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ABSTRACT In this paper, we propose a new self-supervised learning (SSL) method for representations that
enable logic operations. Representation learning has been applied to various tasks like image generation
and retrieval. The logical controllability of representations is important for these tasks. Although some
methods have been shown to enable the intuitive control of representations using natural languages as
the inputs, representation control via logic operations between representations has not been demonstrated.
Some SSL methods using representation synthesis (e.g., elementwise mean and maximum operations) have
been proposed, but the operations performed in these methods do not incorporate logic operations. In this
work, we propose a logic-operable self-supervised representation learning method by replacing the existing
representation synthesis with the OR operation on the probabilistic extension of many-valued logic. The
representations comprise a set of feature-possession degrees, which are truth values indicating the presence
or absence of each feature in the image, and realize the logic operations (e.g., OR and AND). Our method can
generate a representation that has the features of both representations or only those features common to both
representations. Furthermore, the expression of the ambiguous presence of a feature is realized by indicating
the feature-possession degree by the probability distribution of truth values of the many-valued logic. We
showed that our method performs competitively in single and multi-label classification tasks compared with
prior SSL methods using synthetic representations. Moreover, experiments on image retrieval using MNIST
and PascalVOC showed the representations of our method can be operated by OR and AND operations.

INDEX TERMS Logic operation, operability, representation learning, self-supervised learning.

I. INTRODUCTION
Remarkable progress has been achieved in representation
learning recently. Self-supervised learning (SSL) is a method
for learning representations without labeled data [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11]. Using models pre-
trained by SSL for image classification and object detection
achieves high performance with a small amount of labeled
data. Popular SSL methods, e.g., BYOL [2], SimSiam [1], and
DINO [12], learn a model to maximize the similarity between
representations of augmented views of an image. Owing to
these advances in representation learning, various foundation
models [13], [14], [15], [16] have been proposed. It is a pre-
trained model built on large-scale datasets and can be adapted

to various tasks and domains. CLIP [13] achieves zero-shot
image classification by learning the common representation
space of the two modalities: natural language and images.
DALL-E [16] generates images by the diffusion model from a
representation of text descriptions.

Control of representations, including the logic operations
of representations, is important in various applications such
as image generation and retrieval [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27]. Controlling representa-
tions using natural language has facilitated intuitive control
of representations [13], [16], [19], [27]. However, it has
been pointed out that image generation methods using natural
language often inadequately reflect the logical relationships
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within the prompt [19], [27], [28]. Additionally, methods
for controlling representations using human feedback and
representation disentanglement have been proposed [20], [21],
[22], [23], [24], [25], but few methods explicitly perform
representation control compatible with propositional logic
operations. If operations corresponding to the logical OR
and AND operations could be realized, it would be possi-
ble to generate representations that combine features of both
representations and representations that share only common
features. We believe that achieving such logic operations be-
tween representations will expand the range of representation
control and enhance the convenience of various applications
utilizing representations.

In SSL, several methods use representations generated by
operations between representations [29], [30], [31], [32], [33].
As representation synthesis methods, elementwise mean [30]
and elementwise maximum [33] operations of two represen-
tations have been proposed. The primary objective of these
methods is to learn diverse and robust features of images using
mixed images [34], [35], and they have not been designed to
enhance the operability of representations. As a result, these
methods have not incorporate the possibility of logic opera-
tions.

In this study, we propose a logic-operable self-supervised
representation learning method to enhance the operability
of representations. We realize the control of representations
via logic operations by applying the OR operation of the
probabilistic extension of the Gödel logic [36], which is one
of many-valued logic, to the representation synthesis opera-
tion of the conventional SSL methods. A representation of
our method comprises degrees of feature possession, where
the feature-possession degree indicates the degree to which
each feature is included in the input image. Logic opera-
tions between representations can be performed by expressing
the feature-possession degree in truth value. In addition, us-
ing the probabilistic extension of many-valued logic, the
feature-possession degree can be presented by the categor-
ical distribution of truth values and the expression of the
ambiguous presence of features can be achieved. Fig. 1
shows examples of the feature-possession degree and the
logic operation of representations. This method achieves op-
erable representation learning by maximizing the similarity
between the representation of a mixture of two images and
the representation of each image synthesized by the OR op-
eration. The contributions of this study can be summarized as
follows:
� We proposed a new self-supervised representation learn-

ing method that enables logic operation between repre-
sentations.

