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ABSTRACT Image demosaicing is an important step in the image processing pipeline for digital cameras.
In data centric approaches, such as deep learning, the distribution of the dataset used for training can impose
a bias on the networks’ outcome. For example, in natural images most patches are smooth, and high-content
patches are much rarer. This can lead to a bias in the performance of demosaicing algorithms. Most deep
learning approaches address this challenge by utilizing specific losses or designing special network archi-
tectures. We propose a novel approach SDAT, Sub-Dataset Alternation Training, that tackles the problem
from a training protocol perspective. SDAT is comprised of two essential phases. In the initial phase, we
employ a method to create sub-datasets from the entire dataset, each inducing a distinct bias. The subsequent
phase involves an alternating training process, which uses the derived sub-datasets in addition to training
also on the entire dataset. SDAT can be applied regardless of the chosen architecture as demonstrated by
various experiments we conducted for the demosaicing task. The experiments are performed across a range
of architecture sizes and types, namely CNNs and transformers. We show improved performance in all cases.
We are also able to achieve state-of-the-art results on three highly popular image demosaicing benchmarks.

INDEX TERMS Demosaicing, image restoration, inductive bias.

I. INTRODUCTION
The task of image demosaicing is a crucial step in digital
photography and refers to the process of reconstructing a
full-resolution RGB color image from incomplete data ob-
tained from the use of a color filter array (CFA), such as
the Bayer pattern of GRBG. In digital cameras, CFA samples
only a fraction of the image information, which makes the
task of demosaicing complex and challenging. This task is
part of a larger group of image restoration problems, such
as denoising, deblurring, single image super-resolution, in-
painting, removing JPEG compression, etc. These tasks aim
at recovering a high-quality image from degraded input data.
Image restoration problems are usually considered ill-posed,
in the sense that it is usually not possible to determine a unique
solution that can accurately reconstruct the original image.
This is particularly true for image demosaicing due to the fact
that the red, green, and blue color channels are sampled at
different locations and rates, which can cause severe aliasing
issues. In recent years, the use of convolutional neural net-
works (CNNs) and transformers has shown significant success

in addressing image restoration problems [1], [2], [4], [5],
[6] in general, and for image demosaicing in particular, [1],
[7], [8], [9], [10], [11], [12]. It is well known that inductive
bias, which refers to the assumptions and prior knowledge that
the model brings to the learning process, is necessary for the
model convergence [13]. But, in some cases, it can have the
opposite effect and negatively impact the model’s ability to
generalize. This is true for deep neural networks as well and
has triggered an extensive line of study, e.g. [14], [15], just to
mention a few. The bias can arise from various factors such
as the network architecture, the training dataset, and others.
Our focus in this study is on the inductive bias of a given
model caused by the trained dataset. In the case of image
demosaicing, biased solutions can cause artifacts, such as
zippers, Moiré, color distortion, and more. The most common
cause of inductive bias is the well observed phenomenon that
natural images are mostly smooth. [16], [17]. However, there
are more elements in the data that can cause a given model to
induce bias which are less obvious and are more difficult to
characterize.
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FIGURE 1. A comparison of PSNR results between our training method
(SDAT, blue circles) and a standard training on the entire dataset (EDT, red
circles) applied on in-house and various popular architectures [1], [2] over
Kodak [3] dataset. By using our training method we achieved better results
compared to standard training across all architectures. In addition, we
achieved state-of-the-art (SOTA) results using GRL architecture.

In this paper we propose SDAT, Sub-Dataset Alternation
Training, a novel training approach designed to guide con-
vergence towards less biased solutions. Our method extracts
sub-datasets from the entire training data, each inducing a
unique bias over the trained model. Our training utilizes these
sub-datasets to steer the learning process in a non-traditional
manner, and prevents converging towards highly likely bi-
ased solutions. This approach involves an alternation between
training on the entire dataset and training on the extracted
sub-datasets.

We demonstrate how SDAT is able to improve the perfor-
mance of different architectures across all evaluated bench-
marks in comparison to the originally implemented training,
as can be seen in Fig. 1. One type of evaluation is follow-
ing a recent trend of low-capacity models (less than 200 k
parameters) for edge devices performing image demosaicing
[18], [19], [20]. We show that our method is able to effectively
utilize the model’s capacity and surpass recent relevant works
across all benchmarks using fewer number of parameters,
showcasing a more efficient solution for low-capacity models.
Another is demonstrating improved performance over high
capacity models (in an order of 1 M parameters and higher).
We evaluate our method both on CNN based architectures
and transformers. Thus we exemplify the effectiveness of the
proposed method regardless of the architecture. Using SDAT
we achieved state-of-the-art on three popular benchmarks by
training a variant of the GRL architecture [2].

