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ABSTRACT The Fiedler vector is the eigenvector associated with the algebraic connectivity of the graph
Laplacian. It is central to graph analysis as it provides substantial information to learn the latent structure of
a graph. In real-world applications, however, the data may be subject to heavy-tailed noise and outliers which
deteriorate the structure of the Fiedler vector estimate and lead to a breakdown of popular methods. Thus, we
propose a Robust Regularized Locality Preserving Indexing (RRLPI) Fiedler vector estimation method that
approximates the nonlinear manifold structure of the Laplace Beltrami operator while minimizing the impact
of outliers. To achieve this aim, an analysis of the effects of two fundamental outlier types on the eigen-
decomposition of block affinity matrices is conducted. Then, an error model is formulated based on which
the RRLPI method is developed. It includes an unsupervised regularization parameter selection algorithm that
leverages the geometric structure of the projection space. The performance is benchmarked against existing
methods in terms of detection probability, partitioning quality, image segmentation capability, robustness and
computation time using a large variety of synthetic and real data experiments.

INDEX TERMS Dimension reduction, eigen-decomposition, eigenvectors, Fiedler vector, locality preserving
indexing.

I. INTRODUCTION
The Fiedler vector of a connected graph is the eigenvector
associated with the second smallest eigenvalue, the so called
Fiedler value, of the graph Laplacian matrix. The Fiedler
vector and the Fiedler value provide important information
for estimating [1], [2], [3] and controlling [4], [5], [6] the
algebraic connectivity of a graph, finding densely connected
groups of vertices that are hidden in the graph structure
[7], [8], [9], [10], and representing the implicit relationships
between variables in a low-dimensional space [11], [12].
Due to its central role in graph analysis, the computation of
the Fiedler vector has been a fundamental research area for
decades [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40].

A popular method to embed data-points into a low-
dimensional space is Laplacian eigenmaps (LE) [39] method

for which the embedding is performed based on the eigen-
decomposition of Laplacian matrix. It can therefore also be
used for Fiedler vector computation. The LE performs a non-
linear dimensionality reduction while preserving the local
neighborhood information in a certain sense, and it explicitly
reveals the manifold structure [40]. An alternative approach is
that of locality preserving indexing (LPI) [15], which trans-
forms the nonlinear dimensionality reduction in the Laplace
Beltrami operator into a linear system of equations. LPI
requires a complete singular value decomposition (SVD), re-
sulting in a considerable computational complexity, which is
why computationally more attractive alternative approaches
have been proposed in [17], [30]. However, the performance
of [17] strongly depends on the penalty parameter selection.

In addition to challenges arising from computational com-
plexity and the setting of the penalty parameter, in real-world
scenarios, outliers and heavy-tailed noise may obscure the
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TAŞTAN ET AL.: ROBUST REGULARIZED LOCALITY PRESERVING INDEXING FOR FIEDLER VECTOR ESTIMATION

FIGURE 1. Examplary image segmentation result comparing the popular Laplacian eigenmaps (LE) [39] and the proposed Robust Regularized Locality
Preserving Indexing (RRLPI) methods for Fiedler vector estimation.

graph structure that represents the clean data. Consequently,
the computed Fiedler vectors are corrupted, and embeddings
based on these vectors no longer provide useful information
about the majority of the data set, as they are dominated by
outliers. Therefore, robust Fiedler vector estimation methods
are needed. One popular strategy is to mitigate the effects
of outliers in the representation space by restructuring the
affinity matrix based on prior information, such as, the number
of clusters [41], [42] and the level of sparsity [21], [41],
[42], [43], [44] that plays a crucial role in the structure of
the eigenvectors. However, it becomes very challenging to
determine such prior information, especially in the presence
of outliers and heavy-tailed noise that may completely ob-
scure the underlying structure. Alternatively, outliers can be
suppressed in the projection space, such as in [19], [20],
[21], [32], [45]. However, most of these approaches, again,
require prior knowledge, e.g., the label information of a
data set [19], [20] or data dependent parameter tuning to
determine the descriptive features [21]. Moreover, the ro-
bust projection operation in [45], uses the �1 norm that
creates a different eigenbasis and requires prior informa-
tion about the data, i.e. representative samples. The robust
locality preserving feature mapping (RLPFM) approach in
[32] preserves the �2 norm and builds upon M-estimation to
suppress the outliers. However, it performs M-estimation of
the eigenvectors by iteratively reweighting the residuals of
Laplacian eigenmaps-based prediction which results in a large
computation cost.

Contributions: To address these issues of the above dis-
cussed methods, we propose a new Robust Regularized
Locality Preserving Indexing (RRLPI) method for Fiedler
vector estimation. The key idea is to provide robustness in the
embedding space by transforming the Fiedler vector estima-
tion problem into a linear system of equations that reveals the
hidden group structure in a given graph without assuming any
prior knowledge or available training data. Motivated by the
importance of the sparsity level in the Fiedler vector struc-
ture, we begin by distinguishing fundamental outlier types
and investigate how their occurrence depends on the deter-
mined sparsity level. This analysis of the effects of outliers

on the eigen-decomposition enables us to understand how to
best integrate robustness into the Fiedler vector computation.
Based on our analysis, we show that the weighted node degree
of a vertex is a valuable information to identify an outlier.
Therefore, an error model is formulated based on the typical
weighted node degree of a graph. Unlike other embedding
approaches whose performance strongly depends on correctly
setting parameters with the help of prior knowledge, e.g., [17],
[19], [20], [21], our penalty parameter determination is for-
mulated as part of the optimization (similar to [32]) based on
�-separated sets [46] which are defined based on geometric
analysis of well-separated �2

2 representations. However, in
contrast to RLPFM [32], RRLPI robustly estimates the Fiedler
vector based on the typical weighted node degree of the graph,
which incorporates the weighting operation into a single step
and makes the proposed method computationally efficient in
comparison to [32].

Illustrating example: An image segmentation application
illustrating the need for robust Fiedler vector estimation is
provided in Fig. 1. Starting from an original image including
birds and background (sky), the aim clearly is to assign birds
and the background into different segments. To this end, the
image is represented as graph and the Fiedler vectors are
computed using RRLPI (top) and LE (bottom). The resulting
Fiedler vectors are then clustered into two groups. As can
be seen, the LE based Fiedler vector computation results in
assigning outlying entries of the Fiedler vector as one small
cluster while merging birds and background in a second big
cluster. By contrast, the robustly estimated Fiedler vector us-
ing the proposed RRLPI method provides the correct structure
in the Fiedler vector estimate to enable the desired segmen-
tation into birds and background. Robustness is obtained
by assigning weights to all data-points based on the typical
weighted node degree in the associated graph. Consistent with
the ideas of M-estimation in robust statistics, a large degree of
outlyingness of a data-point corresponds to a small weight.

The paper is organized as follows. Section II introduces
the basic concepts and briefly discusses Fiedler vector estima-
tion using LPI. The ideas underlying the proposed algorithm
and the problem formulation are the subject of Section III.
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Section IV is dedicated to the proposed robust regularized
locality preserving indexing method. This section includes
the theoretical analysis, penalty parameter selection, com-
putational complexity analysis and possible applications.
Section V demonstrates the performance of the proposed ap-
proach in comparison to popular competitors both in cluster
enumeration and in image segmentation using real-world data.
Finally, conclusions are drawn in Section VI. An implementa-
tion of RRLPI is available at: https://github/A-Tastan/RRLPI

II. PRELIMINARIES
A. SUMMARY OF NOTATIONS
Lower and upper-case bold letters denote vectors and ma-
trices, respectively; R denotes the set of real numbers; Z+
denotes the set of positive integers; |x| denotes the absolute
value of x; ‖x‖ denotes the norm of vector x, e.g. ‖x‖2 is the �2

norm; med(x) denotes the median of vector x; sign(x) denotes
the sign function defined as sign(x) = x/|x|; diag(x1, . . . , xN )
denotes a diagonal matrix of size N × N with x1, . . . , xN on
its diagonal; x� denotes transpose of vector x; λF denotes the
Fiedler value; yF denotes the Fiedler vector corresponding
to λF ; I denotes the identity matrix; 1 denotes the vector
of ones; x̂ denotes the estimate of vector x; W̃ refers to a
corrupted affinity matrix; di denotes the weighted node de-
gree of the ith data-point for a weighted affinity matrix and
the corresponding degree for an adjacency matrix; λi denotes
the ith eigenvalue; yi( j) denotes the embedding result of the
jth data-point in the eigenvector yi associated with the ith
eigenvalue λi.

