide a guideline for the choice of α. When it needs
to pay more attention to the particles with high weights, one
can choose a negative value of α, while when it needs to
pay more attention to the particles with low weights, one
can choose a positive value of α. Numerical experiments in
Section VII provide an example in which it needs to be more
tolerant with particles with low weights, called bearing-only
tracking. In this case, the low weight just represents that the
particle has a deviation from the right direction currently, but

the particle can have a high potential if its velocity is close
to the true value, so it requires more tolerance to the particles
with low weights. Simulation shows the selection of positive
α improves the accuracy of tracking.

VI. SELECTION OF THE THRESHOLD
In most SMC iterations, we need to implement the resampling
only when the ratio of the ESS function and the number of
samples is below a given threshold ε, i.e., ESS < εN [12]. To
be specific, resampling would be applied in every iteration if
ε = 1 and would never occur if ε = 0. In the case 0 < ε < 1,
resampling will be applied adaptively, in which the frequency
of resampling is generally increasing with the threshold ε.
While large resampling rate leads to extra computational cost
and the loss of the diversity of particles [11], [13], untimely
and sparse resampling will result in severe degeneracy of
weights [21]. Hence, it is important to select an appropriate
threshold. In this section, we shall present a threshold selec-
tion scheme for E-MIM through exploring the distribution of
E-MIM.

We consider the distribution of E-MIM over a unit simplex
SN , in which w̄ is a uniformly distributed random vector.
That is, we consider the random vector w̄ ∼ U (SN ) and the
random variable E = EN (W̄, α). The distribution function of
E is denoted as pN (e), for which the support is [1, N]. The
distribution of E can help us further understand the property
of E-MIM.

Since it is generally difficult to express pN (e) analytically,
we shall consider a simple case of N = 2 in this section and
leave further discussions to Section VII. When N = 2, we
have w̄ = [w̄1, w̄2] = [w̄1, 1 − w̄1]. We plot how E changes
with w̄1 in Fig. 1, in which the coefficient α take values
from{0.5,−0.5,−5}. From Fig. 1(a), we observe that for the
same distribution w̄ E-MIM increases with the coefficient α,
which means it is more optimistic towards the efficiency of
IS methods and more tolerant in terms of the degeneracy of
weights of particles. Fig. 1 (b), 1(c), and 1(d) presents the
distribution pN (e) of E-MIM, in which α = 0.5, α = −0.5,
respectively. In the case α = 0.5, pN (e) is not uniformly
distributed and with larger value in the right-hand side. In
the cases α = −0.5 and α = −5, although pN (e) is also un-
balanced, we see that the distribution curve is convex with
smaller e. All the three sub-figures indicate that E-MIM tends
to move the values in the right-hand side to the left-hand side
so that the efficiency of IS methods is reduced gradually and
the tolerance to the degeneracy of weights becomes weaker.

We set the threshold as the expectation of the E-MIM within
the unit simplex SN [12], i.e.,

ε = E[E/N]. (35)

In the case N = 2, the threshold of E-MIM and the prob-
ability to resample, i.e., P(E < εN ), can be presented as a
function of coefficient α, as shown in Fig. 2. We observe
that the threshold is increasing with α, which is consist with
the property F of E-MIM. That is, E-MIM is monotonically
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FIGURE 1. Comparison of the distribution of E-MIM with different α.

FIGURE 2. Threshold ε and the probability of resampling versus α.

non-decreasing with importance coefficient α. More impor-
tantly, the probability to resample is decreasing of α, which
means with the increasing with α, one tends to give higher

evaluation of the efficiency of the IS estimator and reduce
the utilization of the resampling step, when using the above
threshold choosing strategy.

VII. SIMULATIONS
In this section, we provide some simulations to valid our
theoretical results.

A. THE DISTRIBUTION OF E-MIM
To study the distribution of E-MIM with different coefficient
α and number of samples, we draw the normalized weights w̄
uniformly from the unit simplex SN ∈ RN , and calculate the
corresponding E-MIM. To be specific, we draw 3000 samples
independently from SN (the sampling methods refers to [36])
for each simulation. Fig. 2(a) and (b) show the histograms
of distribution of E-MIM for α = 0.5, α = 0,−0.5, α = −5,
and α = −∞, with N = 100, and N = 1000, respectively.
Fig. 3 displays how the expected value and variance of E-MIM
change with the importance coefficient α. We observe that as
α is increased, the expectation of E-MIM increases while the
variance of E-MIM increases first and then decreases.

