
Received 24 May 2020; revised 19 October 2020; accepted 23 October 2020. Date of publication 6 November 2020;
date of current version 8 December 2020. The review of this article was arranged by Associate Editor Prof. Paolo Banelli.

Digital Object Identifier 10.1109/OJSP.2020.3036276

FedLoc: Federated Learning Framework for
Data-Driven Cooperative Localization and

Location Data Processing
FENG YIN 1,2, ZHIDI LIN 1, QINGLEI KONG 1,2, YUE XU3,4, DESHI LI 5, SERGIOS THEODORIDIS 1,2,6,

AND SHUGUANG (ROBERT) CUI 1,2

1School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
2Shenzhen Research Institute of Big Data (SRIBD), Shenzhen 518172, China
3Beijing University of Posts and Telecommunications, Beijing 100876, China

4Alibaba Corporation, Hangzhou 311121, China
5School of Electronic Information, Wuhan University, Wuhan 430072, China

6Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 157 72, Greece

CORRESPONDING AUTHOR: FENG YIN. (e-mail: yinfeng@cuhk.edu.cn)

This work was supported in part by the Natural Science Foundation of China (NSFC) under Grant 61701426, in part by the National Key Research and
Development Program of China under Grant 2018YFB1800800, in part by the Guangdong Research Project under Grant 2017ZT07X152 and Grant 00201501,

in part by Shenzhen Fundamental Research Fund under Grant KQTD201503311441545, and in part by the National Natural Science Foundation of
China under Grant 61571334.

ABSTRACT In this overview paper, data-driven learning model-based cooperative localization and location
data processing are considered, in line with the emerging machine learning and big data methods. We first
review (1) state-of-the-art algorithms in the context of federated learning, (2) two widely used learning
models, namely the deep neural network model and the Gaussian process model, and (3) various distributed
model hyper-parameter optimization schemes. Then, we demonstrate various practical use cases that are
summarized from a mixture of standard, newly published, and unpublished works, which cover a broad range
of location services, including collaborative static localization/fingerprinting, indoor target tracking, outdoor
navigation using low-sampling GPS, and spatio-temporal wireless traffic data modeling and prediction.
Experimental results show that near centralized data fitting- and prediction performance can be achieved
by a set of collaborative mobile users running distributed algorithms. All the surveyed use cases fall under
our newly proposed Federated Localization (FedLoc) framework, which targets on collaboratively building
accurate location services without sacrificing user privacy, in particular, sensitive information related to their
geographical trajectories. Future research directions are also discussed at the end of this paper.

INDEX TERMS Cooperation, data-driven models, distributed processing, federated learning, Gaussian
processes, location services, user privacy.

I. INTRODUCTION
With the explosion of data and the ever-increasing computing
power, we have witnessed nowadays the popularity of ma-
chine learning models and algorithms which are data-driven.
In principal, with more data, an underlying complex system/
dynamic/regression function can be closely approximated.
However, when the data size increases beyond a limit, both
the scale of the model and the computational complexity of
an associated learning algorithm can become computationally
tough. For instance, the computational complexity for

training a Gaussian process model scales cubically with the
data size [1]. This renders the required computational load
for sophisticated data-driven learning models prohibited for
practical cases.

The recently proposed federated learning framework [2]
has received a lot of attention, as it enables a large-scale
machine learning models to be trained jointly by a large
number of mobile users through cooperation. Actually, there
exist various similar works before the federated learning, for
instance [3], [4], but federated learning emphasizes more on

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2020 187

https://orcid.org/0000-0001-5754-9246
https://orcid.org/0000-0002-6673-511X
https://orcid.org/0000-0002-9740-0240
https://orcid.org/0000-0002-8188-9379
https://orcid.org/0000-0001-5040-161X
https://orcid.org/0000-0003-2608-775X

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

the following aspects: (1) non-i.i.d. data; (2) unbalanced local
data size; (3) large number of local users; (4) limited commu-
nication; and (5) data privacy [2]. It deserves to highlight that
federated learning is a promising technical solution to solve
the ever-increasing concerns about the loss of user privacy and
to meet the ever-stringent data protection regulations world-
wide, for instance, the General Data Protection Regulation
(GDPR) implemented by the European Union in 2018. Fed-
erated learning has triggered various potential applications in
the sectors of smart medicine, finance, and next-generation
wireless communications [5]–[7]. In this paper, we extend
federated learning to a new application sector, namely target
localization and location-related services.

Target localization is meant to provide an estimate of the
desired position as accurate as possible. There exist a plethora
of state-of-the-art techniques for static target localization,
target tracking, navigation, and interested readers can refer
to [8]–[10] and the references therein for more information.
Most of these techniques rely on empirical, parametric tran-
sition and measurement models, which can be regarded as
an individual abstract of human experience, thus they may
severely mismatch the underlying mechanism in complicated
environments such as office, shopping mall, museum, etc.
However, directly learning from a huge volume of historical
data may help alleviate such a model mismatch and improve
the positioning accuracy even further.

Apart from the traditional localization service, a new type
of location related services have emerged in the recent years
under the umbrella of smart cities, namely the spatio-temporal
location data prediction. This type of services include, but
not limited to, wireless traffic prediction, taxi supply and de-
mand prediction, energy consumption prediction, air pollution
prediction at specific locations. Data-driven, learning model-
based solutions have demonstrated great data representation
and generalization capability [11]–[14].

However, the greatest difficulty that we confronted when
applying machine learning models to localization and loca-
tion data modeling lies in the big amount of labeled training
data, which can be solved by aggregating small data collected
from a large number of mobile users. Yet, such data gathering
processes may cause severe data privacy issues, particularly
when location is involved. As a special example, during the
COVID-19 pandemic we have seen the value of sharing tra-
jectories to track the spread of infections and predicting high-
risk regions, meanwhile, there is an urgent need for location
privacy preservation of the mobile users [15]. The federated
learning framework is an outstanding solution for enhancing
wireless localization accuracy and maintaining safe coopera-
tion among users at the same time.

The gist of the proposed Federated Localization (FedLoc)
framework is to let each mobile user/smart agent collect a
smaller scale, local dataset and approximate the global ma-
chine learning model in a cooperative manner. Some concrete
examples are as follows: (1) For static localization, a number
of mobile users collect radio features at specific positions
obtained either from the global positioning system (GPS) (for

outdoor scenarios) or from the proximity to indoor reference
points/landmarks (for indoor scenarios); (2) For target track-
ing and navigation, the mobile users collect diverse trajec-
tories of inertial sensor- and wireless observations; (3) For
wireless traffic prediction, base stations work as smart agents
to collect local wireless data usage generated by their serving
mobile users. We believe that the FedLoc framework is an
up-and-coming solution for futuristic data-driven cooperative
localization, not only because of the rapid development of
distributed optimization techniques that serve as the algorith-
mic core, but also largely owing to the rapid development
of smart phones with ever-increasing computation power and
network throughput, the widespread use of quick-response
(QR) codes, and the high-precision indoor/outdoor maps, alto-
gether. Therefore, we believe it is timely to exploit all relevant
federated learning techniques for localization and location
data processing.

This overview paper is a four-mode mixture of review,
new proposals, real evaluations, and outlook, being different
from the majority that solely review the existing works. We
focus on a specific application sector of federated learning,
namely the data-driven cooperative localization and location
data processing. The models and algorithms to be reviewed
are carefully tailored for our desired applications. Besides, we
focus on real use cases and their practical implementations
from our own works as well as some other related works
that all fall under this new cooperative paradigm. Detailed
contributions of this overview paper are as follows.
� First, we propose a federated localization framework,

called FedLoc, which elegantly addresses the privacy
issue in cooperation among a massive number of mobile
users for target localization and location data processing.
We also proposed two potential wireless network infras-
tructures, namely a cloud-based one and an edge-based
one, that can potentially help meet the communication
requirements of the FedLoc framework.

� Second, we clarify the differences between the proposed
FedLoc framework and the existing cooperative localiza-
tion framework for sensor networks as well as the classic
crowd-sourcing framework.

� Third, we review some state-of-the-art federated learning
procedures, two widely used learning models, namely
the deep neural network (DNN) and Gaussian process
(GP), and a few distributed model hyper-parameter opti-
mization schemes that work reasonably well for the two
learning models. We put more emphasis on the Bayesian
GP models than deterministic DNN models due to their
unique welcome features for modeling location data.

� Fourth, we discuss four concrete use cases, namely (1)
static target localization/fingerprinting; (2) outdoor ve-
hicle navigation; (3) indoor pedestrian tracking; and (4)
spatio-temporal wireless traffic prediction, to explain the
use of the FedLoc framework. In the first use case, a
static target localization system is built based on a DNN
that maps a vector of radio features to a desired posi-
tion. In the second use case, we propose a DNN-based

188 VOLUME 1, 2020

accurate vehicle navigation with low-sampling-rate
GPS. In the third case, the state transition function, as
represented by the GP model, maps the current state to
the next state in a non-parametric way for indoor pedes-
trian motion modeling. In the fourth use case, wireless
traffic is modeled by a scalable GP under 5G Cloud-
Radio Access Network (C-RAN) infrastructure. Vari-
ous other related applications are also mentioned in this
paper.

� Lastly, we evaluate the proposed FedLoc framework
with real datasets for two aforementioned use cases to
demonstrate their practical implementations and effec-
tiveness in reality.

In this overview paper, we concentrate on federated learn-
ing tailored to target localization and location data processing.
Due to the space limitation as well as the expertise of the
authors, the following aspects are only briefly touched upon.
� Distributed optimization methods in the contexts

of robustness, communication efficiency, and low-
complexity. Some recent works include [16], [17].

� Adversarial attacks and advanced privacy-preserving
schemes such as the block-chain based ones for feder-
ated learning. Some recent works include [18]–[20].

� General techniques and challenges of federated learning
as well as its applications in other industry sectors, as
surveyed by [21], [22].

The rest of this paper is organized as follows. In Section II,
we briefly review the existing “cooperation” frameworks pro-
posed primarily for wireless sensor networks. In Section III,
we introduce two important learning models, namely the deep
neural network and Gaussian process, for learning from data.
In Section IV, we introduce the proposed FedLoc framework
in detail, followed by two different wireless network infras-
tructures given in Section V to support the real deployment
of the FedLoc framework. Various use cases of the proposed
FedLoc framework are showcased in Section VI. Simulation
results are given in Section VII to demonstrate the effective-
ness of the FedLoc framework. In Section VIII, we discuss
the major challenges of the FedLoc framework and give a few
future research directions. Lastly, Section IX concludes this
paper. Figure 1 gives a clear global picture of our work.

II. RELATED WORK
In this section, we survey all related works and clarify their
differences from our FedLoc framework to be introduced in
Section IV.

A. SENSOR NETWORK LOCALIZATION
When speaking of “cooperation” in the context of wireless
localization, it will certainly remind us the class of algorithms
for determining a number of agents (nodes with unknown
positions) with the aid of a few anchors (nodes with known
positions) and a bunch of wireless measurements made be-
tween these nodes.

Cooperative localization has gained much attention since
2005 owing to the seminal work by Patwari and Hero [23],

FIGURE 1. Overall organization of this paper and links between different
sections.

where they proposed to use the simple least-squares estima-
tion criterion with time-of-arrival (ToA) or received-signal-
strength (RSS) measurements to localize dozens of agents.
The proposed method was evaluated with two sets of real
measurements collected in an indoor environment. This
seminal work has triggered a plethora of methods in the
following years. Representative works include [24]–[29], to
mention a few.

The fundamental differences between the aforementioned
cooperative localization algorithms and our proposed FedLoc
are the following:
� The aforementioned classic cooperative localization al-

gorithms focus on determining unknown positions of a
batch of distributed agents given their mutual position-
related measurements. In this setting, position inference
is the only task to be solved by the designed algorithm.
In contrast, the proposed FedLoc aims to train a global
learning model cooperatively by a batch of distributed
devices with rather well-calibrated position-related data
in the first place. After the global learning model has
been trained, it can be used both by the existing dis-
tributed devices and new users to infer their positions
with hopefully improved positioning accuracy.

� The above mentioned algorithms adopt empirical mod-
els, such as the log-distance path-loss model for RSS
measurements [30], and Gaussian mixture model for
non-line-of-sight propagation [28]. In contrast in the
FedLoc framework, we solely consider data-driven, ma-
chine learning-based models.

B. DISTRIBUTED TARGET TRACKING
Distributed target tracking is mostly considered for sen-
sor networks without a central node. For such network
infrastructures, the traditional Kalman filter or particle filters

VOLUME 1, 2020 189

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

cannot be used due to lack of the posterior belief/distribution
of the desired target state (evolving in time) given all observed
sensor measurements. To meet this challenge, various dis-
tributed implementations of the Kalman filter and particle fil-
ters, for instance [31]–[34], were proposed with similar ideas
of approximating the posterior belief/distribution as a prod-
uct of local posteriors. Afterwards, local state estimates are
communicated in a message consensus stage. The idea behind
these two steps is similar to that of our FedLoc framework.

However, the major differences between the distributed tar-
get tracking and our FedLoc are the following:
� Distributed Kalman filter and particle filters are based on

empirical models, while our FedLoc framework relies on
data-driven, machine learning models.

� Distributed Kalman and particle filters exchange target
state estimates directly over the air, which is fragile to
malicious attacks; in contrast FedLoc trains a global
deep learning model and advocates changing local model
parameters under privacy-preserving schemes.

� Distributed Kalman and particle filters do not require
training data, but need a good prior distribution of the
initial target state. Therefore, they are agile for new de-
ployments. In contrast, our FedLoc framework needs to
train the global model beforehand.

C. CROWDSOURCING
Crowdsourcing is a sourcing model in which services are built
from a large, relatively open, and often rapidly-evolving group
of internet users. Building and maintaining a location sys-
tem/service based on crowdsourcing is somewhat related to
our FedLoc idea. However, the state-of-the-art crowdsourcing
methods place more emphasis on raw data sharing and ag-
gregation from a bunch of collaborating users, therefore there
is no model in mind. Representative works are as follows. In
geography, voluntary users collaboratively build a street map,
fill in street information, etc. OpenStreetMap (http://www.
openstreetmap.com) and Wikimapia (http://www.wikimapia.
org) are two successful crowdsourcing projects among oth-
ers. Crowdsourcing of virtual maps, such as RSS map or
magnetic map, becomes trendy for big multi-storey buildings
[35]–[37].

The fundamental differences between the crowdsourcing
and the FedLoc are the following:
� Crowdsourcing is more about raw location data aggre-

gation for map construction with less calibration effort,
while position determination will be done in a separate
stage later on. In contrast, FedLoc focuses on training
a global machine learning model for positioning in one
step.

� Crowdsourcing is mostly model-free. In contrast, Fed-
Loc is built around advanced machine learning models,
making it diverse and vibrant.

� Crowdsourcing aggregates raw data without any safe-
guard, which will incur severe privacy issues. In contrast,
FedLoc processes sensitive data locally and exchanges

only the model hyper-parameters that are difficult to
decode in general.

D. LOCATION DATA MODELING
In this paper, location data specifically refers to spatio-
temporal data measured across space as well as time. Rep-
resentative spatio-temporal data include environmental data,
climate data, transportation data, human mobility data, so-
cial data, etc. Spatio-temporal data processing and modeling
have been well studied over the past decades, ranging from
traditional statistical methods to recent data-driven learning
model-based methods. Traditional statistical methods include
the autoregressive methods for multivariate random fields,
factor analysis methods, stochastic process-based methods,
tensor decomposition-based methods, see for instance [38],
[39]. Data-driven learning models, such as recurrent neural
network with long short-term memory and graph neural net-
work have been used to model spatio-temporal data. A com-
prehensive survey on harnessing deep learning models for
spatio-temporal data mining is given in [40]. A special note is
given here on the Gaussian process model, which is also called
Kriging in geostatistics and can be categorized into the tradi-
tional statistical models; however, it can also be regarded as
a machine learning model for representing a spatial-temporal
function with two inputs, namely the location and the time.
In [41], [42], Gaussian processes implemented via recursive
Kalman filtering are used to model spatio-temporal data with
rather low computational complexity. Learning models are
believed to be able to generate better modeling and prediction
performance compared with the traditional statistical meth-
ods. In this work, we are keen on training learning models in a
distributed manner by a large number of collaborating mobile
users.

III. LEARNING MODELS
This section aims to introduce two representative learning
models that can be used as the “brain” of the proposed Fed-
Loc framework. We will first briefly review the deep neural
network (DNN) model in Subsection III-A, followed by a
short introduction to Gaussian process (GP) model in Subsec-
tion III-B. Lastly, we will shed some light on the connections
of the two learning models and further highlight the benefits
of using GP models over DNN models for FedLoc in Subsec-
tion III-C.