B. PROBLEM STATEMENT
Given a set of data-points X = [x1, . . . , xN ] ∈ R

M×N , the aim
of this work is to estimate the Fiedler vector yF ∈ R

N such
that it embeds each data-point on a real line, providing ro-
bustness at a reasonable computation cost. In the following
sections, the applicability of existing projection strategies to
Fiedler vector estimation is explained in terms of their theo-
retical adaptiveness, computational cost and robustness.

C. COMPUTING THE FIEDLER VECTOR
Suppose that a data set X = [x1, . . . , xN ] ∈ R

M×N with M
denoting the data dimension and N being the number of data-
points, can be represented as a graph G = {V,E ,W}, where V
denotes the vertices, E represents the edges, and W ∈ R

N×N

is the symmetric affinity matrix. The i, jth coefficient of the
affinity matrix wi, j ∈ W representing the edge weight be-
tween ith and jth vertex can be computed using a similarity
measure, such as the cosine similarity, for which wi, j = x�

i x j ,
i �= j s.t. ‖xi‖2 = 1, ‖x j‖2 = 1. Let L ∈ R

N×N denote the dis-
crete Laplacian operator (also known as the graph Laplacian
matrix) that is nonnegative definite with associated eigen-
values 0 ≤ λ0 ≤ λ1 ≤ . . . ≤ λN−1 sorted in ascending order.
Then, it follows that the Fiedler vector yF ∈ R

N is the eigen-
vector associated with the second smallest eigenvalue λ1 of

the eigen-problem

Lyi = λiyi, (1)

or in a generalized eigenvalue problem form

Lyi = λiDyi, (2)

Here, the Laplacian matrix L is defined analogously to the
Laplace Beltrami operator on the manifold by L = D − W,
where D ∈ R

N×N is a diagonal weight matrix with weighted
node degrees di,i = ∑

j wi, j on the diagonal and yi ∈ R
N is

the eigenvector associated with λi.
The LPI method determines linear approximations to the

eigenfunctions of the Laplace Beltrami operator [15], [16]
by representing the Fiedler vector as the response of a linear
regression with input variables X, i.e., yF = X�βF . Hence,
the LPI finds a transformation vector βF ∈ R

M that is the
eigenvector associated with the second largest eigenvalue of
the generalized eigen-problem

XWX�β j = λ jXDX�β j, (3)

which has the same eigenvalue λi as in (2) for λ j with
j = N − (i + 1). This means that the Fiedler value λF which
is the second smallest eigenvalue (λi = λ1) of the eigen-
problem in (2) is the same as the second largest eigenvalue
(λ j = λN−2) of the eigen-problem in (3) and thus, the Fiedler
vector yF corresponding to λF can be computed based on the
projective functions of LPI. However, the LPI [15] method
performs a complete SVD to compute the eigenvectors, which
results in a cubic-time complexity even though the matrix is
sparse. This property of LPI makes it infeasible in applications
comprising large number of samples.

D. ESTIMATING THE FIEDLER VECTOR
The Regularized Locality Preserving Indexing (RLPI) [17]
method efficiently determines the projective functions of LPI
in two consecutive steps for the Fiedler vector estimation.
First, the Fiedler vector yF associated with the second smallest
eigenvalue of (2) must be computed. Then, for the Fiedler
vector yF , the a transformation vector βF ∈ R

M that satisfies
yF = X�βF can be estimated by solving the following least-
squares problem

β̂F = argmin
βF

N∑
i=1

(
β�

F xi − yF (i)
)2
, (4)

where yF (i) is the ith embedding point in yF and β̂F is the
estimated transformation vector. The RLPI [17] method im-
poses a penalty on the norm of βF in (4) to control the amount
of shrinkage. Under certain conditions,1 the estimated Fiedler
vector based on RLPI is the eigenvector of eigen-problem
in (3).

1Let yF be the Fiedler vector associated with the second largest eigenvalue
of the eigen-problem in (3). If yF is in the space spanned by row vectors of
the data matrix X, the corresponding projective function βF calculated by
RLPI will be the eigenvector of eigen-problem in (3) as the penalty parameter
decreases to zero (for details, see Theorem 2 in [17]).
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In contrast to LPI, the above formulation can benefit from
sparsity of the affinity matrix and leading to a quadratic-time
complexity of the unsupervised RLPI [17] method for the
setting of sparse matrices. Despite its computational advan-
tage, a major drawback of the RLPI algorithm, however, is
that the penalty parameter, which has a significant impact in
the performance of RLPI, is unknown in real-world scenarios.
Additionally, LPI [15] and RLPI [17] do not address robust-
ness which is important drawback considering that real-world
data sets often contain impulsive noise and outliers.

To integrate robustness in eigenvector estimation, RLPFM
[32] formulates the problem in (4) as a ridge regression task
that is solved with a penalized M-estimation approach. In
particular, the RLPFM method iteratively reweights the resid-
uals of Laplacian eigenmaps-based prediction to estimate the
vector β̂F that provides the best approximation to the Fiedler
vector yF . Even though the method promotes robustness, it
leads to an additional cost in comparison to RLPI [17]. In
particular, in every iteration, the method has a cubic-time
complexity for dense matrices while it has quadratic-time
complexity for sparse matrices. This means that the method
becomes infeasible when large numbers of iterations are nec-
essary for the Fiedler vector estimation.

III. MOTIVATION
The previous section discussed the applicability of LPI for
Fiedler vector computation. In particular, LPI may discover
the hidden nonlinear structure by finding linear approxima-
tions to the nonlinear Laplacian eigenmaps (for details, see
[15] and [16]). However, when using the least-squares ob-
jective function, outliers and heavy-tailed noise may have a
large impact on the estimation of the transformation vector
βF . This leads to errors in the computed Fiedler vector and,
consequently, an information loss about the representation of
the underlying graph structure using such a corrupted Fiedler
vector computation. This section analyzes the effects of out-
liers and noise on the eigen-decomposition of the Laplacian
matrix. The analysis provides the theoretical basis and an
understanding of the ideas underlying the proposed robust
Fiedler vector estimation approach.

A. OUTLIER EFFECT ON EIGEN-DECOMPOSITION
The effect of outliers on the eigen-decomposition is analyzed
in terms of two fundamental types of outliers. All examina-
tions that are conducted in this section are made for block
affinity matrices unless it is stated otherwise. Motivated by
[47], we begin by defining the first fundamental type of out-
liers as follows.

Definition III.1 (Type I Outliers): The data-points that do
not have correlations with any of the samples are called Type I
outliers.

Based on this first definition, the correlation coefficient
vectors that are associated to outliers, ideally, are zero vec-
tors. More practically speaking, and motivated by real data
examples, the data-points whose similarity coefficients have
negligibly small values may also be called Type I outliers.

To understand Type I outliers’ effect on the Fiedler vector,
it is important to remember the relationship between the num-
ber of connected components of a k block diagonal affinity
matrix W ∈ R

N×N and the spectrum of the associated graph
Laplacian matrix L ∈ R

N×N . In [48], it has been shown that
the multiplicity of the zero-valued eigenvalues of L equals the
number of connected components k and the eigenspace of the
zero eigenvalues is spanned by the indicator vectors of those
connected components. Clearly, considering Type I outliers
as isolated blocks of size one, the addition of NI number of
Type I outliers leads to NI additional zero-valued eigenvalues
whose eigenspace is spanned by the indicator vectors of the NI

outliers. Accordingly, if the affinity matrix has distinct blocks
and the Type I outliers are disconnected, the Fiedler vector can
be easily determined after removing these outliers. However,
in real world scenarios the true blocks are generally not dis-
tinct and/or outliers do have a few non-zero similarities which
result in non-zero eigenvalues [35], [36]. Since the number of
blocks k and the number of outliers NI are unknown, directly
using eigenvalues for outlier detection may be impossible
in practice.

