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ABSTRACT The Approximate Message Passing (AMP) algorithm efficiently reconstructs signals which
have been sampled with large i.i.d. sub-Gaussian sensing matrices. Central to AMP is its “state evolution,”
which guarantees that the difference between the current estimate and ground truth (the “aliasing”) at every
iteration obeys a Gaussian distribution that can be fully characterized by a scalar. However, when Fourier
coefficients of a signal with non-uniform spectral density are sampled, such as in Magnetic Resonance
Imaging (MRI), the aliasing is intrinsically colored, AMP’s scalar state evolution is no longer accurate and
the algorithm encounters convergence problems. In response, we propose the Variable Density Approximate
Message Passing (VDAMP) algorithm, which uses the wavelet domain to model the colored aliasing. We
present empirical evidence that VDAMP obeys a “colored state evolution,” where the aliasing obeys a
Gaussian distribution that can be fully characterized with one scalar per wavelet subband. A benefit of
state evolution is that Stein’s Unbiased Risk Estimate (SURE) can be effectively implemented, yielding
an algorithm with subband-dependent thresholding that has no free parameters. We empirically evaluate the
effectiveness of VDAMP on three variations of Fast Iterative Shrinkage-Thresholding (FISTA) and find that
it converges in around 10 times fewer iterations on average than the next-fastest method, and to a comparable
mean-squared-error.

INDEX TERMS Approximate message passing, compressed sensing, magnetic resonance imaging (MRI),
Stein’s unbiased risk estimate, variable density sampling.

I. INTRODUCTION
We consider a complex data vector y ∈ CN formed of noisy
Fourier coefficients of a deterministic signal of interest x0 ∈
CN :

y = M�(Fx0 + ε), (1)

where F is a multi-dimensional discrete Fourier transform
and M� ∈ RN×N is a diagonal undersampling mask with
1 on the jth diagonal entry if j ∈ � and 0 otherwise,
where � is a sampling set with |�| = n for n < N . Here,
ε � CN (0, σ 2

ε 1N ) where 1N is the N × N identity matrix and

CN (μ,�2) denotes the distribution with independent real
and imaginary parts that are normally distributed with mean
μ and covariance matrix �2/2. A well-studied approach is to
seek a solution of

x̂ = argmin
x∈CN

1

2
‖y − M�Fx‖2

2 + f (x) (2)

where f (x) is a model-based penalty function. Compressed
sensing [2], [3] concerns the reconstruction of signals of
interest from underdetermined measurements, where sparsity
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in x̂ is promoted by solving (2) with f (x) = λ‖�x‖1 for
sparse weighting λ > 0 and sparsifying transform �.

A prominent success of compressed sensing with Fourier
measurements is accelerated Magnetic Resonance Imaging
(MRI) [4]–[8]. Images of interest typically have a highly
non-uniform spectral density that is concentrated at low fre-
quencies. Accordingly, it is well-known that better image
restoration is possible if the sampling set � is generated with
variable density, so that there is a higher probability of sam-
pling low frequencies [9]–[13]. This work considers an � with
elements drawn independently from a Bernoulli distribution
with generic non-uniform probability, so that Prob( j ∈ �) =
p j ∈ [0, 1].

A. APPROXIMATE MESSAGE PASSING
The Approximate Message Passing (AMP) algorithm [14] is
an iterative method that, for certain sensing matrices � ∈
Rn×N , efficiently estimates x0 in problems of the form y =
�x0 + ε. At iteration k, AMP implements a denoiser g(rk; τk )
on rk with mean-squared error estimate τk , which can be,
for instance, the proximal operator associated with penalty
function f (x):

g(rk; τk ) = argmin
x∈CN

1

2τk
‖rk − x‖2

2 + f (x), (3)

which is equal to soft thresholding in the case of f (x) =
λ‖�x‖1 and orthogonal �. Under certain circumstances [14],
AMP with proximal denoising shares a fixed point with op-
timization problems of the form of (2). Further, for certain
sensing matrices and given mild conditions on f (x), AMP
obeys a state evolution, which guarantees that in the large
system limit n, N → ∞, n/N → δ ∈ (0, 1), vector rk is the
original signal corrupted by zero-mean Gaussian noise with a
covariance matrix that is proportional to the identity:

rk = x0 + N (0, σ 2
k 1N ), (4)

where σk is a scalar iteration-dependent standard deviation. In
this work, the term aliasing is used to refer to the difference
between a given estimate and the ground truth. For instance,
the aliasing of rk is rk − x0. Also, when the covariance matrix
is proportional to the identity, as in (4), the aliasing and state
evolution are referred to as white.

AMP was originally constructed for real, zero-mean, i.i.d.
Gaussian measurements, and its white state evolution was
proven for this case in [15] and subsequently proven for i.i.d.
sub-Gaussian measurements in [16]. It has also been shown
empirically that it holds for uniformly undersampled Fourier
measurements of an artificial i.i.d. signal [14]. When state
evolution holds, AMP is known to exhibit very fast conver-
gence. However, for generic �, the behavior of AMP is not
well understood and it has been noted by a number of au-
thors [17]–[20] that it can encounter convergence problems.
The recent Orthogonal AMP (OAMP) [21] and related Vector
Approximate Message Passing (VAMP) [22] algorithm obey
a white state evolution for a broader class of measurement
matrices �, and were found to perform very well on certain

Algorithm 1: OAMP [21].
Require: Matrix �, measurements y, denoiser g(rk; τk ),
number of iterations Kit .

1: Set r̃0 = 0
2: for k = 0, 1, . . . , Kit − 1 do
3: zk = y − �̃rk

4: rk = r̃k + �H zk

5: Update τk

6: x̂k = g(rk; τk )
7: αk = 〈g′(rk; τk )〉
8: Update ck , e.g. ck = 1, 2 or 3
9: r̃k+1 = ck · (x̂k − αkrk )

10: end for
11: return x̂k

reconstruction tasks. For VAMP, white state evolution was
proven for sensing matrices that are “right-orthogonally in-
variant”: see [22] for details.

