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ABSTRACT Maximizing long-term rewards is the primary goal in sequential decision-making problems.
The majority of existing methods assume that side information is freely available, enabling the learning
agent to observe all features’ states before making a decision. In real-world problems, however, collecting
beneficial information is often costly. That implies that, besides individual arms’ reward, learning the
observations of the features’ states is essential to improve the decision-making strategy. The problem is
aggravated in a non-stationary environment where reward and cost distributions undergo abrupt changes
over time. To address the aforementioned dual learning problem, we extend the contextual bandit setting and
allow the agent to observe subsets of features’ states. The objective is to maximize the long-term average
gain, which is the difference between the accumulated rewards and the paid costs on average. Therefore,
the agent faces a trade-off between minimizing the cost of information acquisition and possibly improving
the decision-making process using the obtained information. To this end, we develop an algorithm that
guarantees a sublinear regret in time. Numerical results demonstrate the superiority of our proposed policy
in a real-world scenario.

INDEX TERMS Contextual multi-armed bandit, non-stationary process, online learning, costly information
acquisition.

I. INTRODUCTION
In a sequential decision-making problem, an agent takes ac-
tion over consecutive rounds of play to optimize a long-term
metric. Over the past decades, a large body of literature
develop decision-making policies that deal with such op-
timization problems under various constraints [1], [2]. In
most cases, particularly in the era of Big Data, the proposed
methods postulate the possibility of information acquisi-
tion with no limit and for free. In reality, however, access
to side information is challenging; collecting information
might be costly. For example, in online advertising prob-
lems, the advertiser can purchase information about target
users to display personalized ads. As another example, in
medical contexts, obtaining information for treatment rec-
ommendations mainly requires additional tests that are time-

and money-consuming. Thus, it is essential to develop algo-
rithms that can learn the optimal observations and actions
simultaneously.

Real-world problems frequently appear in non-stationary
environments. For instance, in the application of personal-
ized news recommendation, user preferences over news can
change over time and exhibit various seasonality patterns [3].
As another example, in the wireless network routing prob-
lem, the quality and availability of each link may change
over time due to network congestion or maintenance [4]. The
non-stationarity in the spread pattern of pandemics such as
COVID-19 is also an example, as the average number of
infected individuals changes over time due to a given region’s
geographical- and demographical characteristics [5]. The dual
learning problem described above becomes significantly more

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

820 VOLUME 5, 2024

https://orcid.org/0000-0003-1095-6236
https://orcid.org/0009-0008-2542-6119
https://orcid.org/0000-0002-0647-611X
mailto:saeed.ghoorchian@uni-tuebingen.de
https://doi.org/10.1109/OJSP.2024.3389809


challenging when the environment changes. In fact, in a non-
stationary environment, the value of obtained information,
such as received action’s feedback or paid observation’s cost,
before a change in the environment might become obsolete
after the change occurs. Therefore, the agent has to constantly
adapt her strategy and improve the decision-making process
to comply faster with the changes in the environment, while
she simultaneously performs the aforementioned dual learn-
ing task.

We address the mentioned challenges by using the Multi-
Armed Bandit (MAB) [6] framework, where a learning agent
selects an arm at sequential decision-making rounds and the
environment reveals a feedback drawn from some unknown
probability distribution. In this setting, the agent experiences
the exploration-exploitation dilemma, where the decision
has to be made between exploring options to acquire new
knowledge and selecting an option by exploiting the existing
knowledge [7]. In a contextual MAB problem, the agent has
additional access to some side information and is able to
observe this contextual information before making decision at
each round. However, in practice, such contextual information
is not always readily available to the agent, but rather it has to
be acquired in exchange for a cost.

In this paper, we model the described problem using the
contextual bandit setting and introduce the non-stationary
costly contextual bandit problem, which we call it NCC prob-
lem for short. We propose and analyze an algorithm to solve
the NCC problem. Our proposed algorithm can be consid-
ered as a variant of the UCRL2 algorithm [8]. Moreover, it
uses a sliding window to estimate the non-stationary rewards
and costs in abruptly changing environments. We prove that
our algorithm achieves a sublinear regret bound in time. We
validate our solution on a real-world problem of ranking
nursery school applications. The results demonstrate the su-
periority of our algorithm compared to several benchmarks.
Our NCC model and solution effectively address the chal-
lenges in various real-world applications. Random costs in our
setting correspond to changing real-world conditions when
acquiring information for decision-making. For example, in
a web-based recommender system, the prices of services that
provide data, and the availability of compute and network
infrastructure, are unstable. Hence, the cost of obtaining infor-
mation varies over time. As another example, in a mobile edge
computing problem, random costs result from the changing
network conditions and job arrival rates at edge servers. In
addition, non-stationarity, which is allowed by our framework,
appears frequently in real-world scenarios. To list a few ex-
amples, it can correspond to alterations in trends and user
preferences for a recommender system, distributional shifts
in stock trading, or changing the average number of individu-
als exposed to COVID-19 over time due to a given region’s
geographical- and demographical characteristics. Evidently,
in any real-world scenario, the ability to adapt to changes in
both rewards and costs increases the system’s performance.

In summary, the contributions of this paper are as follows.

� We formulate the non-stationary costly contextual
(NCC) bandit problem where state observations are
costly, reward and cost functions can take any (linear
or nonlinear) form, and their corresponding generating
processes are piece-wise stationary.