The following proposition provides a numerical under-
standing of Type I outliers’ effect on the Fiedler vector.

Proposition III.1: For a definite nonnegative k block zero-
diagonal symmetric affinity matrix W ∈ R

N×N and the asso-
ciated Laplacian L ∈ R

N×N , let the eigenvectors be orthog-
onal vectors of different lengths, i.e., ‖yi‖2 = Li, where yi

denotes the eigenvector associated with the ith eigenvalue of L
and Li is the length of yi. Further, let ỹF be the Fiedler vector
associated with the eigenvalue that corresponds to an additive
Type I outlier and let ỹF (oI ) denote the embedding result of
a Type I outlier in ỹF . Then, it follows that the Euclidean
distance between embeddings of different blocks decreases to
zero when the absolute value of the embedding result of the
outlier increases to the length of the Fiedler vector, i.e. when
|ỹF (oI )| → LF .

Proof: See Appendix A.1 of the supplementary material. �
Motivated by the eigenvectors’ crucial role in cluster analy-

sis, the results of Proposition III.1 can be extended to multiple
eigenvectors. If a distance-based clustering approach, such as,
spectral clustering is applied on the eigenvectors that are the
indicator vectors of NI outliers, all non-outlying points are
mapped to the same cluster as a result of Proposition III.1, as
|ỹF (oI )| → LF . This explains why spectral clustering breaks
down in the presence of Type I outliers. Only if the number of
outliers is known or can be deduced from the data set (e.g. be-
cause they perfectly match Definition III.1), ignoring the indi-
cator vectors of outliers can overcome this problem. However,
in practice, Definition III.1 may only hold approximately,
and data-points may vary in the degree of their outlyingness,
making a binary detection challenging or inappropriate. In
Section IV, we will present a robust M-estimation-based ap-
proach to suppress the impact of outliers, when such simple
outlier detection and removal strategies do not apply.

Next, we will study the effect of a second fundamental type
of outliers that are defined as follows.
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Definition III.2 (Type II Outliers): Outliers of Type II are
the data-points that have correlations with more than one
group of data-points.

The definitions of Type I and Type II outliers are based on
the assumed ideal graph model in which all vertices associ-
ated with different clusters are unconnected. This model is
denoted as “ideal case” in the well-known spectral cluster-
ing algorithm of Ng, Jordan and Weiss (NGW) (for details,
see Section III-A in [27]). However, in real-world scenarios
the data-points do not behave ideally (for further discussion,
see see Section III-B in [27]) and even a small deviation from
the “ideal case” leads to the presence of Type II outliers. Note
that what is referred to as the “general case” in [27], may
include both Type I and II outliers, since they are defined as
deviations from the “ideal case”. Unlike for Type I outliers,
simple detection and removal strategies, for example, outlier
detection based on zero-eigenvalues are not applicable due to
the undesired correlations [48]. In addition to their effect on
the eigenvalue structure, it is therefore important to analyze
the effect of Type II outliers on the eigenvectors to understand
their particular effect on the Fiedler vector. Since Type II
outliers may occur in large numbers in practical settings, the
extreme case of correlation with more than one group of data-
points is examined in the following proposition.

Proposition III.2: For a k block zero-diagonal sym-
metric nonnegative affinity matrix W ∈ R

N×N , let wi ∈
{w1,w2, . . . ,wk} denote a constant around which the cor-
relation coefficients of the ith block are assumed to be
concentrated with negligibly small variations. Further, let w̃u

denote a constant around which the correlations between
blocks are concentrated. Let W̃ define an affinity matrix,
which is equal to W, except that we impose w̃u > 0, such
that the vertices associated with ith and jth block become
connected. Then, it follows that the connections between ver-
tices corresponding to different blocks result in embedding all
data-points onto the same location on the eigenvector ỹ0 that
is associated with the smallest eigenvalue λ̃0 of the Laplacian
matrix L̃ ∈ R

N×N corresponding to W̃.
Proof: See Appendix A.2 of the supplementary material. �
Even though Proposition III.2 shows the loss of group struc-

ture in the eigenvector associated with the smallest eigenvalue,
in real applications, this eigenvector might be the Fiedler
vector when the data includes Type I outliers with negligibly
small similarity coefficients. A strategy to deal with Type II
outliers’ effects, which are described in Proposition III.2, is
the consideration of the group of eigenvectors spanning the
subspaces instead of unstable individual eigenvectors of L
[27]. The NGW algorithm, normalizes the selected orthog-
onal eigenvectors to have unit length and performs k-means
clustering. Considering the eigen-problem in (2) as in [27],
the following proposition extends the analysis of the effect of
outliers on group structure for multiple eigenvectors that are
normalized to have constant length.

Proposition III.3: Let L ∈ R
N×N and L̃ ∈ R

N×N denote
Laplacian matrices associated with W ∈ R

N×N and W̃ ∈
R

N×N , respectively. Further, let the eigenvectors associated

FIGURE 2. Fiedler vector computation for an ideal k = 2 blocks affinity
matrix.

with the K smallest eigenvalues of L and L̃, respectively, be
the column vectors of the matrices Y ∈ R

N×K and Ỹ ∈ R
N×K

where K denotes the number of clusters. Finally, let ei ∈ R
K

and ẽi ∈ R
K , the ith row vector of Y and Ỹ, respectively, de-

note the embedding vectors that represent the M-dimensional
ith feature vector in the reduced K-dimensional space. As-
suming that the column vectors of Y and Ỹ have a constant
length based on the eigen-problem in (2), the Euclidean dis-
tance between any embedding vector pair ei and e j associated
with different blocks is greater than that of ẽi and ẽ j , i.e.
‖ei − e j‖2 > ‖ẽi − ẽ j‖2.

Proof: See Appendix A.3 of the supplementary material. �
Proposition III.3 shows that the Type II outliers’ effect

is not limited to an individual eigenvector and this effect
becomes more visible when the eigenvectors have different
lengths and the length of the eigenvector associated with the
smallest eigenvalue is greater than the others. In such cases,
normalizing eigenvectors as in [27] might be helpful to rela-
tively preserve the distance between embeddings of different
clusters. However, this may also increase the negative impact
of outliers. For example, Type I outliers increase to the length
of the eigenvector as in Proposition III.1. Considering the
prominent effect of Type I outliers in comparison to outliers
of Type II, the proposed method considers a more general
case based on the eigenvectors of different lengths as in the
spectral clustering method of Meilă-Shi [49] (for a detailed
comparisons about spectral clustering methods, see [50]).

To illustrate the different outlier effects, examples of com-
puted Fiedler vectors are shown for ideal and corrupted
affinity matrices in Fig. 2 and Fig. 3, respectively. In the
ideal case, the vertices of different clusters do not have edges
between each other while vertices of the same cluster are con-
nected with strong edges. If such an ideally clustered graph is
embedded on the real line using the Fiedler vector, the vertices
of the same cluster are concentrated while they are far away
from the vertices of a different cluster, see Fig. 2. Therefore,
the embedding results of different clusters are easily separable
which is crucial for subsequent graph partitioning. On the
other hand, the corrupted graph in Fig. 3 includes two typi-
cal outlier effects. Based on Propositions III.1–III.3, Type I
outliers are embedded far from the clusters while Type II out-
liers that correlate with more than one cluster are embedded
between different clusters making their separation difficult. In
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FIGURE 3. Fiedler vector computation for a corrupted k = 2 blocks affinity
matrix. The corruptions of the affinity matrix by Type I and Type II outliers
are highlighted by coloring the corresponding affected elements in light
red and dark red, respectively. In the Fiedler vector, outliers are positioned
as shown in the right illustration.

such scenarios, the outliers result in a performance degrada-
tion because of the computed Fiedler vector that would lead
to losing the group structure information of the graph.