The matched filter variation of the OAMP algorithm [21],
which forms the basis of the algorithm presented in this work,
is stated in Algorithm 1. Here, 〈·〉 is the empirical averag-
ing operator and g′(rk; τk ) is the diagonal of the Jacobian
of g(rk; τk ) with respect to rk . The scalar τk estimates the
variance σ 2

k from (4): see Eqn. (31) of [21] for details of
the update formula. The relationship between OAMP and
the well-known Iterative Shrinkage-Thresholding Algorithm
(ISTA) [23] can be seen by considering lines 6–9 as a single
function:

g̃(rk; τk ) = ck · (g(rk; τk ) − αkrk ). (5)

Then OAMP is equivalent to ISTA with g̃(rk; τk ) in place
of the usual shrinkage step. The αkrk subtraction, known as
the Onsager correction [14], causes the function g̃(rk; τk ) for
large N to be approximately divergence-free [21], defined as

〈g̃′(rk; τk )〉 ≈ 0. (6)

The divergence-free property of g̃(rk; τk ) is the vital aspect
of OAMP that leads to the white state evolution of (4) [21].
Although any divergence-free function can be employed in
place of lines 6–9 of Algorithm 1, and is not required to take
the form of (5), this work focuses on a g̃(rk; τk ) of the form of
(5) with g(rk; τk ) as the soft thresholding operator.

Any choice of ck update in line 8 of Algorithm 1 is
consistent with the divergence-free requirement of (6). For
soft thresholding, OAMP [21] gives no explicit suggestions
for ck in practice. Instead, OAMP demonstrates the general-
ity of its state evolution using three arbitrary chosen values
ck = 1, 2, 3. For the algorithm presented in this work, two
ck updates are suggested, stated in (24) and (26), which are
motivated by VAMP [22] and computed by Stein’s Unbiased
Risk Estimate (SURE) [24], [25] respectively.

B. COLORED ALIASING
AMP, OAMP and VAMP assume that the sensing matrix
is sufficiently random to ensure that the aliasing is white.
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FIGURE 1. The ground truth, unbiased estimate and entry-wise absolute
error for a uniformly sampled Shepp-Logan with pj = 1/2, where the
colorbars are given as a proportion of the maximum of x0. The top row
shows the image domain and the bottom shows the wavelet domain. The
colored aliasing evident in Fig. 1(c) illustrates the infeasibility of white
state evolution for Fourier sampling of signals with non-uniform spectral
density. The anisotropy of the spectral density of x0 causes the horizontal,
vertical and diagonal variances to differ, even at the same scale.

However, when an image is sampled in the Fourier domain,
the aliasing is innately colored. To see this, consider the nat-
ural initialization for an approximate message passing algo-
rithm: the unbiased estimator x̃ = FH P−1y, where P is the
diagonal matrix formed from sampling probabilities p j . De-
noting y0 = Fx0, the power spectrum of the aliasing of x̃ is
shown in Appendix A to be

E�,ε{|y0 − P−1y|2} = (P−1 − 1N )|y0|2 + σ 2
ε P−11N (7)

where | · | is the entry-wise absolute value and 1N is the
N-dimensional vector of ones. Equation (7) depends on P
and |y0|2, which are non-uniform and anisotropic in general.
Note that although the specific case p j = (σ 2

ε + |y0, j |2)/(α +
|y0, j |2) for constant α does lead to white aliasing, it requires
knowledge of the ground truth spectral density |y0|2 so is not
a feasible sampling scheme in practice.

A visual example of colored aliasing is shown in the top
row of Fig. 1. Here, the unbiased estimate of a 512×512
synthetic Shepp-Logan uniformly sampled with p j = 1/2 for
all j is shown, with σε = 0. By (7), the power spectrum of
the aliasing of x̃ in this case is E�,ε{|y0 − P−1y|2} = |y0|2.
Since |y0|2 is tightly concentrated at low frequencies, the
aliasing has strong low-frequency components, which is man-
ifest in Fig. 1(c) as local correlations. In this example, uni-
form sampling was chosen to exaggerate the colored aliasing
property. In practice, when variable density sampling is used,
the sampling distribution partially compensates for the power
spectrum of the signal, so the aliasing is still colored, but less
strongly.

The intrinsically colored aliasing of variable density sam-
pling from a non-uniform spectral density implies that the
white state evolution of AMP, OAMP, and VAMP, (4), cannot
be relied upon. The primary development of this work is based

on the use of the Discrete Wavelet Transform (DWT) to com-
pute a multiresolution decomposition of the power spectrum
of the aliasing, as used for colored noise analysis in [26]–[28].
In the wavelet domain, colored aliasing has a structure that
resembles a state evolution. To illustrate this, consider again
the unbiased initialization x̃. The corresponding estimator in
the wavelet domain is

r0 = �x̃. (8)

The bottom row of Fig. 1 shows w0 = �x0, r0 and the entry-
wise absolute difference |w0 − r0| for the same image and
sampling set as the top row, where � is a Haar DWT with
4 decomposition scales. Qualitatively, Fig. 1(f) suggests that
the power spectrum given by (7) has a simple structure in the
wavelet domain; in particular, it suggests that the per-subband
aliasing within each subband is approximately uniform. In
Section III we show that, in fact, the aliasing within each
subband is quantitatively consistent with a white Gaussian
distribution, see Fig. 6. Further, Table 3 presents evidence
that the Gaussianity holds for a variety of image types and
undersampling factors.

C. COLORED STATE EVOLUTION
Herein we present a new method for undersampled signal
reconstruction that we term the Variable Density Approxi-
mate Message Passing (VDAMP) algorithm, see Algorithm 2.
We present empirical evidence that VDAMP preserves the
subband-dependent noise structure illustrated in Fig. 1(f) for
all iterations. Explicitly, the rk of VDAMP behaves as

rk = w0 + CN (0,�2
k ), (9)

where � is an orthogonal DWT and the covariance matrix �2
k

is diagonal so that for a � with s decomposition scales,

�2
k =

⎡⎢⎢⎢⎢⎣
σ 2

k,11N1 0 . . . 0

0 σ 2
k,21N2 . . . 0

...
...

. . .
...

