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ABSTRACT This paper presents a self-contained factorization for the delay Vandermonde matrix (DVM),
which is the super class of the discrete Fourier transform, using sparse and companion matrices. An efficient
DVM algorithm is proposed to reduce the complexity of radio-frequency (RF) N-beam analog beamform-
ing systems. There exist applications for wideband multi-beam beamformers in wireless communication
networks such as 5G/6G systems, system capacity can be improved by exploiting the improvement of
the signal to noise ratio (SNR) using coherent summation of propagating waves based on their directions
of propagation. The presence of a multitude of RF beams allows multiple independent wireless links to
be established at high SNR, or used in conjunction with multiple-input multiple-output (MIMO) wireless
systems, with the overall goal of improving system SNR and therefore capacity. To realize such multi-beam
beamformers at acceptable analog circuit complexities, we use sparse factorization of the DVM in order to
derive a low arithmetic complexity DVM algorithm. The paper also establishes an error bound and stability
analysis of the proposed DVM algorithm. The proposed efficient DVM algorithm is aimed at implementation
using analog realizations. For purposes of evaluation, the algorithm can be realized using both digital
hardware as well as software defined radio platforms.

INDEX TERMS Delay vandermonde matrix, efficient algorithms, self-recursive algorithms, complexity and
performance of algorithms, approximation algorithms, wireless communications, beamforming, software
defined radio.

I. INTRODUCTION
The demand for wireless data communication networks hav-
ing increased capacity and data transfer rates is growing at
a tremendous rate. The wireless networks are on the verge of
rolling out their newest generation of mobile networks; the so-
called fifth generation (5G) network, which is expected to be
the underlying data transfer network of emerging technologies
such as the wireless internet of things (IoT), networks on chip,
body-area networks and cyberphysical systems (CPS). Expo-
nentially growing demands for capacity require exponentially
growing bandwidth for a given SNR level. Emerging 5G and

6G wireless networks are built on mm-wave (mmW) bands
(typically, 20–600 GHz), which are of sufficiently high fre-
quencies to allow the necessary growth in system bandwidth.
A 5G wireless data connection may operate around 60 GHz
(indoors) and operate at about 200–1000 MHz of bandwidth,
which shows 10- to 25-fold growth in capacity [29]. Such
levels of growth are typical of a new generation of wireless
networks. In this paper, we address the problem of obtaining a
multitude of directional mmW RF beams using digital signal
processing. The paper aims to reduce to arithmetic complexity
of the beamforming operation that is based on multiplication
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FIGURE 1. A linear array with analog antenna outputs xk (t ) for achieving N-beam wideband multi-beam beamformer using left) an analog DVM circuit
that realizes a spatial linear transform y = ANx employing true time delay analog blocks for RF beams yk (t ); and right) the digital signal flow graph for a
parallel digital hardware or software defined radio approach in which an M-point discrete Fourier transform (DFT) is computed along the temporal
dimension for binning the sampled wideband signals in temporal frequency domain. Each signal component temporal frequency bin is applied to the
DVM algorithm by computing the efficient DVM algorithm for M separate values of α = e− jωτ where ω = 2πm

M . In both cases, the DVM algorithm leads to
N-beams by coherently combining radio waves in N discrete directions ψk = 1,2, . . . ,N. Here, temporal sample blocks consist of M samples for the fast
Fourier transforms (FFTs).

of a Vandermonde matrix with an input vector obtained from
the array of antennas. The proposed multi-beam signal proces-
sor uses a low-complexity algorithm that enables acceptable
digital circuit complexity in order to achieve multi-beam RF
beams for a base-station.

The paper is organized as follows. Section II introduces
the concept of wideband multi-beam beamforming for wire-
less communications. Section III proposes a self-contained
factorization for the DVM and an efficient DVM algorithm,
while Section IV contains the derivation of arithmetic com-
plexity and elaborate numerical results of the proposed DVM
algorithm. Section V furnishes the derivation of a theoreti-
cal error bound, establishes numerical results, and addresses
the numerical stability of the proposed DVM algorithm. In
Section VI, applications of the DVM matrix factorization
in the engineering discipline will be discussed. Finally,
Section VII concludes the paper.

II. MULTI-BEAM WIDEBAND ARRAY
SIGNAL PROCESSING
A. REVIEW OF ANTENNA BEAMFORMING
The coherent combination of multiple antennas is known as
beamforming [15], [30]. Fig. 1 shows an overview of an array

processing receiver that operates on an N-element array of
antennas by applying a spatial linear transform AN across
the array outputs xk (t ), k = 1, 2, . . . ,N in continuous-time
to produce a number of continuous-time outputs yk (t ) corre-
sponding to the RF beams.

The linear transform typically takes the form of a spatial
discrete Fourier transform, implemented via spatial FFT, and
leads to N number of RF beams corresponding to directions
pertaining to spatial frequencies of the incident waves that
match DFT bin frequencies 2πk/N. The use of an FFT pro-
duces beams that have a frequency dependent axis because
it can be shown that the beam orientation is a function of
wavelength.

By progressively delaying each antenna by a multiple of
a constant time delay, the RF energy can be directed in a
particular direction in a frequency independent manner. For
example, let Xk (e jω ) be the Fourier transform of the input
xk (t ) for the array outputs k = 1, 2, . . . ,N . The application
of a linear delay of duration τ causes a corresponding phase
rotation by ωτ . In the frequency domain, the output of the
delay becomes Xk (e jω )e− jωτ . The application of delays τkl
to the kth antenna, where l ∈ Z is an integer causes signal
components to be rotated by the frequency dependent phase
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ωτkl . Delay and sum operations - described by a Vander-
monde matrix (DVM) by input vector product- leads to N RF
beams that have beam orientations ψk, k = 1, 2, . . . ,N that
have no dependence on the wavelength.

Example beamformers for arrays can be found in [2], [3],
[17], [18], [26], [32], [39], [40], [43]–[45]. These systems are
limited in number of beams, although they do possess rela-
tively high numbers of antennas, due to the inherent computa-
tional/circuit complexity of such multi-beam systems. Unlike
DFT beamformers, delay-based Vandermonde matrix multi-
beam beamformers have frequency independent beam angles-
a property that is desired in wideband basestations.

B. WIDEBAND N-BEAM ALGORITHMS
For a linear-array with inter-element spacing �x and speed
of light c, the marginal time-difference of arrival between
antennas for direction ψ is τ = �x

c sinψ . The kth true-time-
delay RF beam can be realized by coherently summing the
antenna signals l = 0, 1, . . . ,N − 1 such that the beam output
is yk (t ) = x0(t ) + x1(t − kτ ) + · · · + x(t − k(N − 1)τ ).