B. OUTLYINGNESS MEASURE: WEIGHTED NODE DEGREE
This section introduces and discusses the weighted node
degree, an outlyingness measure to suppress both Type I
and Type II outliers. Definitions III.1 and III.2, respectively,
determine the Type I and Type II based on the assumed
(ideal) graph model which comprises a considerable num-
ber of intra-cluster edges, while not containing inter-cluster
edges. In particular, Definition III.1 determines a Type I
outlier as a relatively unconnected (or ideally even totally
unconnected) vertex that has noticeably small-valued (or ide-
ally zero-valued) weighted node degree in comparison to
the non-outlying samples of the clusters. A natural result of
Definition III.1 based on the assumed graph model is that
Type I outliers’ weighted node degrees will be smaller-valued
than the typical ones when the intra-cluster edge weights
are large-valued. Even though the values of edge weights
rely on the graph construction, large-valued edge weights for
the intra-clusters are typical in real world scenarios includ-
ing the densely connected clusters. Therefore, the results of
Definition III.1 point out a frequently observed scenario. In
contrast to this comparably simple characterization of Type I
outlyingness, Type II outlyingness determination based on
weighted node degree depends on cluster sizes in addition to
the graph construction. For example, let G̃ = {V,E , W̃} be
a Type II outlier corrupted graph model of balanced cluster
sizes. According to Definition III.2, the weighted node degree
of a Type II outlier is smaller-valued than that of the typical
data-points when the Type II outlier is connected to multiple
groups of nodes with small-valued edge weights in G̃. On
the other hand, the weighted node degree of a Type II outlier
is larger-valued than that of the typical data-points when the
intra-cluster edge weights of the Type II outliers are equal or
larger-valued than that of the typical data-points in G̃. Thus,
while both outlier types behave differently, it is important to
note for a connected graph model of comparable cluster sizes

FIGURE 4. Examplary outlyingness measure of Person Identification [51]
data set based on the weighted node degrees.

FIGURE 5. Examplary outlyingness measure of Human Gait [52] data set
based on the weighted node degrees.

both types of outliers have a common characteristic: their
weighted node degrees deviate from that of the typical nodes.

Type I and Type II outliers’ deviating weighted node degree
characteristic is commonly observed in many real-world data
sets as their existence directly depends on the graph construc-
tion where the appropriate level of sparsity is unknown. In
particular, the increase in the level of sparsity generates Type I
and Type II outliers when the edge weights within the clusters
are larger valued than between clusters, which is a common
scenario. In contrast to this, a dense graph construction may
lead to an increase in the number of Type II outliers with
larger valued weighted node degree. To provide a visual un-
derstanding of this, exemplary outlier assignments are shown
for sparse graph models of the Person Identification [51] and
Human Gait [52] real-world data sets in Figs. 4 and 5, respec-
tively. In Figs. 4(a) and 5(a), the red crosses depict the outliers
that include the 15% of vertices whose weighted node degrees
deviate maximally from the median of weighted node degrees
(the median represents the typical weighted node degrees).
As can be seen, the outlier assignment based on weighted
node degree captures both vertices between different clusters
(Type II outliers) and the vertices that are far from every
cluster (Type I outliers).

The real data examples confirm the theoretical analysis that
the weighted node degree is an informative measure for the
determination of outliers. However, since the number of out-
liers is unknown in real-world scenarios a binary outlier detec-
tion based on weighted node degrees may result in an infor-
mation loss. Therefore, in this work, robustness is introduced

872 VOLUME 5, 2024



FIGURE 6. High-level flow diagram illustrating the main steps of RRLPI using a generic example with k = 2 clusters.

by suppressing outliers’ negative impact on the Fiedler vector
rather than detecting and eliminating them. In this way, we
allow for some uncertainty in our decision, giving moderate
but non-zero weight to the points that we are not sure about.

IV. ROBUST FIEDLER VECTOR ESTIMATION
This section introduces the proposed Robust Regularized
Locality Preserving Indexing method for Fiedler vector es-
timation. To understand the key ideas of proposed robust
Fiedler vector estimation, a high-level flow diagram illustrat-
ing the fundamental steps is given in Fig. 6. Starting from a
graph model that is assumed to be corrupted by Type I and
Type II outliers, for every candidate penalty parameter, the
proposed RRLPI method estimates the Fiedler vector robustly
by down-weighting the deviating embedding points based on
their weighted node degrees. After projecting graph vertices
onto the real line based on robust Fiedler vector estimation,
the penalty parameter selection building upon the geometric
analysis of well-separated �2

2 representations is performed. In

particular, every robust Fiedler estimate ŷ(γi )
F ∈ R

N associated
with a candidate penalty parameter γi is separated into two
subsets s(γi ) and t(γi ). Then, the embedding points between
the two generated subsets are discarded as long as the sub-
sets being �-separated. The penalty parameter providing the
minimum number of discarded points is used to determine
the final robust Fiedler vector estimate. In the following sec-
tions, a step-by-step detailed methodology description of the
proposed method as well as its theoretical and computational
analysis are presented.

A. RRLPI FOR FIEDLER VECTOR ESTIMATION
Let data matrix X be subject to heavy tailed noise and out-
liers that obscure the underlying group structure in the graph
G = {V,E ,W} that represents X. In the previous section, it
was shown that the weighted node degree attached to a vertex
is a valuable characteristic of an outlier because it signifi-
cantly differs from the typical weighted node degree. Thus,
the weighted node degree of attached to vertex i is modeled as

di = dtyp + εi. (5)

Here, di = ∑N
j wi, j and εi, respectively, denote the weighted

node degree and the error term for the ith vertex, dtyp is the
typical weighted node degree of the graph G. In practice a ro-
bust estimator, such as the median is used, i.e. d̂typ = med(d)
for a vector of weighted node degrees d = [d1, . . . , dN ]. For
Fiedler vector estimation, an error vector ε ∈ R

N is con-
structed using the error terms associated with each weighted
node degree in d. Then, the transformation vector βF asso-
ciated with yF is computed using penalized ridge regression
M-estimation [53] by solving the following zero gradient
equation

−
N∑

i=1

ψ
(εi

σ̂

) (
x�

i

σ̂

)
+ γβF = 0, (6)

where γ denotes the penalty parameter, σ̂ is a robust scale
estimate of ε and ψ is a bounded and continuous odd function
called the score-function. A popular M-estimator is defined by
Huber’s loss function which is convex and piece-wise differ-
entiable. Huber’s score function is of the form

ψ
(εi

σ̂

)
=

{
εi
σ̂
, for

∣∣ εi
σ̂

∣∣ ≤ c

c · sign
(
εi
σ̂

)
, for

∣∣ εi
σ̂

∣∣ > c
. (7)

where c, commonly set to a default value of c = 1.345 for
95% asymptotic relative efficiency (ARE), is the tuning pa-
rameter that trades off robustness against outliers and ARE
under a Gaussian distribution model for ε (see [54] for a
detailed discussion). A frequently used robust scale estimate
σ̂ is the normalized median absolute deviation [54] that is
defined by

σ̂ = madn(ε) = 1.4826 · med|ε − med(ε)|. (8)

The motivation for adopting M-estimation for Fiedler vec-
tor estimation is that a bounded score function, such as
Huber’s, ensures that nodes with atypical edge weights are
down-weighted in (6). RRLPI, therefore, softly suppresses
the negative impact of outliers on the Fiedler vector estimate
based on Huber’s function. This becomes intuitively clear
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FIGURE 7. Examplary plot of the Fiedler vector computation based on LE and RRLPI methods. The weighting operation in RRLPI on Type I and Type II
outliers results in two clusters of concentrated mappings that include the outliers. In this way, the true structure of the non-outlying data becomes
visible, even in the presence of outliers. By contrast, for LE, the outliers deteriorate the underlying two-cluster structure. Further, the weights provide a
robust measure of outlyingness, which may be used to detect and analyze outliers, which is of high interest in some applications.

when considering Huber’s weight function ωi = ω( εi
σ̂

):

ω
(εi

σ̂

)
=

{
1, for

∣∣ εi
σ̂

∣∣ ≤ c

c/
∣∣ εi
σ̂

∣∣ , for
∣∣ εi
σ̂

∣∣ > c,
(9)

that gives constant weight up to c and then increasingly down-
weights outliers by smoothly descending towards zero. Under
some conditions, e.g. when outliers are extremely large val-
ued, a different weighting function instead of Huber’s may be
used to completely down-weight extreme outliers. For exam-
ple, in robust statistics, Tukey’s weight function

ω
(εi

σ̂

)
=

⎧⎨
⎩

(
1 − (∣∣ εi

σ̂

∣∣ /c)2
)2
, for

∣∣ εi
σ̂

∣∣ ≤ c

0, for
∣∣ εi
σ̂

∣∣ > c
, (10)

is a popular choice, which gives zero-weight to extreme
outliers. However, such a function leads to non-convex op-
timization problems, which is why, in many cases, Huber’s
weights are preferred (see [54] and [55] for a detailed discus-
sion).