0 0 . . . σ 2
k,1+3 s1N1+3 s

⎤⎥⎥⎥⎥⎦ , (10)

where σ 2
k,b and Nb refer to the variance and dimension of

the bth subband respectively. We refer to (9) and (10) as the
colored state evolution of VDAMP and the aliasing of rk as
the effective noise of VDAMP.

The joint space-frequency localization provided by the
wavelet transform decomposes the color of the effective noise
while retaining incoherence. The algorithm presented in this
work considers a sparse model on wavelet coefficients, how-
ever, we emphasize that the wavelet transform is primarily
used as a tool for decomposing the aliasing, and is not neces-
sarily constrained to model wavelet coefficients directly [25],
[29].

VAMP for Image Recovery (VAMPire) [30] is an adaption
of VAMP for variable density Fourier sampled images that
uses wavelets to decompose the effective noise in to frequency
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Algorithm 2: VDAMP.
Require: Sampling set �, wavelet transform �,
probability matrix P, measurements y, denoiser
g(rk; τk ), number of iterations Kit .

1: Set r̃0 = 0 and compute S = |F�H |2
2: for k = 0, 1, . . . , Kit − 1 do
3: zk = y − M�F�H r̃k

4: rk = r̃k + �FH P−1zk

5: τk = SH M�P−1[(P−1 − 1N )|zk|2 + σ 2
ε 1N ]

6: ŵk = g(rk; τk )
7: αk = 〈∂(g(rk; τk ))〉sband
8: Update ck

9: r̃k+1 = ck 
 (ŵk − αk 
 rk )
10: end for
11: return x̂ = �H ŵk + FH (y − M�F�H ŵk )

bands that are subsequently “whitened” by a hand-tuned pre-
diction of the per-subband energy. As in OAMP, Algorithm
1, the effective noise model of VAMPire is represented by a
scalar τk . In contrast, we propose making the necessary algo-
rithmic adaptions to allow the aliasing to be colored, and to
model the color with a vector τk . To our knowledge, VDAMP
is the first algorithm for variable density Fourier sampling of
images where a state evolution has been observed.

II. DESCRIPTION OF ALGORITHM
The VDAMP algorithm, Algorithm 2, adapts OAMP, Algo-
rithm 1, to a colored aliasing model. VDAMP’s colored alias-
ing model is updated in line 5, where the scalar τk ∈ R of
OAMP is replaced by a vector τk ∈ RN that models the diag-
onal of �2

k . In line 6, OAMP’s denoiser g(rk; τk ) is replaced by
the denoiser g(rk; τk ), which takes the vector τk as its input.
Lines 7–9 of Algorithm 2 is the Onsager correction from lines
7–9 of Algorithm 1 adapted to a subband-wise aliasing model.
Here, the notation ∂(g(rk; τk )) in line 7 replaces OAMP’s
g′(rk; τk ), defined as the function with jth entry

∂ j (g(rk; τk )) = 1

2

(
∂�[g j (rk; τk )]

∂�[r j]
+ ∂�[g j (rk; τk )]

∂�[r j]

)
(11)

where �[·] and �[·] are the real and imaginary parts respec-
tively. The form of (11) is justified in section II-D. Also in line
7, the notation 〈·〉sband is an operator that empirically averages
entries within subbands, so that αk has the structure

αk =

⎡⎢⎢⎢⎢⎣
αk,11N1

αk,21N2

...

αk,1+3 s1N1+3 s

⎤⎥⎥⎥⎥⎦ (12)

with

αk,b = 1

Nb

∑
j∈Jb

∂ j (g(rk; τk )), (13)

where Jb is the set of indices associated with subband b and
Nb = |Jb|. In line 8 of Algorithm 2, ck is a vector with the

piecewise-constant structure of (12), and in line 9 the notation

 refers to entry-wise multiplication. The remainder of this
section works through Algorithm 2 in detail, line-by-line.

A. DENSITY COMPENSATED GRADIENT DESCENT,
LINES 3–4
To ensure that rk is an unbiased estimate of x0, the sensing
matrix must be correctly normalized. In VDAMP this is man-
ifest in the gradient step of lines 3–4, which features a crucial
weighting by P−1 that is absent in previous applications of
AMP to variable density sampling [30]–[32], where a state
evolution was not observed. This provides the correct normal-
ization in expectation over �: E�{�FH P−1M�F�H } = 1N .
Note that VDAMP’s r0 is the unbiased estimator from (8).
Such a rescaling is referred to as density compensation in
the MRI literature [33], [34], and was used in the original
compressed sensing MRI paper with zero-filling to generate
a unregularized, non-iterative baseline [4]. However, to our
knowledge, VDAMP is the first iterative method that employs
density compensated gradient descent. Density compensation
also arises in recovery guarantees for variable density Fourier
measurements in [9], [11], although it was considered an arti-
fact of the proof and was not used in the numerical evaluations
of these works. The connection of VDAMP to these theoreti-
cal results is beyond the scope of this paper and is left as future
work.

Density compensation increases the variance of the mea-
surement noise at frequencies sampled with low probability,
and its inclusion in the gradient step will lead to a rk with
higher mean-squared error than an unweighted gradient step.
However, as shown in Section III, a careful choice of denoiser
g(rk; τk ) that leverages VDAMP’s state evolution can cause
lines 6–9 to be very effective, leading to faster overall conver-
gence than competing methods.

The final step of VDAMP, line 11, is a gradient step without
a P−1 weighting, which generates a biased image estimate x̂
with high data fidelity.

B. COLORED EFFECTIVE NOISE MODEL, LINE 5
Line 5 of Algorithm 2 computes an estimate of the colored
effective noise covariance matrix �2

k from (9). Through a
similar derivation to that for (7), shown in Appendix A, the
power spectrum of the aliasing of rk is

E�,ε{|F�H rk − y0|2} = (P−1 − 1N )|F�H r̃k − y0|2

+ σ 2
ε P−11N . (14)

Eqn. (14) depends on the ground truth y0, so is of limited prac-
tical use. An estimate of (14) that does not require knowledge
of y0 is

τ
y
k = M�P−1[(P−1 − 1N )|zk|2 + σ 2

ε 1N ]. (15)

Estimating properties of a distribution using samples from
another is known as importance sampling in the statistics
literature [35], [36]. Eqn. (15) uses importance sampling with
P as the importance distribution which, as proven in Appendix
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B, is an unbiased estimator of (14). We assume the estimator
τ

y
k concentrates around its expectation, and leave the study of

how this depends on the importance distribution P for future
works.