A. DEEP NEURAL NETWORK
Deep neural network (DNN) here refers to the class of feed-
forward networks. The term “feed-forward” means data are
fed from the input layer through several hidden layers to the
output layer. Typically, a standard DNN, depicted in Fig. 2,
demonstrates a chain structure in math as

y = f (x; θ) = (
W L+1 f (L) · · ·W 3 f (2) (W 2 f (1)(W 1x)

))
, (1)

starting from the inputs/features x and passing L hidden layers
to the output. Here we term W j the weight matrix in the
j-th layer where j ∈ {1, 2, . . . , L + 1} and θ the collection

190 VOLUME 1, 2020

http://www.openstreetmap.com
http://www.wikimapia.org

FIGURE 2. Block diagram of deep neural network architecture. The input-,
hidden-, and output variables are represented by nodes, and the weight
parameters linking between the nodes at each layer are denoted by W j ,

where j ∈ {1, 2, . . . , L + 1}. θ � {W 1,W 2, . . . ,W L+1} comprises all model
hyper-parameters, namely the neural network weights of all layers. Green
arrows indicate the forward direction of information flow through the
network in the inference stage, while the blue arrows indicate the
backward direction of the gradient flow for hyper-parameter optimization
using back-propagation by default.

of all hyper-parameters, i.e., θ � {W 1,W 2, . . . ,W L+1}. The
mapping function f (j−1)(·)1 in each hidden layer, comprises
a bunch of elementary activation functions that mimic the
role of neurons in our brain. The commonly used activa-
tion functions include the sigmoid function, rectified linear
unit (ReLU) function, and some other variants. According to
the universal approximation theorem [43], a DNN can well
approximate any smooth function by tuning the number of
hidden layers and the number of neurons in each hidden layer.

Given n training samples D � {xi, yi}n
i=1, one can train

the model hyper-parameters θ, such that the network output
f (x; θ) is close to the ground truth. Often, DNNs are trained
through minimizing the difference between f (x; θ) and y. The
minimization problem for a set of n training samples can be
written as

min
θ

l (θ) := 1

n

n∑
i=1

�(yi, f (xi; θ)), (2)

where �(·, ·) is a certain loss function, e.g., the quadratic loss
function. In this paper, the input xi represents position related
measurements, and yi represents positions most of the time.
We will provide some concrete examples in Section IV, V and
VI. Gradient descent type methods with back-propagation are
commonly used to solve the above minimization problem in

1 f (0)(x) = x

spite of its numerical instability caused by gradient vanishing
or explosion. After the optimal set of weights θ̂ is obtained,
one can conduct prediction for a novel input x∗ using f (x∗; θ̂)
given in Eq.(1).

It is worth mentioning at this point that after decades of
exploration, people have summarized various useful tricks
to train large networks effectively. For instance, careful ini-
tialization of DNN weights and proper normalization are
effective to resolving the headache from gradient explo-
sion/vanishing. Widely used initialization techniques include
LeCun initialization [48], Xavier initialization [49], Kaiming
initialization [50], and so on, while normalization techniques
include batch normalization [51], weight normalization [52],
layer normalization [53], and so on. For more training tricks,
interested readers may refer to [54]–[57] for a better structured
tutorial, and next we will turn to a brief review of state-of-the-
art optimization algorithms for DNN training.

Commonly used DNN training methods are presented in
Table 1, wherein η represents the iteration index. According
to the amount of data used in computing the gradient ∇θ�,
there are generally three types of gradient descent methods,
namely batch gradient descent (GD), stochastic gradient de-
scent (SGD) and mini-batch gradient descent. Their corre-
sponding update formulations, pros and cons are shown in Ta-
ble 1. However, these classic methods all face the difficulty of
manually selecting the learning rate γt . More recently, people
turn to adopting modern adaptive gradient methods such as
RMSProp [46] and Adam [47] to address this issue. It is said
that such adaptive gradient methods are likely to achieve the
best performance when the input data is sparse [54]. However,
this does not necessarily mean the adaptive gradient methods
are always superior to other type of GD-based methods. For
more details about the different optimization algorithms, inter-
ested readers can refer to [54], [55] and the reference therein.

The DNN structure has a big impact on both the forward-
propagation and back-propagation computational complexity.
For ease of exposition, a specific DNN structure is depicted
in Fig. 2, wherein we assume L hidden layers and n neurons
in each hidden layer, being of the same order as the data
size. Typically, we assume n � L. Moreover, we assume the
number of data samples n is way larger than the feature dimen-
sion d , i.e., n � d . For this configuration, the computational
complexity required by the forward-propagation is mainly due
to the product of the weight matrix and the input vector in
each layer, namely, W j f (j−1)(x), where j ∈ {1, 2, . . . , L +
1}, thus scales as O(n2) for one single data sample. The
overall computational complexity of the forward-propagation
is O(n3) for n data samples. As to the back-propagation, let us
first note that evaluating l (θ) in each iteration of the gradient
descent step requires a forward propagation. Assuming that
the gradient descent runs k (k � n) iterations, the computa-
tional complexity for the back-propagation scales as O(n3)
too.

The aforementioned DNN is suitable for tabular data in
general. However, there exist a plethora of deep variants for
data with unique features, such as convolutional networks

VOLUME 1, 2020 191

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

TABLE 1 Commonly Used Neural Network Training Algorithms

[58] and capsule networks [59] for images, long-short-term-
memory (LSTM) networks for sequential data, and graph
neural networks [60] for spatial and spatio-temporal data. In
order to reduce the size of a deep model as well as its compu-
tational complexity for use on smartphone and edge devices,
one could resort to model distillation techniques [61] or model
sparsification techniques [62].

B. GAUSSIAN PROCESSES
Gaussian processes (GP) constitute an important class of
Bayesian non-parametric models, which are closely related
to several other salient machine learning models. A Gaussian
process is a collection of random variables, any finite subset
of which follows a Gaussian distribution [1]. In the sequel, we
solely focus on scalar, real-valued Gaussian processes that are
completely specified by a mean function and a kernel function
(a.k.a. covariance function). Concretely,

f (x) ∼ GP (m(x), k(x, x′; θh)), (3)

where m(x) is the mean function, which is often set to zero
in practice, especially when there is no prior knowledge about
the underlying process; and k(x, x′; θh) is the kernel function
tuned by the kernel hyper-parameters, θh.

Let us consider the GP regression model, y = f (x) + e,
where y ∈ R is a continuous-valued, scalar output; the un-
known function f (x) : Rd 	→ R is modeled as a zero mean
GP; and the noise e is assumed to be Gaussian distributed
with zero mean and variance σ 2

e . Moreover, the noise terms at
different data points are assumed to be mutually independent.
The set of all unknown GP hyper-parameters is denoted by
θ � [θT

h , σ 2
e]T , and the dimension of θ is assumed to be equal

to p.

Based upon these GP regression model settings, given train-
ing dataset D � {xi, yi}n

i=1 and test dataset D∗ � {x∗i, y∗i}n∗
i=1,

the joint prior distribution of the training output y and test
output y∗ can be written compactly as[

y

y∗

]
∼ N

(
0,

[
K(X , X) + σ 2

e In, K(X , X∗)

K(X∗, X), K(X∗, X∗) + σ 2
e In∗

])
,

(4)
where K(X , X) is an n × n covariance matrix between the
training inputs; K(X , X∗) is an n × n∗ covariance matrix be-
tween the training inputs and test inputs, K(X∗, X∗) is an
n∗ × n∗ covariance matrix between the test inputs. Here, we
let K(X , X) be the short term of K(X , X ; θh).

Applying some known results of conditional Gaussian dis-
tribution, we can easily derive the posterior distribution as

p(y∗|D, X∗; θh) ∼ N (
m̄, V̄

)
, (5)

where the posterior mean (vector) and the posterior covariance
(matrix) are respectively,

m̄ = K(X∗, X)
[
K(X , X) + σ 2

e In
]−1

y, (6)

V̄ = K(X∗, X∗) + σ 2
e In∗

− K(X∗, X)
[
K(X , X) + σ 2

e In
]−1

K(X , X∗). (7)

Given a novel input in the test dataset, the above posterior
mean gives the prediction, while the posterior covariance
gives the uncertainty region of the prediction. A graphical
illustration of GP working on a toy regression example is
showcased in Fig. 3.

Just like the choice of activation functions and architecture
that highly affect the performance of neural networks, the
kernel function determines the expressive power of the GP
model to a large extent. More specifically, the kernel function

192 VOLUME 1, 2020

FIGURE 3. Subfigure (a) shows three sample functions drawn randomly
from a GP prior with a specific squared-exponential kernel. Subfigure (b)
shows three sample functions drawn from the posterior conditioned on
the prior in (a) as well as four noisy observations indicated by red dots.
The corresponding posterior mean function is depicted by the black curve.
The grey shaded area represents the uncertainty region, namely the 95%
confidence region for both the prior and the posterior, respectively.

profoundly controls the characteristics (e.g., smoothness and
periodicity) of a family of functions. Therefore, in order to
make a kernel function full of expressive power and automat-
ically adaptive to a given dataset, the following works can be
adopted. In [63], a spectral mixture (SM) kernel was proposed
to approximate the spectral density with a Gaussian mixture
model arbitrarily well in the frequency domain and transform
it back into a universal stationary kernel. In [64], [65], the
authors modified the SM kernel to a linear multiple low-rank
sub-kernels with a favorable optimization structure, which en-
ables faster and more stable numerical search. In [66]–[69], a
DNN architecture was combined with the automatic relevance
determination (ARD) kernel to approximate any kernel func-
tion (including both the stationary and non-stationary ones).
Yet, in a more recent trend designing universal kernels may
be obtained as a byproduct of designing new fashioned deep
GP models [70] that link DNNs to GPs [71]–[73].

Next, we introduce the classical ML-based GP hyper-
parameter estimation. Due to the Gaussian assumption on the
noise, the log-likelihood function can be obtained in closed
form. The GP hyper-parameters can be optimized equivalently
by minimizing the negative log-likelihood function:

l (X , y; θ) = yT C−1(θ)y + log det (C(θ)) , (8)

where C(θ) � K(X , X ; θh) + σ 2
e In and det(·) denotes the

determinant of a matrix. This optimization problem is
mostly solved via gradient descent type methods, such as
LFGS-Newton or conjugate gradient [1], which requires the

following closed-form partial derivatives, for i = 1, 2, ..., p,

∂l (θ)

∂θi
= tr

(
C−1(θ)

∂C(θ)

∂θi

)
− yT C−1(θ)

∂C(θ)

∂θi
C−1(θ)y,

(9)
where tr(·) denotes the trace of a square matrix.

It should be noted that the minimization problem in Eq.(8)
may easily get stuck at a bad local optimum when the selected
learning model is over-parameterized and the associated cost
function does not show any favorable optimization structure.

Using the above ML method to train a GP model requires
O(n3) computational complexity thus forbids its practical use.
To address this difficulty, a plethora of scalable GP models
have been developed in the past decades. Some representative
works of different categories were obtained through using (1)
low-rank kernel matrix approximation [74]; (2) local struc-
tures of the kernel matrix [75]; (3) the state-space model refor-
mulation and Kalman filter [41]; (4) the Bayesian committee
machine (BCM) with a number of distributed computing units
[76]; and (5) the variational Bayesian formulation [77]. A
comprehensive survey of the existing scalable GP models can
be found in [78].

C. DNN VERSUS GP
In the previous subsections, we briefly introduced DNN and
GP that can both be used as the core learning model. DNN is
quite popular nowadays due to various good reasons. Among
others, it can approximate any smooth function according
to the universal approximation theorem [43]. But the main
drawbacks of DNN lie in its opaque model interpretability
and the large number of hyper-parameters (DNN weights) to
be trained. For our FedLoc framework proposed in this paper,
we put more emphasis on the GP models due to their unique
welcome features compared with DNN.

First, GP models involve significantly fewer model hyper-
parameters than an equally-effective DNN. From [79] we
know that a single layer Bayesian neural network with i.i.d.
weights converges to a GP. Consequently, a neural network
kernel was designed with the following explicit form [1]:

kNN(x, x′) = 2

π
sin−1

(
2x̃	x̃′√

(1 + 2x̃	x̃)(1 + 2x̃′	x̃′)

)
, (10)

where x̃ � [1, xT]T is an augmented input vector. Often, we
assume 	 = diag(σ 2

1 , σ 2
2 , ..., σ 2

d+1) to be a diagonal matrix,
thus the hyper-parameters θh = [σ 2

1 , σ 2
2 , ..., σ 2

d+1]T is of di-
mension d + 1. If 	 is taken to be a general matrix, the
hyper-parameters to be tuned is in the order of d2, being much
smaller than the size of a fully-connected DNN in general.

Lately, the arc-cosine kernel [71], the neural tangent ker-
nel (NTK) [80], and the convolutional neural tangent kernel
(CNTK) [81] were developed to mimic a DNN with infinite

VOLUME 1, 2020 193

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

width. The arc-cosine kernel function [71] is given by

karccos(x, x′) =

2
∫

e− ‖w‖2
2

(2π)d/2

(w · x)
(w · x′)(w · x)q(w · x′)qdw,

(11)

where
(z) = 1
2 (1 + sign(z)) denotes the Heaviside step

function, and q is a non-negative integer for selecting a partic-
ular activation function. The arc-cosine kernel for multi-layer
neural network can also be obtained via a recursive kernel
design. The hyper-parameters of the arc-cosine kernel include
the kernel order parameter q for specifing the activation func-
tion and the number of hidden layers L.

The NTK captures the behavior of fully-connected deep
neural networks trained by gradient descent, and CNTK is
an extension of NTK to convolutional neural networks. The
analytic form of NTK can be derived recursively as

kNTK
(
x, x′) =

L+1∑
h=1

(
	(h−1) (x, x′) ·

L+1∏
h′=h

	̇(h′) (x, x′)) ,

(12)
where 	(h−1) is the centered covariance matrix of the (h −
1)th layer’s output f (h)(x), and 	̇ is the corresponding deriva-
tive covariance.

It can be proven that a sufficiently wide and randomly
initialized DNN trained by gradient descent is equivalent to
a kernel regression predictor with the aforementioned NTK
kernel. Hence, the properties of the ultra-wide DNN, such
as the generalization capability, can be obtained by learning
the corresponding NTK, albeit with much less computational
effort. It is also noteworthy that the hyper-parameter of the
NTK is only the number of layers that can be tuned easily
using cross-validation.

Second, GP models can handle input uncertainty naturally.
In our considered applications, the model inputs often involve
position or position related measures that are intrinsically
subject to noise due to imperfect field calibration. Since GP
model is a probabilistic model, the input uncertainty can be
easily incorporated into the model. One way is to assume
the training input x to be a random variable with a known
distribution p(x). In [82], for instance, the mean function of
GP with input uncertainty was obtained as

m̃(x) =
∫

m(x)p(x)dx, (13)

and the kernel function obtained as

k̃(x, x′) =
∫∫

k(x, x′)p(x)p(x′)dxdx′. (14)

The only difficulty lies in the evaluation of the two integrals.
In general, they can be approximated by Monte-Carlo integra-
tion [56], [83]. The rest of the steps remain the same as the
standard GP with clean input as given in (1). The computation
can be largely reduced for Gaussian distributed input x using
unscented transform, see for instance [84, Chapter 5.5].

Third, GP models can more easily encode prior informa-
tion about the data than DNN. This is inherited from the
meaningful interpretation of various elementary kernels with
known characteristics. For instance, when the data demon-
strate periodicity, we could add elementary periodic kernel(s)
or locally periodic kernel(s) to the eventual composite kernel;
when the data demonstrate linear rising trend, we could add
a linear kernel to the eventual kernel; when the data profile is
verified to be smooth, we could use the squared-exponential
(SE) kernel with a large length scale parameter. Taking into
account the prior information about the data can be regarded
as regularizing the model fitting process, thus is effective for
avoiding data over-fitting. This is a welcome feature for our
applications in which the total amount of data is large but
each mobile user may only have a small amount of local
data in hand for training the global model. According to a
recent white paper released by Huawei, wireless big data in
6G will be generated by a huge amount of mobile users and
IoT devices, each contributing only a small local dataset.