� We conducted experiments on single and multi-label
classification tasks and demonstrated that our method is
competitive with existing methods.

� We demonstrated that the representations successfully
express the degree of feature possession without labels.
In addition, the image retrieval results showed that the

FIGURE 1. Overview of the representations and logic operation. The
method predicts a representation capable of performing logic operations
between representations using many-valued logic. The representation
comprises several probability distributions that express the probability of
the truth value of the feature-possession degree. These examples show
three categorical distributions, possibly corresponding to “Dog”, “Person”
and “Cat.” Logic operations (e.g., OR, AND) between representations can
be performed by presenting feature possession in many-valued logic.

representation of our method is operable by OR and
AND operations.

II. RELATED WORK
A. SSL AND REPRESENTATION SYNTHESIS
Previous studies have shown that SSL performs well in many
downstream tasks, such as classification, object detection, and
semantic segmentation [1], [2], [3], [5], [12]. SimCLR [5] and
MoCo [3], called contrastive learning, learn to maximize the
similarity of representation pairs augmented from the same
image (positive pairs) and to minimize the similarity of rep-
resentation pairs augmented from different images (negative
pairs). Meanwhile, SimSiam [1], BYOL [2], and DINO [12],
called non-contrastive learning, learn using only the positive
pairs.

Recently, several methods [29], [30], [31], [32] that use rep-
resentations synthesized from multiple representations have
been proposed. Ren et al. [30] proposed SSL based on a
transformer using mixed images and synthesized representa-
tions. The method improves performance by adding learning
to maximize the similarity between the representations of
mixed images and synthesized representations. MixSiam [33]
is an SSL method that uses mixed images and representations
synthesized by a maximizing operation to learn more discrim-
inative representations. Although some SSL methods using
synthesized representation have been proposed, the logic op-
erability of representations by synthesis has not been studied
in detail.
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B. REPRESENTATION OPERABILITY
Representation operations and control have been studied re-
garding image generation, image retrieval, interpretability
of representations, and generation of new representations,
among others [16], [22], [23], [25], [26], [29], [30], [31], [32],
[33], [37], [38]. For example, β-VAE [25] and Guided-VAE
[24] improve the interpretability of representations by disen-
tangling them, which has been found to be beneficial for both
image retrieval and generation. info-GAN [26] and DALL-E
[16] improve the performance of control of generated images
by generating representations from controllable latent vari-
ables and languages. In addition, there are also methods [22],
[23] that involve modifying representations through interac-
tions with humans to retrieve intended images. Furthermore,
i-mix [31] and MixSiam [33] realize SSL using mixed images
by generating new representations upon synthesizing the rep-
resentations of images. These methods enable representation
learning for various features. However, they fell short of en-
abling logic operations between representations.

III. PRELIMINARY
A. SELF-SUPERVISED LEARNING
Our method is based on non-contrastive SSL, such as Sim-
Siam [1] and BYOL [2], DINO [12]. The method learns
representation prediction by minimizing the distance between
the representations of images xi and xi

′ obtained from the
random augmentation of image Xi. Here, i indicates the image
index. This method need two encoders fθ and gφ to predict
image representations zi, z′

i and pi, p′
i. θ and φ are the pa-

rameters.
The loss Lnormal is also defined by D(·), which describe the

difference between the representations, as follows;

Lnormal = 1

2
D(pi, stopgrad(z′

i )) + 1

2
D(p′

i, stopgrad(zi )).

(1)

The stop-gradient operation stopgrad(·) [1] prevents gradi-
ent calculation for the respective variable during backprop-
agation to avoid learning collapse. The model is trained by
minφ Lnormal . D(·) differs depending on the style of repre-
sentation, for example, negative cosine similarity [1], [2] and
cross entropy [12].

B. SELF-SUPERVISED LEARNING WITH REPRESENTATION
SYNTHESIS
This section describes a SSL method using the mixed image
xmix and the synthesized representation zc. Fig. 2 shows an
overview of the SSL method using mixed images and repre-
sentation synthesis. Mixup [34] is used to generate the mixed
image xmix , zc is generated using representations z1 and z2

and the synthesis function Mix(·). λmix ∈ [0, 1] is the Mixup
parameter.

xmix = λmixx1 + (1 − λmix )x2, (2)

zc = Mix(z1, z2) (3)

FIGURE 2. Overview of SSL using mixed images and representation
synthesis, such as the logic (OR), mean, and maximum operations.