The computation of τk in line 5 of Algorithm 2 is a lin-
ear transform of τ

y
k to the wavelet domain: τk = |�FH |2τy

k ,
which, as shown in Appendix C, is a unbiased estimate of
|rk − w0|2 when rk has unbiased independent entries, as ex-
pected by state evolution. |�FH |2 is the power spectrum of �,
so has 1 + 3 s unique rows; line 5 therefore requires 1 + 3 s
inner products. For fixed s the complexity of VDAMP is
therefore governed by � and F, whose fast implementations
have complexity O(N ) and O(N log N ) respectively.

C. COMPLEX SOFT THRESHOLD TUNING WITH SURE,
LINE 6
Selecting appropriate regularisation parameters such as λ is a
notable challenge in real-world compressed sensing applica-
tions. We present an approach to parameter-free compressed
sensing reconstruction that leverages VDAMP’s state evolu-
tion by applying Stein’s Unbiased Risk Estimate (SURE) [24],
building on work on AMP in [19], [37], [38].

A strength of automatic parameter tuning via SURE is that
it is possible to have a richer regularizer than would usually
be feasible for a hand-tuned f (x). In this work, the denoiser
g(rk; τk ) was the complex soft thresholding operator with a
subband-dependent threshold that is tuned automatically with
SURE. In other words, SURE with an effective noise model
given by rk = w0 + CN (0, Diag(τk )) was used to approxi-
mately solve

g(rk; τk ) ≈ argmin
w∈CN

min
λ∈RN

1

2
‖(w − rk )  √

τk‖2
2 + ‖λ 
 w‖1,

(16)
where  denotes entry-wise division,

√
τk is the entry-wise

square root of τk and λ has the piecewise-constant structure
of (12). The possibility of using a scale-dependent thresh-
olds is well known, such as in [23]. We emphasize that (16)
is subband-dependent rather than scale-dependent, enabling
higher order, anisotropic signal modeling [39], [40].

Equation (16) was solved using a procedure related to
SureShrink [41] but for Gaussian noise that is complex
and colored [28]. Consider a vector v0 ∈ CNv corrupted by
white complex Gaussian noise: v = v0 + CN (0, τv1Nv ). Let
d(v) = v + h(v) be an estimator of v0. SURE [24] adapted to
complex variables is

cSURE(d(v)) = ‖h(v)‖2
2 + Nvτv[2 〈∂(d(v))〉 − 1]. (17)

cSURE is of interest to denoising problems because, as
shown in Appendix D, it is an unbiased estimate of the risk
E{‖d(v) − v0‖2

2}. The optimal parameters of the denoiser
d(v) can therefore be estimated by minimizing cSURE as a
proxy for the true risk. Consider the case where d(v) is the
complex soft thresholding operator η(v; t ) with threshold t ,

which acts component-wise as

η j (v j; t ) := v j

(
1 − min

{
t

|v j | , 1

})
. (18)

The jth entry of ∂(η(v; t )) is

∂ j (η j (v j; t )) =
{

0, if |v j | ≤ t

1 − t
2|v j | , otherwise.

(19)

By (17), an unbiased estimate of the risk of soft thresholding
is therefore [41]

cSURE(η(v; t )) = (t2 + 2τv ) · #{ j : |v j | > t} − Nvτv

+
Nv∑

j:|v j |≤t

|v j |2 −
Nv∑

j:|v j |>t

tτv/|v j |. (20)

The optimal threshold for each subband can be estimated with

t̂ = argmin
t

(cSURE(η(v; t ))) (21)

by evaluating (20) for trial thresholds t = |v1|, |v2|, . . . , |vNv |.
For large dimension Nv one would expect by the law of large
numbers that cSURE is close to the true risk, and for the
threshold to be almost optimal. Since a larger number of
decomposition scales s give subbands with lower dimension,
there is a trade-off between the size of s and the quality of
threshold selection with cSURE.

SURE has previously been employed for parameter-free
compressed sensing MRI in [42], where FISTA was used with
(16) in place of the usual shrinkage step. This algorithm is
herein referred to as SURE-IT, and is discussed in detail in
Section III-A.

D. COMPLEX, COLORED ONSAGER CORRECTION,
LINES 7–9
Lines 7–9 of Algorithm 2 can be understood intuitively as fol-
lows: since lines 7–9 of Algorithm 1 apply to white noise, and
the effective noise of VDAMP is white within each subband,
the Onsager correction must be applied subband-by-subband.
For soft thresholding, the use of 〈∂(g(rk; τk ))〉sband in place
of OAMP’s 〈g′(rk; τk )〉 leads the function formed by merging
lines 7–9,

g̃(rk; τk ) = ck 
 (g(rk; τk ) − αk 
 rk ), (22)

to obey, for all subbands b,

1

Nb

∑
j∈Jb

∂�[g̃ j (rk; τk )]

∂�[r j]
≈ 1

Nb

∑
j∈Jb

∂�[g̃ j (rk; τk )]

∂�[r j]
≈ 0, (23)

which is a colored aliasing version of OAMP’s divergence-
free condition, (6), applied to both real and imaginary parts.
The Onsager correction employed here is not the only choice
that leads to a g̃(rk; τk ) that satisfies (23) [43], however, we
have found that this particular choice performs well.

Like the scalar ck in Algorithm 1, the ck updated in line 8
of Algorithm 2 is not constrained by (23), except to have the
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piecewise-constant structure of (12). In the experiments in this
work, two possibilities for the ck update are considered. First,

cα
k = 1N  (1N − αk ). (24)

In this case, lines 6–9 of Algorithm 2 are a colored version
of the ‘denoising’ phase of VAMP when written in LMMSE
form (see [22], Algorithm 3). VDAMP with ck updated with
(24) is herein referred to as VDAMP-α.