We summarize our main contributions as follows:
1) We introduce a novel training method for image de-

mosaicing that is able to explore the parameter space
more effectively than standard training methods, thus
decreasing bias induced by the data.

2) We evaluate our training scheme over various model
sizes and different types of architectures, showing great
improvement all around and achieving SOTA results

over three highly popular benchmarks for image de-
mosacing.

A comparison of visual results can be found in Fig. 2.

II. RELATED WORK
Image demosacing aims to restore missing information from
the under-sampled CFA of the camera sensor, as in most cases
each pixel only captures a single color. This is a well studied
problem with numerous methods suggested for solving it. The
majority of methods focus on the well known Bayer pattern,
which captures only one of the following colors: red, green,
or blue at each pixel.

Deep learning methods have become ever more popular,
and there has been an active line of study dedicated to per-
forming image demosacing alone, e.g. [1], [21], [22], [23],
[24]. In other cases, it is joined with other tasks (such as
image denoising), e.g. [9], [11], [25], [26]. Most of the joint
methods still train a network and analyze its performance for
the image demosaicing task alone. In [7] the authors designed
a joint demosaicing and denoising network using CNNs and
constructed a dataset containing solely challenging patches
they mined from online data, based on demosaic artifacts.
They then went on to train and test the network on cases
without the presence of noise. Most works did not follow this
practice and trained the demosaicing network on a general
dataset (i.e. without applying any mining).

Dedicated task architecture: A prominent line of work
focused on architectural modification according to the prior
knowledge of the task. Tan et al. [22] proposed a CNN model
that first uses bi-linear interpolation for generating the initial
image and then throws away the input mosaic image. Given
the initial image as the input, the model has two stages for
demosaicing. The first stage estimates green and red/blue
channels separately while the second stage estimates three
channels jointly. The idea of reconstructing the green chan-
nel separately or reconstructing it first to use later on as a
guidance map is also used by several others, such as Cui et
al. [27], and Liu et al. [9]. Other works compared the effect
of convolution kernels of different sizes on the reconstruction,
e.g. the work by Syu et al. [21], which concluded the larger the
size of the convolution kernel, the higher the reconstruction
accuracy. Inspired by [21], Gou et al. [28], suggested adapting
the Inception block of [29] to reduce computation while still
having a large receptive field.

General architectural modification: Another recent popular
line of study is utilizing a general neural network architec-
ture and training it separately on various image restoration
tasks (i.e. each task requires a separate model with different
weights), such as [4], [5], [6], [30], [31]. Zhang et al. sug-
gested [5] the RNAN architecture, which is a CNN network.
Xing and Egiazarian [1] suggested slight modifications to
the SwinIR architecture of [4] for the specific task of demo-
saicing. PANet [6] performed a multi-scale pyramid attention
mechanism. Li et al. [2] proposed the GRL transformer-based
architecture for various image-to-image restoration tasks.
Specifically for the demosaicing task, their suggested method

612 VOLUME 5, 2024



FIGURE 2. Qualitative comparison of our method compared to other top methods: RNAN, RSTCANet, and GRL. The RNAN model has 9M parameters,
RSTCANet presents three different model sizes: B, S, and L, having 0.9M, 3.1M, and 7.1M parameters respectively and GRL consists of 3.1M parameters.
We demonstrate the results of our suggested training scheme to train the RSTCANet-B and GRL models. The RSTCANet-B-SDAT model produces superior
qualitative results compared to all original RSTCANet variants while having the least amount of parameters.

FIGURE 3. An illustration of the SDAT method. Each cycle consists of two training phases. The first consists of training over a specific sub-dataset
obtained from the pool of collected sub-datasets as explained in section B, while the second, consists of training over the entire dataset. Each phase is
initialized by the model’s weights that achieved the lowest validation loss across all sub-datasets in the previous phase. Every cycle a different
sub-dataset is selected. The number of cycles depends on the number of categories and architecture.

achieved SOTA accuracy over KODAK [3], McMaster [32],
Urban [33] and CBSD68 [34] datasets. Their solution is fo-
cused on artifacts removal, as their network receives an initial
demosaic solution.