Assuming inter-element spacing �x = λmin/2, the N si-
multaneous RF beams in the discrete domain can be written
as the product of an N × N DVM containing the frequency-
dependent phase-rotations and an input signal vector with ele-
ments xk (t ) consisting of the spatial signals from the uniform
linear array of antennas.

The wideband multi-beam beamforming algorithm there-
fore consists of the computation of a DVM-vector product
y = AN x at time t ∈ R where x and y are input and out-
put vectors containing signals xk (t ) and yk (t ) respectively. In
our previous work [26], we have proposed a low-complexity
DVM algorithm using the product of complex 1-band upper
and lower matrices. The DVM algorithm in [26] extends the
results in [21], [22], [42] utilizing complex nodes without
considering quasiseparability and displacement equations as
in [12], [13], [23]. Moreover, we have addressed error bounds
and stability of the DVM algorithm in [26] by filling the gaps
in [21], [22], [42]. There are several mathematical techniques
available to derive radix-2 and split-radix FFT algorithms, as
described in [5], [9], [16], [28], [33], [38]. On the other hand,
among the known approximation algorithms which run in
quadratic arithmetic time to compute Vandermonde matrices
by a vector, the author in [25] presented linear arithmetic time
approximation algorithm to compute Vandermonde matrices
by vector. But our main intention in this paper is to propose
an exact algorithm with self-contained factors not an approx-
imation algorithm.

Even though the derivation of size N DFT into two size
N
2 DFTs can be done easily, the extension of this idea to the
DVM is cumbersome as the useful DFT properties are not
necessarily present in the DVM case. However, one could
still derive an efficient algorithm for the delay Vandermonde
matrix as an polynomial evaluation problem.

For wideband analog inputs where ω spans a continuous
range of values, the phase rotations are to be realized using

analog delay lines. In analog realizations the DVM fast al-
gorithm is realized in an analog circuit consisting of wide-
band delays, amplifiers and adders. The low arithmetic com-
plexity of the proposed algorithms will result in correspond-
ingly low circuit complexity for wideband analog multi-beam
beamforming circuits. For purposes of fast verification using
software models, the proposed DVM algorithms assumes a
particular input frequency (i.e., a constant ω) for the incident
waves. Such a simplification allows us to compute the rele-
vant matrix-vector product using a computer based numerical
simulation model.

During software-based numerical verification, we assume
the input signals are over-sampled in time. This is because
all computer models much be discrete in time. For sam-
pled digital signal processing systems, the algorithms can
be applied at a particular value of ω in the temporal fre-
quency domain by first computing temporal FFTs for the
antenna channels, and then applying the DVM algorithm for
each bin of a temporal M-point DFTs. In such temporally-
sampled software/digital implementations, each input xk (t )
becomes xk (e− j2πm/M , t ),m = 0, 1, . . . ,M − 1 and corre-
sponding outputs yk (e− j2πm/M , t ) where t = M�T n for tem-
poral sample period T and M-point temporal FFT block num-
ber n. There needs to be M parallel digital circuits, or M
calls to the DVM algorithm in software realizations of the
fast algorithm to process all of the temporal frequency bins.
There will be call to the DVM algorithm for each temporal
FFT output bin at e− j2πm/M in order to support wideband
operation, and therefore M number of calls to the algorithm
in order to process wideband signals transformed by M-point
temporal FFTs. In our analysis, the code implementations
assume M = 1 because the aim is to numerically model the
efficient DVM algorithm.

The reported arithmetic complexities scale linearly with M
for finer temporal M-point DFTs. For notational simplicity,
we will simply use xk (t ) and yk (t ) for describing the effi-
cient DVM algorithm keeping in mind the above mentioned
details when considering analog circuit or software/digital
implementations.

III. SELF-CONTAINED FACTORIZATIONS AND FAST DVM
BEAMFORMING ALGORITHM
The DVM AN = [αkl ]N,N−1

k=1,l=0, is a Vandermonde structured

matrix with complex entries. Here, we defined α ≡ e− jωτ for
notational convenience. Recall τ = �x/c is a time delay. On
the other hand, the DFT matrix is also a well known Vander-
monde structured matrix having N th roots of unity as nodes. In
contrast to the DFT, however, the DVM does not necessarily
possess nice properties, such as unitary, periodicity, symme-
try, and circular shift.

The DVM is defined using distinct complex nodes
α, α2, . . . , αN and hence it is non-singular. The matrix AN

can be scaled as AN = ÃN DN , where ÃN = [αkl ]N−1
k,l=0 and

DN = diag[αk]N−1
k=0 . In the following, we will provide a
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self-contained sparse factorization for ÃN followed by the
DVM (i.e. AN ) over complex nodes α, α2, . . . , αN .

Lemma 3.1: Let the scaled delay Vandermonde
matrix ÃN,α = [αkl ]N−1

k,l=0 be defined by nodes

{1, α, α2, . . . , αN−1} ∈ C and N = 2t (t ≥ 1). Then ÃN,α can
be factored into

ÃN,α = PT
N

[
Ã N

2 ,α
2

Ã N
2 ,α

2

]⎡⎢⎢⎢⎣
I N

2
C

N
2
N
2

D̃ N
2

α
N
2 C

N
2
N
2

D̃ N
2

⎤
⎥⎥⎥⎦ , (1)

where PN is the even-odd permutation matrix, Ã N
2 ,α

2 =
[α2kl ]

N
2 −1

k,l=0, I N
2

is the identity matrix, D̃ N
2

= diag[αl ]
N
2 −1

l=0 , and
C N

2
is the companion matrix defined by the monic polynomial

p(z) = (z − 1)(z − α2)(z − α4) · · · (z − αN−2)
Proof: We show (1) by divide-and-conquer technique. We

first permute rows of ÃN by multiplying with PN and then
write the result as the block matrices:

PN ÃN,α

=

⎡
⎢⎢⎢⎢⎣

[
α2kl

]N
2 −1

k,l=0

[
α

2k
(

N
2 +l

)]N
2 −1

k,l=0[
α(2k+1)l

]N
2 −1

k,l=0

[
α

(2k+1)
(

N
2 +l

)]N
2 −1

k,l=0

⎤
⎥⎥⎥⎥⎦

(2)

Now, we consider (1,2), (2, 1), and (2, 2) blocks of PN ÃN,α

(2) and represent each of these by Ã N
2 ,α

2 and the product of
diagonal matrices.