� We propose the NCC-UCRL2 algorithm for learning the
state observations and actions simultaneously. Our pro-
posed algorithm is applicable to solve many real-world
problems, such as online advertising and stock trading.

� Theoretically, we analyze the regret performance of
NCC-UCRL2 in stationary and non-stationary environ-
ments. We prove that NCC-UCRL2 achieves a sublinear
regret in time.

� We demonstrate the superior performance of our pro-
posed algorithm through numerical experiments and
compare it with several benchmark algorithms.

A. RELATED WORKS
Non-stationary multi-armed bandits have attracted intensive
attention in the past years, both from the theory [9], [10], [11],
[12], [13] and the application [14], [15], [16], [17] side. Poten-
tial application domains span across different fields, including
online recommender systems [3], [15], [16], [17], hyperpa-
rameter optimization [18], virtual reality for rehabilitation
[19], split liver transplantation allocation [20], evaluation of
information retrieval systems [21], or targeted Covid-19 bor-
der testing of travelers [22]. The state-of-the-art methods
in non-stationary bandits either do not consider access to
contextual information or do not assume costly information
acquisition. In the seminal work of [9], the authors use a slid-
ing window or a discount factor to estimate the rewards with
piece-wise stationary generating processes. However, they
only consider non-stationarity confined to a finite-number of
change-points. Reference [23] extends this framework by con-
sidering evolution of mean rewards constrained by a variation
budget. The authors also derive the connection between the
amount of variation and minimal regret achievable in such a
setting. [13] studies the linear stochastic bandit in a drifting
environment while also considering a variation budget. The
authors propose an Upper Confidence Bound (UCB)-based al-
gorithm that adapts to reward changes using a sliding window
and a Bandit-over-Bandit framework for tuning the proposed
algorithm’s parameter adaptively. The authors in [12] study
linear stochastic bandits in abruptly changing and slowly
varying environments. They utilize exponentially increasing
weights of observations to reduce the influence of past obser-
vations with time, thereby adapting to environmental changes.
In [17], the authors consider a contextual bandit problem and
use two sliding windows to detect changes in reward dis-
tributions. If the rewards inside the second window are not
predictable with high accuracy from observations inside the
first window, the proposed algorithm considers a new change
point. The observations since the last change point are used
to select arms. Besides, [15] uses Gaussian random walks to
model the non-stationarity in underlying reward-generating
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processes. Online inference based on particle learning is ap-
plied to fit the bandit parameters sequentially. Moreover, [16]
proposes a hierarchical bandit algorithm, which maintains a
suite of bandit models that estimate the reward distributions
using a subset of observations. A higher level bandit model
measures if the prediction error of lower level models exceeds
some threshold, discards them accordingly, and creates new
ones. Further, [10] and [11] study the general non-stationary
contextual MAB problem and propose algorithms that achieve
sublinear regret bounds without the knowledge of the number
of change points. In addition, [24], [25] study an online learn-
ing problem where the unknown model parameters follow a
Markov jump process. The authors investigate various opti-
mization objectives based on cost minimization and revenue
(profit) maximization, and propose an online learning policy
for the considered objectives. In [26], the authors investigate
a setting related to ours, namely the switching-MDP problem.
In the formulated problem, a certain number of abrupt changes
in transition probabilities and reward distributions can occur.
They develop a sliding window-based algorithm based on the
UCRL2 policy [8], and derive two sublinear regret bounds for
known- and unknown number of changes.

However, none of the works mentioned above consider
costly information acquisition. Our paper, in contrast, focuses
on non-stationary costly contextual bandits in abruptly chang-
ing environments with general (linear or nonlinear) reward
and cost functions. Our proposed algorithm achieves sublin-
ear regret by adapting to reward and cost distribution drifts,
conditioned on tuning the sliding window size.

Costly features in online learning problems have been ad-
dressed both in the full information setting [27], [28], [29],
and in the bandit setting [30]. However, the existing methods
with bandit feedback either do not model the cost as a random
variable or do not take into account the non-stationarity of the
environment. Reference [30] is the most relevant work to ours.
The authors consider a stationary contextual bandit problem
where observing features’ states is costly. However, the costs
have constant values and the reward-generating processes are
stationary. In contrast, we assume that the costs are random
variables and the environment is non-stationary where reward
and cost distributions drift abruptly at some change points.
Our approach shall not be mistaken for MAB problems with
paid observations [31], where the agent can observe the re-
wards of any subset of arms after paying the costs at each
round. In contrast, in our work, we allow for feature vectors
and assume that observing feature’s states is costly.

Another related area of research is budget-constrained
learning, where feature selection is adaptive. For example, the
authors in [32] consider linear regression models under local
and global constraints on the number of observed features.
They propose an algorithm that actively chooses the features
to observe for each data sample. As another example, the
authors in [33] consider linear regression with a budget on the
number of feature observations for each data sample. They
analyze the number of required samples for the model with

partial information to attain the same error as that with com-
plete information. Unlike our approach, these works consider
a batch learning setting with the free observation of a limited
number of features. Besides, in [28], the authors investigate
an online classification problem with a per-sample budget for
observing features, where features have various costs. They
propose a deep reinforcement learning algorithm to solve the
problem. [34] studies a contextual bandit problem in which
the agent has a fixed budget on the number of features she can
observe before choosing an arm. The authors take advantage
of Thompson sampling and propose an algorithm that works
in stationary and non-stationary environments. However, they
do not provide regret analysis for the proposed method. Com-
pared to the aforementioned works, we do not assume a
budget constraint; nonetheless, the agent attempts to minimize
the total cost of observing features’ states. Therefore, in our
proposed method, the agent adaptively selects the features and
learns the optimal policy from limited information.