Low-capacity demosaic solutions: It is noteworthy to men-
tion another line of work that focuses on the implementation
of low-capacity networks for image demosaicing. In [19]
Ramakrishnan et al. employed Neural Architecture Search
(NAS) and optimization techniques, while in [20] Wang et
al. proposed a custom UNet architecture. Both approaches
evaluate their solutions across different model sizes.

Our method (see Fig. 3 for an overview) exhibits several
significant distinctions from prior research, as most of the
works focused on custom losses and architectural modifica-
tions [1], [4], [5], [24]. This work focuses on convergence
and training perspectives. Unlike mining-based methods [7]

that rely on error criteria to identify only hard examples, our
approach employs different metrics and uses a novel iden-
tification mechanism to identify multiple sub-datasets, that
exhibit different characteristics, each inducing a different bias
into the trained model. Furthermore, our training method uti-
lizes the sub-datasets to steer and guide convergence while
training on the entire dataset.

III. METHOD
In the following, we present the required stages to perform
SDAT. We will show that by applying our training regime we
are able to better utilize the given dataset, i.e. achieve better
results for a given network architecture without modification
to it or the loss function. The method involves training alterna-
tively between the entire dataset and the various sub-datasets
in a cyclic fashion. Each of the sub-datasets induces a distinct
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FIGURE 4. Depiction of the weight propagation process of SDAT. An illustration of the alternation process between a sub-dataset and the entire dataset.
Each graph is a training phase over a single dataset, where the horizontal axis is the training steps and the vertical axis is the average validation loss
across all sub-datasets marked with V̄t . The star on each of the graphs marks the iteration index each training phase stopped accumulating gradients for
a specific dataset, as it propagates model weights achieved at that index to the following training phase. Furthermore, there can be training phases that
do not aggregate any gradients. As can be seen on the rightmost graph the model could not achieve a convergence that lowers V̄t , therefore, it
accumulated zero training steps.

bias over the trained model. SDAT consists of several traver-
sals, where each traversal means, a complete training cycle
over all sub-datasets and the entire dataset.

We first outline the details of our suggested training method
and explain how it aids in steering the convergence towards a
less biased solution by exploiting the specific characteristics
of the collected sub-datasets. Then we provide a detailed ex-
planation of our process for gathering these sub-datasets and
how we generated them to possess their distinct characteristics
as mentioned above.

A. TRAINING METHOD
Our training method as depicted in Fig. 3 incorporates two
primary mechanisms:

1) Dataset alternation: The training process consists of
alternating between different training phases. We al-
ternate between a collected sub-dataset and the entire
dataset. This alternation takes place every predeter-
mined number of iterations. At each cycle, a different
sub-dataset is used.

2) Solution selection process: During each training phase
we monitor every iteration the average of all sub-
datasets’ validation loss along with the corresponding
model’s weights:

V̄t = 1

N

N∑
i=1

Vwt ,ci (1)

where t is the iteration number (training step), Vwt ,ci

is the average validation value of sub-dataset ci, given
model’s weights wt , and N is the number of sub-
datasets.
The chosen model’s weights for the next alteration are
the wt obtained the lowest V̄t during the training phase.
See Fig. 4 for a more detailed example. We observed
that a model consistently achieving low validation loss
across all sub-datasets is more likely to converge to-
wards a non-biased solution.

These two key factors combined help in guiding the conver-
gence towards a less biased solution. Training over the entire
dataset limits the exploration of the solution space due to the
inherent bias of the dataset. By training over the sub-datasets,
we are able to strongly steer the convergence towards a wider
range of solutions, as each sub-dataset induces a different bias
on the convergence.

Moreover, we maintain the usage of the entire dataset, as
it contains the overall statistics of the task and every second
alternation we train over the entire dataset. We are able to
achieve a solution that does not converge to a biased local
minimum due to the selection process, as it only propagates to
the following training phase the least biased solution achieved
during the current training phase. This way we are able to
enjoy both worlds - we can still use the entire dataset for
training, without being limited only to the solutions governed
by the inherent dataset bias.