To provide an intuitive understanding, an examplary plot
is provided in Fig. 7 that compares RRLPI with LE. Con-
sistent with the outlier effect analysis that has been detailed
in Section III, the data-points which are mapped far away
from any other cluster in the Fiedler vector yF are Type I
outliers while the embeddings between different clusters are
outliers of Type II. As can be seen, these outlying embeddings
result in a performance degradation for clustering algorithms
that are based upon a non-robust computation of yF . An
important property of these outliers is that their occurrence
depends on the determined level of sparsity. In more de-
tails, a non-sparse graph model results in over-connected
vertices (Type II) whereas increasing sparsity redundantly
results in less-connected or disconnected vertices (Type I).
A robust sparsity level determination, such as proposed in
Section IV-C, is therefore essential. Since the number of

outliers is unknown, an outlier detection based on the avail-
able graph structure may result in misdetection or losing
information. Therefore, instead of outlier detection, RRLPI
down-weights the deviating embedding points based on their
weighted node degrees to achieve a robust Fiedler vector
estimate in which the embeddings associated with the same
cluster are concentrated while being separated from embed-
dings of different clusters. The RLPFM approach in [32]
also maintains the �2 norm and builds upon M-estimation to
suppress the outliers. However, it performs M-estimation of
the eigenvectors by iteratively reweighting the residuals of
Laplacian eigenmaps-based prediction, which results in an
increased computation cost. In contrast to this well-known
M-estimation application, robustly estimating the Fiedler vec-
tor based on the typical weighted node degree of the graph
fits the weighting operation into a single-step and makes the
proposed RRLPI computationally efficient in comparison to
[32]. In addition to this, the proposed method introduces
a comprehensive theoretical analysis and step-by-step de-
tailed computational complexity evaluation for integrating
M-estimation into Fiedler vector estimation in the following
sections.

B. THEORETICAL ANALYSIS
The RLPI [17] method represents the Fiedler vector yF as
the response of a linear regression with input variables X, i.e.
yF = X�β. Then, it determines the transformation vector βF
that minimizes a penalized residual sum of squares problem∑N

i=1(β�
F xi − yF (i))2 + γ ‖βF ‖2. In RRLPI, this approach is

generalized by defining βF as the solution to (6) whose matrix
form leads to (for detailed information, see [53])

β̂F = (
X�X� + γ σ 2I

)−1
X�yF , (11)

where � ∈ R
N×N is diagonal matrix of weights defined

by (9).
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As discussed in Section II, the LPI method uses a lin-
earization of the embedding operation for the Fiedler vector
computation. To understand the relationship between LPI and
RRLPI, we first clarify the relation between RLPI and RRLPI.

Theorem 1: RRLPI is a robustly weighted RLPI [17], and
for � = I, it gives identical solutions to RLPI based Fiedler
vector computation.

Proof: See Appendix B.1 of the supplementary material. �
From Theorem 1, it follows that for γ > 0 and/or � �= I,

the estimated tranformation vector β̂F is not the eigenvector of
the eigen-problem in (3) which means that it is not associated
with the Fiedler value. However, the following theorem shows
in which cases βF gives exactly the eigenvector of the eigen-
problem in (3).

Theorem 2: Suppose yF is the Fiedler vector associated
with the second largest eigenvalue of the eigen-problem in
(3). Further, let X = U�V�� be the SVD of the data matrix
where � ∈ R

τ×τ is a diagonal matrix of singular values, U ∈
R

M×τ is the matrix of left singular vectors, V ∈ R
N×τ is the

matrix of right singular vectors for rank(X) = τ . Finally, let
� ∈ R

N×N and � ∈ R
M×M be two weighting matrices such

that U��U = I and V��V = I. If yF is in the space spanned
by row vectors of the weighted data matrix X∗, for X∗ = X�,
the corresponding transformation vector β̂F estimated with
RRLPI is the eigenvector of the eigen-problem in (3) as γ
decreases to zero.

Proof: See Appendix B.2 of the supplementary material. �
Based on Theorem 2, the estimated transformation vec-

tor β̂F is the solution of (3) for γ → 0, and U��U = I,
V��V = I. In practice, the algorithm determines γ as γ →0
when the Fiedler vector yF of the (2) is �-separated. In more
details, the estimated transformation vector β̂F is the solution
of (3) when the data set comprises clearly separable uncor-
rupted data-points providing �-separated embedding points
and weighted node degrees that do not deviate from the typ-
ical weighted node degree. To understand the relationship
between RRLPI and LPI, the results of this theorem are ex-
tended for all transformation vectors β̂i ∈ [β̂0, . . . , β̂N−1] for
the case that the data space M is greater than the number of
data-points N and the data-points are linearly independent,
i.e. rank(X) = N .

Corollary 2.1: If the data-points are linearly independent,
i.e. rank(X) = N , all transformation vectors are solutions of
(3) for γ → 0, and U��U = I, V��V = I which means that
RRLPI is identical to LPI.

Proof: See Appendix B.3 of the supplementary material. �

C. �-SEPARATED SETS FOR PENALTY PARAMETER
SELECTION
This section introduces the key ideas of proposed penalty
parameter selection algorithm from a clustering point of view.
The graph partitioning problem, which can be interpreted as
a clustering problem, is the separation of graph vertices into
multiple clusters while minimizing the number of edges that
cross the cut [46]. This problem is NP-hard [46], [56] and
thus, most graph partitioning approaches are heuristic, e.g.,

[57],[58]. Different from existing heuristic graph partition-
ing approaches, the proposed penalty parameter selection is
built upon the theoretical approximation algorithms for the
sparsest cut, edge expansion, balanced separator and graph
conductance problems (for details about these problems, see
Section II in [46]). Arora, Rao and Varizani [46] has intro-
duced a theoretical approximation for these problems based
on the geometric analysis of well-separated �2

2 representa-
tions. In particular, an �2

2 representation, which embeds the
vertices on a line such that the squared Euclidean distance
form a metric, is called well-separated if every pair of points
si ∈ s and t j ∈ t are mapped at least � = φ(1/ log−2/3 N )
apart in �2

2 distance [46]. Inspired by well-separated �2
2

representations, we propose a penalty parameter selection
algorithm by projecting graph vertices onto a real line using
RRLPI-based Fiedler vector estimation such that every pair of
two sets si ∈ s and t j ∈ t is at least� = φ(1/ log−2/3 N ) apart
in �2

2 distance for the estimated penalty paramater.
Let γi ∈ γ be the ith candidate penalty parameter in

(11) from a given vector of candidate penalty parameters
γ = [γmin, . . . , γmax] ∈ R

N . Further, suppose that for each
candidate penalty parameter γi, there exists an associated
Fiedler vector estimate ŷ(γi )

F that projects the graph vertices
onto the real line. The geometric structure of well-separated
�2

2 representations allows for designing the sets s and t by
projecting the points on a random line such that, for a suitable
constant κ , the points that are located on the left and right
hand sides of κ are the initial candidates for the sets s and t,
respectively [46].