For (1,2) block of (2) we get:[
α

2k
(

N
2 +l

)]N
2 −1

k,l=0
= diag(αkN )

N
2 −1

k=0 ·
[
α2kl

]N
2 −1

k,l=0
. (3)

For (2, 1) block of (2) we get:[
α(2k+1)l

]N
2 −1

k,l=0
=
[
α2kl

]N
2 −1

k,l=0
· diag(αl )

N
2 −1

l=0 . (4)

For (2, 2) block of (2) we get:[
α

(2k+1)
(

N
2 +l

)]N
2 −1

k,l=0

= α
N
2 diag(αkN )

N
2 −1

k=0

[
α2kl

]N
2 −1

k,l=0
diag(αl )

N
2 −1

l=0 . (5)

Thus by (3), (4), and (5) we can state (2) as:

PN ÃN,α =

⎡
⎢⎣

Ã N
2 ,α

2 D̂ N
2

Ã N
2 ,α

2

Ã N
2 ,α

2 D̃ N
2

α
N
2 D̂ N

2
Ã N

2 ,α
2 D̃ N

2

⎤
⎥⎦ ,

where D̂ N
2

= diag(αkN )
N
2 −1

k=0 and D̃ N
2

= diag(αl )
N
2 −1

l=0 .

Set p(z) = (z − 1)(z − α2)(z − α4) · · · (z − αN−2) =
z

N
2 +∑ N

2 −1
i=0 wi · zi where wi ∈ C. The following equality

holds

Ã N
2 ,α

2 C N
2

= D̆ N
2

Ã N
2 ,α

2 , (6)

where

C N
2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −w0

1 0 · · · 0 −w1

0 1 · · · 0 −w2
...

...
. . .

...
...

0 0 · · · 1 −w N
2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

is the companion matrix of the polynomial p(z) with coeffi-

cients wi(i = 0, 1, . . . , N
2 − 1) and D̆ N

2
= diag(α2k )

N
2 −1

k=0 . By

using (6), non-singularity of Ã N
2 ,α

2 , and induction on N , one
can easily show

Ã N
2 ,α

2 C
N
2
N
2

= D̆
N
2
N
2

Ã N
2 ,α

2 (8)

for any even number N . Note that, D̆
N
2
N
2

= D̂ N
2

. Thus

PN ÃN,α =

⎡
⎢⎢⎢⎣

Ã N
2 ,α

2 Ã N
2 ,α

2 C
N
2
N
2

Ã N
2 ,α

2 D̃ N
2

α
N
2 ,α

2
Ã N

2 ,α
2 C

N
2
N
2

D̃ N
2

⎤
⎥⎥⎥⎦

and we get the result. �
Corollary 3.2: Let the delay Vandermonde matrix AN,α =

[αkl ]N,N−1
k=1,l=0 be defined by nodes {α, α2, . . . , αN } and N =

2t (t ≥ 1). Then the DVM can be factored into

AN,α = PT
N

[
A N

2 ,α
2

A N
2 ,α

2

][
D̄ N

2

D̄ N
2

]

⎡
⎢⎢⎢⎣

I N
2

C
N
2
N
2

D̃ N
2

α
N
2 C

N
2
N
2

D̃ N
2

⎤
⎥⎥⎥⎦DN

(9)

where A N
2 ,α

2 = [α2kl ]
N
2 ,

N
2 −1

k=1,l=0 and D̄ N
2

= diag[ 1
α2k ]

N
2 −1

k=0 .
Proof: This can easily be seen through the scaling of (1)

by DN and D̄ N
2
. �

Note that in order to compute the companion matrix
C N

2
we have to compute the coefficients of the polyno-

mial p(z) = (z − 1)(z − α2)(z − α4) · · · (z − αN−2) = z
N
2 +∑ N

2 −1
i=0 wi · zi. One can do this by setting p(0)

N
2

(z) = 1 and

p(k+1)
N
2

= (z − α2k )p(k)
N
2

for k = 0, 1, . . . , N
2 − 1. Then take

p
( N

2 )
N
2

(z) which is p(z). The following lemma gives this

procedure.
Lemma 3.3: Let N be an even number, W =

{1, z2, z4, . . . , zN−2}, and q(z) = ∑k
i=1 vi · z2i, where

k ≤ N
2 − 2. Then the coefficients of z2 · q(z) = ∑k+1

i=1 wi · z2i
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can be computed by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0
...

wk+1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

Z O N
2 −1

e N
2 −1 0

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v0
...

vk

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

1 0 0
...

0 1 0
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the lower shift matrix

of size ( N
2 − 1) × ( N

2 − 1), e N
2 −1 =

[
zeros(1, N

2 − 2) 1
]
,

O N
2 −1 = zeros( N

2 − 1, 1)
Proof: It is obvious that polynomials in W satisfy the re-

currence relation zk = z2 · zk−1 for k = 1, 2, . . . , N
2 − 1 with

z0 = 1. By matrix multiplication we can easily get:

z2
[
1 z2 z4 · · · zN−2

]

−
[
1 z2 z4 · · · zN−2

] [ Z O N
2 −1

e N
2 −1 0

]

=
[
0 · · · 0 zN

]
(11)

Multiplying (11) by the column of the coefficients we get the
result. �

Lemma 3.3 can be used to compute the coefficients
of the polynomial p(z) = (z − 1)(z − α2)(z − α4) · · · (z −
αN−2) = z

N
2 +∑ N

2 −1
i=0 wi · zi efficiently. Hence the compan-

ion matrix C N
2

can be computed efficiently using the
Lemma 3.3.

To compute the self-contained DVM factorization, first we
calculate the powers of the companion matrix. We will use the

following result for the calculation of C
N
2
N
2

.

Corollary 3.4: Let N = 2t (t ≥ 2), m = 2k (k ≥ 2), and

C N
2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −w0

1 0 · · · 0 −w1

0 1 · · · 0 −w2
...

...
. . .

...
...

0 0 · · · 1 −w N
2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. Then C
N
2
N
2

can be com-

puted via

Cm
N
2

= C
m
2
N
2

· C
m
2
N
2
, (12)

for 2 ≤ m ≤ N
2 , where wi for i = 0, 1, . . . , N

2 − 1 are com-
puted as in Lemma 3.3.

Proof: One can easily use induction for k ≥ 2 to show
(12). �

Remark 3.5: Although the factorization for the DVM can
be stated as in Corollary 3.2, we should recall here that
the classical Vandermonde matrix (V ) is extremely ill-
conditioned and in fact the condition number of the matrix
V grows exponentially with the size [11], [24], [37]. In this
paper, we will study how bad the complex structured DVM
can be in terms of the choices for nodes in Section V.