The rest of the paper is as follows. We formulate the
NCC bandit problem in Section II. We describe our proposed
method, NCC-UCRL2, in Section III. In Section IV, we an-
alyze the performance of NCC-UCRL2 theoretically. Section
V includes numerical evaluation, and Section VI concludes
the paper.

II. PROBLEM FORMULATION
Let A = {1, 2, . . . , A} denote the set of actions. D =
{1, 2, . . . , D} represents a finite set of features. Each feature
i ∈ D has some random state �[i] ∈ Xi, where Xi denotes
a finite set of states for feature i. We collect the random
features’ states of all the features in the random state vector
� = [�[1],�[2], . . . ,�[D]] ∈ X = ⊗

i∈D Xi. Let φ be a re-
alization of the random state vector, which is drawn from a
fixed but unknown distribution. P[� = φ] shows the proba-
bility of state vector φ being realized.

At each time t , the environment draws a state vector φt =
[φt [1],φt [2], . . . ,φt [D]]. The agent can select a subset of
features It ⊆ D, called the observation set, for costly obser-
vation. Other elements of the state vector remain unknown.
When |It | = 0, i.e., It = ∅, none of features’ states are ob-
served at time t . We use P (D) to represent the power set
of D that includes all possible observation sets, i.e., P (D) =
{I ⊆ D | 0 ≤ |I| ≤ D}. Besides, the partial state vector ψt =
[ψt [1],ψt [2], . . . ,ψt [D]] can be represented as

ψt [i] =
{
φt [i], if i ∈ It ,

?, if i /∈ It ,
(1)

where ? indicates the corresponding feature’s state is miss-
ing. Let D(ψ) = {i ∈ D |ψ[i] �= ?} represent the domain set
of a partial state vector ψ. By �+(I ) = {ψ |D(ψ) = I}, we
denote the set of all possible partial state vectors whose do-
main set is equal to the observation set I. Therefore, � =⋃

I⊆D �
+(I ) denotes the set of all possible partial state vec-

tors. Furthermore, we define a partial state vector ψ to be
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consistent with φ if ψ[i] = φ[i], ∀i ∈ D(ψ). We use φ � ψ

to show that ψ is consistent with φ. Moreover, ψ is a sub-
state of ψ′ if both the partial state vectors ψ and ψ′ are
consistent with φ and D(ψ) ⊆ D(ψ′). We useψ 
 ψ′ to show
that ψ is a substate of ψ′. For every i ∈ It , ct [i] ∈ [0, 1]
shows the random cost to observe φt [i], which follows an un-
known probability distribution with mean c̄t [i]. Also, by ct =
[ct [1], ct [2], . . . , ct [D]] and c̄t = [c̄t [1], c̄t [2], . . . , c̄t [D]], we
denote the cost vector and the mean cost vector of all features
at time t , respectively.

At each time t , the agent follows a policy πt to select
an observation set It and an action at . Therefore, we de-
fine the policy at time t using an ordered pair πt = (It , ht ),
where ht : �+(It ) → A denotes an adaptive action selec-
tion strategy that maps a partial state vector ψt ∈ �+(It ) to
an action at ∈ A. The agent then receives a random reward
rt ∈ [0, 1] whose distribution is unknown a priori. We de-
fine the unknown expected reward function as r̄t : A × X →
[0, 1]; hence r̄t (at ,φt ) is the expected reward of action at

at time t when the state vector is φt . The generating pro-
cesses of rewards and costs are piece-wise stationary so that
there exist ϒT time instants before a time horizon T where
at least one of the mean rewards or mean costs changes
abruptly. We define the marginal probabilities and expected
rewards of partial state vectors using the definition of proba-
bility distribution and expected reward for the state vectors.
The marginal probability of the partial state vector ψt be-
ing realized at time t is defined as p(ψt ) = P[�t � ψt ].
Moreover, r̄t (at ,ψt ) = E[r̄t (at ,�t ) |�t � ψt ] indicates the
marginal expected reward of action at when the partial state
vector ψt is observed. Therefore, for a fixed observation set I,
it holds that

∑
ψ∈�+(I ) p(ψ) = 1. At each time t , the sequence

of the events in NCC bandit problem is summarized in Game
Protocol 1.

Definition 1: A piece-wise stationary random process is
a random process whose instantaneous outcomes are drawn
from some probability distribution that remains time-invariant
over disjoint time intervals [ti, ti+1), i = 1, 2, . . . , ϒT , but
changes from one interval to the other [35], [36]. In other
words, a piece-wise stationary random process exhibits dif-
ferent stationary characteristics over distinct intervals. As
mentioned before, in our proposed NCC problem, the mean
rewards and mean costs are piece-wise constant concerning
the time t ; they remain constant unless they experience a
change at some specific time(s), referred to as change point(s).
Naturally, the change points are not necessarily identical, i.e.,
the mean rewards and mean costs do not always change si-
multaneously. Therefore, by the definition above, the random
processes of rewards and costs are piece-wise stationary.

The expected gain of the agent following the policy π =
(I, h) at time t yields

ρπ
t =

∑
ψ∈�+(I )

p(ψ)r̄t (h(ψ),ψ) −
∑
i∈I

c̄t [i]. (2)

Game Protocol 1 Sequence of Events in the NCC Bandit
Problem.

