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ABSTRACT In this paper, we consider a class of nonconvex complex quadratic programming (CQP)
problems, which find a broad spectrum of signal processing applications. By using the polar coordinate
representations of the complex variables, we first derive a new enhanced semidefinite relaxation (SDR)
for problem (CQP). Based on the newly derived SDR, we further propose an efficient branch-and-bound
algorithm for solving problem (CQP). Key features of our proposed algorithm are: (1) it is guaranteed to
find the global solution of the problem (within any given error tolerance); (2) it is computationally efficient
because it carefully utilizes the special structure of the problem. We apply our proposed algorithm to solve
the multi-input multi-output (MIMO) detection problem, the unimodular radar code design problem, and
the virtual beamforming design problem. Simulation results show that our proposed enhanced SDR, when
applied to the above problems, is generally much tighter than the conventional SDR, and our proposed
global algorithm can efficiently solve these problems. In particular, our proposed algorithm significantly
outperforms the state-of-the-art sphere decode algorithm for solving the MIMO detection problem in the
hard cases (where the number of inputs and outputs is equal or the signal-to-noise-ratio is low), and a
state-of-the-art general-purpose global optimization solver called Baron for solving the virtual beamforming
design problem.

INDEX TERMS Branch-and-bound algorithm, enhanced SDR, MIMO detection, nonconvex CQP, virtual
beamforming.

I. INTRODUCTION
In this paper, we consider the following nonconvex complex
quadratic programming problem:

min
x∈Cn

F (x) := 1

2
x†Qx + Re

(
c†x
)

s.t. �i ≤ |xi| ≤ ui, i = 1, 2, . . . , n, (CQP)

arg (xi ) ∈ Ai, i = 1, 2, . . . , n,

where
- x = [x1, x2, . . . , xn]T ∈ C

n is the n-dimensional complex
(unknown) variable;

- Q ∈ C
n×n is a Hermitian matrix, c ∈ C

n is a complex
vector, ui and �i (i = 1, 2, . . . , n), satisfying ui ≥ �i ≥ 0,

are 2n real numbers, and Ai (i = 1, 2, . . . , n) are n dis-
crete/continuous sets; and

- Re(·), | · |, and arg(·) denote the real part, the magnitude,
and the argument of a complex number, and (·)T and (·)†

denote the transpose and Hermitian transpose of a (com-
plex) vector.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

120 VOLUME 1, 2020

https://orcid.org/0000-0002-9684-9150
mailto:yafliu@lsec.cc.ac.cn


Problem (CQP) finds many important signal processing
applications, including multi-input multi-output (MIMO)
detection [2], [3], unimodular radar code design [4]–[6],
virtual beamforming [7], phase recovery [8], sensor bias
estimation [9], and angular synchronization [10]; see
Section II further ahead. For more applications of problem
(CQP) in signal processing and communications, please refer
to [11] and [12] and references therein. In addition, problem
(CQP) has also attracted much attention in the mathematical
programming community [13]–[18]. For instance, some
well-known combinatorial optimization problems, including
the max-cut problem [16] and the max-3-cut problem [17],
and the so-called unit-modulus constrained QP [15] can all be
recast into the form of problem (CQP).

It is known that problem (CQP) is NP-hard in general [14].
Hence, there is no polynomial time algorithm which can
solve it to global optimality (unless P=NP). Most of ex-
isting algorithms for solving problem (CQP) are approxi-
mation algorithms, local optimization algorithms, or other
heuristics (e.g., [3]–[5], [8], [10], [11], [13], [14], [19]–[21]).
These algorithms generally cannot guarantee to find the global
solutions of problem (CQP), except only for some special
cases [9], [10], [22], [23]. A straightforward way of globally
solving problem (CQP) is to first reformulate the problem as
an equivalent real QP by representing the complex variables
by their real and imaginary components and then apply the
existing general-purpose global algorithms (e.g., algorithms
proposed in [24], [25]) for solving the equivalent real refor-
mulation. However, an issue of doing so is the computational
efficiency (see our numerical results in Section V-E), since it
does not utilize the special structure of the problem with the
complex variables.

To the best of our knowledge, there is no global algorithm
that is specially designed and can efficiently solve problem
(CQP) by utilizing the special structure of the problem.

The goal of this paper is to fill this gap, i.e., propose an
efficient1 global algorithm for solving problem (CQP). The
main contributions of this paper are twofold.
� A New and Enhanced SDR for Problem (CQP). We first

give an equivalent reformulation of problem (CQP) by
using the polar coordinate representations of the com-
plex variables. The equivalent reformulation reveals the
intrinsical nonconvexity of problem (CQP). Then, we de-
rive the convex envelope2 of these nonconvex constraints
in the reformulation and use their convex envelopes to
replace the original nonconvex constraints, which thus
lead to a new SDR for problem (CQP). The new SDR
for problem (CQP) is generally (much) tighter than the
conventional SDR, which directly drops the nonconvex
constraints in the equivalent reformulation. It is worth
mentioning that the new enhanced SDR for problem

1The term “efficient” in this paper means that the corresponding algorithm
is computationally efficient, which does not imply that the algorithm has a
polynomial time complexity.

2For a given set, its convex envelope is defined as the smallest convex set
that contains it.

(CQP) is computationally very efficient as all newly
added constraints as compared with the conventional
SDR are linear constraints.

� An Efficient Global Algorithm for Problem (CQP).
Based on the newly derived SDR, we propose an ef-
ficient branch-and-bound algorithm for problem (CQP)
that is guaranteed to find its global solution (within any
given error tolerance). The newly derived SDR plays
a very crucial role in the proposed branch-and-bound
algorithm, because the algorithm needs to solve an SDR
at each iteration and the optimal values of all solved
SDRs will provide a lower bound for problem (CQP).
We emphasize here that the efficiency of a branch-and-
bound algorithm considerably relies on the quality of the
lower bound. To the best of our knowledge, our pro-
posed branch-and-bound algorithm is the first tailored
algorithm for globally solving problem (CQP).

We apply our proposed branch-and-bound algorithm to
solve three important signal processing problems, i.e., the
MIMO detection problem [2], [3], the unimodular radar code
design problem [4]–[6], and the virtual beamforming design
problem [7]. Simulation results show that our proposed new
SDR, when applied to these problems, is indeed generally
much tighter than the conventional SDR. Moreover, simula-
tion results show that our proposed global algorithm is highly
efficient and outperforms the state-of-the-art algorithm/solver
for solving these problems. More specifically, our proposed
algorithm can solve the MIMO detection problem in case of
8-PSK and with the number of inputs and outputs n and m
being 20 and signal-to-noise-ratio (SNR) being 5 dB within
140 seconds (on average) while the state-of-the-art sphere
decode algorithm [26], [27] needs 1836 seconds; our proposed
algorithm can solve the virtual beamforming design problem
with m = 10 and n = 5 within 0.09 seconds while the state-of-
the-art general-purpose global optimization solver Baron [25]
needs more than 80 seconds.

We adopt the following notations throughout the paper.
We use lowercase boldface and uppercase boldface letters
to denote (column) vectors and matrices, respectively. For
a given complex vector x ∈ C

n, ‖x‖2 denotes its Euclidean
norm and Re(x) and Im(x) denote its component-wise real
and imaginary part, respectively. For a given complex Her-
mitian matrix A, A � 0 means A is positive semidefinite.
For two given Hermitian matrices A and B, A � B means
A− B � 0. Moreover, let Trace(·) denote the trace operator,
let A • B denote Trace(A†B) (i.e.,

∑
i

∑
j Ai jBi j, where Ai j

denotes the (i, j)-th entry of matrix A), and let ‖A‖F denote√
A • A. Finally, we use ν∗ to denote the optimal value of

problem (CQP).