Sub-datasets convergence rate: When training on the en-
tire dataset, simple functions are converged first and complex
functions are converged later as demonstrated in prior re-
search [35], [36]. Our models also exhibited a similar trend.
The initial convergence was governed by the entire dataset
bias (in our case due to smooth patches in natural images),
hindering further convergence toward more complex elements
(high frequency, edges and more). In every training phase over
a specific sub-dataset, the accumulation of gradients is till the
last non-biased update as in the following:

�ci =
t̂ci∑

t=tci

ηt
d

dwt
Lwt ,ci

t̂ci = argmin
t

V̄t (2)

where �ci denotes the accumulated gradients obtained during
a training session of a specific sub-dataset, tci and t̂ci denote
the training starting and ending time index respectively, using
sub-dataset ci, ηt denotes the learning rate value in each time
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step and Lwt ,ci denotes the training loss function given the
model’s weights wt and training over sub-dataset ci.

After each traversal over all sub-datasets, the model’s
weights are composed based on the accumulated custom gra-
dients from each sub-dataset:

wtraversal = w0 +
i=N∑
i=1

�ci + �c0 (3)

where w0 is the weights of the model at the beginning of the
traversal, �c0 is the accumulated gradients obtained along the
entire dataset training phases.

As demonstrated in [35], [36] and observed empirically in
our experiments, controlling the convergence rate over differ-
ent elements in the dataset leads to different solutions. Our
training mechanism adapts the convergence rate of each sub-
dataset as in (3), in order to obtain the least biased solution.

Learning rate scheduler: To ensure stability during train-
ing, every dataset alternation we use a learning rate (LR)
scheduler that starts with a low value and gradually increases
to a higher value of LR. Shifting between datasets signif-
icantly impacts the gradients at the current weight space
position, altering the structure of the loss weight landscape
and requiring readjustment of the LR. Only the weights that
achieved the lowest validation loss across all sub-datasets in
each training session are carried over to the next alternation as
in (1) and (2), filtering out unstable solutions that might arise
from unsuitable LR.

B. SUB-DATASETS IDENTIFICATION AND CREATION
We now describe the collection of sub-datasets from the entire
dataset, each inducing a different bias on the trained model.
This phase consists of the following:

1) Generation of sub-datasets: To establish a starting point
for data categorization, we performed a training using
the entire dataset to obtain a base model. We used a
combination of existing metrics, such as L1, perceptual
[37], and additional custom metrics, (5) to (7), to de-
tect a wide variety of artifact types created by the base
model’s outputs. we denote the initial predicted patch
P̂init and the patch in the ground-truth RGB image as P,
both of size Hp × Wp × 3.

a) Zipper metric - this metric dzip is used to find
zipper artifacts near edges in the image. First, we
calculate a mask MNE to identify non-edge areas
as follows

MNE := |C(P̂init ) − C(P)| < ε1, (4)

where C is some kind of edge detector, e.g. Canny,
and ε1 is a predefined threshold. Then we are able
to calculate

dzip := ‖| |∇P̂init | − |∇P| | � MNE‖1, (5)

b) Grid metric - this metric dgrid is used to find grid-
like artifacts in flat areas as follows

dgrid := ‖2 · |∇P̂init | �(
σ

(
α

|∇P|
)

− 0.5

)
� (|∇P̂init | > ε2)‖1, (6)

where σ is the Sigmoid function, α > 0 is a pa-
rameter that scales the values of the Sigmoid, and
ε2 is another predefined threshold.

c) Edge distance - This metric dedge is used to find
distortions around edges

dedge := ‖C(P̂init ) − C(P)‖1. (7)

We note that by using different thresholds in (4) and (6) we
create a diverse pool of sub-datasets within the data. Examples
of some of the identified patch categories are shown in Fig. 5.

a) Selection and elimination of sub-datasets: From the col-
lected pool of sub-datasets we keep the sub-datasets,
that training on them induces a bias that hinders the
generalization of the model on the entire dataset. These
sub-datasets induce a different bias than the entire
dataset and eventually help converge to a better solution.
This procedure is illustrated in Fig. 6 and is composed
of the following two steps:

a) Searching for inverse-correlation: We conduct
brief training sessions overall sub-datasets gen-
erated in the previous stage. Each session trains
over a single sub-dataset and starts from the model
that was trained over the entire dataset, as de-
scribed in the previous stage. Throughout each
session, we evaluate the validation loss over each
of the different sub-datasets, including the entire
dataset. We search for a negative correlation, in
the sense of Spearman’s rank correlation coeffi-
cient, between the validation loss on the trained
sub-dataset and the validation loss on the entire
dataset. If indeed there is a negative correlation,
we identify a sub-dataset that the model struggles
to generalize using the bias induced by the entire
dataset. This means the model must discard its
data-induced bias to achieve convergence for that
specific sub-dataset.

b) Merging sub-datasets: When we detect sub-
datasets with a positive correlation response be-
tween their validation losses (in the same sense as
in step (a)), it means that training over one of the
sub-datasets does not harm the model’s general-
ization over the other sub-dataset. Therefore, these
sub-datasets are merged into a single sub-dataset.