Step 1: The environment reveals a state vector φt
according to a fixed but unknown probability
distribution p(·). The agent does not know φt initially.

Step 2: The agent selects an observation set It ⊆ D to
observe their states. The partial state vector ψt
corresponding to the observation set It is revealed,
while other features’ states remain unknown.

Step 2: For every i ∈ It , the agent pays a random cost
ct [i] ∈ [0, 1] which follows an unknown probability
distribution with mean c̄t [i]. The generating processes of
costs are piece-wise stationary.

Step 3: Based on the observed partial state vector ψt , the
agent selects an action at ∈ A. Then, the agent receives
a random reward rt ∈ [0, 1] whose distribution is
unknown with the unknown expected reward function
r̄t : A × X → [0, 1]. Similar to costs, the generating
processes of rewards are piece-wise stationary.

TABLE 1 Summary of Notations

In words, the expected gain of the agent that follows a
policy π at time t is the expected reward of π received by
the agent at time t minus the expected cost of π incurred by
the agent due to state observation at time t . Let � denote the
set of all feasible policies defined as

� = {(I, h)|I ∈ P (D)}. (3)

Therefore, the optimal policy π∗
t = (I∗

t , h∗
t ) at time t is

given by

π∗
t = arg max

π∈�

ρπ
t . (4)

Moreover, the expected gain of the optimal policy at time

t is denoted by ρ∗
t = ρ

π∗
t

t . We summarize the most important
notations in Table 1.

The optimal policy (4) for NCC problem differs from the
conventional optimal policies in the contextual bandit prob-
lems. Let a∗

t (ψ) = arg maxa∈A r̄t (a,ψ) denote the best action
for a given partial state vector ψ. Moreover, define r̄∗

t (ψ) =
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r̄t (a∗
t (ψ),ψ) as the expected reward of the best action when

the partial state vector is ψ. Moreover, for a fixed observa-
tion set I, define a policy πt (I ) = (I, a∗

t (ψ)) that selects
the observation set I and the best action a∗

t (ψ) for any ψ ∈
�+(I ) at time t . The expected gain of the policy πt (I ) can
be calculated as Vt (I ) = ∑

ψ∈�+(I ) p(ψ)r̄∗
t (ψ) −∑

i∈I c̄t [i].
Then, the optimal policy π∗

t = (I∗
t , h∗

t ) defined in (4) can be
obtained by

I∗
t = arg max

I∈P (D)
Vt (I ),

h∗
t (ψ) = arg max

a∈A
r̄t (a,ψ). (5)

We observe that ρ∗
t = Vt (I∗

t ), which means the optimal
policy (4) achieves the highest expected gain at each time t
among all the policies πt (I ).

Ideally, the agent aims at maximizing the total expected
gain over the time horizon T . Alternatively, the agent’s goal
is to minimize the expected regret over the time horizon T ,
defined as the difference between the accumulated expected
gain of the optimal policy and that of applied policy, i.e., the
one that the agent follows. Formally, the expected regret is
defined as

RT (�) =
T∑

t=1

[
ρ∗

t − ρ
πt
t

]
. (6)

In the next section, we propose a policy to minimize the
expected regret (6).

III. DECISION-MAKING STRATEGY
In this section, we propose our decision-making strategy to
solve the NCC problem described in Section II. Our policy,
presented in Algorithm 1, takes three types of confidence
regions into account, for rewards, costs, and probabilities of
partial state vectors. Since the random generating processes of
rewards and costs are non-stationary, we use a sliding window
of size w > 0 to estimate their mean values. At each time t ,
we define

Tt (a,ψ;w) = {t − w < τ < t | aτ = a ψτ = ψ}, (7)

Tt (i;w) = {t − w < τ < t | i ∈ Iτ }. (8)

For each a ∈ A and ψ ∈ �, we calculate the empirical
average of rewards at time t by

r̂t (a,ψ) = 1

Nt (a,ψ;w)

∑
τ∈Tt (a,ψ;w)

rτ , (9)

where Nt (a,ψ;w) = max{1, |Tt (a,ψ;w)|}. Moreover, at
each time t , we calculate the empirical average of costs for
each i ∈ D by

ĉt [i] = 1

Nt (i;w)

∑
τ∈Tt (i;w)

cτ [i], (10)

where Nt (i;w) = max{1, |Tt (i;w)|}.
Our policy uses the collected data to estimate the probabil-

ities of partial state vectors; that is, after observing the partial

Algorithm 1: NCC-UCRL2.
Input: Window size w.
1: Initialize: ∀a ∈ A, ∀ψ ∈ �, ∀i ∈ D, ∀I ∈ P (D):

T1(a,ψ;w) = ∅, T1(i;w) = ∅, T1(I ) =
∅, T1(I,ψ) = ∅.

2: for t = 1, . . . , T do
3: Compute r̂t (a,ψ), ∀a ∈ A, ∀ψ ∈ �, using (9).
4: Compute ĉt [i], ∀i ∈ D, using (10).
5: Compute p̂t (ψ), ∀ψ ∈ �. using (13).
6: Solve Problem (17), ∀I ∈ P (D), and obtain V̂t (I ).
7: Select the observation set Ît that solves (18) and pay

the cost
∑

i∈Ît
ct [i].