II. THREE SIGNAL PROCESSING APPLICATIONS
OF PROBLEM (CQP)
In this section, we list three important signal processing ap-
plications of problem (CQP) and we will focus on these three
applications throughout the paper.
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� MIMO detection [2], [3]. The input-output relationship
of the MIMO channel can be modeled as r = Hx + v, where
H ∈ C

m×n is the complex channel matrix (for n inputs and m
outputs with m ≥ n), v ∈ C

m is the additive white Gaussian
noise, r ∈ C

m is the vector of received signals, and x ∈ C
n is

the vector of transmitted symbols. Assume the M-Phase-Shift
Keying (PSK) modulation scheme with M ≥ 2 is adopted.
Then, each entry xi of x belongs to a finite set of symbols,
i.e., xi ∈ {exp(iθ ) | θ ∈ A}, where i is the imaginary unit sat-
isfying i2 = −1 and

A = {θ | θ = 2kπ/M, k = 0, 1, . . . , M − 1} .
The maximum likelihood MIMO detection problem is

min
x∈Cn

1

2
‖Hx − r‖22

s.t. |xi| = 1, arg (xi ) ∈ A, i = 1, 2, . . . , n. (1)

It is clear that problem (1) is a special case of problem
(CQP) with Q = H†H, c = −H†r, �i = ui = 1,Ai = A, i =
1, 2, . . . , n. In this case, all of Ai in problem (CQP) are dis-
crete sets.
� Unimodular radar code design [4]–[6]. The goal of

the unimodular radar code design problem is to maximize the
system’s detection performance under the similarity constraint
(for controlling the ambiguity distortion). It has been shown
(e.g., in [4]) that the system’s detection performance depends
on the radar code, the disturbance covariance matrix, and
the temporal steering vector only through the SNR. Math-
ematically, the SNR of the considered radar system can be
expressed as

c · x†
(

M−1 	 (pp†)∗) x,

where c is a constant (depending only on the cases of the
nonfluctuaing and fluctuating target), x ∈ C

n is the unimod-
ular radar code to be designed, M is the positive definite co-
variance matrix of some unknown zero-mean complex Gaus-
sian noise vector, p = [1, ei2π fd Tr , . . . , ei2π (n−1) fd Tr ]T is the
temporal steering vector with fd being the target Doppler
frequency, Tr being the pulse repetition time, and N being
the length of the radar code. In the above, 	 denotes the
Hadamard product operator, (·)−1 denotes the (matrix) in-
verse operator, and (·)∗ denotes the element-wise conjugate
operator. The unimodular radar code design problem can be
formulated as

max
x∈Cn

x†
(

M−1 	 (pp†)∗) x

s.t. |xi| = 1, i = 1, 2, . . . , n,

‖x − x0‖∞ ≤ δ, (2)

where x0 ∈ {x ∈ C
n | |xi| = 1, i = 1, 2, . . . , n} is a prede-

fined desired radar code (e.g., the Barker code) and δ >

0 is a given similarity tolerance. When the tolerance δ is
small enough (e.g., δ <

√
2), the constraint ‖x − x0‖∞ ≤ δ

is equivalent to arg(xi ) ∈ [θ i, θ̄i] for all i = 1, 2, . . . , n, where

θ i = arg
(
x0

i

)− arccos(1− δ2/2),

θ̄i = arg
(
x0

i

)+ arccos(1− δ2/2).

Therefore, the above unimodular radar code design prob-
lem (2) is also a special case of problem (CQP) with Q =
−2M−1 	 (pp†)∗, c = 0, li = ui = 1, and Ai = [θ i, θ̄i] for
i = 1, 2, . . . , n. In this case, all of Ai in problem (CQP) are
continuous sets.
� Virtual beamforming design [7]. Suppose that there is

a set {1, 2, . . . , n} of transmitters each equipped with a single
antenna and there is a single receiver equipped with m receive
antennas. Suppose that all n transmitters can fully cooperate
with each other and let x ∈ C

n be the virtual transmit beam-
forming vector formed by all transmitters. Let h j ∈ C

n be the
channel vector between all transmitters and the j-th antenna of
the receiver. The virtual beamforming design problem in this
single-hop wireless network is to maximize the total received
signal power subject to individual transmit power constraints.
Mathematically, the problem can be formulated as

max
x∈Cn

m∑
j=1

∣∣∣h†
j x
∣∣∣2

s.t. |xi| ≤
√

Pi, i = 1, 2, . . . , n, (3)

where Pi is the power budget of transmitter i. Again,
problem (3) is a special case of problem (CQP)
with Q = −2

∑m
j=1 h jh

†
j , c = 0, �i = 0, ui =

√
Pi,Ai =

[0, 2π ], i = 1, 2, . . . , n.

III. AN ENHANCED SDR FOR PROBLEM (CQP)
In this section, we first review the conventional SDR and then
develop a new enhanced SDR for problem (CQP).

A. CONVENTIONAL SDR
By introducing an n× n complex matrix X = xx†, problem
(CQP) can be equivalently reformulated as

min
x,X

1

2
Q • X+ Re

(
c†x
)

s.t. �2
i ≤ Xii ≤ u2

i , i = 1, 2, . . . , n, (P)

arg (xi ) ∈ Ai, i = 1, 2, . . . , n,

X = xx†,

where Xii is the i-th diagonal entry of X. The conventional
SDR of problem (P) is

min
x,X

1

2
Q • X+ Re

(
c†x
)

s.t. �2
i ≤ Xii ≤ u2

i , i = 1, 2, . . . , n, (CSDR)

X � xx†,

which relaxes X = xx† to X � xx† and drops the argument
constraints arg(xi ) ∈ Ai for all i = 1, 2, . . . , n.
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The above conventional relaxation (CSDR) has been widely
applied for solving problems arising from signal processing
and other applications. Based on (CSDR), various (approxi-
mation) algorithms have been proposed. Indeed, all the (ap-
proximation) algorithms proposed in [3]–[5], [8], [10], [11],
[13], [14], [19]–[21] are based on (CSDR) (or its equivalent
reformulations).

Problem (CSDR) can be solved in polynomial time by us-
ing the interior-point algorithm (for any given positive error
tolerance) [28, Sec. 6.6.3], and its optimal value serves as a
lower bound of problem (P). If the optimal solution (x̄, X̄)
of problem (CSDR) is of rank one, i.e., satisfying X̄ = x̄x̄†,

then (x̄, X̄) is the global solution of problem (P) without the
argument constraints. However, X̄ might not be of rank one
and x̄ might not satisfy the argument constraints. In these
cases, there is a nonzero gap between problem (P) and its re-
laxation (CSDR), where the gap between two problems in this
paper refers to the absolute value of the difference between the
optimal values of the two problems.

B. AN ENHANCED SDR
In this subsection, we derive more valid inequalities to reduce
the gap between problems (P) and (CSDR) and develop an
enhanced SDR for problem (P).

Notice that the nonconvex equality constraint X = xx† in
problem (P) can be equivalently reformulated as

X � xx† and Xii = |xi|2, i = 1, 2, . . . , n. (4)

In fact, if (x, X) satisfies (4), then X− xx† is a positive
semidefinite matrix with all diagonal entries being zero, and
thus X = xx†. Now, we introduce the polar coordinate rep-
resentation xi = rieiθi of the complex variable xi for all i =
1, 2, . . . , n. By the equivalence of X = xx† and (4), we get
the following proposition.

Proposition 1: The feasible set of problem (P) can be
equivalently expressed as follows: X � xx† and

�i ≤ ri ≤ ui, Xii = r2
i , xi = rie

iθi , θi ∈ Ai, i = 1, 2, . . . , n.

Proof: We first show that, if (x, X, r) and {θi} satisfy all
conditions in the proposition, then (x, X) is feasible to prob-
lem (P). First, the assumption immediately implies that (x, X)
satisfies the first two constraints in problem (P). It remains
to show X = xx†. This can be immediately obtained by com-
bining X � xx† and Xii = r2

i = |xi|2, i = 1, 2, . . . , n. For the
converse direction, assume that (x, X) is a feasible solution
of (P). Let ri = |xi| and θi = arg(xi ) for all i = 1, 2, . . . , n.

Then, it is simple to check (x, X, r) jointly with {θi} satisfy
all conditions in the proposition. �

The constraints xi = rieiθi , θi ∈ Ai and Xii = r2
i in Proposi-

tion 1 are still not convex, but they allow for simple convex
relaxations. Below we derive convex envelopes of these two
types of nonconvex constraints, which lead to a new tighter
SDR for problem (P).