We define another loss function Lmix to minimize the dis-
tance between pmix , which is the representation of xmix and the
synthesized representation zc. In addition, we also define the
weighted average of Lnormal and Lmix as the loss function L.
The model is trained by minφ L. α ∈ [0, 1] is a hyperparame-
ter.

Lmix = D(pmix, stopgrad(zc)), (4)

L = αLnormal + (1 − α)Lmix (5)

IV. METHOD
We propose a SSL method for logic-operable representa-
tions. First, we describe a probabilistic extension of the
many-valued logic and operations in Section IV-A. Then,
we describe SSL with representations which comprise mul-
tiple categorical distributions in Section IV-B. Afterward, we
describe how to synthesize the representation using several
operations in Section IV-C.

A. LOGIC OPERATION OF THE PROBABILISTIC
MANY-VALUED LOGIC
A many-valued logic refers to a logic system with truth values
other than 0 and 1. In this study, we considered Gödel logics
[36]. In Gödel logics, a family Gn of many-valued logics
possess n truth values 0, 1

n−1 ,
2

n−1 , . . ., 1. Such truth values
other than 0 and 1 realize the expression of uncertainty. The
logic operations of variables A and B are defined as follows:
A and B are the truth values, and A,B ∈ [0, 1].

A ∨ B := max(A,B) (6)

A ∧ B := min(A,B) (7)

We further define the NOT operation as ¬A = 1 − A.
When A and B follow categorical distributions, they are

written as follows:

A ∼ Cat(A|πa = {a0, a1, . . ., an−1}) (8)

B ∼ Cat(B|πb = {b0, b1, . . ., bn−1}) (9)
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FIGURE 3. Example of the probability of each truth value for n = 4.

where ai and bi represent probabilities. We define P(A =
i

n−1 ) = ai and P(B = i
n−1 ) = bi.

Then, we discuss P(A ∨ B = i
n−1 ), P(A ∧ B = i

n−1 ) and

P(¬A = i
n−1 ). They are described as;

P

(
A ∨ B = i

n − 1

)
= ai

i∑
j=0

b j + bi

i∑
j=0

a j − aibi, (10)

P

(
A ∧ B = i

n − 1

)
= ai

n−1∑
j=i

b j + bi

n−1∑
j=i

a j − aibi, (11)

P

(
¬A = i

n − 1

)
= an−1−i (12)

Fig. 3 shows an example of the probability of each truth
value of A, B, A ∨ B, A ∧ B and ¬A for n = 4.

B. SELF-SUPERVISED LEARNING WITH MULTIPLE
CATEGORICAL DISTRIBUTIONS
In this section, we describe SSL with representations which
comprise multiple categorical distributions. We prepare en-
coder fθ and predictor hψ . The second encoder gφ is defined
as gφ = hψ ◦ fθ . θ , ψ and φ are the parameters. These en-
coders predict representations as follows;

z̃i = fθ (xi ), z̃′
i = fθ (x′

i ), (13)

p̃i = gφ (xi ), p̃′
i = gφ (x′

i ). (14)

Representations z̃i and p̃i comprise N M-dimensional vec-
tors with a total number of dimensions of N × M. Each vector
is defined as z̃i, j , p̃i, j ( j = 1, 2, . . .,N ). Consequently, the
vectors z̃i, j , p̃i, j are transformed into categorical distributions
using the softmax function.

zi, j = softmax
(
(z̃i, j − c)/τt

)
(15)

pi, j = softmax
(
p̃i, j/τs

)
(16)

z′
i, j and p′

i, j are also obtained by replacing z̃i, j and p̃i, j in
(15) and (16) with z̃′

i, j and p̃′
i, j respectively. Representations

zi and pi comprise N M-dimensional categorical distributions.
Thus, zi, j, pi, j ∈ R

M and zi, pi ∈ R
N×M . The k-th class

parameter of the j-th categorical distribution is described by

zi, j,k, pi, j,k ∈ [0, 1]. τt and τs are the parameters of sharpen-
ing, and c is a parameter of centering [12].