8: Determine the action selection strategy ĥt (ψ) based on
(19).

9: Observe the partial state vector ψt ∈ �+(Ît ).
10: Select the action at = ĥt (ψt ) and observe the reward

rt .
11: Update Tt (D(ψ)) and Tt (D(ψ),ψ), ∀ψ s.t. ψ 
 ψt .
12: Update Tt (at ,ψt ;w).
13: Update Tt (i;w), ∀i ∈ Ît .
14: end for

state vector ψt , the agent uses it to update the estimate of
the probability of ψt and the probabilities of all the substates
of ψt . However, the agent cannot use the obtained reward at
time t to update the estimate of mean reward for action at and
the sub-states of ψt , since it introduces a bias into the mean
reward estimation. Therefore, we define

Tt (I ) = {τ < t | I ⊆ Iτ }, (11)

Tt (I,ψ) =
{ {τ < t |I ⊆ Iτ ψ 
 ψτ }, ψ ∈ �+(I ),

∅, ψ /∈ �+(I ).
(12)

Then, we estimate the probability for each partial state
vector ψ ∈ � at time t as

p̂t (ψ) = Nt (D(ψ),ψ)

Nt (D(ψ))
, (13)

where Nt (I,ψ) = max{1, |Tt (I,ψ)|} and Nt (I ) =
max{1, |Tt (I )|}.

When searching for the optimal observation set and action,
we add high-probability confidence bounds to the aforemen-
tioned estimates. Let �tot = ∑

I∈P (D) |�+(I )| and δ > 0.
For each action a ∈ A and partial state vector ψ ∈ �, we
define

r̃t (a,ψ) = r̂t (a,ψ) + Ct (a,ψ;w), (14)

where Ct (a,ψ;w) = min
{

1,

√
log (TA�tot w/δ)

Nt (a,ψ;w)

}
. Moreover,

for each feature i ∈ D, we define

c̃t [i] = ĉt [i] − Ct (i;w), (15)

where Ct (i;w) = min
{

1,

√
2 log (T Dw/δ)

Nt (i;w)

}
. The optimistic

gain at time t can be found by searching for partial state vector
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probabilities over a high-probability space and a policy that
solves

maximize
π=(I,h),

q∈�|�+ (I )|

⎧⎪⎨
⎪⎩

∑
ψ∈�+(I )

q(ψ)r̃t (h(ψ),ψ) −
∑
i∈I

c̃t [i]

∣∣∣∣
∑

ψ∈�+(I )

|q(ψ) − p̂t (ψ)| ≤ Ct (I )

⎫⎪⎬
⎪⎭, (16)

where Ct (I ) = min
{

1,

√
2�tot log (2 T |P (D)|/δ)

Nt (I )

}
and �|�+(I )| is

a simplex in |�+(I )| dimensions. The optimization problem
(16) can be reduced to the following optimization problem
(See Section I of supplementary material for details).

V̂t (I ) = maximize
q∈�|�+ (I )|

⎧⎪⎨
⎪⎩

∑
ψ∈�+(I )

q(ψ)r̃∗
t (ψ) −

∑
i∈I

c̃t [i]

∣∣∣∣
∑

ψ∈�+(I )

|q(ψ) − p̂t (ψ)| ≤ Ct (I )

⎫⎪⎬
⎪⎭, (17)

where r̃∗
t (ψ) = maxa∈A r̃t (a,ψ) is the optimistic reward esti-

mate of the partial state vector ψ at time t . Problem (17) is
solved by ranging the value of q over the plausible candidate
set of probabilities for p(ψ). We denote the value of q that
solves (17) at time t by p̃t (ψ). Note that, for each I, the prob-
ability p̃t (ψ) denotes the optimistic probability estimate of
the partial state vector ψ ∈ �+(I ) at time t . Moreover, V̂t (I )
represents the optimistic gain of a policy πt (I ) = (I, ĥt (ψ))
that selects the observation set I and the action ĥt (ψ) for any
ψ ∈ �+(I ) at time t .

At each time t , our algorithm solves (17) and acts opti-
mistically by choosing the observation set and determining
the action selection strategy as

Ît = arg max
I∈P (D)

V̂t (I ), (18)

and

ĥt (ψ) = arg max
a∈A

r̂t (a,ψ) + Ct (a,ψ;w), (19)

respectively. Afterward, NCC-UCRL2 pays the costs cor-
responding to the selected observation set Ît , observes the
partial state vector ψt ∈ �+(Ît ), and takes the action at =
ĥt (ψt ). Finally, it receives the corresponding reward rt and
updates the counters. The computational complexity of NCC-
UCRL2 algorithm is O(A�tot T ).

IV. THEORETICAL ANALYSIS
In this section, we analyze the regret performance of NCC-
UCRL2 algorithm in stationary and non-stationary environ-
ments. We first prove an upper bound on the expected regret of
our algorithm by assuming that the environment is stationary,

i.e., there is no change point in the environment. In the sta-
tionary case, it is natural to choose w = 	(T ) to exploit the
entire collected data for estimation of the mean rewards and
mean costs. In this case, as expected, NCC-UCRL2 achieves
a sublinear regret with respect to time.