Let us first consider the nonconvex set

SAi :=
{

(xi, ri ) | xi = rie
iθi , θi ∈ Ai, ri ≥ 0

}
(5)

and let GAi be its convex envelope. By using the similar ar-
guments in [15], [29], one can show that: (1) if Ai = [θ i, θ̄i]
with θ̄i − θ i ≤ π, then

GAi =
{
(xi, ri ) | |xi| ≤ ri, αiRe (xi )+ βiIm (xi ) ≥ γiri

}
,

(6)
where

αi = cos

(
θ i + θ̄i

2

)
, βi = sin

(
θ i + θ̄i

2

)
,

γi = cos

(
θ i − θ̄i

2

)
; (7)

(2) if Ai = {θ1
i , θ2

i , . . . , θM
i } is a discrete set (with a fi-

nite number of elements) with 0 ≤ θ1
i < θ2

i < · · · < θM
i <

2π and θ
j+1

i − θ
j

i ≤ π for all i = 1, 2, . . . , M − 1, then GAi

is a polyhedral set and

GAi =
{

(xi, ri )

∣∣∣∣α j
i Re (xi )+ β

j
i Im (xi ) ≤ γ

j
i ri,

j = 1, 2, . . . , M

}
, (8)

where

α
j
i = cos

(
θ

j
i + θ

j+1
i

2

)
, β

j
i = sin

(
θ

j
i + θ

j+1
i

2

)
,

γ
j
i = cos

(
θ

j+1
i − θ

j
i

2

)
,

and θM+1
i = θ1

i + 2π. For any r ≥ 0, define GAi (r) =
{xi | (xi, ri ) ∈ GAi , ri = r}. Then, it is simple to see that GAi (r)
is a slice of GAi with ri = r and GAi =

⋃
r≥0{(xi, ri ) | xi ∈

GAi (r)}. An illustration of how GAi (1) looks like for both
continuous and discrete sets Ai is given in Fig. 1.

Now, let us consider the nonconvex set{
(Xii, ri ) | Xii = r2

i , ri ∈ Bi
}
,

where Bi = [�i, ui]. Let FBi be its convex envelope. We can
show that

FBi =
{

(Xii, ri )

∣∣∣∣Xii ≥ r2
i ,

Xii − (�i + ui )ri + �iui ≤ 0

}
. (9)

See Fig. 2 for an illustration of FBi .
Based on the above convex envelopes of two different types

of nonconvex constraints, we can obtain the following en-
hanced SDR for problem (P):

min
x,X,r

1

2
Q • X+ Re

(
c†x
)

s.t. �i ≤ ri ≤ ui, i = 1, 2, . . . , n,

(xi, ri ) ∈ GAi , i = 1, 2, . . . , n, (ECSDR)

(Xii, ri ) ∈ FBi , i = 1, 2, . . . , n,

X � xx†,

where r = [r1, r2, . . . , rn]T. Note that although θi (i =
1, 2, . . . , n) do not explicitly appear in problem (ECSDR),
they play an important role in defining it. This is because
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FIGURE 1. An illustration of the set GAi
(1), where the top one

corresponds to the continuous case where Ai = [0, π/2] and the bottom
one corresponds to the discrete case where
Ai = {0, π/3, 2π/3, π, 4π/3, 5π/3}.

FIGURE 2. An illustration of FBi
where Bi = [0.2, 1].

the sets GAi (i = 1, 2, . . . , n) and thus problem (ECSDR) are
determined by the range Ai of θi. Throughout the paper, we
denote

D =
n∏

i=1

Ai ×
n∏

i=1

Bi

as the collection of Ai and Bi for all i = 1, 2, . . . , n and
denote ECSDR(D) as the corresponding instance of problem
(ECSDR) defined over D.

Note that the constraints (Xii, ri ) ∈ FBi and �i ≤ ri ≤ ui in
(ECSDR) imply �2

i ≤ Xii ≤ u2
i . Therefore, problem (ECSDR)

is generally a tighter relaxation for problem (P) than (CSDR)3.
First, (CSDR) completely neglects the argument constraints

3The only case under which problems (ECSDR) and (CSDR) are equiva-
lent is Ai = [0, 2π ] for all i = 1, 2, . . . , n. See our discussion on this special
case at the end of this section.

in problem (P) whereas the constraints (xi, ri ) ∈ GAi (i =
1, 2, . . . , n) in (ECSDR) carefully exploit the argument in-
formation. Moreover, the constraint X = xx† is relaxed to
X � xx† in (CSDR). The gap due to this relaxation is reduced
in (ECSDR) because valid constraints (Xii, ri ) ∈ FBi (i =
1, 2, . . . , n) are added in (ECSDR).

C. TIGHTNESS AND RELAXATION GAP OF (ECSDR)
In this subsection, we study the tightness and the relaxation
gap of the proposed (ECSDR). We first state the following
proposition.

Proposition 2: For each i = 1, 2, . . . , n, if (xi, ri ) ∈ GAi

and |xi| = ri, then arg(xi ) ∈ Ai.
Instead of providing a rigorous proof for Proposition 2, we

give an illustration of Proposition 2 using Fig. 1. Consider the
set GAi (1) in Fig. 1. It is simple to see from Fig. 1 that if
|xi| = 1, then arg(xi ) ∈ Ai.

The gap between relaxation (ECSDR) and problem (CQP)
is generally nonzero. The following theorem presents a tight-
ness result of relaxation (ECSDR).

Theorem 1: Let (x̄, X̄, r̄) be an optimal solution of problem
(ECSDR). If |x̄i| = r̄i and X̄ii = r̄2

i for all i = 1, 2, . . . , n, then
x̄ is a global solution of problem (CQP) and thus relaxation
(ECSDR) is tight.

Proof: Let θi = arg(x̄i ), i = 1, 2, . . . , n. For each i =
1, 2, . . . , n, since |x̄i| = r̄i, it follows from Proposition 2 that
θi ∈ Ai and x̄i = r̄ieiθi . Furthermore, by the assumption that
X̄ii = r̄2

i for all i = 1, 2, . . . , n and Proposition 1, we have that
(x̄, X̄) is feasible to problem (P) (and in particular X̄ = x̄x̄†).
Therefore, x̄ is a global solution of problem (CQP) and relax-
ation (ECSDR) is tight. �

In the general case, (ECSDR) might not be tight for prob-
lem (CQP). In the case that the relaxation gap is nonzero,
it follows from Theorem 1 that there must exist some index
i ∈ {1, 2, . . . , n}, such that |x̄i| < r̄i and/or X̄ii > r̄2

i . Let

θ̄i = max {Ai} and θ i = min {Ai} . (10)

Next, we provide two tightness estimates of (ECSDR) in
the following Proposition 3, whose proof can be found in
Appendix A.

Proposition 3: For a given set Ai ⊆ [θ i, θ̄i] with θ̄i − θ i ≤
π , if (xi, ri ) ∈ GAi , then

ri ≥ |xi| ≥ ri cos

(
θ̄i − θ i

2

)
; (11)

for a given set Bi = [�i, ui], if (Xii, ri ) ∈ FBi , then

0 ≤ Xii − r2
i ≤

(ui − �i )2

4
. (12)

Define the width of Ai as

ω(Ai ) := θ̄i − θ i, (13)

where θ̄i and θ i are defined in (10), and the width of Bi as

ω(Bi ) := ui − �i. (14)
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We can see from Proposition 3 that: (1) when ω(Ai ) becomes
close to zero, |xi|will be close to ri and the constraint (xi, ri ) ∈
GAi will be very effective in reducing the difference between
ri and |xi|; (2) similarly, when ω(Bi ) becomes close to zero,
Xii will be close to r2

i and the constraint (Xii, ri ) ∈ FBi will be
very effective in reducing the difference between Xii and r2

i .

Now let us discuss two very special cases of (ECSDR). The
first case is �i = ui = 1 for all i = 1, 2, . . . , n. In this case, the
set FBi reduces FBi = {(Xii, ri ) |Xii = 1, ri = 1} and thus the
constraint Xii = r2

i is always satisfied. Hence, if the gap be-
tween problem (CQP) and its relaxation (ECSDR) is nonzero,
then the gap must be due to the convex relaxation (xi, ri ) ∈
GAi , i.e., there must exist some i ∈ {1, 2, . . . , n} such that
ri > |xi|. This special case has been studied in [15], [23]. This
paper studies a more general problem (CQP) (with interval
modulus constraints) and can be regarded as a nontrivial ex-
tension from the unit-modular case in [15], [23]. Note that
it is straightforward to obtain an SDR for the unit-modulus
problem while it is not easy to obtain the SDR for problem
(CQP), as the latter requires the use of the polar coordinate
representation of the complex variables and Proposition 1.
The second case is Ai = [0, 2π ] for all i = 1, 2, . . . , n. In this
case, we can show that (ECSDR) is equivalent to (CSDR). To
be more specific, the constraints (xi, ri ) ∈ GAi and (Xii, ri ) ∈
FBi in this case become

ri ≥ |xi|, Xii ≥ r2
i , Xii − (�i + ui )ri + �iui ≤ 0.