From Fig. 2 and 3, we observe that E-MIM functions with
different α and N all concentrate around one mode, and differ-
ent values of α and N will correspond to different locations.
The variance is decreasing with the increase in sample size N .
The distribution of E-MIM could help us decide the threshold
for resampling. For example, P(2)

N (w̄), or E-MIM with α = 0,
as suggested in Section VI, the threshold should be ε = 0.5,
which shows the fact that with different sample size N , the
mean of P(2)

N (w̄ is always close to 0.5, as shown in Fig. 3.
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FIGURE 3. Distribution of E-MIM, for α = 0.5, α = 0, α = −0.5, α = −5,
α = −∞, N = 100, andN = 1000, respectively.

B. APPROXIMATION OF THE THEOCRATICAL VALUE OF ESS
In this section, we compare the performance of different
E-MIM functions in approximating the theoretical value of
ESS.

ESS = N
varπ (Î (h))

varπ (Ĩ (h))
. (36)

We consider the target distribution is a standard Gaussian
distribution, i.e.,

π̄ (x) ∼ N (0, 1). (37)

The proposal distribution is also a Gaussian distribution
with mean μ and variance σ 2, i.e.,

q(x) ∼ N (μ, σ 2). (38)

As discussed in [12], we consider three different parameters
settings to compare the estimation performance of E-MIM
with different coefficient α, as well as P(2)

N (w̄), PerN (w̄) and

D(∞)
N (w̄) for comparison, and set h(x) = x.
S1 σ 2 = 1 and μ ∈ [0, 2];

FIGURE 4. The mean and variance of E-MIM verses α.

S2 μ = 1 and σ ∈ [0.3, 4];
S3 σ 2 = 1, μ ∈ {0.5, 1, 1.5, 3}, and change N from 10 to

5000 to explore the influence of the sample size N .
In simulations with setting S1 and S2, we set N = 10 or

N = 1000, repeat for 5 ∗ 105 times, and present the results in
Fig. 5. In simulations with setting S3, we consider changing N
from 10 to 5000, repeat for 5 ∗ 105 times and show the results
in Fig. 6.

In the setting S1 with N = 10, we observe in Fig. 5(a) that
compared to P(2)

N (w̄), D(∞)
N (w̄), E-MIM with α = −0.5 and

E-MIM with α = −5 perform more accurate approximations
for the theoretical value of ESS. PerN (w̄) and E-MIM with
α = 0.5 has relatively large deviation to the ESS in theory. In
the setting S1 with N = 1000, we observe in Fig. 5(b) that
E-MIM with α = −0.5 and E-MIM with α = −5 also have
better approximations.

In the setting S2 with N = 10 shown in Fig. 5(c), E-MIM
with α = −0.5 and E-MIM with α = −5 provide more ac-
curate approximations when σ < 1.5; E-MIM with α = 0.5
and PerN (w̄) perform better than other schemes for σ > 1.5.
In the setting S2 with N = 1000 shown in Fig. 5(d), we have
similar observations.
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FIGURE 5. ESS/N versus standard variance σ under settings S1 and S2.

FIGURE 6. ESS/N versus standard variance σ under setting S3.

For setting S1 and S2, therefore, it concludes that E-MIM
would outperform previous ESS functions by adjusting its
coefficient. To be specific, E-MIM with a negative coefficient
performs better when the divergence between the target distri-
bution and the proposal distribution is small; E-MIM with a
positive coefficient performs better if the divergence is large.

For setting S3, we compare the variance tendency of ESS/N
with N in different situations. In the four cases with different
mean value μ, it is observed that ESS/N approach some con-
stants for all ESS estimation method when N > 500, which
is consistent with the theoretical value of ESS. This result

confirms the stability of E-MIM. That is, the performance of
E-MIM is irrelevant of sample size N . Moreover, in all of the
four cases, E-MIM with α = −0.5 approximates the real ESS
most accurately. When μ = 1.5 or μ = 3, all ESS estimation
functions perform well except PerN (w̄).