It has been shown (see, e.g. [59]) that it is possible to split
a candidate Fiedler vector ŷ(γi )

F into the two subsets s(γi ) and
t(γi ) for κ = 0. Another possible option for κ is the median
of embeddings such that κ = med(ŷ(γi )

F ). From the definition
of the �-separated sets, the projection subsets s(γi ) and t(γi )

associated with γi taking values between zero and one. There-
fore, after selecting the members of the two sets s(γi ) ∈ R

Ns

and t(γi ) ∈ R
Nt associated with γi, the final design of the sets

s(γi ) and t(γi ) is performed using the rescaled estimated Fiedler
vector ȳ(γi ) as

s(γi ) =
{

ȳ(γi )
F ( j) : ŷ(γi )

F ( j) > κ
}

t(γi ) =
{

ȳ(γi )
F ( j) : ŷ(γi )

F ( j) ≤ κ
}
. (12)

Here, ŷ(γi )
F ( j) denotes the jth element of the estimated Fiedler

vector ŷ(γi )
F and ȳ(γi )

F ( j) is the jth element of the rescaled esti-

mated Fiedler vector ȳ(γi )
F . If the rescaled Fiedler vector ȳ(γi )

F

is not sufficiently sparse, it contains pairs of points ȳ(γi )
F (i) ∈ s

and ȳ(γi )
F ( j) ∈ t whose squared Euclidean distance is less than

�. Thus, for a set of pairs of projections ȳ(γi )
F (i) ∈ s and

ȳ(γi )
F ( j) ∈ t, a vector of discarded projections r(γi ) ∈ R

N
(γi )
r is

designed as

r(γi ) =
{

ȳ(γi )
F (i), ȳ(γi )

F ( j) : ‖ȳ(γi )
F (i) − ȳ(γi )

F ( j)‖2
2 ≤ �

}
, (13)
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Algorithm 1: Robust Fiedler Vector Estimation.

as long as the two sets s(γi ) and t(γi ) have a reasonable num-
ber Nmin of projections. The proposed strategy to estimate
penalty parameter γ is, therefore, to minimize the number of
discarded points i.e.,

γ̂ = arg min
γi=γmin,...,γmax

{
N (γi )

r

}
, (14)

where N (γi )
r denotes the number of discarded projections for

candidate penalty parameter γi, and γ̂ is the estimated penalty
parameter. In practice, there might not exist �-separated sets
s(γi ) and t(γi ) for any candidate penalty parameter such that
γi ∈ {γmin, . . . , γmax}. For example, the sets might not be
�-separated, although N (γi )

r has reached its maximum value.
Additionally, the initial sets may not satisfy Ns < Nmin or
Nt < Nmin. In such cases, the penalty parameter can alter-
natively be estimated by maximizing the squared Euclidean
distance between the closely valued projections from the two

FIGURE 8. Example of �-separated sets s and t

sets s(γi ) and t(γi ),

γ̂ = arg max
γi=γmin,...,γmax

{∥∥∥ȳ(γi )
F (min) − ȳ(γi )

F (max)
∥∥∥2

2

}
, (15)

where ȳ(γi )
F (min) ∈ s and ȳ(γi )

F (max) ∈ t are the minimum
and the maximum valued projections from the sets s(γi ) and
t(γi ), respectively. The determined penalty parameter γ̂ using

(14) or (15) is then substituted in (11) to compute β̂
γ̂

and
the Fiedler vector estimate ŷ(γ̂ )

F , finally, obtained for ŷ(γ̂ )
F =

X�β̂
(γ̂ )
F .

In terms of robustness, approaches based on �-separated
sets in (14) are advantageous compared to directly using (15).
In particular, (15) may maximize the distance between Type I
outliers and true samples while the necessity of a reason-
able number Nmin of projections in different sets makes the
�-separated sets robust against Type I outliers. Moreover,
the Fiedler vector estimate ŷ(γi )

F may contain Type II outliers
which are embedded between true samples of sets s(γi ) and
t(γi ). In such cases, usage of (15) may result in losing a good
penalty parameter due to the Type II outliers that obscure
the real distance between sets s(γi ) and t(γi ). In contrast, �-
separated sets discard these Type II outliers up to a certain
point and provide a robust measure of separation between
the sets.

The main steps of the proposed Fiedler vector estimation
are summarized in Algorithm 1 and an exemplary plot of �-
separated sets is given in Fig. 8.

D. COMPUTATIONAL COMPLEXITY
As computational complexity is essential for the scalability of
graph embedding techniques, the computational complexity
of the proposed approach is analyzed in terms of its main oper-
ations. The computational complexity of operations is detailed
using the term flam [60], which is a compound operation that
includes one addition and one multiplication. For the cases
when the complexity is not specified as flam, the Landau’s
big O symbol is used. The computational complexity of the
proposed approach is given as follows:

Graph Construction: The pairwise cosine similarity which
takes 1

2 N2M + 2NM as in [17] can be used for contructing
graph G.

Initialization: For large eigen-problems, e.g. MATLAB
uses a Krylov Schur decomposition [61]. The algorithm in-
cludes two main phases that are known as expansion and
contraction. When N is larger than p, where p denotes the
number of Lanczos basis vectors (preferably chosen as p ≥ 2q
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for q eigenvectors), the computational complexity of the algo-
rithm can mainly be attributed to expansion and contraction
phases. The expansion phase requires between N (p2 − q2)
flam and 2N (p2 − q2) flam. The contraction phase requires
N pq flam [62].

Robust Regularized Locality Preserving Indexing (RRLPI):
The proposed projection algorithm requires an estimate of
scale that uses repetitive medians. The complexity of repet-
itive medians is O(N ) [63]. Further, for a densely connected
matrix, the complexity is mainly attributed to the Cholesky
decomposition which is of complexity O(N3) or, more specif-
ically, 1

6 N3 flam [60]. This complexity can be reduced to O(N )
using [64] if the matrix is rank deficient. If the matrix is
sparse, the computation cost of decomposition can be reduced
to t (2Ns + 3N + 5M ) flam using a least squares algorithm
such as [65] where s denotes the average number of nonzero
features and t is the number of iterations.
�-Separated Sets: To split the projection into two sets as

s and t, the vector y must be sorted which is of complexity
O(N log N ) and there are computationally efficient alterna-
tives such as [66] for which the complexity is reduced to
O(N

√
log N ). To compute�-separated sets, a maximum of N

projections can be subtracted which means that this operation
maximally takes N flam.

Summing up the terms with respect to flam yields mini-
mally

t (2Ns + 3N + 5M ) + 1

2
N2M + N

(
2M + p2 − k2+pk+1

)

flam. Hence, the complexity is of order O(N2). Based on the
information that both O(N ) and O(N log N ) are considerably
smaller than O(N2), the minimum computational cost can be
summarized as O(N2) for each candidate penalty parameter.
Overall, the algorithm is, at least, of complexity O(NγN2) for
a number Nγ of candidate penalty parameters.

E. EXAMPLE APPLICATIONS
Eigenvector decomposition has a large variety of applications,
such as, dimension reduction [13], [14], [15], [16], [17], [18],
[19], [20], [21], recognition [22], [23], [24] and localization
[38]. Considering images as high-dimensional data sets, it
is not surprising that eigen-decomposition is a fundamental
research area also in image segmentation, e.g. [13], [14], [15],
[16]. A frequently encountered problem is that the image is
subject to noise, which may result in embedding noisy pixels
far from the neighboring group of pixels in the embedding
space and, consequently, losing the underlying structure. This
problem may also occur in cluster enumeration approaches
that attempt to find densely connected groups of embeddings
in the projection space, which necessitates the application of a
robust embedding technique. In the following section, the ex-
ample of robust graph-based cluster enumeration is discussed.

1) CLUSTER ENUMERATION
Assume that for each candidate number of clusters
Kcand ∈ {Kmin, . . . ,Kmax} there is a clustering algorithm, e.g.
[27], [28], that partitions ŷ(γ̂ ) into Kcand number of clusters
and provides an estimated label vector ĉKcand . After estimating
label vectors for each candidate number of clusters Kcand, the
cluster number K can be estimated by comparing quality of
partitions using modularity as [67]

K̂ = arg max
K̂min,...,K̂max

{
QK̂cand

}
, (16)

where

QK̂cand
= 1

2g

N∑
i, j

[
wi, j − did j

2g

]
δ
(
ĉi, ĉ j

)
(17)

denotes the modularity score for a candidate number of clus-
ters K̂cand, wi, j is the edge weight between the ith and the
jth data-point of X, di is the weighted node degree attached
to vertex i, ĉi is the estimated community label associated to
vertex i, g = 1

2

∑
i, j wi, j , and the function δ(ĉi, ĉ j ) equals 1 if

ĉi = ĉ j and is zero, otherwise.