Fourth, GP models own a more robust generalization ca-
pability compared to DNNs. Recently, double descent phe-
nomenon [85] has once again attracted broad attention. Such
phenomenon describes that with the increase of model com-
plexity, generalization error first decreases, increases, and
then again decreases, which has been presented as mysterious
generalization behavior in various learning algorithms [86].
Recent work in [87] further showed that double descent in
DNNs occurs not just as a function of model complexity, but
also as a function of the number of training samples, hence
it can lead to a regime where training with more data leads to
worse test performance. By contrast, Bayesian models is more
robust in terms of generalization capability due to the effect
of marginalization. Specifically, instead of using the point es-
timation of the DNN models, Bayesian learning models make
the prediction in a different way, i.e.,

p(y∗ | x∗,D) =
∫

p(y∗ | x∗, θ)p(θ | D)dθ. (15)

That is, instead of taking only one single setting of parameters
θ , Bayesian learning models consider the whole parameter
space, weighted by the posterior probabilities, and finally
marginalize out θ to obtain the eventual predictive distribu-
tion. This procedure can be interpreted as model averaging,
and it has been shown that such Bayesian model averaging
can alleviate even prominent double descent behavior [88].
If a reasonable prior p(θ) is selected, the regression per-
formance is supposed to monotonically improve as we in-
crease the training sample size or the model complexity. This
suggests that GP models, as an important class of Bayesian
non-parametric models, are insensitive to double descent phe-
nomenon.

Finally, it is noteworthy that DNNs and their variants are
still more widely used than GPs for machine learning em-
powered applications. But for localization applications, yet,
GP models are very promising due to the aforementioned
advantages.

194 VOLUME 1, 2020

IV. FEDERATED LOCALIZATION (FEDLOC)
The organization of this section is the following. In Subsec-
tion IV-A, the main idea of federated learning is introduced,
followed by a review of various existing distributed training
methods proposed for DNN and GP learning models in Sub-
section IV-B. Privacy-preserving schemes are briefly surveyed
in Subsection IV-C. Lastly, we conclude this section by giving
a full picture of the FedLoc framework.

A. BRIEF REVIEW OF FEDERATED LEARNING
The idea of federated learning exists for a long time in the
context of distributed learning, and it was given the name
by some researchers at Google in 2016 [2], [89]. Federated
learning is a flexible and safe cooperation framework for
mobile users. The idea behind the federated learning is to
approximate a global model/objective as a summation of local
models/objectives trained individually by mobile users. Math-
ematically, the above idea can be expressed as

l (X , y; θ) ≈
K∑

k=1

l (k)(X k, yk; θ), (16)

where X is the complete set of the training inputs, y is the
complete set of the training outputs, and they constitute the
complete training set D; l (·) is a global objective in terms of
the model hyper-parameters θ; while X k is the k-th local set
of the training inputs, yk is the k-th local set of the training
outputs, and they constitute Dk , which is a subset of D; l (k)(·)
is a local objective of the k-th local dataset, Dk ; K is the total
number of collaborating mobile users, which is assumed to
be large. Both l (·) and l (k)(·) are composite functions of a
selected learning model/regression function and a cost func-
tion. Lastly, we note that the outputs y are mostly positions or
position related measurements in our work.

To shed some light on the objective l (·), let us consider
the following two different machine learning models and their
cost functions.

I: DNN model with the Least-Squares Cost. The global
objective for training a DNN is given as follows:

l (X , y; θ) =
n∑

i=1

(yi − f (xi; θ))2 , (17)

where the outputs are assumed to be independent, and f (xi; θ)
is represented by a DNN with L hidden layers [57] with
θ = {W 1,W 2, ...,W L+1} representing the DNN weights to be
tuned for all hidden layers and output layer. It is obvious that
the global objective is already in form of sum-of-residual-
squared.

II: GP model with the Maximum Likelihood Cost. Due
to the Gaussian assumption on the noise, described in Sub-
section III-B, the log-likelihood function can be obtained in
closed form. Therefore, the global objective for training the
GP regression model hyper-parameters is

l (X , y; θ) = log p(y; X , θ)

= logN (y; m(X), K (X , X ; θ)) , (18)

where the vector m(X) and the matrix K (X , X ; θ) are re-
spectively the mean function m(x) and the kernel function
k(x, x′; θ) evaluated for the complete dataset D. This global
objective is not directly in the form of summation, but com-
monly approximated by the product-of-expert (PoE) [76] as

l (X , y; θ) ≈
K∑

i=1

logN (
yk; m(X k), K (X k, X k; θ)

)
. (19)

Here, we note that the independent noise term has been ab-
sorbed into the kernel function for notation brevity in Eq.(18)
and Eq.(19).

B. DISTRIBUTED TRAINING OF THE LEARNING MODELS
The original goal is to train a global model through

θ̂ = arg min
θ

l (X , y; θ), (20)

where the objective function is often non-convex and solved
by gradient descent type methods. When the complete dataset
is large, training the global model given above can be compu-
tationally expensive. As mentioned before, federated learning
aims to distribute the heavy computation load to a massive
number of collaborating mobile users by solving instead the
following problem:

θ̂ = arg min
θ

K∑
k=1

l (k)(X k, yk; θ). (21)

Each mobile user maintains a local update of the global model
hyper-parameters and sends it to a central node for consensus.
There exist various ways for updating the global model hyper-
parameters. In the following, we introduce the classical feder-
ated averaging (FedAvg) [2] algorithm and a few algorithms
developed upon alternating direction of multipliers method
(ADMM) [90], [91].

We start with the state-of-the-art FedAvg algorithm. Typ-
ically, the k-th mobile user calculates the gradient ∇l (k)(θ)
and uploads it to the central node. The central node then
aggregates a batch of/all local gradients to approximate
∇θl (X , y; θ). We illustrate this workflow in Fig. , which is
named by FedAvg and deemed as the optimization algorith-
mic core of the federated learning framework [2]. A robust
variant, called FedProx [92], was proposed to improve local
training convergence by adding an extra proximal step at each
client to restrict the distance between the local parameter
estimates and the current global estimate.

Next, we introduce two ADMM-based hyper-parameter op-
timization schemes, that can effectively balance the compu-
tation and communication efficiency. The first one, namely
the classical ADMM-based hyper-parameter optimization
scheme (short as cADMM), reformulates the optimiza-
tion problem in (21) as a nonconvex consensus problem
[90] with a set of newly introduced local hyper-parameters
{θ1, θ2, . . . , θK } and the global hyper-parameter z. Concretely,

VOLUME 1, 2020 195

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

we solve instead

min
K∑

k=1

l (k)(θk),

s.t. θk − z = 0, ∀ k = 1, 2, . . . , K,

(22)

where l (k)(θk) is nonconvex in terms of the local hyper-
parameter θk in general. The augmented Lagrangian function
for Eq.(22) is given by

L({θk}, z, {βk}) =
K∑

k=1

(l (k)(θk) + βT
k (θk − z)

+ (ρk/2)‖θk − z‖2
2), (23)

where βk is a dual variable, and ρk stands for a predeter-
mined regularization parameter. The (r + 1)-th iteration of the
cADMM for solving (Eq.22) can be decomposed into

zr+1 = 1

K

K∑
k=1

(
θr

k + 1

ρk
βr

k

)
, (24a)

θr+1
k = arg min

θk

(
l (k)(θk) + (βr

k)T (θk − zr+1)
+
(

ρk

2

)
‖θk − zr+1‖2

2

)
, (24b)

βr+1
k = βr

k + ρk
(
θr+1

k − zr+1). (24c)

The above workflow is shown in Fig. 4 for clarity.
Next, we continue to introduce a more recent proximal

ADMM (short as pxADMM) scheme proposed in [91], which
is capable of reducing the communication overhead and the
computational time at the same time. Unlike in step Eq.(24b)
where the local hyper-parameters θk are updated through min-
imizing the augmented Lagrangian function exactly, the prox-
imal ADMM takes a proximal step w.r.t. θk by applying the
first-order Taylor expansion to l (k)(θk) [91], i.e.,

θr+1
k = arg min

θk

∇T l (k)(zr+1)(θk − zr+1)

+ (βr
k)T (θk − zr+1) +

(
ρk + Lk

2

)
‖θk − zr+1‖2

2,

(25)

where Lk is a newly introduced positive constant mak-
ing ‖∇l (k)(θk) − ∇l (k)(θ′

k)‖ ≤ Lk‖θk − θ′
k‖ satisfied for all

θk and θ′
k, k = 1, 2, . . . , K . Note that the proximal step in

Eq.(25) for θk is a (convex) quadratic optimization problem
with the following closed-form solution:

θr+1
k = zr+1 −

(∇l (k)(zr+1) + βr
k

ρk + Lk

)
. (26)

As a consequence, the (r + 1)-th iteration of the pxADMM
for solving Eq.(22) can be decomposed into

zr+1 = (1/K)
K∑

k=1

(θr
k + 1

ρk
βr

k), (27a)

θr+1
k = zr+1 − (∇l (k)(zr+1) + βr

k)

ρk + Lk
, (27b)

βr+1
k = βr

k + ρk (θr+1
k − zr+1). (27c)

The pxADMM shares the same workflow with the cADMM
as depicted in Fig. 4. Criteria for choosing ρk and Lk are
given in [91], where the authors also proved under mild con-
ditions that: (1) θr

k converges to zr for all k; and (2) solution
({θr

k}, zr, {βr
k}) converges to a stationary point of Eq.(22).

The pxADMM reduces the communication overhead in the
same way as cADMM does, which was explained in our previ-
ous work [11]. However, the proximal step shown in Eq.(27b)
leads to an inexact, but closed-form solution of the local sub-
problem Eq.(24b) with much cheaper computation cost. Al-
though more iterations may be required towards convergence,
the overall computational time can be well reduced.

Yet, we must point out that there exist various different
alternatives for distributed optimization, such as gossip al-
gorithms [93], as well as some new alternatives including
for instance distributed second-order Newton methods [94],
distributed zero-order optimization methods [95] and parallel
coordinate descent [96], etc. Depending on the task specifica-
tion, these alternatives might be more effective than ADMM.

C. PRIVACY PRESERVATION
Federated learning emphasizes strongly on mobile users sole
ownership of data and preservation of user privacy. How-
ever, recent studies have shown that the shared parameters
of the trained models are proved to be vulnerable to disclose
sensitive information [97]. Privacy preservation in federated
learning can be achieved through various security techniques
like secure multi-party computation, homomorphic encryp-
tion, and differential privacy.

To protect the content of each individual piece of trained
model, secure multi-party computation involves multiple par-
ticipants to upload trained models towards the server col-
laboratively. No matter DNN or GP is used, the distributed
gradient descent on user-held training data is protected by
secure aggregation with user dropout taken into consideration
[98]. By exploiting a secure aggregation protocol and a secret-
sharing scheme, the privacy of each user-provided model can
be guaranteed under an honest-but-curious and active adver-
sarial setting [99], which supports an arbitrary subset of user
dropouts. Other than the above schemes, to verify the correct-
ness of the final aggregation result, a privacy-preserving and
verifiable federated learning protocol has been designed with
a homomorphic hash function and a secret sharing protocol
[100]. However, secure multi-party computation may still leak
sensitive information during the learning process.

196 VOLUME 1, 2020

The key idea of differential privacy in federated learning
is to add some noise to the trained hyper-parameters with
a sensitivity-measured random mechanism, such as Laplace
mechanism or Gaussian mechanism [101], which helps miti-
gate the risk of private information disclosure. However, the
injected noise may degrade the performance of the trained
model. The feasibility of differential privacy on a client level
in federated learning with Gaussian mechanism was demon-
strated in [102], in which the authors demonstrated the trade-
off between the loss of privacy and the modeling performance.

Various homomorphic encryption schemes were also de-
signed to protect the privacy of each independent partici-
pant, whose benefits are: 1) sensitive information is kept
from the server; and 2) accuracy is kept intact [103]. Specif-
ically, homomorphic cryptosystems allow certain forms of
computation performed on ciphertexts and produce encrypted
results, which matches the results of operations conducted
on the plaintext. Furthermore, homomorphic cryptosystem
is mainly classified into two categories: partially homomor-
phic cryptosystem with either additive or multiplicative ho-
momorphism, and fully homomorphic cryptosystem supports
arbitrary computation on ciphertexts. Under the context of
federated learning privacy protection, the stochastic gradient
descent can be protected with additive homomorphic encryp-
tion, when the server is assumed to be collusion-resistant and
honest-but-curious. That is, the honest-but-curious server is
restricted to follow the designed protocol, but it may attempt
to recover the content from the gradient information. Another
hybrid scheme combining differential privacy technique and
threshold homomorphic encryption is also designed, which
can further resist collusion attacks between the colluding
server and participants [104].

Note that in our proposed scheme, no matter which dis-
tributed model training method (FedAvg or cADMM or px-
ADMM) is involved, we utilize a homomorphic encryption
algorithm for the mobile users to upload the local gradients
or hyper-parameter towards the server. In order to illustrate
the stochastic descent encryption and decryption process, we
take the widely exploited additive homomorphic Paillier cryp-
tosystem as an example [105], which consists of three algo-
rithms: key generation, encryption and decryption.

Key generation: Given security parameter κ , two large
prime numbers p, q are chosen, where |p| = |q| = κ . Then
the Rivest-Shamir-Adleman (RSA) modulus n = p · q and the
least common multiple λ = lcm(p − 1, q − 1) are computed.
Define a function L(u) = u−1

n , after choosing a generator
g ∈ Z∗

n2 , μ = L(gλ mod n2)−1 mod n is further calculated.
Then the public key is pk = (n, g) and the private key is
sk = (μ, λ).

Encryption: Given a message m ∈ Zn, choose a random
number r ∈ Z∗

n, and the ciphertext can be calculated as
c = E (m) = gm · rn mod n2, where set Zn = {0, 1, ..., n −
1}, and set Z∗

n only has elements coprime to n.
Decryption: Given the ciphertext c ∈ Z∗

n2 , the corre-

sponding message can be recovered as m = D(c) = L(cλ

mod n2) · μ mod n.

For our federated learning scenario, the Paillier cryptosys-
tem [105] can be exploited to protect and aggregate the
stochastic descents. Interested readers can find more imple-
mentation details in [21].

D. FEDLOC: A NEW UMBRELLA OF OLD MODULES
In the previous sections, we have introduced two important
classes of learning models, namely the deep neural network
models and Gaussian process models, and a few distributed
hyper-parameter optimization schemes tailored to these two
models, as well as the state-of-the-art privacy preservation
methods for mobile data. These constitute the major ingredi-
ents of a novel cooperative, data-driven, learning model-based
framework for localization and location data processing.

VOLUME 1, 2020 197

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

FIGURE 4. Workflow of two existing distributed hyper-parameter
optimization schemes. (a) FedAvg [2]. (b) cADMM [90].

For clarity, we give a complete procedure of the FedLoc
framework in Algorithm 1, which can be adopted for both
the cooperative localization and the cooperative location data
processing. Various live use cases in different application sec-
tors already fall into or can be revised to suit our FedLoc
framework. In Section VI, we will show a few representative
use cases and survey some related works that can be made
adapt to the FedLoc.

V. NETWORK INFRASTRUCTURES FOR FEDLOC
As it is widely known, federated learning needs to communi-
cate a big number of model parameters continuously over the
air, especially when DNN is adopted as the learning model.
In this section, we introduce two promising network infras-
tructures to meet the communication requirements of the pro-
posed FedLoc framework. Specifically, a cloud-based wireless
network infrastructure is introduced in Subsection V-A, while
an emerging edge-based one is introduced in Subsection V-B.
Some remarks are given in Subsection V-C. More fresh dis-
cussions on using parallel infrastructures to support scalable
learning paradigms for data-driven wireless applications can
be found in our recent work [110].

A. CLOUD-BASED INFRASTRUCTURE
For ease of understanding, a complete picture of the network
infrastructure is depicted in Fig. 5 for learning model-based
cooperative localization. The key elements of this network as
well as their functionality are summarized as follows:

1) Reference Network Node is equipped with cache, stor-
age, and communication entities. A reference network
node communicates with the mobile terminals deployed
in its communication range to exchange learning model
related information. Both the position and the trans-
mit power of a reference network node are assumed
to be precisely known. Representative reference net-
work nodes include 5G macro and micro base sta-
tions, WiFi access points, BLE beacons, etc. Especially
the emerging 5G and WiFi-6 network are able to pro-
vide low-latency, high throughput wireless transmission

FIGURE 5. Cloud-based network infrastructure for supporting the
proposed FedLoc framework. For illustration purpose only, the whole
deployment area is divided into many non-overlapping sub-areas, and for
each sub-area there is a bunch of mobile terminals willing to collaborate.

to FedLoc, which requires to transmit a big amount
of model parameters in every iteration. Table 2 gives
some numbers. For better intuitions, two specific exam-
ples are given below. The 5G network with the high-
est throughput can support a 9-layer fully-connected
DNN with the network layout “20000-30000-10000-
100000-10000-10000-10000-1000-10” that has around
300 million weights. The 4G network, however, can
only support an 8-layer fully-connected DNN with a
much smaller network layout “5000-5000-10000-3000-
9000-2000-200-10” with around 15 million weights.