By considering cross-entropy, D(·) in (1) is defined as fol-
lows;1

D(pi, stopgrad(z′
i )) = − 1

N

N∑
j=1

M∑
k=1

z′
i, j,k log pi, j,k . (17)

C. REPRESENTATION SYNTHESIS
In this section, we explain the operations used to synthe-
size representations, Mix(·). First, we describe the synthesis
of representations using the mean and maximum operations
used in existing methods. Then, we describe representation
synthesis using a many-valued logic operation to learn repre-
sentations that are operable by logic operations.

1) REPRESENTATION SYNTHESIS BY THE MEAN OPERATION
This synthetic method is referenced from SDMP [30]. The
synthesized representation zc is derived from z1, z2, and the
Mixup parameter λmix.

zc = λmixz1 + (1 − λmix )z2 (18)

2) REPRESENTATION SYNTHESIS BY THE MAXIMUM
OPERATION
This synthetic method was referenced from MixSiam [39].
The synthesized representation zc is the normalized element-
wise maximum of the prenormalized representations f (x1)
and f (x2). zc is derived as follows, where the maximum means
the elementwise maximum function;

zc, j = softmax

(
maximum

(
z̃1, j, z̃2, j

) − c

τt

)
. (19)

3) REPRESENTATION SYNTHESIS BY LOGIC OPERATION
We propose a representation synthesis method based on many-
valued logics. In our method, the degree of possession of each
feature in the image is indicated by truth values to achieve
logic operations between representations. The representation
zc in (4) is synthesized by a logic operation.

Feature-possession degree: First, we describe how to ex-
press each feature-possession degree of an image. Zi, j and
Pi, j are stochastic variables that follow the j-th categorical
distribution of zi, pi. When Zi, j and Pi, j follow Gödel logics
and have M truth values (0, 1

M−1 , . . ., 1), such as (8) and (9),
Zi, j and Pi, j are described as follows:

Zi, j ∼ Cat(Zi, j |π = {zi, j,1, zi, j,2, . . ., zi, j,M}), (20)

Pi, j ∼ Cat(Pi, j |π = {pi, j,1, pi, j,2, . . ., pi, j,M}), (21)

P

(
Zi, j = k − 1

M − 1

)
= zi, j,k . (22)

P

(
Pi, j = k − 1

M − 1

)
= pi, j,k . (23)

1When N = 1, (17) is equivalent to that of DINO [12].

834 VOLUME 5, 2024



We assume that each categorical distribution Zi, j corre-
sponds to a feature of image. In other words, the larger the
expected value of Zi, j , the more features of the image corre-
sponding to Zi, j that it possesses. Pi, j also has same properties.

Representation Synthesis by Logic Operation: Logic oper-
ation is possible because each feature-possession degree is
expressed as a truth value. Here, we explain the OR, AND,
and NOT operations. Z1, j and Z2, j are the truth values that
follow the j-th categorical distribution of z1, z2. We set the
truth values after the operation of these truth values as follows:

ZOR, j := Z1, j ∨ Z2, j (24)

ZAND, j := Z1, j ∧ Z2, j (25)

ZNOT, j := ¬Z1, j (26)

Z1, j and Z2, j follow categorical distributions as shown in (22).
From (10), (11) and (12), zOR, j,k , zAND, j,k , and zNOT, j,k are as
follows:

zOR, j,K = P

(
Z1, j ∨ Z2, j = K − 1

M − 1

)

= z1, j,K

K∑
k=1

z2, j,k + z2, j,K

K∑
k=1

z1, j,k − z1, j,K z2, j,K

(27)

zAND, j,K = P

(
Z1, j ∧ Z2, j = K − 1

M − 1

)

= z1, j,K

M∑
k=K

z2, j,k + z2, j,K

M∑
k=K

z1, j,k − z1, j,K z2, j,K

(28)

zNOT, j,K = P

(
¬Z1, j = K − 1

M − 1

)

= z1, j,M−K+1 (29)

We define z1 ∨ z2 as operations that perform (27) and z1 ∧
z2 as operations that perform (28) for all j, k in z1, z2. In
addition, we define ¬z1 as operations that perform (29) for all
j, k in z1. These operations can also be performed on p1 and
p2.

Synthesization of zc: As the representation pmix is con-
sidered to possess the features of images x1 and x2, the
synthesized representation zc is designed such that it has
features of z1 and z2. To satisfy this requirement, we set
zc = z1 ∨ z2.