We will first state the following algorithm based on Lemma
3.3 to compute the coefficients of the polynomial

p(z) = (z − 1)(z − α2)(z − α4) · · · (z − αN−2)

= z
N
2 +

N
2 −1∑
i=0

wi · zi.
(13)

Later, the coefficients of p(z) will be used to construct the
companion matrix C N

2
defined in (7).

Algorithm 3.6: (com(N, α)).
Input: Even N , and α ∈ C

1) Set
[
w

(0)
0 w

(0)
1 · · · w

(0)
N
2 −1

]
=
[
1 0 · · · 0

]
2) For k = 1 : N1 − 1,⎡

⎢⎢⎢⎢⎣
w

(k)
0

w
(k)
1
...

w
(k)
N1−1

⎤
⎥⎥⎥⎥⎦ =

([
Z ON1−1

eN1−1 0

]
− α2(k−1) · I

)

×

⎡
⎢⎢⎢⎢⎣

w
(k−1)
0

w
(k−1)
1
...

w
(k−1)
N1−1

⎤
⎥⎥⎥⎥⎦

3) Take
[
w0 w1 · · · wN1−1

]
=[

w
(N1−1)
0 w

(N1−1)
1 · · · w

(N1−1)
N1−1

]
Output: Coefficients of p(z) (except the leading coeffi-
cient as p(z) is monic) i.e. {w0,w1,w2, . . . ,wN1−1}
satisfying 13.

We will use the output of Algorithm 3.6 (i.e. com(N, α))
to construct the companion matrix CN1 (7). Following the
self-contained DVM factorization (9), one has to compute
the powers of the companion matrix CN1 (7). Corollary 3.4
suggests the following algorithm to compute Cm

N1
for 2 ≤ m ≤

N1, where m = 2t1 (t1 ≥ 1).

Algorithm 3.7: (comp(N, α))

Input: N = 2t (≥ 1), N1 = N
2 , and α ∈ C

1) Set w =
[
w0 w1 · · · wN1−1

]
and

CN1 =

⎡
⎢⎣
[

Z
eN1−1

]
−w

⎤
⎥⎦
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2) for m = 2 : N1

Cm
N1

= C
m
2

N1
C

m
2

N1
end

Output: CN1
N1

.

We will use the output of the Algorithm 3.7 (i.e.

comp(N, α)) to construct C̃N s.t. C̃N =

⎡
⎢⎣ IN1 CN1

N1

D̃N1 α
N1 CN1

N1
D̃N1

⎤
⎥⎦

for all N ≥ 4. The self-contained factorization for the scaled
DVM i.e. Lemma 3.1 together with algorithms 3.6 and 3.7
lead us to establish a recursive radix-2 scaled DVM algorithm
to compute ÃN,α = [αkl ]N−1

k,l=0 as stated next.

Algorithm 3.8: (sdvm(N, α, z)).

Input: N = 2t (t ≥ 1), N1 = N
2 , α ∈ C, and

z ∈ Rn or Cn.
1) Set C̃N .
2) If N = 2, then

y =
[

1 1

1 α

]
z.

3) If N ≥ 4, then
u := C̃N z,
v1 := sdvm(N1, α

2, [ui]
N1−1
i=0 ),

v2 := sdvm(N1, α
2, [ui]N

i=N1
),

y := PT
N (v1T , v2T )T .

Output: y = ÃN,αz.

Remark 3.6: Recall that the delay Vandermonde matrix
(i.e. AN,α) and scaled delay Vandermonde matrix (i.e. ÃN,α)
is related via AN,α = ÃN,α · DN , where DN = diag(αk )N−1

k=0 .
Thus, once the Algorithm 3.8 is executed, we can scale the
output of the algorithm by DN to obtain a DVM algorithm.
Although the computational cost of the DVM algorithm re-
duces in this fashion, the resulting DVM algorithm won’t be
self-recursive.

In the following we will state a recursive radix-2 DVM
algorithm with the help of Corollary 3.2, algorithms 3.6, and

3.7. For notation convenience, we define ¯̄DN =
[

D̄N1

D̄N1

]
for all N ≥ 4.

Algorithm 3.10: (dvm(N, α, z)).

Input: N = 2t (t ≥ 1), N1 = N
2 , α ∈ C, and

z ∈ Rn or Cn.
1) Set DN , C̃N , and ¯̄DN .
2) If N = 2, then

y =
[

1 α

1 α2

]
z.

3) If N ≥ 4, then
u := DN z,
v := C̃N u,
r := ¯̄DNv,

s1 := dvm(N1, α
2, [ri]

N1−1
i=0 ),

s2 := dvm(N1, α
2, [ri]N

i=N1
),

y := PT
N (s1T , s2T )T .

Output: y = AN,αz.

IV. COMPLEXITY OF DVM ALGORITHMS
The number of additions and multiplications required to carry
out a computation is called the arithmetic complexity. In
this section the arithmetic complexities of the proposed self-
recursive scaled DVM and DVM algorithms are established.

A. ARITHMETIC COMPLEXITY OF DVM ALGORITHMS
Here we analyze the arithmetic complexity of the self-
recursive scaled DVM and DVM algorithms presented in
Section III. Let #a and #m denote the number of complex ad-
ditions and complex multiplications, respectively, required to
compute y = ÃN,αz or y = AN,αz for scaled DVM and DVM.
Note that we do not count multiplication by ±1, ±√−1, and
permutation.

Lemma 4.1: Let N = 2t (t ≥ 2) be given. The arithmetic
complexity on computing the scaled DVM Algorithm 3.8 is
given by

#a(sDV M,N ) = 1

2

(
Nt + 4t − N

)
,

#m(sDV M,N ) = 3

2
Nt + 1

2
4t − 2N. (14)

Proof: Referring to the sdvm(N, α, z) algorithm, we get

#a(sDVM,N ) = 2 · #a

(
sDVM,

N

2

)
+ #a

(
C̃N
)
. (15)

The matrix C̃ is constructed using D̃ and C
N
2 . Moreover,

to compute the powers of the Companion matrix C
N
2 we

have used the divide-and-conquer technique via algorithm
comp(N, α). Since m = 2t in algorithm comp(N, α), by
solving a homogeneous first order linear difference equa-
tion with respect to t (t ≥ 1) (i.e. for m = 2t (t ≥ 1) solving
#a/#m(Cm, 2t ) − 2 · #a/#m(Cm, 2t−1) = 0 with initial con-
dition #a(Cm, 2) = m − 1 or #m(Cm, 2) = m respectively),
we could obtain #a(Cm) = m2

2 − m
2 and #m(Cm) = m2

2 . This

fact together with the construction of C̃ using D̃ and C
N
2 , and

m = N
2 gives us:

#a
(
C̃N
) = N2

4 + N
2 , #m

(
C̃N
) = N2

4 + 3N
2

(16)

Using the above result we can write (15) as

#a(sDVM,N ) = 2 · #a

(
sDVM,

N

2

)
+ N2

4
+ N

2

Since N = 2t , the above simplifies to the first order difference
equation with respect to t ≥ 2

#a(sDVM, 2t ) − 2 · #a
(
sDVM, 2t−1) = 4t−1 + 2t−1.
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Solving the above difference equation using the initial condi-
tion #a(sDVM, 2) = 2, we can obtain

#a(sDVM, 2t ) = 1

2
Nt + 1

2
4t − 1

2
N.

Referring the scaled DVM Algorithm 3.8 and (16), we could
obtain another first order difference equation with respect to
t ≥ 2

#m(sDVM, 2t ) − 2 · #m
(
sDVM, 2t−1) = 4t−1 + 3 · 2t−1.