2) Mobile Terminal (MT) is equipped with sensing, log-
ging, computing, storage, and communication entities.
Moreover, the MT has installed the designated mobile
applications for carrying out the calibration work. The
MT collects position related measurements, obtains a
local update of the global learning model parameters,
and uploads them to the core network. All the com-
putations are conducted on-device using the local data
only. Here, the mobile terminal refers to a smartphone
specifically. It is noteworthy that modern smartphones
are equipped with a basket of inertial sensors, includ-
ing accelerometer, gyroscope, magnetometer, barome-
ter, pedometer, barcode/QR code sensors, that can be
exploited for localization or localization-related tasks.
Apart from the rapid development of the hardware, a
number of mobile machine learning platforms are under
development, such as Tensorflow by Google, Core ML
by Apple, Caffe2 by Facebook, Paddle Lite by Baidu,
MNN by Alibaba, etc. Mobile users can easily deploy
different deep learning models on their smartphones in
the near future.

3) Fixed Smart Agents are equipped with sensing, logging,
computing, storage and communication entities. Repre-
sentative smart agents include IoT machines, wireless
sensors, robots, smart traffic lights, unmanned aerial
vehicles (UAVs), micro-base stations that are collecting
location data continuously.

4) Core Network is equipped with high-speed comput-
ing, cache/storage and communication entity. The local

198 VOLUME 1, 2020

TABLE 2 Downlink and Uplink Data Rate of Different Wireless Infrastructures Under Specific Configurations and the Number of Hyper-Parameters of a
Selected Learning Model (taking the DNN Weights as Example) That can be Supported. The Number of the DNN Weights (in million) Shown in the Fourth
Column is Equal to the Uplink Rate (given in the Second Column) Divided by 32 Bits per DNN Weight

FIGURE 6. Edge-based network infrastructure for supporting the FedLoc
framework.

updates from the mobile users are aggregated to the core
network to compute a global parameter update. After the
training phase is over, the approximated global learning
model will be stored in the core network and used for
predicting a new position in the online phase. Since the
heavy computations have been offloaded to a number
of mobile users, the core network can perform smarter
coordination of different tasks and resources, so as to
make the whole network agile and adaptive to the fast
changing environments.

B. EDGE-BASED INFRASTRUCTURE
In the second infrastructure, the mobile users or smart agents
can upload their local data to a trustful third-party edge node,
where there is sufficient storage and computation power for
handling learning tasks. For clarity, we show this network
infrastructure in Fig. 6. The edge node first pre-processes
the received data and then offloads the model fitting task to
a number of computing units. Each edge node is in charge
of building a locally-global learning model and transmits the
trained hyper-parameters to the core network for consensus
and coordinated control. This infrastructure is more suitable
for building a number of regional global models for location
data processing. The third use case that we will show in the
next section can potentially benefit a lot from this edge-based
infrastructure.

It is noteworthy that our proposed FedLoc solution, as
shown in Algorithm 1, can be easily extended to work with
edge nodes. Specifically, we can simply let a batch of end
devices upload their raw data to the nearest neighboring edge

for training a regional local model; afterwards, all such edge
nodes make consensus on the global model parameters by
following similar steps given in Algorithm IV-D. In this way,
the whole network can be made hierarchical, and the latency
in each level can be minimized.

C. CONCLUDING REMARKS
First, we would like to stress again that the communication
requirement is sufficient broadband for transmitting a large
number of global model parameters between users and the
cloud/edge, which is more challenging for the deep neural
networks than GP models as mentioned in Subsection III-C.
Under this communication constraint, people may be con-
cerned about the necessity of using the two above-mentioned
infrastructures and their corresponding pros and cons. Our
understanding is that when the distributed device is equipped
with a powerful computing unit and battery, then it is pre-
ferred to perform a sufficient local numerical search before
communicating its local estimate of the model parameters.
In this way, fewer optimization epochs may be required (or
equivalently less communication overhead is required). This
is suitable for the distributed FedLoc system to be deployed
in certain areas with less developed wireless infrastructure, for
instance, suburbs covered by 3G only. On the other hand, if the
end devices, such as wireless sensors and smart meters, have
rather low on-board computation capacity but are deployed in
certain areas with a rather good network support, for instance,
using 5G or private IoT network, then we could simply in-
crease the rounds of communications to compensate for the
quality of local updates obtained using economical numerical
searches.

The overwhelming benefit of the cloud-based solution lies
in the global model training accuracy. Principally, distributed
systems can only approach its performance. But the major
demerits of the cloud-based solution are also obvious, among
others, that response latency is the most serious one for big
data aggregation and dissemination even using 5G network.
Therefore, a promising solution is to employ edge nodes for
effective trade-off between computation and communication.

VI. USE CASES OF FEDLOC
This section aims to shed more light on the FedLoc framework
with various live use cases. In particular, we showcase: (1)
DNN-based static localization/fingerprinting; (2) DNN-based
smartphone sensor calibration for accurate navigation with

VOLUME 1, 2020 199

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

FIGURE 7. All the QR labels were photoed in a modern shopping mall in
Shenzhen, China. (a) QR codes for ordering foods for a specific dining
table; (b) QR code for promotion information at a shop; (c) QR codes for
various different services, including product recommendation, payment,
etc at the cashier of a shop; (d) QR code for renting mobile power bank.

low-sampling-rate GPS; (3) GP-based state-space model for
target tracking and navigation; and (4) GP-based wireless
traffic prediction in 5G C-RAN. The first three use cases
relate to localization, while the last one relates to location data
processing and prediction. Most of the above use cases are
summarized from our recent works. We also survey related
works that can easily fit into the FedLoc framework.

A. DNN-BASED STATIC LOCALIZATION/FINGERPRINTING
There exist various statistical methods using wireless mea-
surements, such as ToA, RSS, proximity [111], [112], for
static target localization. These methods rely on empirical
propagation models. In this subsection, we show a different
static localization method using DNN, which can benefit from
the federated learning framework. DNN-based localization
is preferred for complex indoor wireless environments, for
which sophisticated empirical models are either not available
or incapable of capturing the underlying propagation mecha-
nism.

Let us take a look at three representative indoor scenarios:
� Indoor shopping mall, where there are a bunch of

WiFi/BLE access points and micro base stations for pub-
lic data traffic. In addition, thanks to the rapid spread of
5G for IoT and machine-type communications (MTC),
there are now a large number of machines/landmarks
with QR codes in the shops. By scanning the QR codes,
customers can easily get shopping mall information
and promotional information. Some live examples are
demonstrated in Fig. 7.

� Indoor museum, where there are a bunch of WiFi/BLE
access points in the exhibition rooms and a considerable
number of QR labels attached to the exhibits to serve
as references. Similarly, by scanning the QR codes a
visitor can easily get access to detailed interpretation of
the exhibits on his/her mobile terminal.

� Indoor office, where there are a bunch of WiFi/BLE
access points in the whole office area, and a large number
of QR labels are placed on all valuable assets in the
room.

FIGURE 8. A typical indoor office environment at the Chinese University of
Hong Kong (Shenzhen), where two dozens of WiFi access points are
deployed in the offices and laboratories. For this conceptual example, an
input, xi , is a vector of P = 26 RSS values, and the corresponding output,
yi = [px

i , py
i] is a 2D position.

The DNN-based static localization/fingerprinting needs to
be trained with a big dataset D, where the training input,
X , contains the radio features at different locations and the
training output, y contains the corresponding locations. More
concretely, let us assume that a training input comprises RSS
measured with respect to P WiFi/BLE access points, xi =
[RSSi,1, RSSi,2, ..., RSSi,P], and the output y is a position (2D
or 3D) at which the radio feature is measured. More sophisti-
cated measurements such as magnetic fields and channel state
information (CSI) can be used instead of RSS or jointly used
with RSS. Note that an output yi is either measured precisely
at the calibration points by paid workers or imprecisely (for
instance, with the aid of the landmark points and manual
click on the indoor map displayed on the mobile application)
by voluntary users. In either case, we assume the output is
subject to additional independent noise. A concrete example
is illustrated in Fig. 8.

The regression problem can be formulated as

yi = f (xi; θ) + ni, (28)

where f (x; θ) : Rdx → Rdy represents a DNN with an input
of dx = P features and the neural network weights θ to be
tuned. The regression function f (x; θ) is also known as RSS
map or fingerprinting map in the literature.

In order to adopt the federated learning framework, we
deploy a large number of mobile terminals, and each is re-
sponsible for a particular area, possibly overlapping with its
neighboring areas. The k-th mobile terminal collects a dataset
Dk = {X k, yk} and uses it to train a local update of the global
parameters. Concretely, each mobile user solves

θk = arg min
θ

∑
∀{xi,yi}∈Dk

||yi − f (xi; θ)||22. (29)

All the mobile terminals cooperate to perform Algorithm 1.
Since in this use case, the global objective is readily in the
form of summation, therefore we can set the weights βk to

200 VOLUME 1, 2020

FIGURE 9. Illustration of DNN-based static localization. Here, [[W]] represents encrypted NN weight parameters using for instance Homomorphic
Encryption (HE). The P features are RSS values collected from the WiFi access points in the deployed area.

be the ratio |Dk|/
∑

j∈Kη
|D j | in the η-th iteration and up-

date θη+1 = ∑
k∈Kη

βkθ
η

k . When the messages are exchanged
between the core network and mobile terminals, they are
first encrypted by the mobile terminals and decrypted in the
core network using homomorphic techniques. The workflow
of the FedLoc for DNN-based static localization is shown
in Fig. 9.

After the training procedure is terminated, the central node
will obtain an approximated global estimate of the hyper-
parameters, denoted by θ̂. Given a new vector of RSS mea-
surements, x∗ = [RSS∗,1, RSS∗,2, ..., RSS∗,P], reported to the
central node, the trained learning model will map it then to the
desired position estimate through p∗ = f (x∗; θ̂).

Various works on using deep learning models and RSS
measurements for indoor fingerprinting have been published
in recent years, for instance [113]–[117] based on DNN,
CNN, LSTM. Although these works are originally centralized
algorithms, they can be implemented in a distributed manner
under our FedLoc framework.

We have shown the general procedure of DNN-based static
localization. One may be concerned about the latency of the
proposed FedLoc framework using DNN-based models in
practical use. We believe that the latency issue would not
prohibit the wide use of sophisticated learning models in
next-generation wireless networks. The reasons are as fol-
lows. First, federated global model training can be done in
the offline phase with historical data, which does not raise
any latency issue. Second, when the global model has been
trained, performing position inference using the well-trained
model is computationally cheap. For a neural network with
a modest number of layers and neurons in each layer, the
computational time for estimating a position is just slightly
higher than the KNN method, which should satisfy the LTE
latency requirement. Third, with the rapid development of AI

chips [118], we believe that the aforementioned inference time
can be significantly shortened in order to meet the low-latency
requirement of the 5G network and beyond.

Before leaving this subsection, let us give a concrete exam-
ple to shed more light on both the latency and the positioning
accuracy of KNN and CNN model. In [113], a real office room
is considered and a CNN model is applied to predict some
unknown 2-dimensional positions y. The selected CNN archi-
tecture consists of 3 convolution layers and each convolution
layer has 5 kernels, followed by two fully connected layers
with 10 neurons in each layer. For more details, interested
readers can refer to the original paper [113]. In the test phase,
a number of 260 data samples (of 24-dimensional) are fed into
CNN. The results show that the inference time for a single
data point takes 0.001s, with the mean error distance around
160cm. In contrast, for the KNN model with a regular finger-
print resolution, testing one data point only takes 0.0002s, but
the mean error distance is up to 230cm, being larger than that
obtained using CNN.

B. DNN-BASED VEHICLE NAVIGATION WITH LOW
SAMPLING RATE GPS
For land vehicle navigation, combining the inertial measure-
ment unit (IMU) and global positioning system (GPS) embed-
ded in a smartphone is still the main-stream technical solu-
tion. The GPS can readily provide accurate vehicle positions
when the majority of the satellite signals are in line-of-sight
(LOS) propagation with relatively high RSS. On the other
hand, the IMU assembles, primarily, a three-axis acceleration
sensor and a three-axis gyroscope, to determine the position
and velocity of a vehicle. The main functionality of the IMU
is to provide vehicle positions with a much higher sampling
rate (>50 Hz) between two consequent GPS position esti-
mates (with 1 Hz by default). Unfortunately, when a vehicle

VOLUME 1, 2020 201

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

enters into certain areas with severe signal blockage, the re-
ceived GPS signal will be very weak or even undetectable,
leading to significantly degraded position estimate. On the
other hand, solely relying on low-end IMU measurements for
high-accuracy navigation is impractical due to the sensor bias,
scale-factor error, and other random errors that accumulate
over time. How can we maintain a satisfactory positioning ac-
curacy for the case that GPS signals are occasionally available
for harsh wireless environments, such as in the city center or
forest? We demand a smart solution with affordable computa-
tional complexity.

Towards this end, we introduce in this subsection a machine
learning-based approach that can be implemented on commer-
cial smartphones and is able to provide high navigation ac-
curacy using low-end inertial sensors and low-sampling-rate
GPS. Inertial sensors are used to continuously estimate the
vehicle velocity and position at higher sampling rate, while
low-sampling-rate GPS signals are used for IMU calibration
occasionally (for example every 60 seconds). When the GPS
signal is not available, we use pre-trained DNNs to calibrate
the inertial sensor errors.

To be concrete, we adopt two DNNs to estimate/predict
the velocity vt,NN1 and the yaw angle yt,NN2 of the vehicle,
respectively. In the model training phase, both DNNs take
measurements from the smartphone inertial sensors as the
input while the GPS velocity and yaw angle measurements
are taken as the outputs/labels.

The first DNN takes the following inputs:
� The velocity ṽn

t = ((vnx
t)2 + (vny

t)2 + (vnz
t)2)1/2 calcu-

lated from the inertial sensor data;
� The sequence of angular velocity {ωbz

t−l , ..., ω
bz
t } of the

vehicle;
� The sequence of smoothed linear acceleration along the

front direction of the vehicle, denoted as {anx
t−l , ..., anx

t }.
The DNN output is the velocity vt,NN1 set to be the GPS

velocity vt,GPS as the ground-truth in the training dataset.
Similarly, the second DNN takes the following inputs:
� The sequence of smoothed linear acceleration, denoted

as {aby, ..., aby};
� The sequence of angular velocity {ωbz

t−l , ..., ω
bz
t };

� The compensated yaw sequence {yt−l , ..., yt }.
The DNN output is the yaw angle yt,NN2 set to the GPS yaw

angle ytGPS as the ground-truth in the training dataset.
Our recent work in [119] presented a centralized implemen-

tation, where interested readers can find more details about
the measurements, configurations of the DNNs, as well as a
diagram of the whole navigation system. In this paper, we are
interested in designing a distributed counterpart. To this end,
we let the two DNNs be trained individually by a batch of
collaborating mobile users according to Algorithm 1 with the
DNN weights optimized using either the FedAvg algorithm or
the FedProx algorithm. The information exchange procedure
remains the same as the first use case. In the online use phase,
the two DNNs will calibrate the inertial sensor error aggre-
gation when there is no GPS signal at hand. Some primary
results for this use case will be shown in Section VII.

C. GP-BASED STATE-SPACE MODEL (GPSSM) FOR TARGET
TRACKING
State-space models (SSM) are outstanding for modeling a
time series y1:T � {yt }T

t=1 with latent states x0:T � {xt }T
t=0.

An SSM comprises a transition function, f (x) : Rdx → Rdx

and a measurement function, g(x) : Rdx → Rdy. Concretely,
an SSM is given by

xt = f (xt−1) + et−1,

yt = g(xt) + nt , (30)

where xt ∈ Rdx is the latent state, yt ∈ Rdy is the measure-
ment, et is the process noise, and nt is the measurement noise
at time instance t , respectively. Traditional SSM restricts both
the transition function f (x) and the measurement function
g(x) to empirical, parametric functions [10], whose param-
eters can be learned through the expectation-maximization
(EM) algorithm [120] or Markov chain Monte Carlo (MCMC)
algorithm [121].

Since GP models provide outstanding performance in func-
tion approximation with a natural and inherent uncertainty re-
gion, they have been adopted to model complicated nonlinear
functions in the SSMs, leading to the GPSSM [122]. Early
variants of GPSSM were learned by finding the maximum
a posteriori (MAP) estimates of the latent states, generating
various successful positioning applications, among others the
RSS-based WiFi localization [123], the human motion cap-
ture [124], and the IMU-based slotcar tracking [125], etc.
The first fully probabilistic learning procedure of GPSSM
was proposed in [126] using particle Markov Chain Monte
Carlo (PMCMC). In order to reduce the heavy computational
load of the sampling method used in [126], a number of
different variational learning procedures were developed in
[122], [127]–[129] upon the classical variational sparse GP
framework [77]. A general GPSSM can be formulated as

f (x) ∼ GP (m f (x), k f (x, x′; θ f)),

g(x) ∼ GP (mg(x), kg(x, x′; θg)),

x0 ∼ p(x0),

f t = f (xt−1),

xt | f t ∼ N (xt | f t , Q),

gt = g(xt),

yt |gt ∼ N (yt |gt , R), (31)

with the model hyper-parameters {θ f , θg, Q, R}, where θ f

and θg are the kernel hyper-parameters of the GPs, Q and
R are the covariance matrices of the process noise and the
measurement noise, respectively. For clarity, Fig. 10 shows a
graphical representation of GPSSM. In the following, we will
first introduce the standard GPSSM, which requires a big set
of calibrated data to train both the transition function f and
the measurement function g. Then, we will briefly mention
the advanced variational GPSSM proposed initially in [122].