D. EXPECTED VALUE LOSS
This section describes a new loss considering the expected
value of the feature-possession degree. For example, when
there are three stochastic variables of the truth value,

Z1, j ∼ Cat(Z1, j |π={z1, j,1 = 0.8, z1, j,2 = 0.1, z1, j,3 = 0.1}),

P2, j ∼ Cat(P2, j |π={p2, j,1=0.1, p2, j,2 = 0.8, p2, j,3 = 0.1}),

P3, j ∼ Cat(P3, j |π={p3, j,1=0.1, p3, j,2 = 0.1, p3, j,3 = 0.8}),

the cross-entropy loss of Z1, j and P2, j is the same as that
of Z1, j and P3, j , though the expected truth values of P2, j

and P3, j are different. To facilitate learning the appropriate
feature-possession degrees, we introduce the new loss which
penalizes more when the difference between the expected
values of feature-possession degrees is large. By considering
the binary cross-entropy of the expected values of the random
variables Zi, j and Pi, j , it is described as follows;

BCE(pi, j, zi, j )

= −E [Zi, j] log E [Pi, j] − (1 − E [Zi, j]) log (1 − E [Pi, j]).
(30)

E [·] indicates the expected value. The loss functions Lexp is
defined as follows;

L1 = 1

2 N

N∑
j=1

(BCE(pi, j, stopgrad(z′
i, j ))

+ BCE(p′
i, j, stopgrad(zi, j ))), (31)

L2 = 1

N

N∑
j=1

BCE(pmix, j, stopgrad(zc, j )), (32)

Lexp = αL1 + (1 − α)L2. (33)

Finally, we use the weighted average of L from (5) and Lexp

as the loss function. β ∈ [0, 1] is a hyperparameter.

Lprop = βLexp + (1 − β )L (34)

min
φ

Lprop (35)

V. EXPERIMENT
In this section, we experiment with the proposed method from
several perspectives. First, we compare the performance of
the proposed and existing methods on classification tasks.
(Sections V-B, and V-C). Further, we confirm the relation-
ship between the feature-possession degree and images and
show that the feature-possession degree is learned as intended
(Section V-D). In addition, we confirm the operability of
the representation via logic operations using image retrieval
(Section V-E).

A. IMPLEMENTATION
We implemented four methods: vanilla and representation
synthesis by using the mean, maximum, and logic operations,
as described in Section IV-C. Vanilla is a method that does not
use mixed images or representation synthesis. Unless stated
otherwise, the setup for each method is as follows.

Experimental settings for networks: The projector of the
encoder f and predictor h of the proposed method are the
same as those of SimSiam. The backbone network of the
encoder f is Resnet-18 [40].

Experimental settings for pretraining: Unless stated oth-
erwise, the number of categorical distributions within the
representation N is 512, and the number of classes in each cat-
egorical distribution M is 8. The total number of dimensions
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TABLE 1. Top-1 Accuracy of Linear-Evaluation for Each Method, Eight
Experiments Were Performed, and the Mean and Standard Deviation (SD)
of the Top-1 Accuracy Were Calculated

of the representation, N × M, is 4096. We used momentum-
SGD for pretraining. The learning rate was 0.027, and SGD
momentum was 0.9. The learning rate followed a cosine-
decay schedule. The weight decay was 1e-4. The batch size
was 32. The parameters of sharpening were τs = 0.1 and
τt = 0.04. The parameter of centering c was updated as in
DINO, with the update parameter set to m = 0.9. The aug-
mentation settings were the same as those used in SimSiam.
The image-mixing method was Mixup [34]. The parameter for
Mixup, λmix, was set to 0.5. The loss weight α in (5) and (33)
is 0.5. β, the parameter for the expected value loss of the logic
operation method in (34) is 0.6.

B. SINGLE-LABEL IMAGE CLASSIFICATION
We experimented with single-label image classification to ver-
ify the effectiveness of our method. First, we performed self-
supervised pretraining with ImageNet100 [41]2 and CIFAR10
[42] dataset without labels to learn image representations.
Then, we trained a linear classifier on frozen representations
on the training set of the dataset with the labels. Finally, we
calculated the top-1 accuracy of the test set and used it as an
evaluation metric.

Now, we describe the experimental setup for learning a
linear classifier. We used LARS [43] as an optimizer for linear
evaluation. The learning rate was 1.6, and the SGD momen-
tum was 0.9. The weight decay was 0.0, and the batch size was
512. The image augmentation was performed as in SimSiam.
The number of epochs was 200. We used the model with the
highest top-1 accuracy as the validation set for testing. When
we trained it, we cropped an image randomly and resized it
to 224 × 224 before inputting it into the model. The area of a
randomly cropped image ranged from 0.08 to 1.0 of the area
of the original image. In the validation and test phases, the
image was resized to 256 × 256, and the center was cropped
to 224 × 224.