Secondly, as in [25], we suggest using cSURE for a second
time to estimate the ck that minimizes the mean squared error
of r̃k :

cSURE
k ≈ arg min

c
‖g̃(rk, τk ) − w0‖2

2. (25)

Since by (23) 〈∂(̃g(rk; τk ))〉sband ≈ 0, optimizing (17) reduces
to a series of �2 minimization problems with a closed-form
solution, so that for the bth subband

cSURE
k,b = arg min

c
‖c(gb(rk; τk ) − αk,brk,b) − rk,b‖2

2 (26a)

= rH
k,b(gb(rk; τk ) − αk,brk,b)

‖gb(rk; τk ) − αk,brk,b‖2
2

. (26b)

Vector cSURE
k is formed from the cSURE

k,b so that it has the
structure of (12). VDAMP with ck updated with cSURE

k is
herein referred to as VDAMP-S.

As for OAMP [21], we do not claim that the either of the
two ck updates suggested here are necessarily optimal. In-
stead, we show in Section III that both updates lead to aliasing
consistent with state evolution, and empirically evaluate their
performance, which we observe to converge to a similar or
lower NMSE as other algorithms, but with approximately a
tenth the time to convergence.

III. NUMERICAL EXPERIMENTS
This section illustrates the performance of VDAMP-α and
VDAMP-S compared with the Fast Iterative Shrinking-
Thresholding Algorithm (FISTA) algorithm [23], [44], and
two FISTA-based methods wth subband-dependent thresh-
olding [40], [42]. We also present empirical evidence for
VDAMP’s state evolution. All experiments were conducted
in MATLAB 9.4 and can be reproduced with code online,
available at https://github.com/charlesmillard/VDAMP.

A. DESCRIPTION OF COMPARATIVE FISTA-BASED
ALGORITHMS
The three versions of FISTA [40], [42], [44] considered in this
work are summarized in Algorithm 3. In line 7, g(rk; τk1)
refers to the subband-dependent thresholding function with
thresholds tuned by cSURE, stated in (16), with a scalar alias-
ing model τk . In line 9, η(rk; τkλ�−11) is the soft thresholding
function from (18) with entry-wise threshold τkλ�−11. As in
(3), the threshold employed here is weighted by the variance
estimate τk , causing the threshold to decrease over iterations,
which, as in [45], was found to significantly reduce the time to
convergence. Line 14 is an unweighted gradient descent step,
as in line 11 of Algorithm 2, which outputs an estimate x̂ with

Algorithm 3: FISTA [44], S-FISTA [40] and SURE-
IT [42] for Fourier Sampled Images.

Require: Sampling set �, wavelet transform �,
per-subband weighting W set to W = 1N for FISTA and
SURE-IT or calculated with (27) for S-FISTA, sparse
weighting λ for FISTA and S-FISTA, measurements y,
number of iterations Kit .

1: Set r̃0 = 0, ŵ−1 = 0 and h−1 = 1
2: for k = 0, 1, . . . , Kit − 1 do
3: zk = y − F�H r̃k

4: rk = r̃k + W −1�FH M�zk

5: Update τk

6: if SURE-IT then
7: ŵk = g(rk; τk1)
8: else
9: ŵk = η(rk; τkλW −11)

10: end if
11: hk = (1 +

√
1 + 4h2

k−1)/2

12: r̃k+1 = ŵk + (hk−1 − 1)(ŵk − ŵk−1)/hk

13: end for
14: return x̂ = �H ŵk + FH (y − M�F�H ŵk )

high data fidelity. This was suggested in [45], and we found
that this output had a lower reconstruction error than �H ŵk .
The variations described in Algorithm 3, discussed in detail
below, are referred to in this work as FISTA, S-FISTA [40]
and SURE-IT [42].

FISTA refers to Algorithm 3 with W = 1N , so that a global
threshold λτk is applied in line 9. Despite not discriminating
between subbands, this version of FISTA was considered be-
cause it is widely-used in MRI, and we found that it performed
well compared with the subband-dependent algorithms, so is
an instructive baseline. FISTA with a hand-tuned subband-
dependent λ was not considered as it is not feasible in practice.

S-FISTA refers to Algorithm 3 with a diagonal weight ma-
trix W that has one unique entry per wavelet subband, so
that diag(W ) has the piecewise-constant structure of (12).
In [40], a method was suggested for selecting the weight for
the bth subband, which we denote as wb. Let �b be the block
of M�F�H corresponding to the bth subband. In [40], it is
shown that a choice of wb that satisfies

1

wb
>

3s+1∑
b′=1

√
λmax(�H

b′ �b�
H
b �b′ ), (27)

where λmax(·) is the largest eigenvalue, ensures that W −
�H� is a positive operator, and therefore guarantees that the
algorithm converges: see [40] for details. Following [46], we
computed the wb by calculating λmax once per � for all b and
b′ using the power iteration method. In contrast with VDAMP,
S-FISTA’s per-subband weighting is fixed across all iterations,
and depends only on the sensing matrix and wavelet family,
and not on the per-iteration signal estimate.
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TABLE 1. Convergence Time in Seconds. The Shortest Time is Highlighted in Bold

FIGURE 2. MRI images used to evaluate the performance of VDAMP.

SURE-IT refers to Algorithm 3 with W = 1N and a
subband-dependent, automatically tuned denoiser g(rk; τk1),
as in [42]. Although SURE-IT’s thresholding is iteration-
dependent, the aliasing of its rk is highly non-Gaussian, so
deviates from a proper theoretical basis for using SURE and
does not give near-optimal threshold selection. Further, unlike
VDAMP, the aliasing of SURE-IT is modeled by a scalar τk .

In the following experiments, the scalar sparse weighting λ

of FISTA and S-FISTA was tuned with an exhaustive search so
that the mean-squared error was minimized at k = 100. Since
the threshold was weighted by τk , we tuned λ separately for
FISTA and S-FISTA. The variance estimate τk on line 5 of
Algorithm 3 was updated using the ground truth: τk = ‖rk −
w0‖2

2/N .