202 VOLUME 1, 2020

FIGURE 10. Graphical representation of GPSSM. The shaded nodes
represent the measurements, while the transparent nodes represent the
latent variables. Variables belonging to the same GP are connected by a
thick edge.

We start with the transition function of the standard
GPSSM. The GP regression model for the transition function,
f , is xt+1 = f (xt) + et , where the output xt+1 ∈ Rdx is the
state at time t + 1, xt ∈ Rdx is the current state at time t , the
unknown function f (xt) : Rdx → Rdx is essentially a multi-
output GP [1], and et is a vector of noise terms. For simpler
implementation, we could model each entry of the state, say
the j-th, by an independent GP as [xt+1] j = f j (xt) + e, where
f j (xt) : Rdx → R is now a single-output GP. As discussed in
Section III, we need to select a kernel function, k f (xt , xt ′ ; θ)
to represent the correlation between the states at different time
instances. When the input dimension is small/modest, using
the ARD kernel is often a good choice. While for large input
dimension, advanced kernels such as the arc-cosine kernel and
the NTK should better be tried out.

The above GP models can be trained with a
dataset of calibrated trajectories, D j � {X , x̃ j}, where
x̃ j = [[x1] j, [x2] j, ..., [xT] j]T is a vector of outputs and
X = [x0, x1, ..., xT −1]T is a matrix of inputs. One could
follow Eq.(18) to solve for the global ML hyper-parameter
estimate. To implement the FedLoc framework, one could
let K mobile users collaborate to approximate the global
ML hyper-parameter estimate according to Eq.(19) with the
local trajectories walked by each individual. The central node
makes consensus on the local hyper-parameter estimates.

The GP regression model for the measurement function is
yt = g(xt) + nt , where the input xt ∈ Rdx is the state at time
t , the output yt is a vector of wireless measurements, and the
unknown function g(xt) : Rdx → Rdy is essentially another
multi-output GP. Similar to the modeling of the transition
function, we apply an independent GP for each single entry
of the output. Training the measurement function is similar to
that of the transition function, f , introduced above. Interested
readers can find more details about using GPs to model f and
g in [130], [131]. After the GPSSM is built, it can be combined
with the celebrated particle filter or smoother [132] to recon-
struct unknown trajectories. In [133], we proposed a practical
real indoor navigation system prototype based on GPSSM
and achieved improved navigation accuracy in various tests
with smartphone sensory data. Moreover, we derived both

the posterior- and parametric Cramer-Rao bounds for general
nonlinear filtering problems based on GPSSM in [134].

One drawback of the above standard GPSSM lies in the
need for a relatively large training dataset with calibrated
latent states, which requires a large amount of labor force.
To remedy this drawback, some recent works [122], [128]
incorporated the variational inference technique [77] into the
standard GPSSM to jointly estimate the GPSSM model hyper-
parameters and the latent states on the fly. The variational
GPSSM does not require a historical calibrated dataset, but
as a tradeoff, it has to deal with a large-scale optimization
problem. In order to make it adapt to the FedLoc framework,
one may consider using the distributed variational inference
techniques [135] with the GPSSM.

D. GP-BASED WIRELESS TRAFFIC MODELING AND
PREDICTION
In 5G, wireless traffic prediction is vital to resource allocation,
load-aware management, and proactive control in C-RAN.
In [11], we proposed a distributed GP-based wireless traf-
fic modeling and prediction framework that exploits the ad-
vanced C-RAN specifying the edge-based network infrastruc-
ture given in Section V. In the deployment area, several hun-
dreds of micro base stations with fixed geographical positions
are installed to serve mobile users and record the downlink
physical resource block (PRB) usage (a wireless traffic usage
indicator) versus time. In this work, the base stations serving
as smart agents are first clustered into groups according to
their geographical locations, and for each group an aggregated
PRB usage prediction model is to be built. To this end, all
the micro base stations in one cluster send their observed
time series of PRB usage to an edge node, in which the data
are aggregated, pre-processed and uniformly allocated to a
number of parallel computing units.

Specifically, a global GP regression model for the aggre-
gated wireless traffic data of each cluster in the C-RAN is
given as y = f (t) + e, where y ∈ R1 represents the PRB us-
age; e is a Gaussian distributed noise term with zero mean and
variance σ 2

e ; f (t) is a temporal GP as introduced in Eq.(3) of
Section III.

In comparison with the “black-box” deep learning models
for sequential data modeling such as the recurrent neural
network (RNN) and long-short term memory (LSTM), GP
model owns better interpretability as prior information about
the wireless traffic pattern can be encoded more easily into
the kernel function design. As shown in Fig. 11, the wireless
traffic in our real datasets demonstrates the following general
patterns: (1) weekly periodic pattern, namely the variation in
accordance with weekdays and weekends; (2) daily periodic
pattern, namely the variation in accordance with weekdays
and weekends; and (3) deviations, namely the small scale
variation in addition to the above periodic trends. The first two
patterns can be well captured by the periodic or the locally
periodic kernel, while the third pattern can be well captured
by the SE kernel or the Matern kernel.

VOLUME 1, 2020 203

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

FIGURE 11. The PRB usage curves of three base stations collected in three
southern cities of China in 30 days. The data profile in the first panel
reflects a typical office area, in which the traffic pattern shows a strong
weekly periodic trend in accordance with weekdays and weekends. The
data profile in the second panel reflects a typical residential area, in which
the traffic pattern shows a strong daily trend with high demands in the
daytime and low demands in the night. The data profile in the third panel
reflects a typical rural area, in which the traffic pattern is more or less
random.

Our distributed GP for wireless traffic modeling and pre-
diction falls in the FedLoc framework. Both the training and
inference stages are performed in the edge nodes. Detailed
workflow of model training is as follows. First, each base
station in a specific cluster uploads its measured time series
to the edge node. The aggregated data is then divided into K
portions by the edge node, and each portion is allocated to a
local computing unit for distributed model training based on
the cADMM introduced in Section IV. The training frame-
work achieves excellent tradeoff between the communication
overhead and modeling accuracy, as explained in Section III.
For each local computing unit, the required computational
complexity can be reduced from O(n3) of the centralized,
standard GP to O(n3

K3), where n is the number of the data
points and K the number of parallel computing units.

In the online phase, one could use the generalized PoE [76]
to fuse the local predictions from all parallel computing units
to approximate the global prediction. The generalized PoE
model needs to introduce a set of fusion weight parameters,
βi, i = 1, 2, ..., K , to take into account the importance of the
local predictions. The resulting PoE predictive distribution is

p(f∗|x∗,D) ≈
K∏

i=1

pβi
i (f∗|x∗,D(i)). (32)

The choice of βi, i = 1, 2, ..., K , is vital to the prediction. In
[11], we proposed to optimize the fusion weights according to
the cross-validation criterion. The corresponding weight opti-
mization problem can be solved efficiently with convergence
guarantee. More details about the optimization process can be
found in [11].

FIGURE 12. Conceptual illustration of graph GP for spatio-temporal data
modeling. Both the spatial correlation and event correlation information
are helpful to improve the prediction performance.

In the above work, we considered a temporal GP for re-
gression. Therein, each cluster of base stations is assumed to
be independent other clusters. For enhanced prediction per-
formance, we could use spatio-temporal GP that takes into
account the correlations between different clusters. A straight-
forward way for building a spatio-temporal GP model is to
introduce an extra kernel to account for the spatial correlations
between different clusters and combine this spatial kernel with
the aforementioned temporal kernel either through addition
[136] or Kronecker product [137].

The recently proposed graph GP provides another way for
learning from high-dimensional data points living on non-
Euclidean domains, see for instance [138]–[140]. As such,
graph GP allows for better non-local generalization thus can
be used to model sophisticated correlation patterns across time
and space. In the illustrating example in Fig. 12, a graph
GP can be designed to capture three types of correlations,
including: (1) temporal correlation as discussed above; and
(2) spatial-temporal correlation, where closer geographical
distance indicates higher correlation in the temporal observa-
tions, and (3) the event correlation, where an event nearby also
indicates a higher probability of an abrupt traffic change. It is
noteworthy that graph GP is still under development where
many directions remain to be explored, e.g., kernel design,
stability issue, and distributed processing among others.

E. OTHER POTENTIAL USE CASES
Due to space limitations, we are unable to give a full list of all
FedLoc related use cases with details. However, we want to
briefly demonstrate the following three use cases due to their
ever-increasing popularity.

1) Radio feature map construction. The proposed FedLoc
framework can be used by a number of collaborating mo-
bile users to build accurate radio feature maps, such as RSS
map and magnetic field map, for indoor venues. In [131], we

204 VOLUME 1, 2020

proposed a distributed, recursive GP framework for building
indoor RSS maps. Therein, a batch of mobile users was em-
ployed to collect RSS measurements from a dozen of WiFi
access points at Ericsson research, Linkoping, Sweden. In the
training phase, each mobile user trains a local GP empowered
RSS map individually, while in the inference phase a global
prediction is obtained by fusing all the local GP models via
the classical Bayesian committee machine. A follow-up work
was then proposed in [141]. These works can be revised to fit
a global GP model in the training phase using the ADMM-
based GP hyper-parameter optimization algorithm introduced
in Section IV.

2) Simultaneous localization and mapping (SLAM) for
three-dimensional (3D) indoor scenario construction. The
proposed FedLoc framework can also be used for a number of
collaborating robots or low-flying unmanned aerial vehicles
(UAVs) equipped with cameras and LIDAR to reconstruct a
3D indoor scenario. A generic SLAM model [132] is given as
follows:

xt = f (xt−1, ut−1) + et−1,

mt = mt−1,

yt = g(xt , mt , ut) + nt , (33)

where the dynamic motion model takes an additional inertial
input ut of the sensory data from odometer, accelerometer,
gyroscope, and there is an additional map memory state, mt ,
in which the positions of the landmarks are updated and
stored. We could potentially modify the GPSSM framework
for the federated SLAM. Different from the use cases given in
Section VI, federated SLAM imposes more stringent require-
ments on both the computational power of the mobile devices
and the data throughput of the network, when dealing with 3D
environment reconstruction. The commercial 5G network and
futuristic wide-band generations (B5G and 6G) could make
the federated SLAM possible. Some recent attempt in this
regard can be found in [142].

3) Ocean-of-Things (OoT) [143]. So far we have solely
considered ground applications. In addition, there will be a
plethora of emerging OoT applications that can benefit from
our FedLoc framework. We show a conceptual picture of
OoT in Fig. 13, where the whole network comprises a large
number of spatially distributed buoys, some moving ships
and UAVs, and satellites. The buoys are analogous to micro
base stations on the ground, serving as smart agents, and they
can perform data collection and monitor local environment.
New fashioned buoys will be equipped with different sen-
sors, ranging devices, GPS, and low-profile AI chips. They
can be used to measure the ocean surface temperature, sea
state, sound speed, etc, and track multi-target trajectories. The
measured local data can be uploaded either to a moving ship
or a moving UAV, which can be regarded as edge node. In
addition to information transmission, the UAVs can also be
used to charge the buoys if they are wireless powered [144],
[145]. Each edge node maintains a local update of the learning
model for spatio-temporal data processing and transmits the

FIGURE 13. A conceptual picture of Ocean-of-Things. Here, buoys can be
seen as smart agents, ships and UAVs as edge nodes, and satellite as
central node with cloud facility.

hyper-parameter estimate to the satellite cloud for consensus.
In contrast to the ground IoT applications, the buoys may
have insufficient on-board processing capability and relatively
short communication range compared with a micro base sta-
tion. However, the communication channels on the sea are
mostly in line-of-sight. Since the buoys may be owned by
different operators, privacy-preservation can not be ignored
either.

VII. RESULTS
In this section, we show the effectiveness of the FedLoc
framework with two examples evaluated using real datasets.
In the first example, we adopt GP as the learning model and
mainly focus on the effectiveness of the distributed training
of a small batch of model hyper-parameters. In the second
example, we adopt DNN as the learning model and focus on
practical implementation aspects.

A. GPSSM FOR INDOOR TARGET TRACKING
In this section, we will demonstrate the first example of ap-
plying the FedLoc framework for target tracking. The exper-
imental setup aims for a quick and practical deployment of
the framework, thus may not be theoretically optimal. Our
focus is on both the training and prediction performance of the
global, centralized model versus its distributed approximation
under the FedLoc framework.

Due to space limitations, we will only show some results
for the transition function in GPSSM. The model is xt+1 =
f (xt) + et , where the vector xt = [xt , yt]T contains the 2-D
position of a pedestrian at time instance t . We apply individual
GPs for each dimension, namely, we let

xt+1 = fx (xt) + ex,t , (34a)

yt+1 = fy(xt) + ey,t , (34b)

VOLUME 1, 2020 205

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

where both fx(xt) and fy(xt) are modeled by GP; for instance,
we let

fx(xt) ∼ GP(mx (xt), kx (xt , xt ′)). (35)

For clear exposition, we let the mean function mx (xt) be zero
and the kernel function kx(xt , xt ′) be the ARD kernel, i.e.,

kx (xt , xt ′) = σ 2
s,x exp

[
− (xt − xt ′)2

lxx
− (yt − yt ′)2

lxy

]
, (36)

where the kernel hyper-parameters are [σ 2
s,x, lxx, lxy]T . For the

y-dimension, we adopt a similar ARD kernel, ky(xt , xt ′), but
with a different set of kernel hyper-parameters [σ 2

s,y, lyx, lyy]T .
The above GP models can be trained globally with a train-

ing dataset D via the global, centralized maximum-likelihood
estimation shown in Eq.(18). We know from Section III that
the computational complexity scales as O(n3) for centralized
model training. Using the FedLoc framework is beneficial.
On the one hand, mobile users can collect their own local
training data without worrying about the data leakage issue,
which may effectively encourage more people to collaborate.
By adopting the cADMM or the pxADMM introduced in
Section IV to approximate the global model hyper-parameters
in a distributed manner, the overall computational complexity
can be reduced to O(n3/K3), where K is the number of the
collaborating mobile users. This work can be seen as a collab-
orative, data-driven method for learning the human walking
trajectory, which is valuable for us to understand the behavior
of pedestrians and predict their future positions.

To evaluate the performance of the FedLoc, we collected
a dataset in a live indoor office environment, as was shown
in Fig. 8. This dataset contains more than 50 trajectories with
around 25,000 samples. In the training phase, three mobile
users each collected 15 trajectories. Each mobile user obtained
an approximation of the global GP model shown in Eq.(18)
using its local 15 trajectories. In the test phase, we use the
model hyper-parameters trained from the FedLoc to perform
posterior prediction of the next state given a novel current
state.

We compare two distributed GP hyper-parameter optimiza-
tion schemes: (1) pxADMM-GP with the regularization pa-
rameters ρi = 500 and Li = 5000, ∀i; and (2) cADMM-GP
with ρi = 500, for i = 1, 2, 3. We set the values for ρi and Li

empirically. We consider convergence when the difference in
all optimization variables between two consequent iterations
is within 10−3. The computer program was implemented us-
ing MATLAB and executed on an ordinary computer with 4
cores.

We show the model training results for both dimensions (x
and y) in Fig. 14 and Fig. 15. The distributed schemes con-
verge to different model hyper-parameter estimates compared
with the ones trained centrally for the global model. One rea-
son is that the distributed scheme uses a different cost function
as shown in Eq.(19), which corresponds to approximating the
kernel matrix K (X , X ; θ) to a block diagonal matrix. Despite

FIGURE 14. For GP modeling along the x-dimension, we show the
negative log-marginal likelihood functions (centralized formulation refer
to Eq. (18) and distributed formulation refer to Eq. (19)) in sub-figure (a);
and the ARD kernel hyper-parameter estimates as a function of training
iterations for the 3 input variables using pxADMM-GP and cADMM-GP in
sub-figures (b–d) for model variance, length-scale in x, and length-scale in
y, respectively.

FIGURE 15. Convergence results for the GP modeling along the
y-dimension.