Then, for any feasible solution (x, X) of (CSDR), we can
set ri =

√
Xii for i = 1, 2, . . . , n and check that (x, X, r) is a

feasible solution of (ECSDR). Therefore, the two relaxations
(ECSDR) and (CSDR) are equivalent in this case4. Except this
special case, (ECSDR) is tighter than (CSDR) as discussed
before and as will be illustrated later in Section V.

IV. PROPOSED GLOBAL BRANCH-AND-BOUND
ALGORITHM
In this section, we propose a global branch-and-bound algo-
rithm based on the enhanced relaxation (ECSDR) for solving
problem (CQP) (equivalent to problem (P)). A typical branch-
and-bound algorithm (for a minimization problem) is gener-
ally based on an enumeration procedure, which partitions the
feasible region into smaller subregions and constructs sub-
problems over the partitioned subregions recursively. In the
enumeration procedure, a lower bound for each subproblem
is estimated by solving a relaxation problem. Meanwhile, an
upper bound is obtained from the best known feasible solution
generated by the enumeration procedure or by some other
local optimization/heuristic algorithms. The procedure termi-
nates until the difference between the upper bound and the
lower bound is smaller than the given error tolerance ε > 0,

4Although relaxation (ECSDR) is not tighter than (CSDR) in this special
case, (ECSDR) still plays an important role of generating the lower bounds
in the ECSDR-BB algorithm in the next section, where as the set Ai is re-
cursively partitioned into smaller subsets, the quality of relaxation (ECSDR)
defined over the subsets will become better than that of (CSDR).

and then an ε-optimal solution (defined as below) can be
obtained.

Definition 1 (ε-Optimal Solution): Given any ε > 0, a fea-
sible point x is called an ε-optimal solution of problem (CQP)
if it satisfies F (x)− ν∗ ≤ ε.

In the remaining part of this section, we first present our
proposed branch-and-bound algorithm for solving problem
(CQP) in Section III-A. Then, we show that our proposed
branch-and-bound algorithm indeed can find an ε-optimal so-
lution of problem (CQP) (for any given ε > 0) and analyze its
worst-case iteration complexity in Section III-B.

A. PROPOSED ALGORITHM
To develop a branch-and-bound algorithm for solving prob-
lem (CQP), let us first recall Theorem 1. Theorem 1 shows
that, if the gap between problem (CQP) and its corresponding
relaxation (ECSDR) is not zero, then there must exist some i ∈
{1, 2, . . . , n} with |x̄i| < r̄i and/or X̄ii > r̄2

i . Moreover, Propo-
sition 3 further shows that we can partition the sets Ai and
Bi to reduce the difference r̄i − |x̄i| and X̄ii − r̄2

i , respectively.
Based on the above observations, we are now ready to present
the main steps of the branch-and-bound algorithm. For ease
of presentation, we introduce the following notations. Let
D0 =∏n

i=1 A0
i ×
∏n

i=1 B0
i with A0

i = Ai and Bi = [�i, ui] be
the initial feasible set of the polar coordinate variables {θi}
and r, and Dk =∏n

i=1 Ak
i ×
∏n

i=1 Bk
i ⊆ D0 be a partitioned

subset indexed by k.
Lower Bound. In the branch-and-bound algorithm, the ini-

tial feasible set D0 will be recursively partitioned into smaller
subsets. Obviously, the optimal value Lk of the relaxation
problem ECSDR(Dk ) is a lower bound of the optimal value
of problem (CQP) defined over the subset Dk . Therefore, the
smallest lower bound among all bounds is a lower bound of
the optimal value of the original problem (CQP). This state-
ment will be formally summarized in Theorem 2.

Upper Bound. An upper bound of problem (CQP) can
be obtained by appropriately scaling the solution of any re-
laxation problem. More specifically, we solve a relaxation
(ECSDR) (defined over a partitioned subset) to obtain its op-
timal solution (x̄, X̄, r̄). Then, we generate a feasible solution
of problem (CQP) by using the following scaling operation

x̂ = Scale(x̄, r̄) :=
[
r̄1eiθ̂1 , . . . , r̄neiθ̂n

]T
, (15)

where

θ̂i ∈ arg min
θ∈Ai

min {|θi − arg(x̄i )|, 2π − |θi − arg(x̄i )|}

and Ai is normalized to satisfy Ai ⊆ (−π, π ]. If the optimal
solution to the above problem is not unique, then we just pick
one solution. It is simple to check that the above x̂ is feasible
to problem (CQP). Consequently, F (x̂) is an upper bound of
problem (CQP). In our branch-and-bound algorithm, we use
U ∗ to denote the best upper bound during the enumeration
procedure (i.e., the smallest objective values at all of known
feasible solutions at the current iteration) and use x∗ to denote
the solution that achieves the smallest upper bound.
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In the proposed branch-and-bound algorithm, we construct
a so-called node for each subproblem. The node is denoted as
{Dk, xk, Xk, rk, x̂k, Lk}, in which Dk is the partitioned sub-
set of the subproblem, (xk, Xk, rk ) and Lk are the optimal
solution and the optimal value of problem ECSDR(Dk ), and
x̂k = Scale(xk, rk ) (with the operator Scale(·, ·) being defined
in (15)).

Termination Criterion. If

U ∗ − Lk ≤ ε (16)

at iteration k, where ε is the preselected error tolerance,
we terminate the algorithm; otherwise we select a node and
branch the feasible set of a variable according to some rule.
We can see from (16) that, both lower and upper bounds are
important to avoid unnecessary branches and enumerations
and good lower and upper bounds can significantly improve
the computational efficiency of our proposed algorithm. Be-
low, we shall introduce our node selection and branching rules
one by one.

Node Selection Rule. For node k, if its lower bound Lk is
larger than the upper bound U ∗, then the global solution of
the original problem cannot be located in the set associated
with this node. We call a node as an active node if its lower
bound is smaller than the best known upper bound. Therefore,
all of the inactive nodes will not be enumerated in the branch-
and-bound algorithm. Let us use P to denote the set of all
active nodes. Our selection rule is to select the active node
with the smallest lower bound from P (to be branched) at each
iteration.

Branching Rule. Let {Dk, xk, Xk, rk, x̂k, Lk} be the se-
lected node that has the smallest lower bound in P and let

i∗1 = arg max
i

{∣∣∣x̂k
i − xk

i

∣∣∣} ,

S∗1 = max
i

{∣∣∣x̂k
i − xk

i

∣∣∣} ,

i∗2 = arg max
i

{
X k

ii −
(

rk
i

)2
}

,

S∗2 = max
i

{
X k

ii −
(

rk
i

)2
}

. (17)

The quantity max{S∗1 , S∗2} somehow measures the gap of the
corresponding relaxation (ECSDR). If S∗1 ≥ S∗2 , then we select
Ak

i∗1
to branch; othewise we select Bk

i∗2
to branch. The selected

set is branched into two subsets by the following rule: if the
selected set is an interval, then we partition it into two sub-
intervals with equal lengths; if the selected set is a finite set
(in the case where S∗1 ≥ S∗2 and Ak

i∗1
is a finite set), then we

partition the set into two subsets{
θ | θ ∈ Ak

i∗1
, θ ≤ θ k

i∗1

}
and
{
θ | θ ∈ Ak

i∗1
, θ > θ k

i∗1

}
,

where

θ k
i∗1
= 1

2

(
min

{
Ak

i∗1

}
+max

{
Ak

i∗1

})
.

Based on the above rules, we branch the set Dk into two new
sets (denoted as Dk− and Dk+). It follows from Proposition 3
that the corresponding relaxation problems defined over the
newly obtained two sets Dk− and Dk+, i.e., the two children
problems, are tighter than the one defined over the original set
Dk . Once Dk has been branched into two sets, the problem
instance defined over it will be deleted from the problem list
P and the two children problems will be added into P if their
lower bounds are less than or equal to the current best upper
bound.

By judiciously combining the above main steps, we can
obtain our proposed branch-and-bound algorithm for solv-
ing problem (CQP) (equivalent to problem (P)). The pseudo-
codes of our proposed algorithm are given in Algorithm 1.
We will call the algorithm ECSDR-BB (Enhanced Complex
SemiDefinite Relaxation based Branch-and-Bound) for short.