Theorem 1: When the environment is stationary, i.e., ϒT =
0, with probability at least 1 − 3δ, the expected regret of
NCC-UCRL2 is upper bounded as

RT (�)

≤ O

(
T

(√
A�tot log (TA�totw/δ)

w
+ D

√
log (T Dw/δ)

w

)

+
√

T log (1/δ)

(√
A�tot log (TA�totw/δ)

+ D
√

log (T Dw/δ)

)

+
√

T |P (D)|�tot log (T |P (D)|/δ)

)
. (20)

In this case, choosing w = T results in the following
bound.

RT (�)

≤ O

((
1 +

√
log (1/δ)

)(√
TA�tot log (TA�tot/δ)

+ D
√

T log (T D/δ)

)

+
√

T |P (D)|�tot log (T |P (D)|/δ)

)
. (21)

Proof: See Section IV-A of supplementary material.�
The proof of Theorem 1 is, to some extent, based on state-

of-the-art techniques used in the literature to analyze regret
bounds for optimistic bandit algorithms; nevertheless, some
non-conventional parts appear in our derivation because we
estimate the partial state probabilities using all observations,
while the mean rewards and mean costs using the most recent
ones in the window. Note that, in the optimization problem
(16), we use optimistic estimations for rewards and partial
state probabilities, whereas we rely on pessimistic ones for
costs by using the lower confidence bound on the mean costs
in (15). That results in several technical challenges in the the-
oretical analysis, for example, in Lemma 3, where we bound
the probability of failure (See Section IV of supplementary
material). Moreover, proving the bound in (50) is challenging
as the algorithm can choose more than one feature at a time.
Hence, in (50), we consider the worst case of observing all the
D features’ states at each time t .

In the next theorem, we establish an upper bound on the
expected regret of NCC-UCRL2 in non-stationary environ-
ments. With the right choice of the window size, NCC-
UCRL2 achieves sublinear regret in time. The regret analysis
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TABLE 2 Comparison With Related Works

for the non-stationary case is based on the theoretical analysis
in Theorem 1.

Theorem 2: When the environment is non-stationary, i.e.,
ϒT > 0, with probability at least 1 − 3δ, the expected regret
of NCC-UCRL2 is upper bounded as

RT (�)

≤ O

(
wϒT + T

(√
A�tot log (TA�totw/δ)

w

+ D

√
log (T Dw/δ)

w

)

+
√

ϒT T log (1/δ)

(√
A�tot log (TA�totw/δ)

+ D
√

log (T Dw/δ)

)

+
√

T |P (D)|�tot log (T |P (D)|/δ)

)
. (22)

In this case, choosing w = (T/ϒT )2/3 results in the follow-
ing bound.

RT (�) ≤ O

((
T 2/3ϒ

1/3
T +

√
ϒT T log (1/δ)

)
(√

A�tot log (TA�tot/δ) + D
√

log (T D/δ)
)

+
√

T |P (D)|�tot log (T |P (D)|/δ)

)
.

(23)

Proof: See Section IV-B of supplementary material.�
The analysis in Theorem 2 is based on Theorem 1. During

the stationary phases, the algorithm suffers the same sublinear
regret proved in Theorem 1. When experiencing a change
point, the algorithm suffers an extra O(w) regret, while the
second term in (20) scales by a factor of

√
ϒT . Our algo-

rithm does not require the knowledge of ϒT and guarantees
a sublinear regret bound with a proper choice of w, as given
by (23).

Table 2 summarizes the comparison of our paper with the
closest works.

Remark 1: In this paper, we study and analyze the general
NCC bandit problem where the reward and cost might follow
any linear or nonlinear function. Due to its generality, solv-
ing this problem comes at the price of potentially excessive
computational burden: The complexity and regret bound of

our proposed algorithm depend on the number of possible
combinations of the features’ states, which is sometimes large;
Nonetheless, there are several approaches to mitigate the ef-
fect of such a term on the regret bound and computational
complexity. Below, we elaborate on such methods:
� The complexity diminishes if the number of features or

the number of features’ states is small. That happens in
numerous real-world problems where the features can be
filtered out based on prior knowledge and/or the states
can be quantized efficiently. For example, in a medical
setting, the clinician limits the potentially useful tests to
a specific small set. Moreover, the outcome of each test
can be interpreted as healthy or not. As another example,
in a wireless communication network, one can describe
the channel state as high-quality or low-quality based on
the QoS requirement.

� The complexity decreases if we limit the number of
observations allowed at each time by considering a pre-
determined value for the maximum number of feature
selections at each time.

� One can reduce the complexity by combining approxi-
mate sampling methods with feature selection strategies,
for example, by defining Shapley values for features,
estimating these values using Monte Carlo methods, and
choosing features based on the approximated Shapley
values.

� It is also beneficial to allow for restrictive assumptions
on the space of reward and cost functions. In such cases,
the dependence of the regret bound and computational
complexity on the number of features and partial states
diminishes. For example, the complexity decreases by
considering linear reward functions, where the expected
reward of each arm is a linear function of the contexts
with some unknown coefficient [37].