Solving the above difference equation using the initial condi-
tion #m(sDVM, 2) = 1, we can obtain

#m(sDVM, 2t ) = 3

2
Nt + 1

2
4t − 2N.

�
Lemma 4.2: Let N = 2t (≥ 2), The arithmetic complexity

on computing the DVM Algorithm 3.10 is given by

#a(DV M,N ) = 1

2

(
Nt + 4t − N

)
,

#m(DV M,N ) = 7

2
Nt + 1

2
4t − 7

2
N. (17)

Proof: Referring to the dvm(N, α, z) algorithm, we get

#a(DVM,N ) = 2 · #a

(
DVM,

N

2

)
+ #a (DN )

+ #a
(
C̃N
)+ #a

(
¯̄DN

)
(18)

By following the structures of DN and ¯̄DN we get

#a (DN ) = 0, #m (DN ) = N

#a
(

¯̄DN

)
= 0, #m

(
¯̄DN

)
= N

(19)

Thus by using the above and (16), we could state (18) as the
first order difference equation with respect to t ≥ 1

#a(DVM, 2t ) − 2 · #a
(
DVM, 2t−1) = 4t−1 + 2t−1.

Solving the above difference equation using the initial condi-
tion #a(DVM, 2) = 2, we can obtain

#a(DVM, 2t ) = 1

2
Nt + 1

2
4t − 1

2
N.

Now by using the dvm(N, α, z) algorithm, (16), and (19),
we could obtain another first order difference equation with
respect to t ≥ 2

#m(DVM, 2t ) − 2 · #m
(
DVM, 2t−1) = 4t−1 + 7 · 2t−1.

Solving the above difference equation using the initial condi-
tion #m(DVM, 2) = 2, we can obtain

#m(DVM, 2t ) = 7

2
Nt + 1

2
4t − 7

2
N.

�

FIGURE 2. Addition and multiplication counts in computing the scaled
DVM and DVM algorithms vs the direct matrix-vector computation.

B. NUMERICAL RESULTS FOR THE COMPLEXITY OF
DVM ALGORITHMS
Numerical results for the arithmetic complexity of the pro-
posed algorithms derived via Lemma 4.1 and 4.2 will be
shown in this section. Figure 2 shows the arithmetic com-
plexity of the proposed algorithms vs the direct matrix-vector
computations with the matrix size varying from 4 × 4 to
4096 × 4096. We consider the direct computation of the ma-
trix ÃN by the vector z cost N (N − 1) additions and multi-
plications (refer to Direct sDVM in Figure 2) and, the matrix
AN by the vector z cost N (N − 1) additions and N2 multi-
plications (refer to Direct DVM in Figure 2). Following the
Figure 2, the scaled DVM and DVM algorithms have the same
addition counts and the similar multiplication counts. When
the size of the matrices increases the proposed algorithms
require fewer addition and multiplication counts as opposed
to the direct matrix-vector computation. Moreover, for large
N , the proposed algorithms have saved ≈ 50% of addition
and multiplication counts as opposed to the direct brute-force
matrix-vector calculation. As we couldn’t distinguish the ex-
plicit addition and multiplication counts between the proposed
algorithms through the Figure 2, we have included the explicit
counts using the Tables II and III in Appendix VII. These
counts are based on the results obtained in Lemma 4.1 and
4.2.

V. ANALYTIC AND NUMERICAL ERROR BOUNDS OF
DVM ALGORITHMS
A. THEORETICAL BOUNDS
Error bounds of computing the scaled DVM and DVM algo-
rithms is the main concern in this section. To do so, we use the
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perturbation of the product of matrices (stated in [14]). Fol-
lowing the sdvm(N, α, z) and dvm(N, α, z) algorithms, we
have to compute weights αk for k = 0, 1, . . . ,N − 1. These
weights affect the accuracy of the DVM algorithms. Thus, we
will assume that the computed weights α̂k are used and satisfy
for all k = 0, 1, . . . ,N − 1

α̂k = αk + εk, |εk| ≤ μ, (20)

where μ := cu, u is the unit roundoff, and c is a constant that
depends on the method [38].

Let’s recall the perturbation of the product of matrices
stated in [14, Lemma 3.7] i.e. if Ak +�Ak ∈ RN×N satisfies
|�Ak| ≤ δk|Ak| for all k, then∣∣∣∣

m∏
k=0

(Ak +�Ak ) −
m∏

k=0

Ak

∣∣∣∣ ≤
(

m∏
k=0

(1 + δk ) − 1

)
m∏

k=0

∣∣∣∣Ak

∣∣∣∣,
where |δk| < u. Moreover, recall

∏N
k=1(1 + δk )±1 =

1 + θN where |θN | ≤ Nu
1−Nu =: γN and γk + u ≤ γk+1,

γk + γ j + γkγ j ≤ γk+ j from [14, Lemma 3.1 and
Lemma 3.3], and for x, y ∈ C, f l (x ± y) = (x + y)(1 + δ)
where |δ| ≤ u, f l (xy) = (xy)(1 + δ) where |δ| ≤ √

2γ2

from [14, Lemma 3.5].
In the following, we will prove the error bound on comput-

ing the scaled DVM and DVM algorithms.
Theorem 5.1: Let ŷ = f l (ÃN z), where N = 2t (t ≥ 2), be

computed using the sdvm(N, α, z) algorithm, and assume that
(20) holds. Then

|y − ŷ| ≤ tη

1 − tη
|P(0)| |P(1)| · · · |P(t − 2)| ∣∣Ã(t − 1)

∣∣
∣∣C̃(t − 2)

∣∣ · · · ∣∣C̃(1)
∣∣ ∣∣C̃(0)