C. APPLICATION IN PARTICLE SAMPLING
In this section, we apply E-MIM to the particle filter, for
which the widely used Bearing-Only Tracking is considered
[1], [37]. In this model, the target moves within x-y plane
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TABLE 1 Average MSE Under Different ESS Functions

according to the following rules

xt =

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦ xt−1 +

⎡⎢⎢⎣
T 2/2 0

T 0
0 T 2/2
0 T

⎤⎥⎥⎦[ v1,t

v2,t

]
. (39)

The status of the target is described by xt =
[x1,t , x2,t , x3,t , x4,t ], in which x1,t and x3,t represent the
positions while x2,t and x4,t represent the velocities, in the
x direction and the y direction. v1,t and v2,t are independent
Gaussian noises, i.e., v1,t ∼ N (0, σ 2

v1), v2,t ∼ N (0, σ 2
v2). T is

the sampling interval. The radar is located at the origin and
can only observe the target bearing

θt = arctan(x3,t/x1,t ) + wt , (40)

in which, wt is also independent Gaussian noise, i.e., wt ∼
N (0, σ 2

w ).
The parameter is set as follows, T = 1, σ 2

v1 =
σ 2

v2 = 0.0012, σ 2
w = 0.0052, the initial state is x1 =

(−0.05, 0.001, 0.7,−0.055)T . The prior distribution
for particle filtering is Gaussian distribution, with
mean x̂ = (0, 0, 0.4,−0.05)T and covariance matrix
M = diag(0.52, 0.0052, 0.32, 0.012). For simplicity,
we adopted a standard particle filter. The propagation
function is chosen as q(xt | xt−1,i, θt ) = p(xt | xt−1,i ), i.e.,
xt,i ∼ p(xt |xt−1,i ). According to the law of large numbers,
any resampling schedule will provide good performance if
the sample size N is big enough. For a relatively small sample
size, it is necessary to consider how to do the resampling.

Since σ 2
w is relatively small, the particle deviates from the

real direction a litte will be assigned quite low weights, though
it could have relatively accurate velocity. So, we should pay
more attention to the low-weighted particles and choose a
positive α as 0.5. We set N = 2000 and implement E-MIM
with α = 0.5, as well as P(2)

N (w̄), i.e., E-MIM with α = 0,

and D(∞)
N (w̄), i.e., E-MIM with α = −∞, respectively for the

resampling criterion. We use the same threshold as in section
VI, i.e., ε = 0.62, 0.5, 0.125. We set the time for tracking as
Tt = 100, and repeat the experiments independently for 2000
times to compare the mean square error of tracking results.
The average MSE of the estimation is calculated as follows

MSE = 1

Tt

Tt∑
n=1

[
(x̂1,t − x1,t )2 + (x̂3,t − x3,t )2] . (41)

The MSE of E-MIM, P(2)
N (w̄) and D(∞)

N (w̄) is shown in
Table 1, from which we can observe that E-MIM provides
the lowest average MSE. Fig. 7(a) shows when the filter loses
target lock, the estimated track is far away from the real one,
and such extreme case should be abandoned. Fig. 7(b) shows
E-MIM manifests better tracking ability than P(2)

N (w̄) and

D(∞)
N (w̄). We also compare how MSE changes with time. In

FIGURE 7. The cases of losing the target lock and tracking successfully.

FIGURE 8. MSE versus simulation time.

Fig. 8, E-MIM with appropriate α tends to help decrease the
divergence in tracking.

VIII. CONCLUSION
In this paper, we proposed a MIM based ESS function, which
is referred to as the E-MIM. First, we proved that E-MIM
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satisfies the five requirement of G-ESS, and showed that E-
MIM is monotonically non-decreasing with the importance
coefficient α. We also considered the relationship between
E-MIM and other widely used ESS functions, and showed
that P(2)

N (w̄) is a special case of E-MIM with α = 0, D(∞)
N (w̄)

is a special form of E-MIM with α = −∞. Inspired by the
connection between the perplexity and the K-L divergence,
we then proposed the MIM divergence to measure the diver-
gence between two probability distributions. Based on these
results, we further explored the influence of the coefficient
α upon E-MIM. Specifically, when α > 0, particles with low
weights w̄n < 1/N contributes more to the approximation of
ESS while when α < 0, particles with high weights w̄n > 1/N
contributes more to the approximation of ESS. This property
provides useful guidance for the selection of α. That is, we
can choose a negative value of α if we prefer to focusing
on particles with high weights, while we select a positive
value of α if low weight particles need more attention. Thus,
we proposed a threshold selection strategy of E-MIM for
resampling based on the distribution of E-MIM. Finally, by
adjusting its coefficient, we confirmed that E-MIM provides
better approximations for the theoretical ESS through numer-
ical simulations.

APPENDIX A PROOF OF THE PROPERIES OF E-MIM
In this section, we give proofs of the property A-F of E-MIM.