B. GLOBAL CONVERGENCE AND WORST-CASE
ITERATION COMPLEXITY
In this subsection, we present some theoretical results of our
proposed ECSDR-BB algorithm.

The following Theorem 2 shows that the sequence {Lk}
generated by the ECSDR-BB algorithm is a lower bound
of the optimal value of problem (CQP) and the solution x∗
returned by the algorithm is an ε-optimal solution of the prob-
lem. The proof of the theorem can be found in Appendix B.

Theorem 2: Let {Dk, xk, Xk, rk, x̂k, Lk} be the node se-
lected in Line 9 of the ECSDR-BB algorithm. Then we have

Lk ≤ ν∗ ≤ F
(

x̂k
)

. (18)

Moreover, if (16) holds true, then x∗ returned by the algorithm
is an ε-optimal solution of problem (CQP).

Next, we will estimate F (x̂k )− Lk and show that (16) will
be satisfied after a finite number of iterations. Define

umax = max{u1, u2, . . . , un} (19)

and the bounded set

X = {x | |xi| ≤ umax, i = 1, 2, . . . , n} . (20)

Since F (x) is uniformly continuous over the bounded set X ,
there must exist a constant MF > 0 such that∣∣F (x)− F (x′)

∣∣ ≤ MF
∥∥x − x′

∥∥
2 ,∀x, x′ ∈ X . (21)

The next lemma gives an upper bound on F (x̂k )− Lk , whose
proof is relegated to Appendix C.

Lemma 1: Let

M1 =
√

nMF + n
3
2 umax ‖Q‖F (22)

and

M2 = 1

2
n

3
2 ‖Q‖F , (23)

where MF is given in (21). Then, we have

F (x̂k )− Lk ≤ M1S∗1 +M2S∗2 , (24)

where S∗1 and S∗2 are defined in (17).
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Algorithm 1: ECSDR-BB Algorithm for Solving Prob-
lem (CQP).

1: input: An instance of problem (CQP) and an error
tolerance ε > 0.

2: Initialize P = ∅, D0 =∏n
i=1 A0

i ×
∏n

i=1 B0
i :=∏n

i=1 Ai ×
∏n

i=1[�i, ui], and set k = 0. //
Initialization.

3: Solve ECSDR(D0) for its optimal solution
(x0, X0, r0) and its optimal value L0. // Solve
relaxation (ECSDR) at the root
node.

4: Compute the feasible point x̂0 = Scale(x0, r0).
5: Set U ∗ = F (x̂0) and x∗ = x̂0. // Initial Upper
Bound and Optimal Solution.

6: Add {D0, x0, X0, r0, x̂0, L0} into the node list P .
7: loop
8: Set k← k + 1.
9: Using the Node Selection Rule to choose a

problem from P, denoted as
{Dk, xk, Xk, rk, x̂k, Lk}, such that Lk is the
smallest one in P . // Lower Bound.

10: Delete the chosen node from P .
11: if U ∗ − Lk ≤ ε then
12: return x∗ and U ∗ and terminate the algorithm. //

Terminate if (16) is satisfied.
13: end if
14: Choose the set according to (17) and branch Dk

into two subsets Dk− and Dk+ by using the
Branching Rule. // Branch.

15: for s ∈ {−,+} do
16: Solve ECSDR(Dk

s ) for its solution (xk
s , Xk

s , rk
s )

and its optimal value Lk
s . // Solve the

children problems.
17: Compute the feasible point x̂k

s = Scale(xk
s , rk

s ).
18: if U ∗ > F (x̂k

s ) then
19: set U ∗ = F (x̂k

s ), x∗ = x̂k
s . // Update

Upper Bound and Optimal Solution.
20: end if
21: if Lk

s < U ∗ then
22: add {Dk

s , xk
s , Xk

s , rk
s , x̂k

s , Lk
s } into P .

23: end if
24: end for
25: end loop

Based on Lemma 1, we can show the following result and
we relegate its proof to Appendix D.

Lemma 2: Let

κ1 =
[

8ε

umax(M1 +M2)

] 1
2

(25)

and

κ2 =
[

4ε

M1 +M2

] 1
2

, (26)

where M1 and M2 are defined in (22) and (23), respectively. If
one of the following three conditions is satisfied:

(C1) S∗1 ≥ S∗2 , Ak
i∗1
= [θk

i∗1
, θ̄ k

i∗1
], and θ̄ k

i∗1
− θ k

i∗1
≤ min{κ1, π},

(C2) S∗1 ≥ S∗2 , and Ak
i∗1

is a singleton,

(C3) S∗1 < S∗2 , Bk
i∗2
= [�k

i∗2
, uk

i∗2
], and uk

i∗2
− �k

i∗2
≤ κ2,

then (16) is satisfied and thus the ECSDR-BB algorithm ter-
minates in Line 12.

Based on the above two lemmas, we obtain the main result
of this subsection, which shows that the ECSDR-BB algo-
rithm will terminate within a finite number of iterations in
(27).

Theorem 3: For any given error tolerance ε > 0 and any
given instance of problem (CQP), the ECSDR-BB algorithm
will return an ε-optimal solution of the given instance within
at most

K :=
n∏

i=1

[
μ(Ai )×max

{⌈
2ω(Bi )

κ2

⌉
, 1

}]
(27)

iterations, where

μ(Ai )=
{

max
{⌈

2ω(Ai )
min{κ1,π}

⌉
, 1
}
, if Ai is an interval;

|Ai| , if Ai is a finitely discrete set,
(28)

and κ1 and κ2 are the constants defined in (25) and (26),
respectively.

The proof of Theorem 3 can be found in Appendix E. Two
remarks on Theorem 3 are in order. First, from Theorem 3,
we can obtain the global convergence of the ECSDR-BB
algorithm, i.e., both the sequences of the upper bounds and
the lower bounds generated by the algorithm with ε = 0 con-
verge to the optimal value of problem (CQP). In practice, we
need to preselect a positive error tolerance ε in our proposed
algorithm, as in most of iterative optimization algorithms.
Second, Theorem 3 shows that the total number of iterations
K in (27) for the ECSDR-BB algorithm to return an ε-optimal
solution of problem (CQP) is exponential with respect to the
number of variables n. The iteration complexity of our pro-
posed algorithm seems high at first sight. However, as will
be shown in Section V, its practical number of iterations is
actually significantly less than the worst-case bound in (27).
It is also worth remarking that there is no polynomial time
algorithm which can globally solve the problem (unless P =
NP), because the problem is NP-hard.

V. NUMERICAL SIMULATIONS
In this section, we present some numerical simulation re-
sults to demonstrate the tightness of our proposed relaxation
(ECSDR) and the efficiency of our proposed ECSDR-BB
algorithm for problem (CQP). We apply the ECSDR-BB al-
gorithm to solve three optimization problems arising from
signal processing applications introduced in Section II, i.e.,
the MIMO detection problem (1), the unimodular radar code
design problem (2), and the virtual beamforming design prob-
lem (3). All of these three problems are special cases of
problem (CQP) but they have different characteristics, e.g.,
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TABLE 1. Objective Values and Lower Bounds of MIMO Detection
Problem (1)

the MIMO detection problem has discrete argument con-
straints and unit-modulus constraints; the unimodular radar
code design problem has continuous argument constraints
(but not equal [0, 2π ]) and unit-modulus constraints; and the
virtual beamforming design problem has continue argument
constraints (and equal [0, 2π ]) and interval modulus con-
straints. All of the experiments are implemented in MATLAB,
with SeDuMi [30] being used to solve semidefinite programs
(SDPs). All the algorithms are run on a PC with Intel Core
i7-2600 (3.40 GHz) and 4 GB memory. In all experiments,
the error tolerance of the proposed ECSDR-BB algorithm is
set to be ε = 10−4.

A. NUMERICAL RESULTS OF MIMO DETECTION
We generate the instances of the MIMO detection prob-
lem (1) as in [26], [27]: we first generate H according to
the standard complex Gaussian distribution; then we gen-
erate a complex vector x∗ with |x∗i | = 1 and arg(x∗i ) be-
ing uniformly chosen from the discrete set Ai for all i =
1, 2, . . . , n; finally we set r = Hx∗ + σv, where v ∈ C

n

is a Gaussian noise obeying the standard complex Gaus-
sian distribution and σ is a parameter which controls the
SNR determined by SNR = 10 log10(‖Hx∗‖22/σ 2n). In our
simulations, Ai is either {0, π/2, π, 3π/2} (i.e., QPSK) or
{0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4} (i.e., 8-PSK).