TABLE 3 Comparisons of two Distributed GP Model Training Schemes

the difference in the hyper-parameter estimates, the corre-
sponding negative log-marginal likelihood as well as the over-
all prediction root-mean-squared-error (RMSE in meters) are
fairly close. From the computational time (CT) shown in Ta-
ble 3, we observed that the pxADMM-GP scheme consumed
the least computational time. On one hand, the pxADMM-GP
scheme circumvents frequent gradient synchronizations and
used less iterations toward convergence than the cADMM-GP

206 VOLUME 1, 2020

FIGURE 16. Layout of the WiFi APs (yellow stars), the ground-truth trajectory (blue dots), and the recovered trajectories (orange dots) by using different
models.

scheme. On the other hand, the closed-form proximal update
w.r.t. the local hyper-parameters only requires to compute the
expensive matrix inversion once.

We have shown above the distributed training of the
GPSSM model. Next, we would like to show the positioning
accuracy of the GPSSM-based tracking method compared
with the empirical WiFi-based localization method and the
pedestrian dead reckoning (PDR) method. To this end, we
conduct experimental comparisons in a 1600 m2 office envi-
ronment, as depicted in Fig. 8. We aim to recover a “U”-shape
walking trajectory of a pedestrian holding a smartphone. The
geographical layout of the 26 WiFi APs in the deployment
area is shown in Fig. 8. We developed a mobile application
on a HUAWEI smartphone running Android 7.0 operating
system to collect WiFi RSS measurements as well as IMU
readings. We adopt a threshold value for RSS collection ac-
cording to [146]. A sampling rate of 100 Hz is specified for
the IMUs. The collected data are transmitted via wireless links
to a computing server for further processing.

For practical usage, we reduce the optimization complex-
ity in GPSSM by handling the measurement function and
transition function in a sequential manner, thereby alleviating
non-identifiability issues. Interested readers can find our latest
work in [133] for more details. Therefore, to learn the mea-
surement function g with a GP model, a total number of N =
2059 ground-truth positions and their corresponding WiFi

TABLE 4 Tracking Accuracy in Different Metrics

localization results were recorded across the whole area. To
learn the transition function f with a GP model, we recorded
the WiFi localization results as well as the PDR control inputs
while walking in the area. We repetitively record up to 5
trajectories along the same predefined path, and recover the
first state trajectory that is tracked for 147 steps. For both f
and g, we chose the standard squared exponential kernel with
automatic relevance determination [1] in the GP models.

In Fig. 16 , we show the state trajectories recovered by
solely using the WiFi localization, PDR, and the fusion results
of the GPSSM learned with data up to 5 trajectories. The cor-
responding tracking accuracy in terms of mean-absolute-error
(MAE), root-mean-square-error (RMSE), standard deviation
(STD), and the largest error are reported in Table 4. The
MAE demonstrates that the GPSSM method reduces the mean
tracking error by up to 40.6% and 60.5%, respectively, when

VOLUME 1, 2020 207

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

FIGURE 17. The satellite map of the CUHK(SZ), where we collected the
outdoor vehicle navigation data along two different routes.

compared to WiFi localization and PDR. Fig. 16a and 16b
illustrate the performance two empirical models. Specifically,
the WiFi localization gives unsatisfactory position estimates
in the trajectory segment around the two sharp turns. This is
due to the lack of APs deployed in that area and the unreliable
RSS values received from far-away APs. PDR recovers a
drifted state trajectory compared to the ground-truth. Since
PDR only provides relative information, we use the WiFi
localization result as the initial position for PDR. Clearly, both
the WiFi localization and PDR are unsatisfactory. However,
fusing WiFi localization and PDR in GPSSM takes the ad-
vantages of the individual techniques, hence achieves higher
tracking accuracy. Fig. 16c and Fig. 16d show that the GPSSM
keeps improving the estimation quality when learning over
more training data. The outstanding modeling capacity of the
GPSSM is exploited by feeding the model with large datasets,
which contains comprehensive information about the indoor
environment as well as pedestrian’s motion patterns.

B. OUTDOOR VEHICLE NAVIGATION WITH
LOW-SAMPLING-RATE GPS
In this section, we will demonstrate the application of Fed-
Loc with DNN models for smart vehicle navigation using
low-sampling-rate GPS signals, which was introduced as a
representative use case in Section VI.

We start by introducing the implementation setups of our
new proposed federated learning empowered navigation sys-
tem prototype. First, real datasets (for both training and test)
were collected by three collaborating users with their own
private car driving on the campus of The Chinese Univer-
sity of Hong Kong (Shenzhen), see Fig. 17. During the data
collection process, each car was equipped with a smartphone
(Xiaomi), facing upwards and heading to the moving direc-
tion of the car. The sensor data were uploaded to the server

TABLE 5 Two Different Experimental Setups

through WiFi on the fly. These three collaborating users trav-
eled around the campus and collected various trajectories of
smartphone sensory data that contain real-time motion in-
formation of their vehicles. The duration of each trajectory
ranges from a few minutes to dozens of minutes.

After collecting all training datasets, we adopted the Fed-
Loc framework to train the two DNNs as was introduced in
Section VI for calibrating the sensor data, one for the ve-
locity and the other one for the yaw angle, so that accurate
navigation can be obtained even with low-sampling-rate GPS
signals. Two DNNs with five hidden layers (3000-3000-2000-
1000-500) are selected as the global model in our prototype,
which can be replaced with more sophisticated models, such
as the LSTM, for high-dimensional time series. The input
is the sensor data measured in a specific time window with
dimension 600 for the first DNN or with dimension 401 for
the second DNN, while the output is a scalar. In the training
phase, the global model is updated by the three collaborating
users according to Algorithm 1. Specifically, we tried two
different model training algorithms, namely the FedAvg al-
gorithm and the FedProx algorithm introduced in Section IV.
We set the learning rate to 10−4 for both the FedAvg and
FedProx algorithms. For the FedProx algorithm, the additional
regularization parameter is set to 104. In the following, we
consider two different experimental setups to mimic near i.i.d.
and balanced data across the users as well as non-i.i.d. and un-
balanced data across the users, to test the FedLoc framework.
We elaborate on the two different setups in Table 5.

We show the training performance of both the FedAvg and
FedProx algorithms in Fig. 18. Both algorithms can achieve
a low training loss after a certain number of epochs. In our
experiments, the FedProx algorithm unfortunately did not
demonstrate smoother and more stable convergence profile
than that of the FedAvg algorithm. The reason may lie in the
improper setting of the regularization parameter of the Fed-
Prox algorithm, which is supposed to help achieve good trade
off between the training loss and the discrepancy between the
global model and local ones.

Lastly, we test the trained global learning model with two
new trajectories of route 1. The GPS reference signals are only
available every 60 seconds, being much less frequent than the
default setup (1 sample per second). During the time where
there is no GPS signal available, the trained global learning
models are used to calibrate the observed sensor data. For the
i.i.d. and balanced data setup mentioned in Table 5, we show
the test performance in Fig. 19. For this case, the FedAvg
algorithm is modestly superior to the FedProx algorithms in
the test phase. The navigation RMSE of the FedAvg is around

208 VOLUME 1, 2020

FIGURE 18. Training loss versus optimization epochs for two different
optimization algorithms. (a) Setup 1: near i.i.d. and balanced data; and
(b) Setup 2: non-i.i.d. and imbalanced data.

FIGURE 19. The test performance on two test trajectories provided by the
two algorithms for i.i.d. and balanced data setup. Subfigures (a) and (b)
are drawn for the FedAvg algorithm; Subfigures (c) and (d) are drawn for
the FedProx algorithm.

9 meters, while around 12 meters for the FedProx algorithm
on average. Fine-tuning the learning rate of the FedProx al-
gorithm may further improve its generalization performance.
For the non-i.i.d and imbalanced data setup shown in Ta-
ble 5, it is obvious that the FedAvg algorithm failed with a
significantly degraded navigation RMSE equal to 34 meters,
while the FedProx algorithm worked well with a navigation
RMSE around 17 meters. We show the test performance in
Fig. 20. For both cases, using either the FedAvg algorithm or
the FedProx algorithm leads to largely improved navigation
RMSE compared with 90 meters when solely using the IMU
for navigation.

FIGURE 20. The test performance on two test trajectories provided by the
two algorithms for non-i.i.d. and imbalanced data setup. Subfigures (a)
and (b) are drawn for the FedAvg algorithm; Subfigures (c) and (d) are
drawn for the FedProx algorithm.

VIII. FUTURE DIRECTIONS AND CHALLENGES
Potential challenges to the federated localization are the fol-
lowing:
� An essential ingredient of the federated wireless local-

ization framework is the mobile terminals. To ensure
that the whole framework works smoothly, the mobile
terminals should be able to process a modest amount
of data and perform analysis with TensorFlow, PyTorch,
etc. This requires further development of powerful but
compressed deep learning models, mobile AI chips, etc.
Advanced WiFi and 5G technologies can fulfill the com-
munication requirements between the mobile terminals
and the central node. However, communication effi-
ciency is a critical issue that requires more attention.
In addition, an agreement on the standard protocolclos
for synchronizing the mobile terminals is to be made.
Interested readers may refer to a recent work [147] on
how to design a scalable production system for federated
learning.

� In Section III, we mentioned that using DNN as the
learning model will cause a lot of model parameters
or gradients to be communicated over the air. A more
straightforward and practical way to reduce the commu-
nication burden is to quantize the DNN weights from 64
bits precision to 8 bits precision or even lower. In the
context of distributed optimization, a signSGD method
was proposed in [148] that quantizes every gradient up-
date to its binary sign thus reducing the communication
load by a factor of 32. However, better understandings on
the converge properties of such methods under practical
setup, such as non-i.i.d. data distribution and imbalanced
data size across mobile users, need to be built.

� The federated learning framework requires mobile users
to cooperate. However, there might be the case that some
voluntary mobile users are malicious or careless with

VOLUME 1, 2020 209

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

their shared messages. A promising way to solve such
issues from the algorithmic perspective is to use robust
distributed optimization [149], [150], robust estimation
[151], and robust fusion [132] techniques for remedy.

� We have so far implicitly assumed that all the mobile
users have sufficient number of local data for updating
the global model hyper-parameters. This may not be true
for voluntary users with very limited amount of local
data. One effective way to alleviate this “small data” dif-
ficulty from algorithmic perspective is to harness the full
basket of known canonical parametric models to gener-
ate some virtual data and mix them with the small batch
of real data before training the model. In this way, we
are able to transfer the prior knowledge of the canonical
models to our desired data-driven, learning-based model
[152].

� We have talked exclusively about wireless localization.
Actually, visual-based localization and target tracking
have also attracted a lot of attention these days. The com-
bination of wireless measurements and visual measure-
ments can effectively improve both the localization accu-
racy and the robustness. For instance, in [153] wireless
positioning was adopted in visual trackers to alleviate
visual tracking pains, such as long-term tracking, feature
model drifting, and recovery. Their combination is a key
enabler for autonomous driving and other robotic appli-
cations. However, the inhomogeneous data structure is a
big challenge to federated learning.

� Another interesting direction is to exploit semantic infor-
mation for indoor wireless localization [154], [155]. For
example, in [154], authors improved the calibration of
indoor wireless propagation models with the aid of the
semantic target-environment relation information. This
combination, in an unsupervised and automatic way, is
considered to be a promising solution when dealing with
a complex indoor environment.

� One could utilize the social relationship of mobile users
to invite more participants to join the learning process
and stimulate the activeness of current participants. To
this end, graph learning models, for instance graph neu-
ral network [60] and graph GP [140], can be adopted for
efficient learning from graph-like structured datasets.

IX. CONCLUSION
In this overview paper, we reviewed all required building
blocks of a fundamentally new cooperative localization and
location data processing framework, called FedLoc. Being
different from most of the overview papers, we put more
effort on real use cases of the FedLoc framework as well
as their practical implementations. We strongly believe that
the FedLoc framework is promising for the following good
reasons. First, high-precision wireless localization is desper-
ately demanded, which can be achieved by combining em-
pirical models with data driven models. Second, calibrating
a localization algorithm often consumes a lot of time and
workforce, and collaboration among mobile users can largely

facilitate the calibration effort. Third, smartphones are becom-
ing a powerful platform for heavy computations. Fourth, we
have seen rapid development in large-scale non-convex opti-
mization techniques, 5G communication networks, data en-
cryption, among other emerging techniques. Lastly and most
importantly, data privacy issue can be well addressed by the
federated learning framework so that mobile users dare to
share their location related information with safeguard.

ACKNOWLEDGMENT
The authors would like to thank Wenbiao Guo and Ang
Xie from Beijing Jiaotong University and Haole Chen from
Wuhan University for their kind help with preparing an early
draft of this work.

REFERENCES
[1] C. E. Rasmussen and C. I. K. Williams, Gaussian Processes for Ma-

chine Learning. Cambridge, MA, USA: MIT Press, 2006, vol. 1.
[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera

y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist., Fort Laud-
erdale, FL, USA, Apr. 2017, pp. 1273–1282.

[3] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of
deep neural networks with natural gradient and parameter averag-
ing,” 2015, arXiv:1410.7455. [Online]. Available: https://arxiv.org/
pdf/1410.7455.pdf

[4] N. Neverova et al., “Learning human identity from motion patterns,”
IEEE Access, vol. 4, pp. 1810–1820, Apr. 2016.

[5] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, and C. S. Hong, “Fed-
erated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE INFOCOM, Paris, France, Apr. 2019,
pp. 1387–1395.

[6] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated
learning for ultra-reliable low-latency V2V communications,” in Proc.
IEEE Global Commun. Conf., Abu Dhabi, United Arab Emirates,
Dec. 2018, pp. 1–7.

[7] J. Lee, J. Sun, F. Wang, S. Wang, C.-H. Jun, and X. Jiang, “Privacy-
preserving patient similarity learning in a federated environment: De-
velopment and analysis,” JMIR Med. Informat., vol. 6, no. 2, p. e20,
2018.

[8] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks: Possibilities and fundamental limitations based on available
wireless network measurements,” IEEE Signal Process. Mag., vol. 22,
no. 4, pp. 41–53, Jun. 2005.

[9] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wire-
less location: Challenges faced in developing techniques for accurate
wireless location information,” IEEE Signal Process. Mag., vol. 22,
no. 4, pp. 24–40, Jul. 2005.

[10] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation With Appli-
cations to Tracking and Navigation. New York, NY, USA: John Wiley
& Sons, Inc., 2001.

[11] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, “Wireless traffic prediction
with scalable Gaussian process: Framework, algorithms, and verifi-
cation,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1291–1306,
Jun. 2019.

[12] L. Liu, Z. Qiu, G. Li, Q. Wang, W. Ouyang, and L. Lin, “Con-
textualized spatial–temporal network for taxi origin-destination de-
mand prediction,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10,
pp. 3875–3887, May 2019.

[13] T. Y. Kim and S. B. Cho, “Predicting residential energy consumption
using CNN-LSTM neural networks,” Energy, vol. 182, pp. 72–81,
Sep. 2019.

[14] Z. Qi, T. Wang, G. Song, W. Hu, X. Li, and Z. Zhang, “Deep
air learning: Interpolation, prediction, and feature analysis of fine-
grained air quality,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 12,
pp. 2285–2297, Apr. 2018.

[15] A. Greenberg, “How apple and google are enabling covid-19 contact-
tracing,” 2020. [Online]. Available: https://www.wired.com/story/
apple-google-bluetooth-contact-tracing-covid-19/

210 VOLUME 1, 2020

https://arxiv.org/pdf/1410.7455.pdf
https://www.wired.com/story/apple-google-bluetooth-contact-tracing-covid-19/

[16] N. Guha, A. Talwlkar, and V. Smith, “One-shot federated learning,”
2019, arXiv:1902.11175.

[17] F. Sattler, S. Wiedemann, K. Mller, and W. Samek, “Robust and
communication-efficient federated learning from non-i.i.d. data,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 1–14,
Nov. 2019.

[18] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in Proc. Int. Conf.
Mach. Learn., Long Beach, CA, USA, Jun. 2019, pp. 634–643.

[19] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.
(AISTATS), Aug. 2020, pp. 2938–2948.

[20] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-
device federated learning,” IEEE Commun. Lett., vol. 24, no. 6,
pp. 1279–1283, Jun. 2019.

[21] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 492–503, Feb. 2019.

[22] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process.
Mag., vol. 37, no. 3, pp. 50–60, May 2020.

[23] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses,
and N. S. Correal, “Locating the nodes: Cooperative localization in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 54–69, Jul. 2005.

[24] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite program-
ming based algorithms for sensor network localization,” ACM Trans.
Sensor Netw., vol. 2, no. 2, pp. 188–220, May 2006.

[25] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization
in wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450,
Feb. 2009.

[26] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of
wideband localization—Part II: Cooperative networks,” IEEE Trans.
Inf. Theory, vol. 56, no. 10, pp. 4981–5000, Sep. 2010.