A. PROOF OF PROPERTY A
Proof:

EN (w̄′, α) = − Nα

log
∑N

n=1 w̄ jn exp(−Nαw̄ jn )

= − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)

= EN (w̄, α). �

(42)

B. PROOF OF PROPERTY B
Proof: First, we show that when α < 1 and w̄∗ =
[1/N, . . . , 1/N], E-MIM reaches N.

EN (w̄∗, α) = − Nα

log
∑N

n=1
1
N exp(−Nα 1

N )

= −Nα

−α

= N.

(43)

Second, we show that N is the maximum value.

1) WHEN 0 < α < 1
To prove

EN (w̄, α) = − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)
≤ N, (44)

is equivalent to prove
N∑

n=1

w̄n exp(−Nαw̄n) ≤ exp(−α). (45)

Consider the following function

f (x) = x exp(−Nαx), α > 0, x ∈ [0, 1]. (46)

The derivative of f (x) is

f ′(x) = (1 − Nαx) exp(−Nαx). (47)

Hence

f ′
(

1

N

)
= (1 − α) exp(−α). (48)

The tangent line at the point ( 1
N , 1

N exp(−α)) is

g(x) =
(

(1 − α)x + α

N

)
exp(−α). (49)

The second derivative of f (x) is

f ′′(x) = −Nα(2 − Nαx) exp(−Nα). (50)

Hence, when x < 2
Nα

, f (x) is upper convex and when x > 2
Nα

,
f (x) is lower convex.

Since α < 1, we have 2
Nα

> 1
N , thus, we obtain g(x) ≥

f (x), when x < 2
Nα

. And for x > 2
Nα

we only need to prove

g(1) > f (1). (51)

which is equivalent to prove(
1 − α + α

N

)
exp(−α) > exp(−Nα)

1 − α + α

N
> exp(−(N − 1)α).

(52)

Since exp(−(N − 1)α) is a lower convex function of α, we
only need to check (52) holds when α = 0 and α = 1, which
is ture.

In summary,

f (x) ≤ g(x), x ≥ 0. (53)

the equality holds if and only if x = 1
N .

Hence,
N∑

n=1

w̄n exp(−Nαw̄n) ≤
N∑

n=1

(
(1 − α)w̄n + α

N

)
exp(−α)

= exp(−α).

(54)

the equality holds if and only if w̄n = 1
N for n = 1, 2, . . . , N .

Hence, when 0 < α < 1

EN (w̄∗, α) = N ≥ EN (w̄, α), (55)

the equality holds if and only if w̄ = w̄∗.

2) WHEN α = 0

EN (w̄, α) = 1∑N
n=1 w̄2

n

≤ N

(
∑N

n=1 w̄n)2
= N = EN (w̄∗, α),

(56)
The equality holds if and only if w̄ = w̄∗.
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3) WHEN α < 0
To prove

EN (w̄, α) = − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)
≤ N, (57)

is equivalent to prove
N∑

n=1

w̄n exp(−Nαw̄n) ≥ exp(−α). (58)

Consider the function

f (x) = x exp(−Nαx), α < 0, x ∈ [0, 1]. (59)

The derivative of f (x) is

f ′(x) = (1 − Nαx) exp(−Nαx). (60)

Hence

f ′
(

1

N

)
= (1 − α) exp(−α). (61)

The tangent line at the point ( 1
N , 1

N exp(−α)) is

g(x) =
(

(1 − α)x + α

N

)
exp(−α). (62)

The second derivative of f (x) is

f ′′(x) = −Nα(2 − Nαx) exp(−Nα), (63)

and f ′′(x) is positive when x > 0, so f (x) is lower convex.
Thus, we obtain

f (x) ≥ g(x), x ≥ 0, (64)

the equality holds if and only if x = 1
N .

Hence,
N∑

n=1

w̄n exp(−Nαw̄n) ≥
N∑

n=1

(
(1 − α)w̄n + α

N

)
exp(−α)

= exp(−α),

(65)

the equality holds if and only if w̄n = 1
N for n = 1, 2, . . . , N .

Hence, when α < 0

EN (w̄∗, α) = N ≥ EN (w̄, α), (66)

the equality holds if and only if w̄ = w̄∗.
In summary, if α < 1

EN (w̄∗, α) = N ≥ EN (w̄, α), (67)

the equality holds if and only if w̄ = w̄∗. �

C. PROOF OF PROPERTY C
Proof: The proof is divided in three parts.

1) WHEN α > 0

N∑
n=1

w̄n exp(−Nαw̄n) ≥
N∑

n=1

w̄n exp(−Nα) = exp(−Nα).