B. EXPERIMENTAL METHOD
We considered the reconstruction of 8 test images: the Shepp-
Logan shown in Fig. 1(a), a brain and a cardiac MRI image,
shown in Fig. 2, and 5 standard test images: Barbara, Boat,
Cameraman, House and Peppers, downloaded from [47]. In
all cases the undersampled data was artificially corrupted
with complex Gaussian noise so that ‖x0‖2

2/Nσ 2
ε = 40 dB. We

assumed that σ 2
ε was known a priori. For simplicity � was

chosen as the Haar wavelet with s = 4 scales.
A variety of variable density sampling schemes for MRI

have been suggested [4], [10], [12], [45], [48], [49], including
some with recovery guarantees [11], [13]. In the experiments
presented in this section, we generated � using the variable

density sampling function from the Sparse MRI package.1

The focus of this work is on the reconstruction algorithm, not
on the sampling scheme, and we do not claim that this scheme
is necessarily the best choice, only that it an instructive exam-
ple because it common in MRI and known to perform well
in practice [4]. The � generated with this package for the
N/n = 4 cardiac image is shown in Fig. 4 f. We chose variable
density schemes P with E�{|�|} = n so that the acceleration
factors N/n = 4, 6, 8 were used, except for the Shepp-Logan,
where we used an increased acceleration of N/n = 8, 10, 12.
All algorithms were initialized with a vector of zeros and run
for Kit = 500 iterations, except for the Shepp-Logan, which
was found to require more iterations, so was run until Kit =
1000.

C. TIME TO CONVERGE
Table 1 shows the time to converge for each algorithm, defined
as the time taken until the NMSE is within 0.1 dB of its value
at Kit . In all test cases, both variations of VDAMP converge
considerably more rapidly than the competing FISTA-based
methods. Across all experiments, convergence time compared
with FISTA was 14.0 times shorter for VDAMP-α and 11.8
times shorter for VDAMP-S on average, corresponding to
a 16.5 and 15.2 times reduction in the required number of
iterations respectively. Of the three FISTA-based algorithms,
SURE-IT had the shortest time to convergence, but still re-
quired 10.7 and 10.0 times more iterations on average than
VDAMP-α and VDAMP-S respectively. Note that the times
listed in Table 1 do not include the time required to tune λ

for FISTA and S-FISTA, nor the time to calculate S-FISTA’s
subband-weighting wb.

The NMSE vs iteration for the Shepp-Logan undersampled
at N/n = 10 and the cardiac image undersampled at N/n = 4
are shown up to Kit and k = 200 respectively in Fig. 3, which
visualizes VDAMP’s comparative rapidity of convergence. In
Fig. 4, the cardiac image is shown at k = 10, where VDAMP-
α and VDAMP-S had converged, demonstrating a visible re-
duction in blocking artifacts for VDAMP.

1[Online]. Available: https://people.eecs.berkeley.edu/∼mlustig/Software.
html
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TABLE 2. Reconstruction NMSE in dB at Kit for All 8 Test Images at Different Undersampling Factors. The Lowest NMSE is Highlighted in Bold

FIGURE 3. NMSE of FISTA, S-FISTA, SURE-IT, VDAMP-α and VDAMP-S of a
Shepp-Logan undersampled at N/n = 10 and the cardiac image
undersampled at N/n = 4. The NMSE at k = 0 differs between algorithms
as the image estimate at k = 0 is defined to be the after the first
thresholding is applied. The cardiac example is shown up to k = 200, not
Kit = 500, so that the behavior of VDAMP can clearly be seen.

D. NMSE COMPARISON
Table 2 shows the normalized mean-squared error (NMSE)
‖x̂ − x0‖2

2/‖x0‖2
2 of the reconstructed image for each

algorithm. The NMSE of FISTA, S-FISTA and VDAMP are
generally comparable. Given that VDAMP has 13 model pa-
rameters while FISTA has one, one might expect the NMSE
of VDAMP would consistently be lower. However, for the
Cameraman, the cardiac image at N/n = 8, House at N/n = 4
and Peppers at N/n = 4 FISTA’s NMSE was found to be
lower. This is due to density compensation in the gradient
step, line 4 of Algorithm 2, which effectively increases the
measurement noise for coefficients sampled with low proba-
bility. Note that FISTA’s NMSE advantage in these instances
may not necessarily arise in realistic, prospectively undersam-
pled reconstruction tasks, as the ground truth cannot be used
to hand-tune FISTA’s sparse weighting λ to a near optimal
value, as in the experiments here. Also note that VDAMP-S
and VDAMP-α both perform comparatively well on the MRI
images, which are of primary importance for the algorithm’s
intended application.

Despite employing subband-dependent thesholding, S-
FISTA’s NMSE at Kit was often slightly higher than FISTA.

Fig. 5 shows k = 1, 2, 3 of VDAMP’s wavelet-domain
aliasing for the N/n = 12 Shepp-Logan, which demonstrates
that the ratio of the aliasing between subbands may not be
constant over iterations. For instance, at k = 1, the coarse
level has greater variance than the fine levels, but at k = 3
the coarse variance is visibly lower than the fine levels. This
is poorly reflected by S-FISTA’s threshold weighting, which
is fixed over iterations and not dependent on the current
estimate. Further, [40] notes that while (27) is sufficient to
ensure convergence, the inequality is not tight so may lead
to weights that are smaller than necessary, which slows con-
vergence. In [46], which uses different sampling schemes to
that employed here, it was found that S-FISTA performed
slightly better than FISTA, suggesting that S-FISTA’s relative
performance may be particularly dependent on the sampling
scheme employed. The comparatively poor performance of
SURE-IT highlights the need for zero-mean Gaussian aliasing
for effective automatic parameter tuning with SURE.