Table 1 summarizes the results. We compared four meth-
ods: Vanilla and representation synthesis using the mean,
maximum, and logic operations. Our method performs com-
petitively compared with existing synthetic methods. In the
logic operations, we compared M, the number of truth val-
ues of the many-valued logic, from 2 to 16. The results of

2ImageNet100 is a 100-category subset of ImageNet [41].

TABLE 2. Results of Multilabel Classification for Each Method, Eight
Experiments Were Performed, and the Mean and SD of mAP Were
Calculated

ImageNet100 showed that the many-valued logic (M > 2),
which can express the uncertainty of the feature-possession
degree, improved accuracy compared to the binary case
(M = 2). The performances are lower for M = 16 and 32
than for M = 8. We consider this is because if M is increased
under the condition that NM is constant, N , the number of
the feature-possession degree, decreases and a sufficient va-
riety of feature-possession degrees cannot be described by a
representation.

C. MULTILABEL IMAGE CLASSIFICATION
We also experimented with multilabel image classification to
verify the effectiveness of our method. The model pre-trained
at 200 epochs by ImageNet100 was trained on the multilabel
classification dataset and evaluated in terms of mean average
precision (mAP).

In the experiments, the backbone network was fixed, and
only the final fully-connected layer was trained. The number
of epochs was 500, and the learning rate was 0.02. When we
trained the models, the input image was resized to 640 ×
640, and we randomly selected {640, 576, 512, 384, 320} as
the width and height to crop the images. Finally, the cropped
images were resized to 224 × 224 pixels. When we evaluated
the models, we resized the input image to 256 × 256 and
performed center-crop operation with a size of 224 × 224.

We used Microsoft COCO [44] and PascalVOC [45] as
multilabel classification datasets, which contain 80 and 20 cat-
egories, respectively. When using COCO, we trained models
using the training set and evaluated them using the validation
set because ground truth annotations for the test set were
unavailable. When using PascalVOC, we trained models using
the trainval2007 and trainval2012 sets and evaluated them
using the test2007 set.

Table 2 shows the results. Our methods are competitive with
other representation synthesis methods.

D. EVALUATION OF THE FEATURE-POSSESSION DEGREE
In this section, we verify that the feature-possession degree
E [Pi, j] corresponds to a certain image feature and is learned as
hypothesized. Fig. 4 shows the examples of the top five images
with some feature-possession degrees. We used ImageNet100
dataset. This results suggest that the feature-possession degree
is learned as an indicator of how much of a certain feature an
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FIGURE 4. The-5 images with the highest feature-possession degrees.
Feature ID is the index number of feature-possession degrees.

FIGURE 5. Boxplot of the feature-possession degrees of particular classes
compared with others.

input image has because images with large feature-possession
degrees tend to be similar.

Next, we investigated the relationship between the feature-
possession degree and the image class. Fig. 5 shows the
boxplot of a particular feature-possession degree in one class
and the other. For example, the representation of class “bus-
tard” images has a 289th feature-possession degree larger than
the representations of the other classes. The result of the larger
feature-possession degree for the images of a particular class
indicates that the feature-possession degree corresponds to the
image feature that is frequently included in that class.

Using a multilabel classification dataset, we also investi-
gated the relationship between the feature-possession degree
and the objects. Fig. 6 shows examples of the relationship.
The left image contains two objects; the middle and right
images contain one object cropped from the left image. We
also show two feature-possession degrees in these images.
Both feature-possession degrees are relatively high in the left
image containing both objects. However, in the middle and
right images, one is relatively high, and the other is relatively
low, indicating there is a relationship between the objects in
the image and the feature-possession degree.

E. IMAGE RETRIEVAL FROM SYNTHESIZED
REPRESENTATIONS
Here, we discuss the operability between representations by
performing image retrieval using MNIST and PascalVOC
datasets.

1) MNIST
First, we discuss the results of image retrieval using the
MNIST dataset. Fig. 7 shows the top five images of the im-
age retrieval at each query representation. The second row

FIGURE 6. Input images and two feature-possession degrees. The left
image contains two objects, both with feature-possession degrees, which
are relatively high. Meanwhile, the middle and right cropped images,
which have only one object, show that one feature-possession degree is
relatively small.