∣∣ |z| , (21)

where η = (μ+ γ2t (1 + μ)).
Proof: Using the sdvm(N, α, z) algorithm and the com-

puted matrices ̂̃C(s) at the step numbers (number of exe-
cutions/iterations of the algorithm) s = 0, 1, 2, . . . , t − 2 in
terms of computed weights α̂k for k = 0, 1 · · · ,N − 1, we get

ŷ = f l

(
P(0) P(1) · · · P(t − 2) ̂̃A(t − 1)

× ̂̃C(t − 2) · · · ̂̃C(2)̂̃C(1)̂̃C(0) z
)

= P(0) P(1) · · · P(t − 2)
(̂̃A(t − 1) +�

̂̃A(t − 1)
)

×
(̂̃C(t − 2) +�

̂̃C(t − 2)
)

· · ·
(̂̃C(2) +�

̂̃C(2)
)

×
(̂̃C(1) +�

̂̃C(1)
) (̂̃C(0) +�

̂̃C(0)
)

z,

where P(s) := 2s block diagonal matrices of PT
2t−s and̂̃C(s) := 2s computed block diagonal matrices of C̃2t−s . Us-

ing the fact that each C̃(s) is computed using the powers of
companion matrix C

N
2 with 2t−1−s non-zero entry per row, D̃

with each one having one non-zero entry per row, and weight

αk , we get∣∣∣�̂̃C(s)
∣∣∣ ≤ γ2t−1−s+3

∣∣∣̂̃C(s)
∣∣∣ for s = 0, 1, . . . , t − 2. (22)

with the use of complex arithmetic. By considering the com-
puted weights α̂k and evaluation at the weight α2 in each step
i.e. using (20);

̂̃C(s) = C̃(s) +�C̃(s), |�C̃(s)| ≤ μ|C̃(s)|. (23)

Since ̂̃A(t − 1) has 2t−1 block diagonal matrices of

[
1 1

1 α

]
,

we get ∣∣∣�̂̃A(t − 1)
∣∣∣ ≤ γ3

∣∣Ã(t − 1)
∣∣ .

By evaluating ̂̃A(t − 1) at the weight α2 in each step, we
obtain

̂̃A(s) = Ã(s) +�Ã(s), |�Ã(s)| ≤ μ|Ã(s)|.
Thus overall,

ŷ = P(0) P(1) · · · P(t − 2)(Ã(t − 1) + E(t − 1))

× (C̃(t − 2) + E(t − 2)) · · · (C̃(1) + E(1))(C̃(0) + E(0))z,

where |E(s)| ≤ (μ+ γ2t (1 + μ))|C̃(s)| for s = 0, 1, . . . , (t −
2) and |E(t − 1)| ≤ (μ+ γ3(1 + μ))|Ã(t − 1)|. Let η =
(μ+ γ2t (1 + μ)). Hence

|y − ŷ| ≤ [
(1 + η)t − 1

] |P(0)| |P(1)| · · · |P(t − 2)|
× ∣∣Ã(t − 1)

∣∣ ∣∣C̃(t − 2)
∣∣ · · · ∣∣C̃(1)

∣∣ ∣∣C̃(0)
∣∣ |z|

≤ tη

1 − tη
|P(0)| |P(1)| · · · |P(t − 2)| ∣∣Ã(t − 1)

∣∣
× ∣∣C̃(t − 2)

∣∣ · · · ∣∣C̃(1)
∣∣ ∣∣C̃(0)

∣∣ |z|
Hence the result. �

Theorem 5.2: Let ŷ = f l (AN z), where N = 2t (t ≥ 2), be
computed using the dvm(N, α, z) algorithm, and assume that
(20) holds. Then

|y − ŷ| ≤ (3t − 2)η

1 − (3t − 2)η
|P(0)| |P(1)| · · · |P(t − 2)|

× |A(t − 1)|
∣∣∣ ¯̄D(t − 2)

∣∣∣ · · · ∣∣∣ ¯̄D(1)
∣∣∣ ∣∣∣ ¯̄D(0)

∣∣∣
× ∣∣C̃(t − 2)

∣∣ · · · ∣∣C̃(1)
∣∣ ∣∣C̃(0)

∣∣
× |D(t − 2)| · · · |D(1)| |D(0)| |z| (24)

where η = (μ+ γ2t (1 + μ)).
Proof: Using the dvm(N, α, z) algorithm and the com-

puted matrices
̂̄̄
D(s), ̂̃C(s), and D̂(s) at the step numbers (ex-

ecution/iteration step of the algorithm) s = 0, 1, . . . , t − 2 in
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terms of computed weights α̂k for k = 0, 1 . . . ,N − 1, we get

ŷ = f l

(
P(0) P(1) · · · P(t − 2) Â(t − 1)

× ̂̄̄
D(t − 2) · · · ̂̄̄D(2)

̂̄̄
D(1)

̂̄̄
D(0)

× ̂̃C(t − 2) · · · ̂̃CN (2)̂̃C(1)̂̃C(0)

× D̂(t − 2) · · · D̂N (2)D̂(1)D̂(0) z
)

= P(0) P(1) · · · P(t − 2)
(
Â(t − 1) +�Â(t − 1)

)
×
(̂̄̄

D(t − 2) +�
̂̄̄
D(t − 2)

)
· · ·
(̂̄̄

D(2) +�
̂̄̄
D(2)

)
×
(̂̄̄

D(1) +�
̂̄̄
D(1)

) (̂̄̄
D(0) +�

̂̄̄
D(0)

)
×
(̂̃C(t − 2) +�

̂̃C(t − 2)
)

· · ·
(̂̃C(2) +�

̂̃C(2)
)

×
(̂̃C(1) +�

̂̃C(1)
) (̂̃C(0) +�

̂̃C(0)
)

× (
D̂(t − 2) +�D̂(t − 2)

) · · · (D̂(2) +�D̂(2)
)

× (
D̂(1) +�D̂(1)

) (
D̂(0) +�D̂(0)

)
z.

where P(s) := 2s block diagonal matrices of PT
2t−s ,

̂̄̄
D(s) :=

2s computed block diagonal matrices of ¯̄D2t−s , ̂̃C(s) := 2s

computed block diagonal matrices of C̃2t−s , and D̂(s) := 2s

computed block diagonal matrices of D2t−s . Using the fact
that each ¯̄D(s) and D(s) have one non-zero entry per row and
following complex arithmetic, we get

∣∣∣�̂̄̄D(s)
∣∣∣ ≤ γ2

∣∣∣̂̄̄D(s)
∣∣∣ for s = 0, 1, . . . , t − 2.

and∣∣�D̂(s)
∣∣ ≤ γ2

∣∣D̂(s)
∣∣ for s = 0, 1, . . . , t − 2.