E. EMPIRICAL EVIDENCE OF STATE EVOLUTION
This section presents empirical evidence that VDAMP obeys
the colored state evolution given by (9) using kurtosis and
quantile-quantile plots. The excess kurtosis of a real random
variable X is defined as Kurt{X } = μ4/σ

4 − 3, where μ4 is
the fourth central moment and σ is the standard deviation. The
Gaussianity of the aliasing of rk was tested by calculating the
mean of per-subband empirical kurtosis of the real part,

Kurt{�[rk − w0]} = 1

3s + 1

3s+1∑
b=1

Kurt{�[rk,b − w0,b]},

and comparing to zero, which is the kurtosis of a white
Gaussian distribution. Table 3 shows the mean kurtosis for
all images and sampling factors at k = Kit . The proximity to
zero is consistent with a colored state evolution for all image
types and undersampling factors, and for both VDAMP-α
and VDAMP-S, confirming that the difference in performance
between the algorithms is not due to a breakdown in state
evolution. The imaginary part, which is not included here for
conciseness, was found to have a similarly small mean excess
kurtosis.
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FIGURE 4. Reconstructions of the Cardiac image undersampled at N/n = 4, shown at k = 10.

TABLE 3. Test for Gaussianity Using the Mean Excess Kurtosis Kurt{�[rk − w0]} at Kit . An Exact Gaussian has Zero Mean Excess Kurtosis. The Smallest
Absolute Values are Highlighted in Bold

FIGURE 5. The magnitude of the effective noise for VDAMP-S for a
Shepp-Logan undersampled with N/n = 12 for iterations k = 1, 2, 3, where
the colorbar shows the proportion of the maximum of x0.

Using the example of the Shepp-Logan undersampled
with N/n = 12, Fig. 5 shows VDAMP-S’s |rk − w0| for k =
1, 2, 3, visualizing the preservation of the unbiased subband-
dependent aliasing structure shown for uniform sampling in
Fig. 1. For k = 0, 5, 20, Fig. 6 shows quantile-quantile plots
against a Gaussian of the three illustrative subbands of rk −
w0: the diagonal detail at scale 1, the horizontal detail at scale
2 and the vertical detail at scale 4, where scale 1 is the finest
and scale 4 is the coarsest. The linearity of the blue points

provides strong evidence that the per-subband effective noise
is Gaussian.

The efficacy of automatic threshold selection with cSURE
depends on how accurately the diagonal of �2

k is modeled by
τk . For k = 0, 1, . . . , 20, Fig. 7 shows the ground truth sub-
band NMSE ‖rk,b − w0,b‖2

2/‖w0,b‖2
2 at all four scales and the

prediction of VDAMP, where the NMSE is per subband. The
true NMSE is closely tracked by τk at all scales, which implies
that parameter selection with SURE is truly near-optimal.
Since, by Appendix C, τk is unbiased when the aliasing of rk

is zero mean and i.i.d., Fig. 7 also provides further verification
of colored state evolution.

IV. CONCLUSION
Based on the observation that Fourier sampling from a non-
uniform spectral density leads to colored aliasing, we propose
VDAMP, an algorithm based on OAMP that obeys a colored
state evolution. State evolution provides an effective way to
tune model parameters via cSURE, implying that a single
algorithm can be used for arbitrary variable density scheme
and image type without the need for manual adjustment.
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FIGURE 6. Normalized quantile-quantile plots against a Gaussian for three
subbands of VDAMP-S’s rk − w0 at k = 0, 5, 20 for the Shepp-Logan
sampled with N/n = 12 in blue, and points along a straight line in red. The
real part is plotted in the top and bottom rows and the imaginary is
plotted in the middle row. Linearity of the blue points indicates that that
the data comes from a Gaussian distribution, and the decreasing gradient
shows that the variance decreases with increasing k. Finite dimensional
effects causing small deviations from an exact Gaussian are more
apparent at coarse scales, where the dimension is smaller.

More degrees of freedom are feasibly allowed in the model,
enabling higher order prior information such as anisotropy,
variability across scales and structured sparsity, without the
need to estimate the structure a priori [50].

VDAMP was motivated by the application of compressed
sensing to accelerated MRI. Developments are required for
VDAMP to be applicable to MRI data acquired across mul-
tiple coils that possess a sensitivity profile [34], [51], and for
VDAMP to be applicable to Fourier sampling with 1D readout
curves, where elements of � are generated dependently.

It is known that the state evolution of OAMP holds for a
wide range of denoisers g(rk; τk ) [25], [29]. In [52], a num-
ber of standard compressed sensing algorithms that leverage
image denoisers designed for Gaussian noise were shown to
perform well on MRI reconstruction tasks, despite the mis-
match between the aliasing and its model. A sophisticated
denoiser equipped to deal with wavelet coefficients corrupted
with known colored Gaussian noise would be expected to per-
form well in conjunction with VDAMP. There has also been
interest in algorithms that leverage the statistical modeling ca-
pabilities of neural networks [52]–[55]. VDAMP with a neural
network denoiser g(rk; τk ) could accommodate ground-truth
free training by using cSURE as the loss, as shown for AMP
in [56], [57].

APPENDIX A
THE POWER SPECTRUM OF THE ALIASING OF x̃
This appendix proves that the magnitude of the entry-wise
difference between y0 and the unbiased estimate P−1y is

E�,ε{|y0 − P−1y|2} = (P−1 − 1N )|y0|2 + σ 2
ε P−11N (28)

Proof: Since the entries of y are independent and P−1 is
diagonal, we can consider (28) as N distinct one-dimensional
expressions. The ith entry of (28) is

Emi,εi

{∣∣∣∣y0,i − yi

pi

∣∣∣∣2
}

= Emi,εi

{∣∣∣∣y0,i − mi

pi
(y0,i + εi )

∣∣∣∣2
}

= Emi,εi

{∣∣∣∣(1 − mi

pi

)
y0,i − mi

pi
εi

∣∣∣∣2
}

, (29)

where mi is the ith diagonal of M�. By assumption, mi is dis-
tributed according to a Bernoulli distribution with Emi{mi} =
pi. The expectation over mi can therefore be found by resolv-
ing (29) at mi = 1 and mi = 0 and summing with weights pi

and 1 − pi respectively:

Emi,εi

{∣∣∣∣(1 − mi

pi

)
y0,i − mi

pi
εi

∣∣∣∣2
}

= Eεi

{
pi

∣∣∣∣(1 − pi

pi

)
y0,i − εi

pi

∣∣∣∣2 + (1 − pi )|y0,i|2
}

.