V. NUMERICAL ANALYSIS
In this section, via numerical experiments, we provide more
insights into the effects of costly features on the performance
of learning algorithms. Besides, we clarify how our proposed
algorithm mitigates the adverse effects by observing only a
subset of features’ states. Moreover, we show that our algo-
rithm efficiently adapts to environmental changes. We also
compare the performance of our algorithm with conventional
benchmarks using a real-world dataset. The source code for
our algorithm and experiments in this paper are publicly
available.1

Benchmark Policies: We compare NCC-UCRL2 with the
state-of-the-art contextual and context-agnostic algorithms.
Contextual bandit algorithms in our experiment include Sim-
OOS [30], PS-LinUCB [17], and LinUCB [37]. Sim-OOS
is designed for bandit problems with fixed costs for features’
states observation in stationary environments. PS-LinUCB
is designed for piece-wise stationary environments, but it is

1Source code: https://github.com/saeedghoorchian/NCC-Bandits.git

826 VOLUME 5, 2024



cost-agnostic. LinUCB is the final contextual bandit algorithm
that is neither designed for changing environments nor costly
features. In our experiment, similar to our algorithm, Sim-
OOS can select any subset of features for state observation at
each time of play. As a result, at each time, they pay the cor-
responding cost only for those selected features. PS-LinUCB
and LinUCB always observe all features’ states. Hence, they
pay the full cost vector. We consider UCB1 and ε-Greedy
[38] as context-agnostic benchmarks as standard methods
despite their weakness due to being blind to contextual in-
formation. We also consider a random policy that selects an
action uniformly at random at each time. Context-agnostic
algorithms do not incur any costs and only collect the rewards.

Nursery Dataset: We assess the performance of our algo-
rithm on the Nursery dataset from the UCI Machine Learning
Repository [39]. The dataset, derived from a hierarchical deci-
sion support system, includes applications for nursery schools
and their target ranks that prioritize the applications and de-
termine whether the child is recommended to be admitted to a
nursery school. The applications are described using features
that represent the socioeconomic status of the family. We
consider D = 5 features: i) Form of the family, ii) number
of children, iii) financial standing of the family, iv) housing
conditions, and v) health conditions of the applicant. In our
experiment, we work with A = 3 target rank values ranging
from 1 to 3 that indicate the given application is not recom-
mended, accepted with priority, and accepted with special
priority, respectively. Taking an action is equivalent to rec-
ommending one particular rank for the given application. The
agent receives reward 1 if the correct rank is recommended,
otherwise the reward is 0.

Experimental Setup: To simulate a piece-wise stationary
reward generating process, we follow the approach proposed
by [34]. At each change point, we shift all the target labels
cyclically. This guarantees that the expected reward is piece-
wise constant. In the context of decision support system for
nursery school applications, such change points correspond to
changes in preference of the decision-making authority over
the applications.

We endow the features with random cost values. At each
time t , the random cost of observation for each feature’s state
follows a normal distribution with a standard deviation of
0.001 and a piece-wise constant mean. We select the mean val-
ues of cost distributions uniformly at random from the interval
[0.03; 0.08]. Therefore, the total observation cost of a full
state vector at each time amounts to 15 − 40&amp; percnt;
of the maximum reward. The range of costs are chosen based
on two factors: i) It should be high enough to prevent the
algorithm from observing all features’ states at all times and,
ii) low enough to incentivize the algorithm considerably to
pay for state observation in order to find the optimal obser-
vations. In the nursery application ranking scenario, the state
observation costs can be thought of as the efforts required to
acquire the information about the applicant. Such efforts may
include the time or other related expenses spent to obtain the
information.

FIGURE 1. Cumulative regret of different policies. Vertical lines show the
change points.

We split the data into train and validation (tuning) sets in
approximately 80:20 ratio with 10000 and 2630 data sam-
ples, respectively. More specifically, we sample 2630 data
points at random and use them to tune the parameters of
algorithms. The parameters of those benchmark algorithms
that are originally designed for stationary environments are
tuned without introducing non-stationarity in the validation
set. To tune the parameters of NCC-UCRL2 and PS-LinUCB,
we consider 2 change points in mean rewards, but no change
points in mean costs. For more details on the tuning process
of the parameters, please see Section V of the supplementary
material.

We run the experiment for T = 10000 time steps by reveal-
ing applications to the algorithms one at a time. We consider
a maximum of ϒT = 7 change points in our experiment, with
change points in the mean rewards and the mean costs at times
{1000, 2000, 5000, 8000} and {3000, 5000, 7000, 9000}, re-
spectively. Note that the change points are not necessarily
identical; the mean rewards and mean costs do not always
change simultaneously at a change point. In Section V of the
supplementary material, we elaborate more on the settings of
mean rewards and mean costs. Table 3 in the supplementary
material lists the tuned parameters of algorithms used in our
simulation. For NCC-UCRL2, we set δ = 0.04 and choose the
window parameter w = 250.

Remark 2: Assuming abrupt changes is standard in the
literature concerning piece-wise stationary multi-armed ban-
dits; nonetheless, it is essential to mention that in many
real-world applications, the environment evolves gradually.
The state-of-the-art algorithms, including ours, show an ac-
ceptable performance also in those scenarios; nevertheless,
their efficiently degrades as detecting small changes is more
troublesome and associated with frequent false alarms and
missed detections. Besides, sometimes it is not vital to detect
small changes because they degrade the performance only
slightly. As such, the system would intentionally ignore small
changes to maintain efficiency, leading to a model similar to
the one considered here, i.e., abrupt changes.