By considering the computed weights α̂k and evaluation at the
weight α2 in each step i.e. using (20), we have

̂̄̄
D(s) = ¯̄D(s) +� ¯̄D(s), |� ¯̄D(s)| ≤ μ| ¯̄D(s)|

and
D̂(s) = D(s) +�D(s), |�D(s)| ≤ μ|D(s)|.

Since Â(t − 1) has 2t−1 block diagonal matrices of

[
1 α

1 α2

]
,

we get

∣∣�Â(t − 1)
∣∣ ≤ γ4 |A(t − 1)| .

By evaluating Â(t − 1) at the weight α2 in each step, we
obtain

Â(s) = A(s) +�A(s), |�A(s)| ≤ μ|Ã(s)|.

Together with (22) and (23) and overall,

ŷ = P(0) P(1) · · · P(t − 2)(A(t − 1) + E(t − 1))

× ( ¯̄D(t − 2) + E1(t − 2)) · · · ( ¯̄D(0) + E1(0))

× (C̃(t − 2) + E2(t − 2)) · · · (C̃(0) + E2(0))

× (D(t − 2) + E3(t − 2)) · · · (D(0) + E3(0))z,

where |E1(s)| ≤ (μ+ γ2(1 + μ))| ¯̄D(s)|, |E2(s)| ≤
(μ+ γ2t (1 + μ))|C̃(s)|, and |E3(s)| ≤ (μ+ γ2(1 +
μ))|D(s)| for s = 0, 1, 2, · · · (t − 2) and |E(t − 1)| ≤
(μ+ γ4(1 + μ))|A(t − 1)|. Let η = (μ+ γ2t (1 + μ)) and
η1 = (μ+ γ4(1 + μ)). Hence

|y − ŷ| ≤ [
(1 + η)t−1(1 + η1)2t−1 − 1

] |P(0)| · · · |P(t − 2)|

× |A(t − 1)|
∣∣∣ ¯̄D(t − 2)

∣∣∣ · · · ∣∣∣ ¯̄D(1)
∣∣∣ ∣∣∣ ¯̄D(0)

∣∣∣
× ∣∣C̃(t − 2)

∣∣ · · · ∣∣C̃(1)
∣∣ ∣∣C̃(0)

∣∣
× |D(t − 2)| · · · |D(1)| |D(0)| |z|

≤ (3t − 2)η

1 − (3t − 2)η
|P(0)| |P(1)| · · · |P(t − 2)|

× |A(t − 1)|
∣∣∣ ¯̄D(t − 2)

∣∣∣ · · · ∣∣∣ ¯̄D(1)
∣∣∣ ∣∣∣ ¯̄D(0)

∣∣∣
× ∣∣C̃(t − 2)

∣∣ · · · ∣∣C̃(1)
∣∣ ∣∣C̃(0)

∣∣
× |D(t − 2)| · · · |D(1)| |D(0)| |z|

Hence the result. �
Lemma 5.1 shows that the forward error bound of the pro-

posed scaled DVM algorithm depends on the size of the ma-
trices N , norms of the matrices C̃(k) for k = 0, 1, . . . , t − 2,
and the computed weights. Also, Lemma 5.2 shows that the
forward error bound of the proposed DVM algorithm depends
on the size of the matrices N , norms of the matrices ¯̄D(k),
C̃(k), and D(k) for k = 0, 1, . . . , t − 2, and the computed
weights. Thus, the error bound of the proposed scaled DVM
and DVM algorithms rapidly increase with the size of the
matrices and norms of the powers of matrices. Hence, the
proposed algorithms can not be computed stably for large
matrices. This will further be shown through the numerical
results in Section V-B.

B. NUMERICAL RESULTS
In this section, we state numerical results in connection to
the stability of the proposed Algorithm 3.10 using MATLAB
(R2014a version) with machine precision 2.2204e-16. For-
ward error results are presented by taking the exact solutions
as the output of the scaled DVM or DVM algorithm com-
puted with the double precision and the computed value as
the output of the proposed sdvm(N, α, z) or dvm(N, α, z)
algorithms with single precision. We will show numerical
results for matrix sizes from 4 × 4 to 128 × 128 with |α| = 1.
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TABLE 1. Forward Error in Calculating the Scaled DVM and DVM

Algorithms With α = e− πi
32 , Uniformly Distributed Random Input in the

Interval (0,1), Say z1 for Each N, and Uniformly Distributed Random Input
With Real and Imaginary Parts in the Interval (0,1) for Each N, Say z2

We compare the relative forward error e of the proposed
scaled DVM and DVM algorithms defined by

e = ‖y − ŷ‖2

‖y‖2
,

where y = ÃN z or y = AN z is the exact solution computed
using the scaled DVM or DVM algorithm, respectively, with
double precision and ŷ is the computed solution of the al-
gorithms sdvm(N, α, z) or dvm(N, α, z), respectively, with
single precision.

Table I shows numerical results for the forward error of the
proposed sdvm(N, α, z) and dvm(N, α, z) algorithms with
|α| = 1, and random real and complex inputs z1 and z2, re-
spectively, of the scaled DVM and DVM, say Err-sDVM and
Err-DVM, respectively.

As shown in Table I, when α = e− π i
32 and N ≥ 128, the

MATLAB output will produce NaN for the forward error
of the proposed algorithms. This is because the nodes will
be repeated and hence the resulting singular matrices while
the proposed algorithms are executed for N > 64. Even if
α 	= e− π i

32 , but |α| = 1 and not a root of unity, we have to com-
pute very large powers of matrices (recall that we compute
powers of companion matrices having large powers of α’s)
and differences of close numbers. Thus, the entries resulting
from such operations cannot be represented as conventional
floating-point values and hence lead to undefined numerical
values through MATLAB output. This is also evident from
the theoretical error bounds obtained in Section V.

VI. FUTURE ENGINEERING TASKS
A. ANALOG AND/OR DIGITAL CIRCUITS THAT REALIZE THE
DVM ALGORITHM
Engineering applications require the real-time implementa-
tion of the DVM algorithm using a variety of computational
platforms. High-speed applications revolving around wireless
communications and radar systems typically necessitate ana-
log implementations, which operate on analog signals from
an array of sensors, such as antennas. These analog imple-
mentations typically employ approximations to ideal time
delays in the signal flow graphs, using techniques such as
transmission line segments, passive resistor-capacitor lattice
filters, or other types of analog delays. Analog realizations, in
their most direct form, utilize microwave transmission lines

to implement the delays. A microwave transmission line of
length l approximates to sufficient accuracy the time delay
T where T = αl/c for which α ≤ 1 is the velocity factor of
the transmission line. Typically, these transmission lines can
be a length of cable of copper track (coplanar waveguide) on
a printed circuit board. When the physical size requirements
necessitate smaller circuits, transmission lines can be approx-
imated using analog all-pass filters that can be implemented
using integrated circuits [1], [41].