Expanding the first term, and noting that Eεi{εi} = 0 and
Eεi{|εi|2} = σ 2

ε ,

Eεi

{
pi

∣∣∣∣(1 − pi

pi

)
y0,i − εi

pi

∣∣∣∣2 + (1 − pi )|y0,i|2
}

= [t]Eεi

{
pi

∣∣∣∣(1 − pi

pi

)
y0,i

∣∣∣∣2 + pi

∣∣∣∣ εi

pi

∣∣∣∣2
−
(

1 − pi

pi

)
(y∗

0,iεi + y0,iε
∗
i ) + (1 − pi )|y0,i|2

}
= (1 − pi )2

pi
|y0,i|2 + σ 2

ε

pi
+ (1 − pi )|y0,i|2

=
(

1 − pi

pi

)
|y0,i|2 + σ 2

ε

pi

which is the ith entry of the right-hand-side of (28). This
completes the proof.

APPENDIX B
PROOF THAT τ

y
k IS UNBIASED

This appendix shows that the τ
y
k update, (15), is an unbiased

estimate of the power spectrum of the aliasing of rk (14):

E{M�P−1[(P−1 − 1N )|zk|2 + σ 2
ε 1N ]}

= (P−1 − 1N )|F�H r̃k − y0|2 + σ 2
ε P−11N (30)
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FIGURE 7. Per subband NMSE ‖rk,b − w0,b‖2
2/‖w0,b‖2

2 versus iteration index k for a N/n = 12 undersampled Shepp-Logan reconstructed with VDAMP-S.
Lines show the actual NMSE and crosses show the predictions from τk .

Proof: Defining ỹk = F�H r̃k , the ith entry of the left-
hand-side of (30) in terms of y0 is

Emi,εi

{
mi

pi

[(
1 − pi

pi

)
|yi − miỹk,i|2 + σ 2

ε

]}
= Emi,εi

{
mi

pi

[(
1 − pi

pi

)
|mi(y0,i + εi ) − miỹk,i|2 + σ 2

ε

]}
The expectation over mi is

Emi,εi

{
mi

pi

[(
1 − pi

pi

)
|mi(y0,i + εi ) − miỹk,i|2 + σ 2

ε

]}
= Eεi

{(
1 − pi

pi

)
|y0,i + εi − ỹk,i|2 + σ 2

ε

}
Since Eεi{εi} = 0 and Eεi{|εi|2} = σ 2

ε ,

Eεi

{(
1 − pi

pi

)
|y0,i + εi − ỹk,i|2 + σ 2

ε

}
=
(

1 − pi

pi

)
(|y0,i − ỹk,i|2 + σ 2

ε ) + σ 2
ε

=
(

1 − pi

pi

)
|y0,i − ỹk,i|2 + σ 2

ε

pi

which is the ith entry of the right-hand-side of (30). This
completes the proof.

APPENDIX C
TRANSFORMING τ

y
k TO THE WAVELET DOMAIN

This appendix proves that when E{rk} = w0, and the entries
of rk are independent,

E{|rk − w0|2} = |�FH |2E{τy
k} (31)

where τ
y
k is defined in (15).

Proof: Let the wavelet-domain error be rk − w0 = Au,
where u = F�H rk − y0 is the Fourier-domain residual, and
A = �FH , where the iteration index k has been removed to

simplify notation. The ith entry of |Au|2 is∣∣∣∣∣∣
∑

j

Ai ju j

∣∣∣∣∣∣
2

=
⎛⎝∑

j

Ai ju j

⎞⎠(∑
l

A∗
il u

∗
l

)

=
∑

j

⎛⎝Ai jA
∗
i ju ju

∗
j +
∑
l �= j

Ai jA
∗
il u ju

∗
l

⎞⎠
Since, by assumption, rk is unbiased and independent, the

l �= j terms are zero in expectation. Therefore

E

⎧⎪⎨⎪⎩
∣∣∣∣∣∣
∑

j

Ai ju j

∣∣∣∣∣∣
2
⎫⎪⎬⎪⎭ = E

⎧⎨⎩∑
j

Ai jA
∗
i ju ju

∗
j

⎫⎬⎭
=
∑

j

|Ai j |2E{|u j |2}.

Since, by Appendix B, E{|u|2} = E{τy
k}, we have

E{|Au|2} = |A|2E{|u|2} = |�FH |2E{τy
k}

This completes the proof.

APPENDIX D
SURE FOR COMPLEX VARIABLES
This appendix proves that cSURE, defined in (17), is an unbi-
ased estimate of the risk, so that

E{‖d(v) − v0‖2
2} = E{cSURE(d(v))} (32)

where the expectation is over v = v0 + CN (0, τv1Nv ) and
d(v) = v + h(v) is a denoiser. The proof in this appendix is
a complex noise variation on the standard proof of SURE, as
found in [24], [58].

Proof: The Euclidean distance between the ground truth v0

and the denoised vector d(v) can be expanded as

E{‖d(v) − v0‖2
2} = E{‖h(v)‖2

2 + ‖v − v0‖2
2

− 2(�[h(v)]H�[v − v0] + �[h(v)]H�[v − v0])} (33)
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By the noise model of v, the second term on the right hand
side is

E{‖v − v0‖2
2} = Nvτv (34)

By Stein’s lemma [24] (see also (6) of [58]), and recalling that
CN (0, τv1Nv ) is defined such that the variance of the real and
imaginary parts is τv/2, the final term of the right-hand-side
of (33) is

E{�[h(v)]H�[v − v0]} = τv

2
E

⎧⎨⎩∑
j

∂�[h j (v)]

∂�[v j]

⎫⎬⎭
= τv

2

⎛⎝Nv − E

⎧⎨⎩∑
j

∂�[d j (v)]

∂�[v j]

⎫⎬⎭
⎞⎠

and similarly for the imaginary part. Overall, (33) is therefore

E{‖d(v) − v0‖2
2}

= E

{
‖h(v)‖2

2 − Nvτv + τv

∑
j

(
∂�[d j (v)]

∂�[v j]
+ ∂�[d j (v)]

∂�[v j]

)}
= E{‖h(v)‖2

2 + Nvτv[2 〈∂(d(v))〉 − 1]}
which is the expectation of cSURE, given in (17). This com-
pletes the proof.
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