V. EXPERIMENTAL EVALUATION
This section contains the numerical experimental evaluation
of the proposed RRLPI method on a broad range of simulated
and real-world data sets with applications to robust cluster
enumeration and image segmentation. In the following, a de-
tailed information about experimental setting is provided. A
MATLAB implementation of RRLPI is available at: https:
//github/A-Tastan/RRLPI

Benchmark Methods: The effects of Type I and Type II
outliers on the Fiedler vector computation are studied for
the LE [39], LPI [15], RLPI [17], RLPFM [32] and RRLPI
embedding-based approaches by designing synthetic data
Monte Carlo experiments. Then, in addition to the above
mentioned embedding approaches, the proposed RRLPI is
benchmarked against three state-of-the-art graph-based clus-
ter enumeration approaches, i.e., Le Martelot [68], Combo
[69] and Sparcode [70] and two state-of-the art spectral parti-
tioning approaches, i.e., FastEFM [30] and LSC [31] in terms
of image segmentation capabilities.

Parameter Settings: Some of the competitors are parameter
free approaches, i.e. LE [39], LPI [15], Martelot [68], Combo
[69], Sparcode [70] and LSC [31]. For the FastEFM approach
[30], the Gaussian scale parameter σ is the mean distance
among all data-points as the authors suggested. In terms of
accuracy, the authors suggested to increase the desired di-
mension of explicit features. Therefore, the desired dimension
is D = 500 as suggested by the authors. Further, to ana-
lyze the performance of proposed penalty parameter selection
and to provide fair comparisons, the RLPI [17] and RLPFM
[32] approaches are all run using the proposed penalty pa-
rameter selection algorithm. The remaining parameters of
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RLPI, RLPFM and RRLPI are defined using the default set-
ting: γmin = 10−8, γmax = 1000, Kmin = 1, Kmax = 10 and
Nmin = N

Kmax
.

Affinity Matrix Construction: To analyze the robustness
of RRLPI, cosine similarity is used as the affinity matrix
construction method in all experiments, unless otherwise
specified.

Performance Measures: The average partition accuracy
p̄acc is measured by evaluating

p̄acc = 1

NNE

NE∑
i=1

N∑
j=1

�{ĉ j=c j}, (18)

where

�{ĉ j=c j} =
{

1, if ĉ j = c j

0, otherwise
, (19)

N is the number of observations, NE is the total number of
experiments, and ĉ j and c j are the estimated and ground truth
labels for the jth observation, respectively.

The empirical probability of detection pdet is used to assess
cluster enumeration performance as follows

pdet = 1

NE

NE∑
i=1

�{K̂=K}, (20)

where K̂ denotes the estimated number of clusters and �{K̂=K}
is the indicator function.

The contour matching score Fscore for boundaries and the
Jaccard index J are used for the numerical performance
analysis in the case of image segmentation [71]. The Fscore

quantifies whether a boundary has a match on the ground truth
boundary as follows

Fscore = 2
P · R

R + P
, (21)

where P and R denote precision and recall values, respec-
tively. The Jaccard index evaluates similarity between esti-
mated and ground truth segmentations according to

J
(
Îseg, Iseg

) = TP

TP + FP + FN
, (22)

where Îseg and Iseg denote estimated and ground truth seg-
mentations for image I and TP, FP, and FN are true positives,
false positives and false negatives, respectively.

A. OUTLIER EFFECTS AND ROBUSTNESS
To visualize outlier effects on the eigen-decomposition, a
synthetic data set is generated for K = 3 easily separable
clusters, see Fig. 9. The M-dimensional data-points of each
cluster ck , with k = 1, . . . ,K , and M = 6 are generated as
xi,k = μck

+ ϑck υ, where xi,k is the ith data-point associated
with the kth cluster, μck

is the kth cluster centroid, ϑck is the
kth scaling constant, and υ is a vector of independently and
identically distributed random variables from a uniform dis-
tribution on the interval [−0.5, 0.5]. All details and parameter

FIGURE 9. Examplary plot of the first three features of the uncorrupted
synthetic data set.

FIGURE 10. Computed eigenvectors for the uncorrupted data set.

values to generate the data are provided in Appendix D.1.1 of
the supplementary material.

Representative examples of the computed eigenvectors are
shown for LE and for the proposed RRLPI in Fig. 10(a)
and (b), respectively. In the absence of outliers, both algo-
rithms provide embeddings where the embedding points that
are associated with the same cluster are concentrated, and
the different clusters are separated. To study robustness, the
data set is contaminated with two outlier types, i.e., outliers
that do not correlate with any cluster (Type I) and outliers
correlate with more than one cluster (Type II); see Section III
for a definition and a discussion. An example showing the first
three features of the contaminated data set is shown in Fig. 11,
where both Type I and Type II outliers are highlighted as red
crosses.

The Type I and Type II outliers are, respectively, generated
as x̃(1)

i = xi,k + ϑ1υ and x̃(2)
i = μ2 + ϑ2υ where x̃( j)

i , j =
1, 2 denotes the type of the outlier, ϑ j, j = 1, 2 is a scaling
constant associated with the outlier type and μ2 is a vector
associated with the location of Type II outliers. A detailed
explanation including all parameter values, is provided in
the supplementary material Appendix D.1.1. Examples of the
eigenvector computations based on the corrupted data set are
shown for LE and RRLPI in Fig. 12(a) and (b), respectively.
As can be seen, for the LE method, Type I outliers in the data
produce outliers in the embedding results that obscure the un-
derlying structure of K = 3 clusters. In contrast, the proposed
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FIGURE 11. Examplary plot of the first three features of the synthetic data
set after corruption with Type I and Type II outliers (red crosses). See
Section III, for a discussion.

FIGURE 12. Computed eigenvectors for the corrupted data set.

FIGURE 13. p̄acc for increasing ϑ1 associated with Type I outliers
(N = 300, Nout = 10, ϑ2 = 1.5, ϑcK = 0.5 s.t. k = 1, . . . , K).

RRLPI provides an embedding that is less influenced by the
outliers.

Figs. 13 and 14 report the average partition accuracy as a
function of the constant ϑ1 associated with Type I outliers and
the number of outliers Nout for each outlier type, respectively.
The value of ϑ2 is kept constant to generate points that lie
between clusters two and three. The robust methods show best
performance while the performance of LE quickly decreases
in the presence of outliers.

FIGURE 14. p̄acc for each of outlier type with increasing Nout

(N = 300, ϑ1 = 5, ϑ2 = 1.5, ϑcK = 0.5 s.t. k = 1, . . . , K).

B. COMPUTATION TIME
The computation time (t) is reported as a function of in-
creasing number of data-points in the synthetic data set of
K = 3 clusters. The experiments are performed based on three
different scenarios. First, computation time is analyzed for an
uncorrupted data set that has been explained in the previous
section. Then, the data set is contaminated with two outlier
types (Type I and II) where 10% of the data set are outliers
for every type. The graphical models of these two data sets
are generated based on the cosine similarity measure. Finally,
to analyze the effect of sparsity, a sparse graph model of an
uncorrupted data set is computed by using nearest neighbor
graphs where the number of neighbors is set according to the
cluster sizes. In all experiments, the penalty parameter is set
to one and t is averaged over 100 Monte Carlo runs.

The performance of RRLPI is benchmarked against its
main competitors RLPI and RLPFM in Fig. 15. Even though
robustness results in an increased computation cost, the
single-step weighting procedure of RRLPI is considerably
more efficient than the iterative weighting in RLPFM. The LPI
method [15] is excluded in the computation time analysis due
to its different operational procedure. However, our own run-
time analysis confirmed the theoretical analysis that RRLPI
has quadratic complexity with respect to N . This means that
RRLPI is computationally more efficient than LPI which has
cubic complexity in unsupervised settings as it has been stated
in [17].

C. CLUSTER ENUMERATION
In this section, the cluster enumeration performance of dif-
ferent approaches is benchmarked in terms of their empirical
probability of detection using the following data sets:

Human Gait Data Set: The experimental data set [52] was
collected in an office environment at Technische Universität
Darmstadt using a 24 GHz radar system [72]. The data set
consists of 800 measurements from five different gait types
measured from two different directions [73].

Breast Cancer Wisconsin Data Set: The data set includes
569 observations from two classes that define benign or ma-
lignant tumors [74].
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FIGURE 15. Computation time performance analysis. The results are reported in seconds. (For step-by-step detailed computational analysis, see
Section IV-D.)