(68)
Hence,

log
N∑

n=1

w̄n exp(−Nαw̄n) ≥ −Nα. (69)

Hence,

EN (w̄, α) = − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)
≥ 1, (70)

the equality holds if and only if w̄ = w̄( j) = [w̄1 =
0, . . . , w̄ j = 1, . . . , w̄n = 0], j = 1, 2, . . . , N .

2) WHEN α = 0

EN (w̄, α) = 1∑N
n=1 w̄2

n

≥ 1∑N
n=1 w̄n

= 1, (71)

the equality holds if and only if w̄ = w̄( j) = [w̄1 =
0, . . . , w̄ j = 1, . . . , w̄n = 0], j = 1, 2, . . . , N .

3) WHEN α < 0

N∑
n=1

w̄n exp(−Nαw̄n) ≤
N∑

n=1

w̄n exp(−Nα) = exp(−Nα).

(72)
Hence,

log
N∑

n=1

w̄n exp(−Nαw̄n) ≤ −Nα. (73)

Hence,

EN (w̄, α) = − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)
≥ 1, (74)

the equality holds if and only if w̄ = w̄( j) = [w̄1 =
0, . . . , w̄ j = 1, . . . , w̄n = 0], j = 1, 2, . . . , N .

In summary, for any α ∈ R

EN (w̄, α) ≥ 1, (75)

the equality holds if and only if w̄ = w̄( j) = [w̄1 =
0, . . . , w̄ j = 1, . . . , w̄n = 0], j = 1, 2, . . . , N .

D. PROOF OF PROPERTY D
The proof is included in the proof of property B and C.

E. PROOF OF PROPERTY E
Proof: Since

v̄ = 1

M
[w̄, . . . , w̄]︸ ︷︷ ︸

Mtimes

, (76)

we have

EMN (v̄, α) = − MNα

log
∑MN

n=1 v̄n exp(−MNαv̄n)

= − MNα

log M
∑N

n=1
1
M w̄n exp(−MNα 1

M w̄n)

= − MNα

log
∑N

n=1 w̄n exp(−Nαw̄n)

= MEN (w̄, α),

(77)

i.e.,
EN (w̄, α)

N
= EMN (v̄, α)

MN
. (78)
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F. PROOF OF PROPERTY F
Proof:

EN (w̄, α) = − Nα

log
∑N

n=1 w̄n exp(−Nαw̄n)
. (79)

We denote

α′ = Nα. (80)

Then we need to prove that

EN (w̄, α′) = − α′

log
∑N

n=1 w̄n exp(−α′w̄n)
, (81)

is monotonically nondecreasing with α′. Since EN (w̄, α′)
≥ 1, we need to prove

L(w̄, α′) = 1

EN (w̄, α′)
= − log

∑N
n=1 w̄n exp(−α′w̄n)

α′ ,

(82)
is monotonically nonincreasing with α′.

The derivative of L(w̄, α′) with respect to α′ can be ex-
pressed as follows

dL(w̄, α′)
dα′

= 1

α′2

[
α′
∑N

n=1 w̄2
ne−α′w̄n∑N

n=1 w̄ne−α′w̄n
+ log

N∑
n=1

w̄ne−α′w̄n

]

= 1

α′2

[
α′

N∑
n=1

w̄ne−α′w̄n∑N
n=1 w̄ne−α′w̄n

w̄n − log

∑N
n=1 w̄n∑N

n=1 w̄ne−α′w̄n

]

= 1

α′2

[
N∑

n=1

w̄ne−α′w̄n∑N
n=1 w̄ne−α′w̄n

log(eα′w̄n )

− log
N∑

n=1

w̄ne−α′w̄n∑N
n=1 w̄ne−α′w̄n

eα′w̄n

]
. (83)

Since log(x) is an concave function, according to Jensen’s
inequality, we have

N∑
n=1

w̄ne−α′w̄n∑N
n=1 w̄ne−α′w̄n

log(eα′w̄n )

≤ log
N∑

n=1

w̄ne−α′w̄n∑N
n=1 w̄ne−α′w̄n

eα′w̄n , (84)

the equality holds if and only if all the nonzero elements in
w̄ = [w̄1, . . . , w̄N ] are equal.