For each setup, we generate 50 problem instances and apply
our proposed algorithm (i.e., Algorithm 1) to solve them.
All results in this subsection are obtained by averaging over
the 50 generated instances. Numerical results are summa-
rized in Tables 1 and 2, where “ObjVal” denotes the objec-
tive value returned by the proposed ECSDR-BB algorithm;
“LBdE” and “LBdC” denote the lower bounds (i.e., the opti-
mal objective values) returned by two relaxations (ECSDR)

TABLE 2. CPU Time (in Seconds) and Number of Iterations for Solving
MIMO Detection Problem (1)

and (CSDR) (for problem (1)), respectively; “CldGap” de-
notes (LBdE−LBdC)/(ObjVal−LBdC) ×100%, which mea-
sures how much of the gap in (CSDR) is closed by (ECSDR);
“Time” and “# Iter” denote the CPU time and the number of
iterations of the ECSDR-BB algorithm for solving problem
(CQP); and “TimeE” and “TimeC” denote the CPU time of
solving relaxations (ECSDR) and (CSDR), respectively. No-
tice that “CldGap” defined in the above must be in [0,1] due
to the fact ObjVal ≥ LBdE ≥ LBdC.

We first compare the two relaxations (ECSDR) and (CSDR)
in terms of their tightness and computational efficiency. We
can see from Table 1 that relaxation (ECSDR) is generally
much tighter than (CSDR). In particular, in cases of M = 4
and SNR = 25, our proposed relaxation (ECSDR) is exact,
i.e., the optimal solution and the optimal objective value of
relaxation (ECSDR) are equal to that of the original problem;
in cases of SNR ≥ 15, our proposed relaxation (ECSDR)
narrows down over 50% of the gap due to (CSDR); and in
all cases, LBdE is generally larger than LBdC and more than
30% of the gap in (CSDR) is closed by (ECSDR). These
results clearly show that the new envelope constraints added
in (ECSDR) (as compared to (CSDR)) are indeed very useful
to reduce the relaxation gap of (CSDR). From Table 2, we
can observe that the two relaxations have similar compu-
tational efficiency. In fact, since the number of constraints
in (ECSDR) is larger than that of (CSDR), the CPU time
of solving (ECSDR) is generally larger than that of solving
(CSDR). However, the CPU time of solving (ECSDR) is not
much larger than that of solving (CSDR). This is because
the constraints added in (ECSDR) (compared to (CSDR)) are
all “simple” linear constraints. Based on the above analysis
and numerical results, we conclude that (ECSDR) generally
is much tighter than (CSDR) but solving (ECSDR) takes only
slightly more CPU time than solving (CSDR).
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TABLE 3. Objective Values and Upper Bounds of Unimodular Radar Code
Design Problem (2)

TABLE 4. CPU Time (in Seconds) and Number of Iterations for Solving
Unimodular Radar Code Design Problem (2)

We can also see from Table 2 that our proposed ECSDR-
BB algorithm can solve all problem instances within 162
iterations and within 43 seconds (on average). These results
show that our proposed ECSDR-BB algorithm is very efficient
for globally solving the MIMO detection problem. We will
further compare the efficiency of our proposed ECSDR-BB
algorithm with a specially designed algorithm for solving the
MIMO detection problem in Section IV-D.

B. NUMERICAL RESULTS OF UNIMODULAR
RADAR CODE DESIGN
We generate the instances of the unimodular radar code
design problem (2) as in [4]: we set each entry of M to
be Mi j = ρ|i− j| with ρ ∈ [0.2, 0.8]; set N = 7 and x0 =
[1, 1, 1,−1,−1, 1,−1]T (i.e., the Barker code of length 7);
set the steering vector p = [1, ei2π fd Tr , . . . , ei2π (N−1) fd Tr ]T

with fd Tr = 0.15; and set the similarity tolerance δ in (2) such
that arccos(1− δ2/2) is equal to either π/6 or π/3.

For each value of the parameter δ, we generate 5 prob-
lem instances and apply our proposed algorithm (i.e., Algo-
rithm 1) to solve them. Numerical results on all 10 prob-
lem instances are summarized in Tables 3 and 4, where
“ID” denotes the IDs of the corresponding problem instances,
ω(Ai ) denotes the width of set Ai (cf. (13)), “UBdE” and
“UBdC” denote the upper bounds5 (i.e., the optimal ob-
jective values) returned by two relaxations (ECSDR) and
(CSDR) (for problem (2)), respectively, “CldGap” denotes

5Recall that problem (2) is a maximization problem and thus the optimal
values of the corresponding relaxations are upper bounds of its optimal value.

TABLE 5. Objective Values and Upper Bounds of Virtual Beamforming
Design Problem (3)

(UBdC−UBdE)/(UBdC−ObjVal) ×100%, and all the oth-
ers have the same meanings as that in Tables 1 and 2. By
the definition of ω(Ai ) (cf. (13)), we have ω(Ai ) = π/3 if
arccos(1− δ2/2) = π/6 and ω(Ai ) = 2π/3 if arccos(1−
δ2/2) = π/3.

We can observe and conclude from the results listed in
Tables 3 and 4 that:

1) (ECSDR) is generally much tighter than (CSDR), espe-
cially when ω(Ai ) is small. This is consistent with the
analysis in Proposition 3: since ri = 1 in the unimodular
radar code design problem (2), then the inequality in (11)
reduces to 1 ≥ |xi| ≥ cos(ω(Ai )/2), which shows that a
smaller ω(Ai ) generally leads to a smaller gap 1− |xi|.

2) Solving (ECSDR) takes slightly more CPU time than
solving (CSDR).

3) Our proposed ECSDR-BB algorithm is able to efficiently
solve all generated problem instances within satisfactory
computational time (i.e., less than 3 seconds) and within
a relatively small number of iterations (i.e., less than 24
iterations).

C. NUMERICAL RESULTS OF VIRTUAL
BEAMFORMING DESIGN
We generate the instances of the virtual beamforming design
problem (3): we set Pi = 1 for all i = 1, 2, . . . , n and generate
h j for all j = 1, 2, , . . . , m according to the standard complex
Gaussian distribution (as in [12, Section 4.3.5]). In our simula-
tions, we set m ∈ {5, 10, 15} and n ∈ {5, 10, 15, 20} (and thus
there are in total 12 different pairs of (m, n)). For each pair
of (m, n), we generate 50 instances and apply our proposed
ECSDR-BB algorithm to solve them. All results in this sub-
section are obtained by averaging over the 50 instances and
the obtained results are summarized in Tables 5 and 6.

Since the set Ai = [0, 2π ] for all i = 1, 2, . . . , n in problem
(3), relaxation (ECSDR) is equivalent to (CSDR), as discussed
at the end of Section II and as demonstrated and verified in
Table 5. However, (ECSDR) still plays an important role of
globally solving problem (3) in the ECSDR-BB algorithm,
where the quality of (ECSDR) defined over the recursively
partitioned subsets of Ai becomes better and better.
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TABLE 6. CPU Time (in Seconds) and Number of Iterations for Solving
Virtual Beamforming Design Problem (3)

As shown in Table 6, our proposed ECSDR-BB algorithm
is quite efficient for solving small-scale problem instances
(e.g., with n ≤ 10). Moreover, the ECSDR-BB algorithm is
able to solve all of problem instances within 602 iterations and
within 268 seconds (on average). These results show the high
efficiency of our proposed algorithm in solving the virtual
beamforming design problem (3).

By using our proposed algorithm as the benchmark, we can
see that the two relaxations (for the original problem (3)) are
generally not tight for the virtual beamforming design prob-
lem but the relaxation gaps are generally very small. We shall
further compare the efficiency of our proposed ECSDR-BB
algorithm with the general-purpose global optimization solver
for solving the virtual beamforming design problem (3) in
Section IV-E.