FIGURE 7. Examples of image retrieval result by the representation
operated by logic operation. The top row shows images retrieved using a
query for images containing both “1” and “2”. The middle row shows the
results of an AND operation between the representations of images
containing both ‘1’ and ‘2’ and those containing only ‘2’, revealing an
increase in images featuring only ‘2’ compared to the top row.

shows the result when the AND operation is performed on
the representation of the image containing only “2” for the
representation of the image containing both “1” and “2”. Since
most of the top five images are class “2” images, we assume
that the “2” feature remained in the representation of the query
owing to the AND operation. Conversely, when the negation
of the representation of the class “2” image is performed AND
operation, the features of “2” are removed from the query,
indicating that the images of “1” appear more frequently in
the top-5. We used the MNIST training set as the gallery set,
and query images were selected from the MNIST test set. We
used (17) as the distance between two representations.

In addition, we also quantitatively evaluated representation
operability using an image retrieval task. Let the set of classes
for MNIST be defined as L, and given classes a, b ∈ L, the
sets of images in the test set that contain only class a or
class b are defined as X{a} and X{b}. Also, let X{a,b} denote

the set of images mixup of images x{a}
i ∈ X{a} and x{b}

j ∈ X{b}.
We define p{a}

i as the representation obtained by inputting

x{a}
i ∈ X{a} into the pretrained model with reference to (13),
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FIGURE 8. The occurrence rate of images of class a in the top-50 when
image retrieval is performed using p{a,b}

i , p{a}
i and p{b}

i and the
representation after logic operation of them as queries.

(14), and (16). We used the top-50 occurrence rates of the
class a images as the evaluation value. First, we prepared
the evaluation values when p{a,b}

i , p{a}
i , and p{b}

i are queries,
and then used these evaluation values as the reference val-
ues. Then, we prepared a representation expected to be close
to the above three representations by the operations among
the representations. We derived the evaluation values when
the representations generated by the operations were used as
queries. Operability is evaluated by comparing them with the
reference values. We used the model pretrained by MNIST by
500 epochs to predict representations.

The backbone network is composed of 3 convolution layers
and 2 fully-connected layers. The number of dimensions of
the representation was 1024, the number of categorical distri-
butions within the representations N was 128, and the number
of classes in each categorical distribution M was 8. We ran-
domly selected 30 x{a}

i , x{b}
i , and x{a,b}

i from X {a}
i , X {b}

i , and

X {a,b}
i and show the average evaluation value when those rep-

resentations are the queries. Moreover, we show the average of
evaluation values of 900 combinations of two representations
in operations such as p{a}

i ∨ p{b}
i .

Fig. 8(a) shows the average of the top-50 occurrence rates.
First, we compare p{a,b}

i and p{a}
i ∨ p{b}

i (shown in blue). Both
are expected to have features of both classes a and b. The re-
sults show that the occurrence rates are very close, indicating
that the OR operation works as intended. Next, we compared
p{a,b}

i ∧ p{a}
i and p{a,b}

i ∧ ¬p{b}
i with p{a}

i (shown in orange),

and p{a,b}
i ∧ p{b}

i and p{a,b}
i ∧ ¬p{a}

i with p{b}
i (shown in green).

p{a,b}
i ∧ p{a}

i and p{a,b}
i ∧ ¬p{b}

i would be expected to have

only class a features, while p{a,b}
i ∧ p{b}

i and p{a,b}
i ∧ ¬p{a}

i
would be expected to have class b features. The results show
that p{a,b}

i ∧ p{a}
i and p{a,b}

i ∧ p{b}
i are very close to the ref-

erence values, indicating that the AND operation works as
intended. On the other hand, p{a,b}

i ∧ ¬p{b}
i and p{a,b}

i ∧ ¬p{a}
i

is not close to the reference values. We note that the relation-
ship between a class and a feature-possession degree is not a
direct one-to-one correspondence, but rather the class could
be expressed by the presence or absence of multiple features.
Even within the same class, the features may differ in terms
of letter thickness, size, slant, etc. Therefore, the feature of
class a could not be completely removed from p{a,b}

i , causing

the occurrence rate of p{a,b}
i ∧ ¬p{a}

i to be larger. In addition,
it is possible that there are common features in classes a
and b, and that p{a,b}

i ∧ ¬p{b}
i also remove common features

between the classes: thus the occurrence rates became low.
Therefore, we also investigate the top occurrence rate using

query p{a,b}
i ∧

p{a}
i¬ p{b}

i , in which the features that only p{b}
i has

in p{a}
i , p{b}

i are removed from p{a,b}
i . The operator

p{a}
i¬ p{b}

i is
defined as follows:

p{a}
i¬ p{b}

i := ¬p{b}
i ∨ (p{a}

i ∧ p{b}
i ) (36)