TABLE 1. Performance of Different Cluster Enumeration Approaches on Well-Known Clustering Data Sets

Iris Data Set: The iris data set consists of 150 measure-
ments of three different iris flower species [75].

Person Identification Data Set: The experimental data set
[51] was collected using the same settings as in the human
gait data set. The data set includes radar observations of four
different subjects walking towards and away from the radar
system.

Connectionist Bench Data Set (Sonar): The data set in-
cludes sonar returns collected from a metal cylinder and a
cylindric rock positioned on a sandy ocean floor [76]. The
number of observations is equal to 208 for two object clusters.

Ionosphere Data Set: The data set includes 351 radar re-
turns from the ionosphere for two clusters [77].

Diabetic Retinopathy Debrecen Data Set (D. Retinopathy):
The data set consists of 1151 observations of two clusters
using image-based features of diabetic retinopathy [78].

Gesture Phase Segmentation Data Set (Gesture Phase S.):
The processed features that contain scalar velocity and ac-
celeration of hand and wrist movements have been used for
videos A1, A2, A3, C1 and C3. The data set includes five
phases which are rest, preparation, stroke, hold and retrac-
tion [79].

If none of the cluster enumeration approaches estimates the
cluster number correctly with the default cosine similarity,
the elastic net similarity measure as in [54], is used with ten

candidate penalty parameters ρ on an equidistant grid ranging
from 0.1 to one. Results are reported for ρ = 0.5, which gave
the best average overall detection performance for all meth-
ods. Tukey’s distance function [54] where the threshold de-
fined as cTukey = 3 is used as an initialization for K-medoids
partitioning in the proposed algorithm. For a detailed dis-
cussion about different similarity measures and partitioning
results, see Appendix D.2.1 of the supplementary material.
The estimated cluster numbers are reported for the dif-
ferent cluster enumeration approaches in Table 1. As can
be seen from the table, the human gait and gesture phase
data sets include a considerable number of outliers that re-
sult in misdetection of the cluster number for almost all
competitors. The proposed method is the only one that con-
sistently estimates the correct cluster numbers for all data
sets.

The empirical probability of detection with respect to dif-
ferent penalty parameters is detailed in Fig. 16. Then, the
performance is summarized in Fig. 17 by averaging the results
over all penalty parameters. The results for cluster enumer-
ation demonstrate that the proposed RRLPI shows the best
probability of detection performance for all candidate penalty
parameters with an average score of 79 %, whereas the best
competitors (RLPFM and RLPI) have scores of 73 % and
63 %, respectively.
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FIGURE 16. p̄det with respect to different penalty parameters for
K-medoids partitioning with Tukey’s distance function [54] for the
initialization (cTukey = 3).

FIGURE 17. Performance rank for K-medoids partitioning with Tukey’s
distance function for the initialization (cTukey = 3).

The sensitivity of the cluster enumeration results to dif-
ferent partitioning algorithms is summarized in Fig. 18. The
results demonstrate that the cluster enumeration performance
of the RLPFM approach is very sensitive to the determined
partitioning algorithm while proposed RRLPI method per-
forms best among all partitioning methods.

D. IMAGE SEGMENTATION
ADE20K [80], is a large-scale dataset that includes high qual-
ity pixel-level annotations of 25210 images (20210, 2000, and
3000 for the training, validation, and test sets, respectively.).
In our experiments, 10 images from the ADE20K data set
containing different objects, where each object has a different
color, have been selected for color-based image segmentation.
The selected and corresponding annotated images are denoted
as I and Iseg, respectively. The images are down-sampled,
where the dimension of data set X is M = 3 and N ∼= 15000
using RGB color codes associated to down-sampled image
pixels as features. To analyze robustness, the images are

FIGURE 18. Overall performance rank for different partitioning algorithms.

corrupted by adding multiplicative noise using the equation
Ĩ = I + ξ × I, where Ĩ denotes the corrupted image and ξ
is uniformly distributed random noise with zero mean and
variance σ (ξ ).

The down-sampled images are segmented for a pre-defined
number of segments K using the default setting which per-
forms K-means partitioning for the data sets that have more
than N = 3000 samples. In Fig. 19, examples of the original
image I and associated segmented images using the computed
Fiedler vectors for seven different embedding approaches are
shown along with the ground truth segmented image Iseg. The
uncorrupted images I may also contain outlying pixels and/or
noisy pixels. The effect of outliers is that a small number of
pixels are mapped far away from the group of pixels and,
thus, the remaining group of pixels assigned to a single large
segment based on the distance-based partitioning methods.

A typical example of a segmentation result illustrating the
outlier effects is provided in Fig. 20(a). As can be seen, the
described outlier effect is observed even for the embeddings
of the uncorrupted (original) image when using LE. To exem-
plify the robust Fiedler vector estimation, the segmentation
result of RRLPI is shown in Fig. 20(b). The segmentation
result demonstrates that the proposed robust Fiedler vector es-
timation suppress outlier effects on the eigen-decomposition
and provides segmentation results that are more consistent
with the annotated image Iseg. Further, in Fig. 21, exam-
ples of segmented images are presented for the corrupted
images where σ (ξ ) = 10−3. The results show that the outlier
effect on eigen-decomposition causes a breakdown of the
FastEFM, LSC, and LE approaches. For further examples
and detailed numerical results, see supplementary material
Appendix D.3.2.

The experiments are evaluated quantitatively using F̄score, J̄
and p̄acc, and the results are summarized in Fig. 22. All perfor-
mance measures are evaluated by comparing each estimated
segmented image Îseg with the annotated image Iseg. The LE
and FastEFM show poor performance, even for the original
images. Although LSC shows a reasonably good performance
for the original images, its performance reduces drastically in
the outlier-corrupted case in terms of F̄score and J̄ . The LPI,
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FIGURE 19. Image segmentation results for the original images.

FIGURE 20. Example segmentations for LE and RRLPI methods. The embeddings that are mapped far away from the group of pixels are pointed out using
arrows.

RLPFM and RRLPI are the top three methods in all perfor-
mance measures and RLPI follows them with a reasonably
good performance, which indicates that the proposed penalty
parameter selection algorithm is a promising approach, even
when using non-robust methods.

In summary, the proposed RRLPI shows considerably bet-
ter performance than all methods in cluster enumeration and
provides more stable results than its main competitor, i.e.,
the RLPFM method in different partitioning settings. The
image segmentation results showed that LPI, RLPFM and the
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FIGURE 21. Image segmentation results for the corrupted images. (σ(ξ) = 10−3).

FIGURE 22. Numerical results for the image segmentation.

proposed RRLPI method perform similarly while its com-
putational efficiency provides an advantage compared to its
competitors.

VI. CONCLUSION
The effect of outliers on eigen-decomposition has been ana-
lyzed and the importance of weighted node degree attached

to a vertex has been shown to be a useful measure of outly-
ingness. Based on the derived theoretical results, we proposed
RRLPI, a method to robustly estimate the Fiedler vector that
down-weights embeddings, for which the weighted node de-
gree deviates from the typical weighted node degree of a
given graph. The objective function to estimate the Fiedler
vector is penalized using the proposed unsupervised penalty
parameter selection algorithm that builds upon �-separated
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sets. The performance of RRLPI is benchmarked for different
applications on a variety of real-world data sets. The numeri-
cal results for cluster analysis and image segmentation showed
that the RRLPI is a promising approach for Fiedler vector
estimation in situations where robustly determining the group
structure in a data set is essential.

In future work, we plan to extend our knowledge about
the location of outliers in the embedding space by analyzing
the eigenvectors associated with the K smallest eigenvalues of
the Laplacian matrix which are used in the well-known spec-
tral clustering method. The obtained information about the
location of outliers can be useful to reduce the computational
cost of outlier detection algorithms that are evaluating the pos-
sibility of being outlier for every data point. The findings can
also be integrated to the design of robust spectral clustering
approaches. Moreover, the assumptions on the affinity matrix
may in future be relaxed by considering random graphs. Fi-
nally, in future work, to further generalize the methodology
other metrics for outlier identification [81] may be investi-
gated.
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