In summary, we identify certain sub-datasets that are sus-
ceptible to bias, where each of the final generated sub-datasets
is likely to induce a unique bias over the trained model. Since
a model that has converged toward a biased solution is likely
to produce a high validation loss (see (1)) over these sub-
datasets, it is used as a metric to estimate a biased solution.

VOLUME 5, 2024 615



BECKER ET AL.: SDAT: SUB-DATASET ALTERNATION TRAINING FOR IMPROVED IMAGE DEMOSAICING

FIGURE 5. Examples of sub-datasets patches that are found via the different metrics. Each metric focuses on different aspects of image demosaicing. The
top row depicts the ground truth patches, and the bottom is the prediction of the network after vanilla training. (a) A patch with grid artifacts, (b) a patch
with zipper artifact, (c) a patch with high L1 distance, (d) a patch with high edge distance, and (e) a patch with high perceptual distance.

FIGURE 6. Our two step elimination process for selecting the sub-datasets. (a) shows the first step, where each graph represents a training session over
a sub-dataset (the horizontal axis shows the number of epochs, and the vertical axis shows the validation error). The green line represents the validation
error of the entire dataset and the red line represents the validation error on the trained sub-dataset. Validation errors of sub-datasets with strong
negative correlation with the entire dataset validation error, are selected and highlighted in light blue. (b) depicts an example of the second step. The
validation error of each sub-dataset [from those chosen in (a)] is correlated in the same sense in step (a) with the validation error of the other
sub-datasets. The objective is to merge the sub-datasets that demonstrate positive correlation, resulting in a similar bias induced by the trained model. In
the example, we demonstrate sub-dataset 1’s validation curve (red line) with the other chosen sub-datasets (green line) from the previous step. The
sub-datasets chosen to be merged with sub-dataset 1 are highlighted in light blue.

IV. EXPERIMENTS
In order to evaluate our suggested training method we divided
our experiments into two architecture groups that might be
affected differently: (1) Low-capacity models and (2) High-
capacity models. Over each architecture, we conducted two
training types: the first is a training over the entire dataset,
which we refer to as EDT (Entire Dataset Training) and the
second is our proposed SDAT method.

For both types of training settings, we used crops of size
64 × 64 as the input and a batch size of 16. We also used data
augmentations, such as a random flip and transpose over both

image axes during training. All models were trained using the
L1 norm between the ground truth and estimated RGB images
as the loss function.

EDT method settings: we used the DIV2K [38] dataset for
training. We used the Adam optimizer [39] with learning rate
5 × 10−4, β1 = 0.9, β2 = 0.999, and ε = 1 × 10−8. Every
200 k iteration we lower the learning rate by a factor of 2.
The models were trained for a total of 2 M iterations.

SDAT method settings: In addition to using the DIV2K
dataset as a whole, we employed the process described in
Section B, and extracted five sub-datasets from the DIV2K

616 VOLUME 5, 2024



dataset. We used the same experiment parameters as in
the EDT, except for the suggested modification to the LR
scheduler, as explained in Section A. For every sub-dataset
alternation, we initialize the LR to 1 × 10−5, and it is lin-
early increased to 1 × 10−3 by the end of the training session
over the sub-dataset. Important to clarify, that the optimizer
parameters for the EDT phase in each cycle are identical to
the parameters presented in the above EDT method settings.

Our training process encompassed 20 complete traversals.
Each traversal was designed to cover a full training cycle
across all sub-datasets, where a single cycle involved se-
quential training first on a sub-dataset and then on the entire
dataset. For each phase of training within a cycle, we allocated
10 k iterations, totaling 20 K iterations per cycle, 100 K iter-
ations per traversal, and 2 M iterations per the entire training
session. Monitoring rate: we monitor V̄t as in (1), every 1 K
iterations.