[27] M. Z. Win et al., “Network localization and navigation via coopera-
tion,” IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.

[28] F. Yin, C. Fritsche, D. Jin, F. Gustafsson, and A. M. Zoubir, “Co-
operative localization in WSNs using Gaussian mixture modeling:
Distributed ECM algorithms,” IEEE Trans. Signal Process., vol. 63,
no. 6, pp. 1448–1463, Mar. 2015.

[29] D. Jin, F. Yin, C. Fritsche, F. Gustafsson, and A. M. Zoubir, “Bayesian
cooperative localization using received signal strength with unknown
path loss exponent: Message passing approaches,” IEEE Trans. Signal
Process., vol. 68, pp. 1120–1135, Jan. 2020.

[30] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, and R. J. O’Dea,
“Relative location estimation in wireless sensor networks,” IEEE
Trans. Signal Process., vol. 51, no. 8, pp. 2137–2148, Aug. 2003.

[31] M. Rosencrantz, G. Gordon, and S. Thrun, “Decentralized sensor fu-
sion with distributed particle filters,” in Proc. Conf. Uncertainity Artif.
Intell., San Francisco, CA, USA, Aug. 2002, pp. 493–500.

[32] D. Gu, “Distributed particle filter for target tracking,” in Proc. IEEE
Int. Conf. Robot. Autom., Rome, Italy, Apr. 2007, pp. 3856–3861.

[33] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
Proc. IEEE Conf. Decis. Control., New Orleans, LA, USA, Dec. 2007,
pp. 5492–5498.

[34] M. Kamgarpour and C. Tomlin, “Convergence properties of a decen-
tralized Kalman filter,” in Proc. IEEE Conf. Decis. Control., Cancun,
Mexico, Dec. 2008, pp. 3205–3210.

[35] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourcing for
indoor localization,” IEEE Trans. Mobile Comput., vol. 14, no. 2,
pp. 444–457, Feb. 2015.

[36] C. Zhang, K. P. Subbu, J. Luo, and J. Wu, “GROPING: Geomagnetism
and crowdsensing powered indoor navigation,” IEEE Trans. Mobile
Comput., vol. 14, no. 2, pp. 387–400, Feb. 2015.

[37] E. Arias-de Reyna, D. Dardari, P. Closas, and P. M. Djuric, “Estimation
of spatial fields of NLOS/LOS conditions for improved localization
in indoor environments,” in IEEE Statist. Signal Process. Workshop,
Freiburg, Germany, Jun. 2018, pp. 658–662.

[38] P. J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point
Patterns, 3rd ed. Boca Raton, FL, USA: CRC Press, 2013.

[39] G. Atluri, A. Karpatne, and V. Kumar, “Spatio-temporal data mining:
A survey of problems and methods,” ACM Comput. Surv., vol. 51,
no. 4, pp. 1–41, Aug. 2018.

[40] S. Wang, J. Cao, and P. S. Yu, “Deep learning for spatio-temporal data
mining: A survey,” IEEE Trans. Knowl. Data Eng., pp. 1–1, Sep. 2019.

[41] S. Sarkka, A. Solin, and J. Hartikainen, “Spatiotemporal learning
via infinite-dimensional Bayesian filtering and smoothing: A look at
Gaussian process regression through Kalman filtering,” IEEE Signal
Process. Mag., vol. 30, no. 4, pp. 51–61, Jun. 2013.

[42] Y. Kuang, T. Chen, F. Yin, and R. Zhong, “Recursive implementation
of Gaussian process regression for spatial-temporal data modeling,”
in Proc. Int. Conf. Wireless Commun. Signal Process., Xi’an, China,
Oct. 2019, pp. 1–7.

[43] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[44] Y. E. Nesterov, “A method for unconstrained convex minimization
problem with the rate of convergence o(1/k2),” Dokl. Akad. Nauk
SSSR, vol. 269, no. 3, pp. 543–547, 1983.

[45] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” J. Mach. Learn. Res.,
vol. 12, no. 7, pp. 2121–2159, Jul. 2011.

[46] T. Tieleman and G. Hinton, “Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine
learning,” Tech. Rep., 2017.

[47] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” 2017, arXiv:1412.6980v9.

[48] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural Networks: Tricks of the Trade. Berlin, Germany:
Springer, 2012, pp. 9–48.

[49] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. Int. Conf. Artif. Intell. Statist.,
Sardinia, Italy, May 2010, pp. 249–256.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vision, Santiago, Chile, Dec. 2015,
pp. 1026–1034.

[51] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in Proc. Int. Conf. Mach. Learn., Lile, France, Jul. 2015,
pp. 448–456.

[52] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., Barcelona, Spain, Dec. 2016,
pp. 901–909.

[53] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” in Proc.
NeurIPS Deep Learn. Symp., Barcelona, Spain, Dec. 2016, pp. 1–14.

[54] S. Ruder, “An overview of gradient descent optimization algorithms,”
2016, arXiv:1609.04747.

[55] R. Sun, “Optimization for deep learning: Theory and algorithms,”
2019, arXiv:1912.08957.

[56] S. Theodoridis, Machine Learning: A Bayesian and Optimization Per-
spective, 2nd ed. San Francisco, CA, USA: Academic, 2020.

[57] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[58] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proc. IEEE Int. Symp. Circuits Syst.,
Paris, France, Jun. 2010, pp. 253–256.

[59] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. Adv. Neural Inf. Process. Syst., Long Beach,
CA, USA, Dec. 2017, pp. 3856–3866.

[60] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn Represent., Toulon,
France, Apr. 2017.

[61] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in Proc. NeurIPS Deep Learn. Represent. Learn.
Workshop, Montreal, QC, Canada, Dec. 2015. [Online]. Available:
http://arxiv.org/abs/1503.02531

[62] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” 2019, arXiv:1803.03635.

[63] A. G. Wilson and R. P. Adams, “Gaussian process kernels for pat-
tern discovery and extrapolation,” in Proc. Int. Conf. Mach. Learn.,
Atlanta, GA, USA, Jul. 2013, pp. 1067–1075.

[64] F. Yin, X. He, L. Pan, T. Chen, Z.-Q. Luo, and S. Theodoridis, “Sparse
structure enabled grid spectral mixture kernel for temporal Gaussian
process regression,” in Proc. Int. Conf. Inf. Fusion, Cambridge, U.K.,
Jul. 2018, pp. 47–54.

VOLUME 1, 2020 211

http://arxiv.org/abs/1503.02531

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

[65] F. Yin, L. Pan, T. Chen, S. Theodoridis, Z.-Q. Luo, and A. M. Zoubir,
“Linear multiple low-rank kernel based stationary gaussian processes
regression for time series,” IEEE Trans. Signal Process., vol. 68,
pp. 5260–5275, Sep. 2020.

[66] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep ker-
nel learning,” in Proc. Int. Conf. Artif. Intell. Statist., Cadiz, Spain,
May 2016, pp. 370–378.

[67] A. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Stochastic vari-
ational deep kernel learning,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), Barcelona, Spain, Dec. 2016, pp. 2586–2594.

[68] M. Al-Shedivat, A. G. Wilson, Y. Saatchi, Z. Hu, and E. P. Xing,
“Learning scalable deep kernels with recurrent structure,” J. Mach.
Learn. Res., vol. 18, no. 1, pp. 2850–2886, Aug. 2017.

[69] H. Xue, Z.-F. Wu, and W.-X. Sun, “Deep spectral kernel learning,”
in Proc. Int. Joint Conf. Artif. Intell., Macao, China, Aug. 2019,
pp. 4019–4025.

[70] A. Damianou and N. Lawrence, “Deep Gaussian processes,” in Proc.
Int. Conf. Artif. Intell. Statist., Scottsdale, AZ, USA, Apr. 2013,
pp. 207–215.

[71] Y. Cho and L. K. Saul, “Kernel methods for deep learning,” in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2009,
pp. 342–350.

[72] A. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani,
“Gaussian process behaviour in wide deep neural networks,” 2018,
arXiv:1804.11271v2.

[73] J. Lee, J. Sohl-dickstein, J. Pennington, R. Novak, S. Schoenholz,
and Y. Bahri, “Deep neural networks as Gaussian processes,” 2018,
arXiv:1711.00165v3.

[74] C. K. Williams and M. Seeger, “Using the Nyström method to speed
up kernel machines,” in Proc. Adv. Neural Inf. Process. Syst., Denver,
CO, USA, Dec. 2001, pp. 682–688.

[75] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg, and
M. ONeil, “Fast direct methods for Gaussian processes,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 252–265, Feb. 2015.

[76] M. P. Deisenroth and J. W. Ng, “Distributed Gaussian processes,” in
Proc. Int. Conf. Mach. Learn., Lille, France, Jul. 2015, pp. 1481–1490.

[77] M. K. Titsias, “Variational learning of inducing variables in sparse
Gaussian processes,” in Proc. Int. Conf. Artif. Intell. Statist., Clear-
water Beach, FL, USA, Apr. 2009, pp. 567–574.

[78] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets
big data: A review of scalable GPs,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 11, pp. 1–19, Jan. 2020.

[79] R. M. Neal, “Bayesian learning for neural networks,” Ph.D. disserta-
tion, Dept. Comput. Sci., Univ. Toronto, Canada, 1995.

[80] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Montreal, Canada, Dec. 2018, pp. 8571–8580.

[81] S. Arora, S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang,
“On exact computation with an infinitely wide neural net,” in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2019,
pp. 8139–8148.

[82] A. Girard, “Approximate methods for propagation of uncertainty with
Gaussian process model,” Ph.D. dissertation, Dept. Comput. Sci.,
Univ. Glasgow, Glasgow, U.K., 2004.

[83] C. Bishop, Machine Learning and Pattern Recognition. Berlin,
Germany: Springer, 2006.

[84] S. Särkkä, Bayesian Filtering and Smoothing. New York, NY, USA:
Cambridge Univ. Press, 2013.

[85] M. Loog, T. Viering, A. Mey, J. H. Krijthe, and D. M. J. Tax, “A brief
prehistory of double descent,” Proc. Nat. Acad. Sci. USA, vol. 117,
no. 20, pp. 10 625–10 626, 2020. [Online]. Available: https://www.
pnas.org/content/117/20/10625

[86] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical biasvariance trade-off,”
Proc. Nat. Acad. Sci. USA, vol. 116, no. 32, pp. 15 849–15 854,
Aug. 2019.

[87] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: Where bigger models and more data hurt,”
2019, arXiv:1912.02292v1.

[88] A. G. Wilson and P. Izmailov, “Bayesian deep learning and a proba-
bilistic perspective of generalization,” 2020, arXiv:2002.08791.

[89] J. Konecný, H. McMahan, X. Yu, P. Richtárik, A. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” 2016, arXiv:1610.05492.

[90] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating direc-
tion method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1–122, Jan. 2011.

[91] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM J. Optim., vol. 26, no. 1, pp. 337–364, Jan. 2016.

[92] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“On the convergence of federated optimization in heterogeneous net-
works,” 2018, arXiv:1812.06127.

[93] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and
A. Scaglione, “Gossip algorithms for distributed signal processing,”
Proc. IEEE, vol. 98, no. 11, pp. 1847–1864, Nov. 2010.

[94] C.-H. Fang, S. B. Kylasa, F. Roosta-Khorasani, M. W. Ma-
honey, and A. Grama, “Newton-ADMM: A distributed GPU-
accelerated optimizer for multiclass classification problems,” 2020,
arXiv:1807.07132v3.

[95] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms
for nonconvex multi-agent optimization,” IEEE Trans. Control Netw.
Syst., early access, Sep. 16, 2020, doi: 10.1109/TCNS.2020.3024321.

[96] P. Richtárik and M. Takáč, “Parallel coordinate descent methods
for big data optimization,” Math. Program., vol. 156, no. 1/2,
pp. 433–484, Mar. 2016.

[97] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Inference
attacks against collaborative learning,” 2018, arXiv:1805.04049.

[98] K. Bonawitz et al., “Practical secure aggregation for federated learning
on user-held data,” in Proc. Adv. Neural Inf. Process. Syst., Barcelona,
Spain, Dec. 2016, pp. 1–5.

[99] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Practical
secure aggregation for privacy-preserving machine learning,” in Proc.
ACM Conf. Comput. Commun. Secur., Dallas, TX, USA, Oct. 2017,
pp. 1175–1191.

[100] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and ver-
ifiable federated learning,” IEEE Trans. Inf. Forensics Secur., vol. 15,
pp. 911–926, Jul. 2020.

[101] W. Y. B. Lim et al., “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surv. Tut., vol. 22, no. 3,
pp. 2031–2063, Apr. 2020.

[102] R. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[103] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,”
IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1333–1345,
May 2018.

[104] S. Truex et al., “A hybrid approach to privacy-preserving federated
learning,” in Proc. ACM Conf. Comput. Commun. Secur., New York,
NY, USA, Nov. 2019, pp. 1–11.

[105] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Adv. Cryptol.—EUROCRYPT 1999,
Berlin, Heidelberg, May 1999, pp. 223–238.

[106] E. Mohyeldin, “Minimum technical performance requirements
for imt-2020 radio interface(s),” 2020. [Online]. Available:
https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/
Documents/S01-1_Requirements%20for%20IMT-2020_Rev.pdf

[107] “3GPP release 10,” 2013. [Online]. Available: https://www.3gpp.org/
specifications/releases/70-release-10

[108] “IEEE draft standard for information technology–telecommunications
and information exchange between systems local and metropolitan
area networks–specific requirements Part 11: Wireless lan medium
access control (mac) and physical layer (phy) specifications amend-
ment enhancements for high efficiency wlan,” IEEE P802.11ax/D6.0,
Nov. 2019, pp. 1–780, Dec. 2019.

[109] “IEEE standard for information technology–telecommunications and
information exchange between systems local and metropolitan area
networks–specific requirements—Part 11: Wireless lan medium ac-
cess control (mac) and physical layer (phy) specifications–amendment
4: Enhancements for very high throughput for operation in bands
below 6 ghz.” IEEE Std 802.11ac-2013 (Amendment to IEEE Std
802.11-2012, as amended by IEEE Std 802.11ae-2012, IEEE Std
802.11aa-2012, and IEEE Std 802.11ad-2012), pp. 1–425, Dec. 2013.

[110] Y. Xu, F. Yin, W. Xu, C.-H. Lee, J. Lin, and S. Cui, “Scal-
able learning paradigms for data-driven wireless communication,”
IEEE Commun. Mag., vol. 58, no. 10, pp. 81–87, Oct. 2020, doi:
10.1109/MCOM.001.2000143.

212 VOLUME 1, 2020

https://www.pnas.org/content/117/20/10625
https://dx.doi.org/10.1109/TCNS.2020.3024321
https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/S01-1_Requirements%20for%20IMT-2020_Rev.pdf
https://www.3gpp.org/specifications/releases/70-release-10
https://dx.doi.org/10.1109/MCOM.001.2000143

[111] F. Gustafsson and F. Gunnarsson, “Measurements used in wireless
sensor networks localization,” in Localization Algorithms and Strate-
gies for Wireless Sensor Networks: Monitoring and Surveillance Tech-
niques for Target Tracking. Hershey, PA, USA: IGI Global, 2009,
pp. 33–53.

[112] F. Yin, Y. Zhao, and F. Gunnarsson, “Proximity report trigger-
ing threshold optimization for network-based indoor positioning,”
in Proc. Int. Conf. Inf. Fusion, Washington, DC, USA, Jul. 2015,
pp. 1061–1069.

[113] R. P. Ghozali and G. P. Kusuma, “Indoor positioning system using
regression-based fingerprint method,” Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 8, pp. 231–239, 2019. [Online]. Available: http://dx.doi.
org/10.14569/IJACSA.2019.0100829

[114] A. Sahar and D. Han, “An LSTM-Based indoor positioning method
using Wi-Fi signals,” in Proc. Int. Conf. Vision, Image Signal Process.,
Las Vegas, NV, USA, Aug. 2018, pp. 1–5.

[115] J. Liu, N. Liu, Z. Pan, and X. You, “AutLoc: Deep autoencoder
for indoor localization with RSS fingerprinting,” in Proc. Int. Conf.
Wireless Commun. Signal Process., Hangzhou, China, Oct. 2018,
pp. 1–6.

[116] C.-H. Hsieh, J.-Y. Chen, and B.-H. Nien, “Deep learning-based indoor
localization using received signal strength and channel state informa-
tion,” IEEE Access, vol. 7, pp. 33 256–33 267, Mar. 2019.

[117] X. Wang, X. Wang, and S. Mao, “Deep convolutional neural networks
for indoor localization with CSI images,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 1, pp. 316–327, Mar. 2020.

[118] A. James, “Towards strong AI with analog neural chips,” in Proc. IEEE
Int. Symp. Circuits Syst., Sevilla, Spain, Oct. 2020, pp. 1–5.