Thus,

dL(w̄, α′)
dα′ ≤ 0, (85)

i.e.,

dEN (w̄, α)

dα
≥ 0, (86)

the equality holds if and only if all the nonzero elements in
w̄ = [w̄1, . . . , w̄N ] are equal. �

The proof is completed.

APPENDIX B PROOF OF THE NON-NEGATIVITY OF MIM
DIVERGENCE
Proof: The MIM divergence between distribution π̄ (x) and
q(x) with the importance coefficient α is defined as,

DMIM (π̄ (x) | q(x), α)

= − 1

α
log

∫
π̄ (x) exp

(
α

(
1 − π̄ (x)

q(x)

))
dx. (87)

1) WHEN α > 0
To prove

DMIM (π̄ (x) | q(x), α) ≥ 0, (88)

is equivalent to prove∫
π̄ (x) exp

(
α

(
1 − π̄ (x)

q(x)

))
dx ≤ 1. (89)

Consider the function

f (x) = exp

(
α

(
1 − 1

x

))
. (90)

The derivative of f (x) is

f ′(x) = α

x2
exp

(
α

(
1 − 1

x

))
. (91)

The tangent line at point (1,1) is

g(x) = αx + (1 − α). (92)

The second derivative of f (x) is

f ′′(x) = α

x4
(α − 2x) exp

(
α

(
1 − 1

x

))
. (93)

Thus, f (x) is lower convex when x < α/2, while f (x) is upper
convex when x > α/2. So to make f (x) ≤ g(x) hold when
x > 0, we only need {

α
2 < 1

f (0) < g(0)
. (94)

So we need

α < 1. (95)

Then we have

f (x) ≤ g(x), x ≥ 0, (96)

i.e.,

exp

(
α(1 − 1

x
)

)
≤ αx + (1 − α), x ≥ 0. (97)

The equality holds if and only if x = 1.
Hence, ∫

π̄ (x) exp

(
α

(
1 − π̄ (x)

q(x)

))
dx

≤
∫

π̄ (x)

(
α

q(x)

π̄ (x)
+ (1 − α)

)
dx

= α

∫
π̄ (x)dx + (1 − α)

∫
q(x)dx

= 1,

(98)

which means that the equality

DMIM (π̄ (x) | q(x), α) ≥ 0, (99)
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holds if and only if π̄ (x)
q(x) = 1, i.e., π̄ (x) = q(x).

2) WHEN α = 0

lim
α→0

− 1

α
log

∫
π̄ (x) exp

(
α

(
1 − π̄ (x)

q(x)

))
dx

=
∫

π̄2(x)

q(x)
dx − 1, (100)

where the first term on the right side of the equation is the
so-called second order Renyi divergence.

Since 1 − x is the tangent line of 1/x − 1 at point (1,1), we
obtain∫

π̄2(x)

q(x)
dx − 1 =

∫
π̄ (x)

(
π̄ (x)

q(x)
− 1

)
dx

≥
∫

π̄ (x)

(
1 − q(x)

π̄ (x)

)
dx = 0,

(101)

the equality holds if and only if π̄ (x)
q(x) = 1, i.e., π̄ (x) = q(x).

3) WHEN α < 0
To prove

DMIM (π̄ (x) | q(x), α) ≥ 0, (102)

is equivalent to prove∫
π̄ (x) exp

(
α

(
1 − π̄ (x)

q(x)

))
dx ≥ 1. (103)

Consider the function

f (x) = exp

(
α

(
1 − 1

x

))
. (104)

The derivative of f (x) is

f ′(x) = α

x2
exp

(
α

(
1 − 1

x

))
. (105)

The tangent line at point (1,1) is

g(x) = αx + (1 − α). (106)

The second derivative of f (x) is

f ′′(x) = α

x4
(α − 2x) exp

(
α

(
1 − 1

x

))
. (107)

Thus,we have f ′′(x) > 0 when x > 0, i.e., f (x) is lower con-
vex when x > 0. Hence, when x > 0,

f (x) ≥ g(x), (108)

the equality holds if and only if x = 1.
Hence, ∫

π̄ (x) exp

(
α

(
1 − π̄ (x)

q(x)

))
dx

≥
∫

π̄ (x)

(
α

q(x)

π̄ (x)
+ (1 − α)

)
dx

= α

∫
π̄ (x)dx + (1 − α)

∫
q(x)dx

= 1,

(109)

which means that the equality

DMIM (π̄ (x) | q(x), α) ≥ 0, (110)

holds if and only if π̄ (x)
q(x) = 1, i.e., π̄ (x) = q(x).

The proof is completed. �
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