D. COMPARISON OF ECSDR-BB WITH SD
FOR MIMO DETECTION
In this subsection, we compare our proposed ECSDR-BB
algorithm with the state-of-the-art tailored global algorithm
called sphere decoder6 (SD) [27] for solving the MIMO de-
tection problem (1). To compare the two algorithms, we gen-
erate problem instances with M = 8 and M = 4, and different
(m, n) and different SNRs. In each setup, we generate 50
problem instances and apply the two algorithms to solve them.
Numerical results of the average and worst-case CPU time of
the 50 instances are summarized in Table 7 and Table 8.

For the case where M = 8, we can observe, from Table 7,
that our proposed ECSDR-BB algorithm is not as efficient
as SD for problems where n = 20, m ≥ 24, and SNR ≥ 10.
However, the ECSDR-BB algorithm performs faster than the
SD algorithm over the whole range of tested SNRs in the
case where (m, n) = (20, 20). Moreover, the ECSDR-BB al-
gorithm becomes much faster than the SD algorithm in the
low SNR case where SNR = 5. The reasons behind the above
simulation results might be as follows. In the case where m is
much larger than n, the matrix H†H/m tends to be close to the

6The code of the SD algorithm is downloadable from https://ww2.
mathworks.cn/matlabcentral/fileexchange/22890-sphere-decoder-for-mimo-
systems. We have made some modifications on the above downloaded code
to improve its efficiency by adopting the techniques proposed in [26].

TABLE 7. CPU Time of ECSDR-BB and SD [26] for Solving MIMO Detection
Problem (1) with M = 8

TABLE 8. CPU Time of ECSDR-BB and SD [26] for Solving MIMO Detection
Problem (1) with M = 4

n× n identity matrix In. In this case, since H†H ≈ mIn, we
have

1

2
‖Hx − r‖22 ≈

m

2
x†x − Re(x†H†r)+ 1

2
r†r, (29)

and thus the global solution of the original problem is very
close to Scale(H†r, en), where Scale(·, ·) is defined in (15)
and en is the all-one vector of dimension n. Based on the
above observation, a SD variant in [26], which applies a depth
first search and selects the node according to an increasing
distance from H†r at each iteration, achieves a very high effi-
ciency. However, for the cases with a fixed n, as m decreases,
Scale(H†r, en) might not be a good estimator of the global
solution of the original problem and hence the performance
of the SD variant degrades very quickly, especially in the low
SNR cases.

We can make the same observation on the comparison of
the ECSDR-BB and SD algorithms from the results in Table 8
where M = 4. In particular, the SD algorithm performs better
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TABLE 9. Numerical Results of ECSDR-BB and Baron for Virtual
Beamforming Design Problem (3) with n = 5

than the ECSDR-BB algorithm in the easy cases, whereas
the performance of the SD algorithm sharply degrades when
the problems become hard and the ECSDR-BB algorithm
performs much better than the SD algorithm in the hard cases.
In short summary, our proposed ECSDR-BB algorithm per-
forms very well in the hard cases, i.e., the number of inputs
and outputs is equal or the SNR is low. Numerical results
in Table 7 and Table 8 show that our proposed ECSDR-BB
algorithm exhibits a very promising performance in solving
the MIMO channel detection problem (1) in the hard cases. It
is worth mentioning that the SD algorithm/variant is specially
designed to solve the MIMO detection problem and it seems
(at least to us) not trivial to extend it to solve more general
problems while our proposed ECSDR-BB algorithm is able to
solve various problems in the form of (CQP), with continuous
and/or discrete argument constraints.

E. COMPARISON OF ECSDR-BB WITH BARON
FOR VIRTUAL BEAMFORMING DESIGN
In this subsection, to further demonstrate the efficiency of our
proposed ECSDR-BB algorithm, we compare it with Baron
(version 18.8.24) [25], a well-known general-purpose global
optimization solver, by applying them to solve the virtual
beamforming design problem7 (3). Notice that Baron is also
a branch-and-bound algorithm but it is based on linear pro-
gramming relaxation. To apply Baron to solve problem (3),
we need to first transform the problem into a real quadratic
problem by representing the real and imaginary parts of each
complex variable with two independent real variables. The
error tolerances in both the ECSDR-BB algorithm and Baron
are set to 10−4. In our simulations, we generate 10 problem
instances with n = 5 and 10 problem instances with n = 10
as done in Section V-C.

Table 9 shows the numerical results for the 10 problem
instances with n = 5. We can observe from the table that
(ECSDR) is tight in this case and the ECSDR-BB algorithm
terminates in only one iteration within 0.11 seconds; but
Baron needs significantly larger number of iterations (i.e., in
the order of 1000–10000) and more CPU time (i.e., from 41

7There is no existing specially designed global algorithm for the virtual
beamforming design problem (3) that we can compare our algorithm with.

to 432 seconds). Moreover, we have further compared the two
algorithms on 10 problem instances with n = 10. However,
we found that Baron fails to solve most of problem instances
with (m, n) = (10, 10) within 60 minutes (and thus the results
are not listed here). In contrast, the ECSDR-BB algorithm
can successfully solve problem instances with m ∈ {5, 10, 15}
and n = 10 within 6 seconds (on average), as listed in Ta-
ble 6. These results clearly show that the specially designed
ECSDR-BB algorithm achieves significantly higher efficiency
on globally solving problem (CQP) than the general-purpose
global optimization solver such as Baron.

VI. CONCLUSIONS
In this paper, we considered a class of nonconvex com-
plex quadratic programming problems (i.e., problem (CQP)),
which finds many important signal processing applications.
We first derived a new enhanced relaxation (ECSDR) (com-
pared to the conventional relaxation (CSDR)) for problem
(CQP) based on the polar coordinate representations of the
complex variables. Then we proposed a branch-and-bound
global algorithm, ECSDR-BB, for solving problem (CQP)
based on the newly derived relaxation. To the best of our
knowledge, our proposed ECSDR-BB algorithm is the first
tailored algorithm for problem (CQP) which is guaranteed to
find the global solution of the problem (within any given error
tolerance). We applied our proposed ECSDR-BB algorithm
for solving the MIMO detection problem, the unimodular
radar code design problem, and the virtual beamforming de-
sign problem, and our simulation results show the high effec-
tiveness of our proposed enhanced relaxation (ECSDR) and
the high efficiency of our proposed ECSDR-BB algorithm.
In particular, our proposed ECSDR-BB algorithm performs
significantly better than the state-of-the-art SD algorithm for
solving the MIMO detection problem in the hard cases (where
the number of inputs and outputs is equal or the SNR is low)
and the state-of-the-art general-purpose global solver Baron
for solving the virtual beamforming design problem.

APPENDIX A
PROOF OF PROPOSITION 3
Proof of (11): By the definition of GAi (cf. (6)), we only need
to show

|xi| ≥ ri cos

(
θ̄i − θ i

2

)
. (30)

Let us first consider the special case where Ai = [θ i, θ̄i].
Without loss of generality, let us assume ri > 0 in (30). (Oth-
erwise, if ri = 0, then |xi| ≤ ri = 0 holds and thus (11) holds.)
Since (xi, ri ) ∈ GAi , we have

αiRe(xi )+ βiIm(xi ) ≥ γiri, (31)

where αi, βi, andγi are given in (7), which further implies

αiRe(xi )+βiIm(xi )≤
√[

α2
i + β2

i

] [
Re2(xi )+ Im2(xi )

] = |xi| .
(32)
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Combining (31) and (32) with the definition of γi shows that
(30) holds for all (xi, ri ) ∈ G[θ i,θ̄i].

Now let us consider the general case where Ai is any set
satisfying Ai ⊆ [θ i, θ̄i]. Since the convex envelope of Ai must
also be a subset of that of [θ i, θ̄i], we have GAi ⊆ G[θ i,θ̄i].

From this and the result for the case where Ai = [θ i, θ̄i], we
can conclude that (30) holds for all (xi, ri ) ∈ GAi .

Proof of (12): By the definition of FBi (cf. (9)), we only
need to show the second inequality in (12). Since Xii − (�i +
ui )ri + �iui ≤ 0 holds for all (Xii, ri ) ∈ FBi , it follows

Xii − r2
i ≤ (�i + ui )ri − �iui − r2

i

= (ui − �i )2

4
−
(

ri − �i + ui

2

)2

≤ (ui − �i )2

4
.