Since the common feature p{a}
i ∧ p{b}

i is not removed from

p{a,b}
i , the value of p{a,b}

i ∧
p{a}

i¬ p{b}
i is closer to the reference

value than p{a,b}
i ∧ ¬p{b}

i .

2) PASCALVOC
Futher, we evaluated the operability of the representation on
PascalVOC, a multilabel dataset of natural images. We de-
fined L as the set of classes with at least 200 images containing
only one class from the trainval2007 and trainval2012 sets. In
addition, we defined sets of images in test2007 set that contain
only class a ∈ L or class b ∈ L are defined as X{a} and X{b}. We
also define a set X{a,b} of images in test2007 set that contains
only class a and class b. We prepared the model pretrained
by trainval2007 and trainval2012 sets of PascalVOC by 500
epochs. A gallery set of 2400 images was created by sampling
200 images from the trainval2007 and trainval2012 sets for
each class. Using the classes, image sets, and models defined
above, we compared the occurrence rates of class a in similar
experiments in Section V-E-1

Fig. 8(b) shows the average occurrence rate. Similar to
the MNIST results, we can confirm that OR and AND are
working properly by comparing p{a,b}

i to p{a}
i ∨ p{b}

i , p{a}
i to

p{a,b}
i ∧ p{a}

i , and p{b}
i to p{a,b}

i ∧ p{b}
i . The difference from the

reference value appears to be larger than that of MNIST. The
reason may be that they are likely to have different features
within the same class (e.g., gender and age for the “person”
class, and breed for the “dog” class).
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FIGURE 9. Examples of the top-10 images of image retrieval. The top row displays the images retrieved using a query for an image containing both
‘tvmonitor’ and ’person’. The middle row presents results from an AND operation between images containing both ‘tvmonitor’ and ’person’ and those
containing only ‘tvmonitor’. This shows an increase in images containing only ’tvmonitor’ compared to the top row. The results in the bottom row are
derived from an AND operation between the representation of images containing both ‘tvmonitor’ and ’person’ and the negation of the representation of
images containing only ‘tvmonitor’. This operation has resulted in the removal of the ’tvmonitor’ feature, and an increase in images that contain only
’person’.

Fig. 9 shows some examples of image retrieval, including
the result of AND and NOT operations between the represen-
tation of the image of “tvmonitor” and the representation of
the image containing both “tvmonitor” and “person”. In the
result of second row, many images of “tvmonitor” appear in
the top-10 images, indicating that the representation possesses
features related to “tvmonitor” owing to the AND operation.
On the other hand, in the third row, the AND, NOT operation
removes the features related to “tvmonitor”, and many “per-
son” images appear in the top-10 images.

VI. LIMITATION
The computational cost of our proposed representation syn-
thesis by logic operations is higher than that by mean and
maximum operations. When a representation consists of N
M-class categorical distributions, the computational cost re-
quired for synthesis is O(NM ) for the mean and maximum
operations and O(NM2) for the logic operations. We note
that our method increases the computational cost, especially
in the synthesis of the representations, but this increase does
not affect the gradient computation during the learning of the
encoder part. Although there is an increase in computational
cost, this increase is minimal.

This study focused on only image representation. However,
if the operability discussed in this study can be extended
to multimodal representation learning using images and lan-
guage in the future, the controllability of representation can
be improved.

VII. CONCLUSION
In this study, we proposed a self-supervised representation
learning method that can perform logic operations by describ-
ing the degree of possession of each feature in an image using
many-valued logic. The results showed that the performance
of our method was competitive with those of other SSLs that
use representation synthesis in classification tasks. Further, we

experimentally verified that the possession degree of each fea-
ture in the image was properly learned. Moreover, we showed
that the proposed method can learn representations with high
logic-operability using image retrieval tasks.
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