Unlike analog DVM circuits requiring delays, digital DVM
implementations, may either be in software, using computer
software realizations where the speeds of operation are rel-
atively low (for example, graphics processor units), or in
custom digital hardware integrated circuits, for high-speed
realizations based on very large scale integration. In both
cases, the true time delays found as a basic building block of
the DVM algorithm will be approximated using discrete time
interpolation filters [27]. For example, various time delays
can be rational fractions of the digital systems clock sample
period, and can therefore be approximately realized using both
finite impulse response digital interpolation filters as well as
infinite impulse response digital interpolation filters. A de-
tailed discussion of the possible approaches for real-time im-
plementation of the DVM algorithms, albeit analog or digital,
remains for a future exploration.

B. LOW-COMPLEXITY ALGORITHMS BASED ON
MATRIX APPROXIMATION
In several applied contexts, the physics of the problem admits
an appreciable level of error tolerance. For instance, this is
illustrated in the context of still image compression [6], video
encoding [7], beamforming [34], motion tracking [10], and
biomedical image processing [8]. Therefore, the exact oper-
ation of a given matrix computation can be relaxed into an
approximate calculation that is carefully tailored to demand
a lower arithmetic complexity when compared to the original
exact computation. This can be accomplished by deriving an
approximate matrix based on the exact matrix.

Approximate matrices can be designed by several methods,
including rough inspection, number representation in dyadic
rationals, and integer optimization, to cite a few. Integer op-
timization is often the method of choice due to its generality.
The general framework is described as follows:

T̂∗ = arg min
T̂∈MP (N )

error(T̂,T) (25)

where T is the matrix to be approximated and T̂ is a candidate
matrix defined over a low-complexity matrix set [35]. The
error function is closely linked to the physics of the context
where the approximation is intended to be applied. Common
error functions are the Frobenius norm or the mean square
error [7]. The search space MP(N ) is the set of N × N ma-
trices with entries defined over the low-complexity integer
set P. A particular common choice for the set P includes
the set of trivial multiplicands P1 = {0,±1,±2} [5] or P2

1 for
approximations over complex integers [34].
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For the DVM matrices, there are two major approaches
for deriving approximations: (i) directly approximating the
non-factorized delay Vandermonde matrix by means of solv-
ing (25) and (ii) approximating only the non-trivial multipliers
in the DVM factorized form (Corollary 3.2). The former ap-
proach has the advantage of being less restrictive, but a fast
algorithm (factorization) of the obtained approximation is left
to be derived. On the other hand, by approximating from the
factorized form, one has the fast algorithm readily available
by construction, however the derived approximation is tied
to the particular structure of the considered factorization. As
demonstrated in the context of trigonometric discrete trans-
forms, approximations lead to a tunable trade-off between
performance and arithmetic complexity, often resulting in dra-
matic reductions in computational cost. DVM matrices could
benefit from similar strategies.

VII. CONCLUSION
We have proposed an efficient and self-recursive DVM algo-
rithm having sparse factors. Arithmetic complexities of the
proposed algorithm are provided to show that the proposed
algorithm is much more efficient than the direct computation
of DVM by a vector. The theoretical error bound on comput-
ing the proposed algorithm is established. Numerical results
of the forward relative error are utilized to analyze the stability
of the proposed algorithm. The proposed algorithm lowers the
computational complexity of the computation of N parallel RF
beams using an array of antennas as detailed in the preceding
analysis. Engineering approaches to real-time implementation
of the proposed fast algorithms generally take two forms: 1)
analog implementations, employing signals which are contin-
uous in time, continuous in their range, and free of aliasing
and quantization effects, and 2) digital implementations, em-
ploying signals which are discrete in time (i.e., sampled se-
quences), discrete in their range (e.g., quantized to be in a set
of known values), and therefore susceptible to both aliasing
and quantization noise. Typically, discrete domain signals are
processed using digital electronics and software, while analog
signals are processed using RF integrated circuits, microwave-
and mm-wave passive circuits, or photonic integrated circuits.
The algorithms proposed here are agnostic to the type of im-
plementation and lend themselves to all types of engineering
approaches based on photonics, analog circuits and digital
systems, and hybrids thereof. The potential applications of
such systems span emerging 5G/6G wireless networks, wire-
less IoT, CPS, radio astronomy instrumentation, radar and
wireless sensing systems, among others.

APPENDIX A
ADDITION AND MULTIPLICATION COUNTS
The explicit addition and multiplication counts of the pro-
posed scaled DVM and DVM algorithms (proved in Lemma
4.1 and 4.2) opposed to the direct matrix-vector (which we
call as the Direct Add and Direct Multi) computation are
shown in Tables II and 3).

TABLE 2. Arithmetic Complexity of the Scaled DVM Algorithm vs Direct
Computation

TABLE 3. Arithmetic Complexity of the DVM Algorithm vs Direct
Computation

APPENDIX B
FREQUENTLY USED ABBREVIATIONS AND NOTATIONS
A. ABBREVIATIONS

Cyberphysical systems CPS
Delay Vandermonde matrix DVM
Discrete Fourier transform DFT
Fast Fourier transform FFT
Forward error of the DVM algorithm Err-DVM
Forward error of the scaled DVM algorithm Err-sDVM
Integrated circuit IC
Internet of things IoT
mm wave mmW
multiple-input multiple-output MIMO
radio-frequency RF
Scaled delay Vandermonde matrix sDVM
Signal to noise ratio SNR

B. NOTATIONS

Circular frequency ω

Companion matrix of p(z) C N
2

Diagonal matrix D̃ N
2

= diag[αl ]
N
2 −1

l=0
DVM AN := AN,α =

[αkl ]N,N−1
k=1,l=0

DVM algorithm dvm(N, α, z)
Node α ≡ e− jωτ

Number of additions in computing #a(DV M,N )
DVM algorithm
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Number of additions
in computing #a(sDV M,N )
scaled DVM algorithm
Number of multiplications
in computing #m(DV M,N )
DVM algorithm
Number of multiplications
in computing #m(sDV M,N )
scaled DVM algorithm
Polynomial with zeros α2k p(z)
Scaled DVM ÃN := ÃN,α =

[αkl ]N−1
k,l=0

Scaled DVM algorithm sdvm(N, α, z)
Speed of light c
Temporal frequency f
true-time-delay τ
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