[119] J. Qi, H. Li, F. Yin, B. Ai, and S. Cui, “Navigation with low-sampling-
rate GPS and smartphone sensors: A data-driven learning-based ap-
proach,” in Proc. IET Int. Conf. Wireless Mobile Multimedia Netw.,
Beijing, China, Nov. 2019, pp. 1–6.

[120] T. Schön, A. Wills, and B. Ninness, “System identification of nonlinear
state-space models,” Automatica, vol. 47, no. 1, pp. 39–49, Jan. 2011.

[121] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain
Monte Carlo methods,” J. Roy. Statist. Soc.: B-Statist. Method., vol. 72,
no. 3, pp. 269–342, Jun. 2010.

[122] R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational Gaussian
process state-space models,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), Montreal, Canada, Dec. 2014, pp. 3680–3688.

[123] B. Ferris, D. Fox, and N. Lawrence, “WiFi-SLAM using Gaussian
process latent variable models,” in Proc. Int. Joint Conf. Artif. Intell.,
Hyderabad, India, Jan. 2007, pp. 2480–2485.

[124] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dy-
namical models for human motion,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 2, pp. 283–298, Feb. 2008.

[125] J. Ko and D. Fox, “Learning GP-Bayesfilters via Gaussian process
latent variable models,” Auton. Robots, vol. 30, no. 1, pp. 3–23,
Jan. 2011.

[126] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian
inference and learning in Gaussian process state-space models with
particle MCMC,” in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe,
Nevada, USA, Dec. 2013, pp. 3156–3164.

[127] S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman,
“Identification of Gaussian process state space models,” in Proc.
Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, Dec. 2017,
pp. 5309–5319.

[128] A. D. Ialongo, M. van der Wilk, and C. E. Rasmussen, “Closed-form
inference and prediction in Gaussian process state-space models,” in
Proc. Adv. Neural Inf. Process. Syst. Time Series Workshop, Long
Beach, CA, USA, Dec. 2017, pp. 1–7.

[129] A. D. Ialongo, M. van der Wilk, J. Hensman, and C. E. Ras-
mussen, “Non-factorised variational inference in dynamical systems,”
in Proc. Symp. Adv. Approximate Bayesian Inference, Montreal,
Canada, Dec. 2018, pp. 1–6.

[130] Y. Zhao, F. Yin, F. Gunnarsson, F. Hultkratz, and J. Fagerlind, “Gaus-
sian processes for flow modeling and prediction of positioned tra-
jectories evaluated with sports data,” in Proc. Int. Conf. Inf. Fusion,
Heidelberg, Germany, Jul. 2016, pp. 1461–1468.

[131] F. Yin and F. Gunnarsson, “Distributed recursive Gaussian processes
for RSS map applied to target tracking,” IEEE J. Sel. Topics Signal
Process., vol. 11, no. 3, pp. 492–503, Apr. 2017.

[132] F. Gustafsson, Statistical Sensor Fusion. Lund, Sweden:
Studentlitteratur, 2012.

[133] A. Xie, F. Yin, B. Ai, S. Zhang, and S. Cui, “Learning while tracking:
A practical system based on variational Gaussian process state-space
model and smartphone sensory data,” in Proc. Int. Conf. Inf. Fusion,
Rustenburg, South Africa, Jul. 2020, pp. 1–7.

[134] Y. Zhao, C. Fritsche, F. Yin, and F. Gunnarsson, “Cramer-Rao
bounds for filtering based on Gaussian process state-space mod-
els,” IEEE Trans. Signal Process., vol. 67, no. 23, pp. 5936–5951,
Dec. 2019.

[135] Y. Gal, M. van der Wilk, and C. E. Rasmussen, “Distributed variational
inference in sparse Gaussian process regression and latent variable
models,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, Canada,
Dec. 2014, pp. 3257–3265.

[136] R. Senanayake, S. O’Callaghan, and F. Ramos, “Predicting spatio-
temporal propagation of seasonal influenza using variational Gaussian
process regression,” in Proc. AAAI Conf. Artif. Intell., Phoenix, AZ,
USA, Feb. 2016, pp. 3901–3907.

[137] E. V. Bonilla, K. M. Chai, and C. Williams, “Multi-task Gaussian pro-
cess prediction,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, Dec. 2008, pp. 153–160.

[138] M. van der Wilk, C. E. Rasmussen, and J. Hensman, “Con-
volutional Gaussian processes,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., Long Beach, CA, USA, Dec. 2017, pp. 2849–2858.
[Online]. Available: http://papers.nips.cc/paper/6877-convolutional-
gaussian-processes.pdf

[139] Y. C. Ng, N. Colombo, and R. Silva, “Bayesian semi-supervised learn-
ing with graph Gaussian processes,” in Proc. Adv. Neural Inf. Process.
Syst., Montreal, Canada, Dec. 2018, pp. 1690–1701.

[140] I. Walker and B. Glocker, “Graph convolutional Gaussian processes,”
in Proc. Int. Conf. Mach. Learn., Long Beach, CA, USA, Jun. 2019,
pp. 6495–6504.

[141] Y. Zhao, C. Liu, L. S. Mihaylova, and F. Gunnarsson, “Gaussian
processes for RSS fingerprints construction in indoor localization,”
in Proc. IEEE Int. Conf. Inf. Fusion. Cambridge, U.K., Sep. 2018,
pp. 1377–1384.

[142] Z. Li, L. Wang, L. Jiang, and C. Xu, “FC-SLAM: Federated learning
enhanced distributed visual-LiDAR SLAM in cloud robotic system,”
in Proc. IEEE Int. Conf. Robot. Biomimetics, Dali, China, Dec. 2019,
pp. 1995–2000.

[143] J. Waterston, J. Rhea, S. Peterson, L. Bolick, J. Ayers, and J. Ellen,
“Ocean of Things: Affordable maritime sensors with scalable anal-
ysis,” in OCEANS 2019 - Marseille, Marseille, France, Oct. 2019,
pp. 1–6.

[144] H. Chen, D. Li, Y. Wang, and F. Yin, “UAV hovering strategy based on
a wirelessly powered communication network,” IEEE Access, vol. 7,
pp. 3194–3205, Dec. 2018.

[145] Y. Hu, X. Yuan, J. Xu, and A. Schmeink, “Optimal 1D trajectory de-
sign for UAV-enabled multiuser wireless power transfer,” IEEE Trans.
Commun., vol. 67, no. 8, pp. 5674–5688, Apr. 2019.

[146] F. Yin, Y. Zhao, F. Gunnarsson, and F. Gustafsson, “Received-
signal-strength threshold optimization using Gaussian processes,”
IEEE Trans. Signal Process., vol. 65, no. 8, pp. 2164–2177,
Apr. 2017.

[147] K. Bonawitz et al., “Towards federated learning at scale: System de-
sign,” 2019, arXiv:1902.01046v2.

[148] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandku-
mar, “signSGD: Compressed optimisation for non-convex problems,”
in Proc. Int. Conf. Mach. Learn., Stockholm, Sweden, Jul. 2018,
pp. 560–569.

[149] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization.
Princeton, NJ, USA: Princeton Univ. Press, 2009.

[150] B. L. Gorissen, İ. Yanıkoğlu, and D. den Hertog, “A practical guide to
robust optimization,” Omega, vol. 53, pp. 124–137, Jun. 2015.

[151] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma, Robust Statistics
for Signal Processing. New York, NY, USA: Cambridge Univ. Press,
2018.

[152] A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X.
Qian, “Model-aided wireless artificial intelligence: Embedding expert
knowledge in deep neural networks for wireless system optimization,”
IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 60–69, Sep. 2019.

[153] P. Hu, Z. Yan, R. Huang, and F. Yin, “How effectively can indoor wire-
less positioning relieve visual tracking pains: A Cramer-Rao bound
viewpoint,” in Proc. IEEE Int. Conf. Image Process., Taipei, Tai-
wan, Sep. 2019, pp. 3083–3087. [Online]. Available: https://doi.org/
10.1109/ICIP.2019.8803301

VOLUME 1, 2020 213

http://dx.doi.org/10.14569/IJACSA.2019.0100829
http://papers.nips.cc/paper/6877-convolutional-gaussian-processes.pdf
https://doi.org/10.1109/ICIP.2019.8803301

YIN ET AL.: FEDLOC: FEDERATED LEARNING FRAMEWORK FOR DATA-DRIVEN COOPERATIVE LOCALIZATION AND LOCATION DATA PROCESSING

[154] H. Ahmadi, A. Polo, T. Moriyama, M. Salucci, and F. Viani, “Semantic
wireless localization of WiFi terminals in smart buildings,” Radio Sci.,
vol. 51, no. 6, pp. 876–892, Jun. 2016.

[155] S. Guo, H. Xiong, X. Zheng, and Y. Zhou, “Activity recognition and
semantic description for indoor mobile localization,” Sensors, vol. 17,
no. 3, p. 649, Mar. 2017.

FENG YIN received the B.Sc. degree from Shang-
hai Jiao Tong University, China, in 2008, and the
M.Sc. and Ph.D. degrees from Technische Uni-
versität Darmstadt, Germany, in 2011 and 2014,
respectively. He is currently an Assistant Profes-
sor with the School of Science and Engineering,
the Chinese University of Hong Kong, Shenzhen,
China. From 2014 to 2016, he was with Erics-
son Research, Linkoping, Sweden, working on the
European Union FP7 Marie Curie Training Pro-
gramme on Tracking in Complex Sensor Systems

(TRAX). Since 2016, he has been with The Chinese University of Hong
Kong, Shenzhen and also affiliated with the Shenzhen Research Institute of
Big Data (SRIBD). His research interests include statistical signal processing,
Bayesian deep learning, and sensory data fusion. He was the recipient of the
Chinese Government Award for Outstanding Self-Financed Students Abroad
in 2013. He received the Marie Curie Scholarship from the European Union
in 2014. He is currently the Handling Editor of the Elsevier Signal Processing
and Elsevier Digital Signal Processing.

ZHIDI LIN received the M.Sc. degree in communi-
cation and information systems from Xiamen Uni-
versity, Xiamen, China, in 2019. He is currently
working toward the Ph.D. degree with the School
of Science and Engineering, The Chinese Univer-
sity of Hong Kong, Shenzhen, China. His research
interests include the areas of statistical signal pro-
cessing, Bayesian deep learning, and related fields.

QINGLEI KONG received the B.Eng. degree in
communication engineering from the Harbin In-
stitute of Technology, Harbin, China, in 2012, the
M.Eng. degree in electronic and information engi-
neering from Shenzhen Graduate School, Harbin
Institute of Technology, Shenzhen, China, in 2015
and the Ph.D. degree from the School of Electrical
and Electronics Engineering, Nanyang Technolog-
ical University, Singapore, in 2018. She was with
Cyber Security Cluster, Institute for Infocomm Re-
search, Singapore and Tencent Security, Shenzhen,

as a Research Scientist. Currently, she is working with The Chinese Univer-
sity of Hong Kong, Shenzhen (CUHK-Shenzhen), as a Postdoc Researcher.
Her research interests include applied cryptography, blockchain, VANET, and
game theory.

YUE XU received the B.S. and Ph.D. degrees from
the Beijing University of Post and Telecommu-
nication (BUPT) in 2020. He has been a Vis-
iting Researcher with the University of Califor-
nia, Davis, USA, The Chinese University of Hong
Kong, Shenzhen, China, and Shenzhen Research
Institute of Big Data. He is currently a Research
Scientist with Alibaba Group. His research inter-
ests include data-driven wireless network manage-
ment, machine learning, large-scale data analytics,
and system control.

DESHI LI received the Ph.D. degree in computer
application technology from Wuhan University. He
was a Visiting Scholar with the Network Lab of the
University of California, Davis.

He is a Professor with Electronic Information
School, Wuhan University. He has authored or
coauthored more than 100 research papers. His re-
search interests include wireless communication,
Internet of Things, intelligence system and SOC
design. He is a reviewer for many international
academic journals and an expert evaluator for the

Ministry of Science and Technology of China, Ministry of Education of China
and NSF China.

Currently, Dr. Li is a member of the Internet of Things Expert Committee,
Member of the Education Committee of Chinese Institute of Electronics,
the Associate Chief Scientist in Space Communication area of Collaborative
Innovation Center of Geospatial Technology, and also an Executive Trustee
Member of China Cloud System Pioneer Strategic Alliance. His recent re-
search projects include National Science and Technology Major Project of
China (973 Program), National High Technology Program of China (863
Program), and National Natural Science Foundation of China (NSFC).

214 VOLUME 1, 2020

SERGIOS THEODORIDIS is a Professor Emeritus
of Signal Processing and Machine Learning with
the Department of Informatics and Telecommuni-
cations, National and Kapodistrian University of
Athens, Greece and with the Shenzhen Research
Institute of Big Data (SRIBD), the Chinese Uni-
versity of Hong Kong, Shenzhen, China.

He is the author of the book “Machine Learn-
ing: A Bayesian and Optimization Perspective”
Academic Press, 2nd Ed., 2020, the co-author of
the best-selling book “Pattern Recognition”, Aca-

demic Press, 4th ed. 2009, the co-author of the book “Introduction to Pattern
Recognition: A MATLAB Approach”, Academic Press, 2010, the Co-Editor of
the book “Efficient Algorithms for Signal Processing and System Identifica-
tion”, Prentice Hall 1993, and the co-author of three books in Greek, two of
them for the Greek Open University.

He is the co-author of seven papers that have received Best Paper Awards
including the 2014 IEEE Signal Processing Magazine Best Paper Award
and the 2009 IEEE Computational Intelligence Society TRANSACTIONS ON

NEURAL NETWORKS Outstanding Paper Award. His research interests include
areas of online algorithms, distributed and sparsity-aware learning, machine
learning, signal processing and learning for bio-medical applications and
audio processing and retrieval.

He was the recipient of the 2017 EURASIP Athanasios Papoulis Award,
the 2014 IEEE Signal Processing Society Education Award and the 2014
EURASIP Meritorious Service Award. He was a Distinguished Lecturer for
the IEEE Signal Processing as well as the Circuits and Systems Societies.
He was an Otto Monstead Guest Professor with the Technical University of
Denmark, 2012 and holder of the Excellence Chair, Department of Signal
Processing and Communications, University Carlos III, Madrid, Spain, 2011.

He is currently the Vice President of the IEEE Signal Processing Society.
He was the President of the European Association for Signal Processing
(EURASIP), as a member of the Board of Governors for the IEEE Cir-
cuits and Systems (CAS) Society, as a member of the Board of Governors
(Member-at-Large) of the IEEE SP Society and as a Chair of the Signal
Processing Theory and Methods (SPTM) technical committee of IEEE SPS

He was an Editor-in-Chief for the IEEE TRANSACTIONS ON SIGNAL PRO-
CESSING, for the Signal Processing Book Series, Academic Press and Co-
Editor in Chief for the E-Reference Signal Processing, Elsevier.

He is a Fellow of IET, Corresponding Fellow of the Royal Society of
Edinburgh (RSE), and a Fellow of EURASIP .

SHUGUANG (ROBERT) CUI received the Ph.D.
degree in electrical engineering from Stanford Uni-
versity, CA, USA, in 2005. Afterwards, he has
been working as an Assistant, Associate, a Full,
Chair Professor with Electrical and Computer En-
gineering, the University of Arizona, Texas A&M
University, UC Davis, and CUHK, Shenzhen re-
spectively. He has also been the Vice Director
with the Shenzhen Research Institute of Big Data.
His current research interests include data driven
large-scale system control and resource manage-

ment, large dataset analysis, IoT system design, energy harvesting based
communication system design, and cognitive network optimization. He was
selected as the Thomson Reuters Highly Cited Researcher and listed in
the Worlds Most Influential Scientific Minds by ScienceWatch in 2014. He
was the recipient of the IEEE Signal Processing Society 2012 Best Paper
Award. He was the General Co-Chair and TPC Co-Chairs for many IEEE
conferences. He has also been serving as the Area Editor for IEEE Signal
Processing Magazine, and an Associate Editors for IEEE TRANSACTIONS ON

BIG DATA, IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE JSAC SERIES

ON GREEN COMMUNICATIONS AND NETWORKING, and IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS. He has been the Elected Member for IEEE
Signal Processing Society SPCOM Technical Committee (2009–2014) and
the Elected Chair for IEEE ComSoc Wireless Technical Committee (2017 to
2018). He is a member of the Steering Committee for IEEE TRANSACTIONS

ON BIG DATA and the Chair of the Steering Committee for IEEE TRANS-
ACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING. He was also
a member of the IEEE ComSoc Emerging Technology Committee. He was
elected as an IEEE ComSoc Distinguished Lecturer in 2014.

VOLUME 1, 2020 215

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