We chose to train based on a specific number of iterations,
rather than traditional epochs, due to the varying sample sizes
across datasets.

It should be noted that SDAT takes more time to converge
compared to EDT because of its more complex data setup and
the solution selection process (section A) that propagates to
the following alternation the least bias weights, consequently
disregarding subsequent training iterations. However, to en-
sure a fair comparison, we’ve chosen to run the same number
of training iterations for both methods.

A. LOW-CAPACITY MODELS
We trained three CNN architectures with 9.5 K, 16 K, and
84 K parameters. Our CNN has a similar structure to the
overall structure of DemosaicNet suggested by Gharbi et al.
in [7], with slight differences. We replaced each of the two
convolution layers with 3 Inverted Linear bottlenecks (ILB)
[40]. We obtain different architecture sizes by adjusting the
expansion size parameters of the ILB. In addition to com-
paring the results between EDT and our suggested method,
we also compared our results (in terms of PSNR) with re-
cent studies that focus on achieving high performance for
image demosaicing using low capacity models [19], [20]. As
indicated in Table 1, our training method presents superior
results across all benchmarks compared to the EDT method.
Additionally, while our trained CNNs have the lowest number
of parameters in each sub-range of parameters, the networks
outperform all other methods across all benchmarks.

B. HIGH-CAPACITY MODELS
We evaluated our SDAT method in comparison to the EDT
method over three leading transformer architectures. First, we
implemented RSTCANet [1], which is based on the SwinIR
[4] architecture. We applied both methods over two RST-
CANet variants, RSTCANet-B and RSTCANet-S with 0.9 M
and 3.1 M parameters respectively. Additionally, we trained
a variant of the GRL-S [2] architecture with 3.1 M param-
eters. As can be seen in Table 2, we evaluated four popular
benchmarks that represent natural images, with additional two

TABLE 1. PSNR Results for Image Demosaicing for Compact Networks

benchmarks HDR-VDP and Moiré initially presented in [7],
and are known as a collection of hard patches. Our training
method produced superior results overall architectures and
across all benchmarks in comparison to the EDT method
described above. It is worth mentioning, that while the EDT
method yielded comparable or even superior results to the
published results across all RSTCANet variants, it could not
reconstruct the reported results for the GRL. However, as
can be seen in Table 3 by using the SDAT method to train
the GRL architecture, we achieved SOTA over three popular
benchmarks and second best in the fourth.

C. ABLATION STUDY
Comparing different training methods: To verify the contri-
bution of our suggested training method we conducted the
following ablation study to compare our method’s effective-
ness versus other training methods: (1) standard training over
the entire dataset, (2) standard training over hard mined exam-
ples only (similar to [7]), (3) standard training over a uniform
distribution, i.e. we compose a new dataset where the proba-
bility to sample a training example from the entire dataset and
from the sub-datasets is equal, (4) performing our method, but
discarding the alternation to train on the entire dataset, and
(5) performing SDAT, but using sub-datasets that were ran-
domly sampled from the entire dataset, instead of the sub-
datasets created using the suggested method in Section B. The
training procedure for the standard training methods (1)–(3)
is the same as described for EDT settings above. As indicated
in Table 4, our method surpasses all other training regimes,
by a considerable margin. Compared to standard training, we
conducted a wider experiment covering a wide range of model
sizes using the same training procedure described above. The
results are shown in Fig. 1. It can be seen how we are able
to improve the networks’ performance between 1-3.5 dB de-
pending on the initial model size (the smaller the network, the
higher the performance boost) and the evaluation dataset.

Comparing different numbers of sub-datasets: As outlined
in Section A, our approach involves switching between a
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TABLE 2. PSNR Results for Image Demosaicing for Leading Transformer Architectures

TABLE 3. Benchmark Results (PSNR and SSIM) for Image Demosaicing

TABLE 4. PSNR Results of Various Training Methods Compared to Ours Over the Kodak and McMaster Datasets

TABLE 5. PSNR Results Over Kodak and MCM Datasets Using a Different
Number of Sub-Datasets for Training

collection of sub-datasets and the entire dataset. In this exper-
iment, we assess the effectiveness of our training method by
randomly selecting one and two sub-datasets. The results, as
shown in Table 5, demonstrate that the number of sub-datasets
included in the alternation process has a significant impact on
the resulting performance. This demonstrates that being able
to identify additional types of bias in the original dataset can
further improve the network’s overall generalization.