Regret Comparison: We run the algorithms using the afore-
mentioned setup. Fig. 1 depicts the trend of cumulative regret

VOLUME 5, 2024 827



GHOORCHIAN ET AL.: CONTEXTUAL MULTI-ARMED BANDIT WITH COSTLY FEATURE OBSERVATION IN NON-STATIONARY ENVIRONMENTS

FIGURE 2. Total reward (number on top of bar), gain (number in green),
and cost (number in brown) for each policy. Values are rounded to the
nearest integers.

over time for each policy. We average the results over 5 in-
dependent runs. Here, the instantaneous regret at each time is
defined based on the instantaneous gain, which is the obtained
reward minus the total paid observation costs at every round.
As we see, NCC-UCRL2 detects the changes in the mean re-
wards or mean costs faster than all other policies and therefore
has a superior performance. Besides, as NCC-UCRL2 uses
only the last w observations to estimate the mean rewards
and mean costs, it has a smooth curve around change points.
These advantages are despite the fact that NCC-UCRL2 only
observes a subset of features’ states at each time.

Gain Comparison: In Fig. 2, we show the policies’ total
reward, gain, and cost. It also compares them with the op-
timal policy (oracle). In this figure, the height of each bar
shows the total accumulated reward of each policy which is
equal to the total gain (green part) plus the total cost (brown
part). NCC-UCRL2 accumulates the highest rewards during
the experiment among the benchmark policies. The accumu-
lated reward of PS-LinUCB is almost the same as that of our
algorithm; it receives only about 0.1% less reward than NCC-
UCRL2. However, the total gain of PS-LinUCB is 20% lower
due to higher paid costs as it observes all the features’ states at
all times. On the contrary, NCC-UCRL2 adaptively learns the
optimal state observations while it observes only a fraction
of features’ states at each time. As a result, NCC-UCRL2
incurs less cost, hence a higher performance concerning the
accumulated gain. The two counterparts of NCC-UCRL2 and
PS-LinUCB that suit stationary environments, i.e., Sim-OOS
and LinUCB, exhibit a similar pattern for the total costs;
nevertheless, Sim-OOS achieves lower accumulated reward
compared to LinUCB, which shows the importance of learn-
ing the optimal observations in a non-stationary environment.
Note that Sim-OOS fails in our experiment as it does not
consider the pessimistic selection of random costs and cannot
adapt to drifts.

Adaptation to the Preference Volatility: In Fig. 3, we
plot the histograms of nursery application priorities recom-
mended by the optimal policy, NCC-UCRL2, and UCB1 for
each of the stationary periods. Our algorithm closely fol-
lows the arm choice pattern of the optimal policy, which

FIGURE 3. Comparison of priority recommendations of the optimal policy
(oracle), NCC-UCRL2, and UCB1 in each stationary period.

FIGURE 4. Cumulative regret of NCC-UCRL2 for different window
parameters w.

means that it can quickly adapt to changes in preference
over applications. On the other hand, UCB1 cannot al-
ways adapt to sudden changes in the environment. We
particularly consider UCB1 in this analysis to show the fol-
lowing: Although UCB1 achieves the second highest gain
amongst the benchmarks, it fails to provide tailored recom-
mendations when the environment parameters undergo abrupt
changes.

Effect of Window Length w: Choosing the right window
parameter w is crucial to ensure that the NCC-UCRL2 al-
gorithm promptly adjusts the decision-making strategy after
sudden changes while maintaining a good performance during
stationary periods. The window size w can be chosen based on
the change frequency. A smaller w allows for faster adaptation
but reduces the performance during stationary periods due
to exploiting fewer relevant data samples. In an environment
with infrequent change points, a larger w is more suitable
as it results in a better performance between change points,
although the algorithm requires more storage space. Fig. 4
illustrates the trend of cumulative regret of our algorithm
when running on the nursery dataset with different window
parameters w. Based on our simulation’s setting, we see that
NCC-UCRL2 with smaller window sizes (around 300) results
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FIGURE 5. Accuracy for different number of observations.

in a much lower regret (e.g., compared to values more than
700).

Accuracy: To further analyze the performance of our algo-
rithm, we define accuracy for the model based on the number
of state observations. With � observations, the accuracy yields(∑�

j=0
∑T

t=1 rt�{|It | = j}
)

/

(∑�
j=0

∑T
t=1 �{|It | = j}

)
.

We use the term accuracy since, in our experiment, a reward
of 1 implies the correct classification of a nursery application.
[30] perform a similar analysis for Sim-OOS. Therefore,
we plot the accuracy of NCC-UCRL2 and Sim-OOS for
a different number of observations in Fig. 5, as these are
the only algorithms that implement feature selection. For
fewer observations, the accuracy of Sim-OOS is close
to that of NCC-UCRL2, while NCC-UCRL2 achieves a
higher accuracy as the number of observations increases.
This again shows the importance of learning the optimal
observations and demonstrates the superiority of our
method.

VI. CONCLUSION
We introduced the NCC bandit framework, where information
acquisition is costly and the environment is non-stationary. We
developed a decision-making policy, namely NCC-UCRL2,
that mitigates the effects of costs by observing only a subset
of features. We proved that NCC-UCRL2 achieves a sublinear
regret bound in time. Our proposed framework is applicable
in several contexts, such as online advertising problems, med-
ical treatment recommendations, edge computing, and stock
trading. We applied our method to recommend priority ranks
for nursery school applications. The experiments showed that
NCC-UCRL2 outperforms several state-of-the-art bandit al-
gorithms. We study the general NCC bandit problem, where
the reward can take any form, linear or nonlinear. Besides,
the number of state observations can be arbitrarily large. A
potential future research direction would be to allow for re-
strictive assumptions on the number of state observations or
the space of reward functions. In such cases, the dependence
of the regret bound on the number of features and partial states
diminishes.
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