APPENDIX B
PROOF OF THEOREM 2
At the beginning of the k-th iteration of the ECSDR-BB
algorithm, the initial feasible set D0 has been (recursively)
partitioned into k smaller subsets. Since the global solution of
problem (CQP) must lie in one of the subsets and Lk is the
smallest lower bound of all subproblems in the active node
set P , we have Lk ≤ ν∗. Since x̂k = Scale(xk, rk ) (cf. (15)) is
feasible to problem (CQP), we immediately get ν∗ ≤ F (x̂k ).
Combining the above two inequalities yields (18).

Next, we prove that the returned solution x∗ by the ECSDR-
BB algorithm is an ε-optimal solution. It follows from (16)
and (18) that F (x̂k ) ≤ Lk + ε ≤ ν∗ + ε. By the update rule of
the upper bound (cf. Line 19 of the ECSDR-BB algorithm),
U ∗ must satisfy U ∗ ≤ F (x̂k ). Hence, for the returned solution
x∗, there holds F (x∗) = U ∗ ≤ ν∗ + ε, which, together with
Definition 1, shows that x∗ is an ε-optimal solution of problem
(CQP).

APPENDIX C
PROOF OF LEMMA 1
By the definition of F (x) in problem (CQP), we have

F
(

x̂k
)
− Lk

= F
(

x̂k
)
− 1

2
Q • Xk − Re

(
c†xk

)

≤
∣∣∣F (x̂k

)
− F

(
xk
)∣∣∣+

∣∣∣∣F (xk
)
− 1

2
Q • Xk − Re

(
c†xk

)∣∣∣∣
=
∣∣∣F (x̂k

)
− F

(
xk
)∣∣∣+ ∣∣∣∣12 Q •

(
Xk − xk

(
xk
)†
)∣∣∣∣ .

Next, we bound the two terms |F (x̂k )− F (xk )| and |Q •
(Xk − xk (xk )†)| from the above one by one.

We first bound the term |F (x̂k )− F (xk )|. It follows directly
from (21) that∣∣∣F (xk )− F (x̂k )

∣∣∣ ≤ MF

∥∥∥xk − x̂k
∥∥∥

2
. (33)

By the definition of S∗1 (cf. (17)), we immediately get∥∥∥xk − x̂k
∥∥∥

2
≤ √nS∗1 . (34)

Combining (33) and (34) gives∣∣∣F (xk )− F (x̂k )
∣∣∣ ≤ √nMF S∗1 . (35)

Now, we bound the term |Q • (Xk − xk (xk )†)|. Clearly,
there holds ∣∣∣Q • (Xk − xk

(
xk
)†)∣∣∣

≤ ‖Q‖F
∥∥∥(Xk − xk

(
xk
)†)∥∥∥

F
.

(36)

Let λmax ≥ 0 be the largest eigenvalue of the positive semidef-
inite matrix Xk − xk (xk )†. Then, we have∥∥∥∥Xk − xk

(
xk
)†
∥∥∥∥

F

≤ √nλmax ≤
√

nTrace

(
Xk − xk

(
xk
)†
)

(37)

By the definitions of S∗1 and S∗2 (cf. (17)), we have

Trace

(
Xk − xk

(
xk
)†
)

=
n∑

i=1

(
X k

ii −
∣∣∣xk

i

∣∣∣2)

=
n∑

i=1

[(
X k

ii −
(

rk
i

)2
)
+
(

rk
i +

∣∣∣xk
i

∣∣∣) (rk
i −

∣∣∣xk
i

∣∣∣)]

≤ n

[(
X k

i∗2 i∗2
−
(

rk
i∗2

)2
)
+ 2umax

(
rk

i∗1
−
∣∣∣xk

i∗1

∣∣∣)]

= n
(
S∗2 + 2umaxS∗1

)
,

which, together with (36) and (37), further implies∣∣∣∣Q •
(

Xk − xk
(

xk
)†
)∣∣∣∣ ≤ ‖Q‖Fn

3
2
(
S∗2 + 2umaxS∗1

)
. (38)

From (35), (38), and the definitions of M1 and M2 (cf. (22)
and (23)), we immediately get the desired inequality in (24).

APPENDIX D
PROOF OF LEMMA 2
It follows from Theorem 2 that, to prove the lemma we only
need to prove that (16) holds under (C1), (C2), or (C3).

If condition (C1) holds, then it follows from (24) that

F (x̂k )− Lk ≤ (M1 +M2) S∗1 . (39)
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In this case, we have x̂k
i∗1
= rk

i∗1
e

i arg(xk
i∗1

)
(cf. (15)) and thus∣∣∣x̂k

i∗1
− xk

i∗1

∣∣∣ = rk
i∗1
−
∣∣∣xk

i∗1

∣∣∣ . (40)

Then, we have

S∗1 =
∣∣∣x̂k

i∗1
− xk

i∗1

∣∣∣ = rk
i∗1
−
∣∣∣xk

i∗1

∣∣∣
≤ rk

i∗1

⎡
⎣1− cos

⎛
⎝ θ̄ k

i∗1
− θ k

i∗1
2

⎞
⎠
⎤
⎦

≤
umax

(
θ̄ k

i∗1
− θ k

i∗1

)2

8
≤ umaxκ

2
1

8
, (41)

where the first equality is due to the definition of S∗1 (cf. (17)),
the second equality comes from (40), the first inequality is due
to (11), and the second inequality is a result of the definition
of umax (cf. (19)) and the inequality 1− cos(θ ) ≤ θ2

2 for all
θ ∈ R, and the last inequality follows from condition (C1).
Combining (39), (41), and the definition of κ1 (cf. (25)) yields
the desired result in (16).

If condition (C2) holds, then we can show S∗1 = S∗2 = 0.

By this and (24), we obtain F (x̂k )− Lk ≤ 0, which further
implies (16).

If condition (C3) holds, then it follows from (24) that

F
(

x̂k
)
− Lk ≤ (M1 +M2) S∗2 . (42)

Moreover, from (12) and the definition of S∗2 (cf. (17)), we
obtain S∗2 = Xi∗2 i∗2 − r2

i∗2
≤ (uk

i∗2
− �k

i∗2
)2/4. This, together with

(42), (C3), and the definition of κ2 (cf. (26)), shows the desired
result in (16).

APPENDIX E
PROOF OF THEOREM 3
We consider two sets Ai and Bi separately. Moreover, when
we consider set Ai, we consider two cases where Ai is an
interval and a discrete set separately.

We first consider the case where Ai is an interval. We show
that the set Ai will be partitioned into at most μ(Ai ) of subsets
before the algorithm terminates, where μ(Ai ) is defined in
(28). According to the algorithm, suppose that S∗1 ≥ S∗2 at
the k-th iteration, then the interval Ak

i∗1
will be partitioned

into two subsets with the same length. If the ECSDR-BB
algorithm does not terminate in Line 12 at the k-th itera-
tion, then it follows from condition (C1) in Lemma 2 that
ω(Ak

i∗1
) > min{κ1, π} and the length of each subset obtained

after the partition is larger than 1
2 min{κ1, π}. Hence, if set Ai

has been partitioned into μ(Ai ) of subsets, the total length of
all obtained subsets is strictly greater than

μ(Ai )
1

2
min{κ1, π} ≥ ω(Ai ),

where the inequality is due to the definition of μ(Ai ) (cf.
(28)). This is a contradiction. Therefore, if Ai is an interval,

it can be partitioned at most μ(Ai ) times before the algorithm
terminates.

Now, we consider the case where Ai is a discrete set (with
a finite number of elements). We can use the similar argument
as in the above case to show that Ai can be partitioned at most
μ(Ai ) = |Ai| times. The only difference here is that Ai is
a discrete set. More specifically, according to the algorithm,
suppose that S∗1 ≥ S∗2 at the k-th iteration, then the interval
Ak

i∗1
will be partitioned into two nonempty and nonoverlapping

subsets. If the ECSDR-BB algorithm does not terminate in
Line 12 at the k-th iteration, then it follows from condition
(C2) in Lemma 2 that Ak

i∗1
is not a singleton and each subset

obtained after the partition is not empty. Hence, if Ai is a
discrete set, it can be partitioned at most |Ai| times before
the algorithm terminates.

Finally, we consider set Bi. This case is essentially the
same as the case where Ai is an interval. Using the same
argument, we can show that the set Bi can be partitioned at

most max{
⌈

2ω(Bi )
κ2

⌉
, 1} times before the algorithm terminates.

From the above analysis, we can conclude that the proposed
algorithm must terminate within at most K iterations, where
K is defined in (27).
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