Different traversal order over the sub-datasets: As the
SDAT method alternates among different sub-datasets, we
investigated whether the sequence in which these sub-datasets
are accessed during a traversal impacts the outcome. We car-
ried out four separate experiments, with each one involving
a unique sequence of traversing through the selected five sub-
datasets. As can be seen in Fig. 7, there is no significant impact
on the performance of the 16 K and 176 K models based on the
sequence in which the sub-datasets are traversed. Across all
the experiments, the largest standard deviation recorded was
0.05db, not significant enough to suggest any form of depen-
dency. One plausible explanation is that our training protocol
shifts between datasets while monitoring every iteration so
that we don’t converge toward a biased solution as ex-
plained in section A using the solution selection process. This
mechanism regularizes the convergence rate of all sub-
datasets, preventing over-fitting on any particular sub-dataset.
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FIGURE 7. Evaluation of the obtained models using SDAT for different sub-dataset traversal sequences. This evaluation involved testing four distinct
sequences with both our 16K and 176K models on the Kodak and mcm datasets. To provide a clearer visualization of the outcomes’ distribution, we
depicted the results through box plots.

It aims to ensure that every sub-dataset is adequately rep-
resented, as the criterion penalizes the model’s inability to
generalize effectively across any given sub-dataset.

Random sub-datasets: To evaluate the importance of the
identification phase as in section B, instead of obtaining the
most significant sub-datasets according to the predefined cri-
terion, we collected randomly five sub-datasets. As can be
seen in Table 4, under “SDAT with random sub-datasets”.
This method yielded results that were not as effective as those
achieved by SDAT, emphasizing the importance of the identi-
fication stage. Additionally, it produced results inferior to the
EDT, which can be explained due to the difference in training
steps between SDAT and EDT. As detailed in the “solution
selection process”, SDAT effectively conducts fewer weight
updates for an equivalent number of training steps compared
to EDT, further explained in Section V.

V. DISCUSSION
With SDAT we presented a novel training scheme improving
the results (in the sense of PSNR and SSIM) for the image
demosacing task across various types of Deep Learning model
sizes and architectures. Despite the promising results obtained
using SDAT, some limitations should be acknowledged. One
such limitation is the complexity involved in generating the
sub-datasets, on which we suggest to perform the alternation
during training. As outlined in Section B the creation and
identification of these sub-datasets requires the use of var-
ious metrics. This requires domain-specific expertise. Thus,
extending the use of SDAT to other image restoration tasks,
such as image denoising, single image super-resolution, and
mitigating JPEG compression, might require the use of dif-
ferent metrics. On top of the current method for creating new
sub-datasets being time consuming, finding adequate metrics
for different tasks may not be straightforward. The creation
of the sub-datasets is domain-specific, and is done in a semi-
manual process. A potential future direction could involve
performing clustering in some latent space, where the features
encapsulate meaningful information regarding different types
of bias. Such an approach may offer the advantage of not re-
lying on prior knowledge specific to the task being addressed.
As a result, it can enable the application of SDAT to a range

of different problems, while also facilitating a more automated
process. Additionally, as pointed out in Section IV, due to the
solution selection process (section A) SDAT training might
perform inefficient training steps. A possible improvement
can be in the form of an estimator, that assesses at each
iteration whether the current sub-dataset training settled into a
local minimum, then, stop the current sub-dataset training and
move to the subsequent phase, as the following iterations will
most likely not achieve better V̄t .

VI. CONCLUSION
In this paper, we addressed the challenge of dataset induc-
tive bias for the image demosaic task and proposed SDAT, a
novel training method to improve the performance of a model.
The method involves two main steps: defining and identi-
fying sub-datasets beneficial to model convergence and an
alternating training scheme. SDAT demonstrated an improved
performance for image demosaicing over standard training
methods and achieved state-of-the-art results on three highly
popular benchmarks. Our suggestion also effectively utilized
the model’s capacity, surpassing recent relevant works on low-
capacity demosaicing models across all benchmarks using
fewer parameters. This result is crucial for edge devices. The
method’s success also demonstrates the importance of con-
sidering the dataset structure in optimizing a model’s training
process. Our findings suggest that our proposed method can
be applied to other image restoration tasks and can be used as
a trigger for further research in this field.
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