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ABSTRACT Leveraging information across diverse modalities is known to enhance performance on mul-
timodal segmentation tasks. However, effectively fusing information from different modalities remains
challenging due to the unique characteristics of each modality. In this paper, we propose a novel fusion
strategy that can effectively fuse information from different modality combinations. We also propose a new
model named Multi-Modal Segmentation TransFormer (MMSFormer) that incorporates the proposed fusion
strategy to perform multimodal material and semantic segmentation tasks. MMSFormer outperforms current
state-of-the-art models on three different datasets. As we begin with only one input modality, performance
improves progressively as additional modalities are incorporated, showcasing the effectiveness of the fusion
block in combining useful information from diverse input modalities. Ablation studies show that different
modules in the fusion block are crucial for overall model performance. Furthermore, our ablation studies also
highlight the capacity of different input modalities to improve performance in the identification of different

types of materials.

INDEX TERMS Multimodal fusion, multimodal image segmentation, material segmentation, semantic seg-

mentation, transformer.

I. INTRODUCTION

Image segmentation [1], [2] methods assign one class label
to each pixel in an image. The segmentation map can be
used for holistic understanding of objects or context of the
scene. Image segmentation can be further divided into differ-
ent types; examples include semantic segmentation [3], [4],
instance segmentation [5], [6], panoptic segmentation [7], [8]
and material segmentation [9], [10]. Each of these segmen-
tation tasks are designed to address specific challenges and
applications.

Multimodal image segmentation [11], [12] aims to enhance
the accuracy and completeness of the task by leveraging di-
verse sources of information, and potentially leading to a
more robust understanding of complex scenes. In contrast to
single-modal segmentation [2], the multimodal approach [12]
is more complex due to the necessity of effectively integrating
heterogeneous data from different modalities. Key challenges
arise from variations in data quality and attributes, distinct

traits of each modality, and need to create models capable of
accurately and coherently segmenting with the fused informa-
tion.

Most of the existing multimodal segmentation methods
are designed to work with specific modality pairs, such as
RGB-Depth [13], [14], [15], RGB-Thermal [16], [17], [18],
and RGB-Lidar [19], [20], [21]. As they are designed for
specific modality combinations, most of them generally do
not work well with modality combinations different from
the ones used in the original design. Recently, CMX [22]
introduced a technique to fuse information from RGB and
one other supplementary modality, but it is incapable of
fusing more than two modalities at the same time. Some
recent models have proposed techniques to fuse more than
two modalities [9], [23], [24]. However, they either use very
complex fusion strategies [22], [23] or require additional in-
formation like semantic labels [9] for performing underlying
tasks.
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In this paper, we propose a novel fusion block that can
fuse information from diverse combination of modalities.
We also propose a new model for multimodal material and
semantic segmentation tasks that we call MMSFormer. Our
model uses transformer based encoders [25] to capture hier-
archical features from different modalities, fuses the extracted
features with our novel fusion block and utilizes MLP decoder
to perform multimodal material and semantic segmentation.
In particular, our proposed fusion block uses parallel con-
volutions to capture multi-scale features, channel attention
to re-calibrate features along the channel dimension and lin-
ear layer to combine information across multiple modalities.
Such a design provides a simple and computationally efficient
fusion block that can handle an arbitrary number of input
modalities and combine information effectively from differ-
ent modality combinations. An illustration of the proposed
method is presented in Fig. 1. We compare our fusion block
with some of the existing fusion methods in terms of number
of parameters and GFLOPs in Table 9.

To evaluate our proposed MMSFormer and fusion block,
we focus on multimodal material segmentation on MCubeS
[9] dataset and multimodal semantic segmentation on FMB
[27] and PST900 [28] datasets. MCubeS dataset consists
of four different modalities: RGB, angle of linear polar-
ization (AoLP), degree of linear polarization (DoLP) and
near-infrared (NIR). FMB dataset includes RGB and infrared
modalities, while PST900 dataset comprises RGB and thermal
modalities. We show the overall and per-class performance
comparison in Table 1-5 for these datasets. A series of ex-
periments highlight the ability of the proposed fusion block
to effectively combine features from different modality com-
binations, resulting in superior performance compared to
current state-of-the-art methods. Ablation studies show that
different input modalities assist in identifying different types
of material classes as shown in Table 8. Furthermore, as we
add new input modalities, overall performance increases grad-
ually highlighting the ability of the fusion block to incorporate
useful information from new modalities. We summarize the
results in Tables 4 and 6 for FMB and MCubeS datasets
respectively.

Main contributions of this paper can be summarized as
follows.

e We propose a new multimodal segmentation model
called MMSFormer. The model incorporates a novel
fusion block that can fuse information from arbitrary
(heterogeneous) combinations of modalities.

® Our model achieves new state-of-the-art performance
on three different datasets. Furthermore, our method
achieves better performance for all modality combina-
tions compared to the current leading models.

® A series of ablation studies show that each module on
the fusion block has an important contribution towards
the overall model performance and each input modality
assists in identifying specific material classes.

Rest of the paper is structured as follows. Section II

presents a brief review of related work. We describe our model

600

and fusion block in detail in Section III. Section IV presents
experimental results and ablation studies on multimodal ma-
terial and semantic segmentation tasks with qualitative and
quantitative analysis.

Il. RELATED WORK

Image segmentation has witnessed significant evolution,
spurred by advancements in machine learning and com-
putational capabilities. A significant improvement in this
evolution came with the inception of fully convolutional
networks (FCNs) [29], [30], which enabled pixel-wise pre-
dictions through the utilization of hierarchical features within
convolutional neural networks (CNNs). This led to the de-
velopment of a variety of CNN based models for different
images segmentation tasks. U-Net [31] is one such model that
utilizes skip-connections between the lower-resolution and
corresponding higher-resolution feature maps. DeepLabV3+
[32] introduced dilated convolutions (atrous convolutions)
into the encoder allowing the expansion of the receptive field
without increasing computational complexity significantly.
PSPNet [33] introduced global context modules that enable
the model to gather information from a wide range of spatial
scales, essentially integrating both local and global context
into the segmentation process.

Recently, Transformer based models have proven to be
very effective in handling complex image segmentation tasks.
Some of the notable transformer-based models are Pyra-
mid Vision Transformer (PVT) [34], SegFormer [25], and
Mask2Former [35]. PVT [34] utilizes transformer based
design for various computer vision tasks. SegFormer [25]
utilizes efficient self-attention and lightweight MLP decoder
for simple and efficient semantic segmentation. Mask2Former
[35] uses masked-attention along with pixel decoder and
transformer decoder for any segmentation task. Their success
demonstrates the capacity of these models to provide state-of-
the-art solutions in various segmentation tasks.

In the context of multimodal image segmentation, fusion of
data from diverse sources [12] has gained traction as a means
to extract richer information and improve accuracy. A variety
of models and fusion strategies have been proposed for RGB-
Depth segmentation tasks. FuseNet [14] model integrates
depth feature maps into RGB feature maps, while SA-Gate
[13] employs Separation-and-Aggregation Gating to mutually
filter and recalibrate RGB and depth modalities before fusion.
Attention Complementary Module has been proposed by AC-
Net [15] that extracts weighted RGB and depth features for
fusion. The domain of RGB-Thermal image segmentation has
also gained prominence. Recent models include RTFNet [18]
that achieves fusion through elementwise addition of thermal
features with RGB, RSFNet [16] proposing Residual Spatial
Fusion module to blend RGB and Thermal modalities, and
EAEFNet [17] utilizing attention interaction and attention
complement mechanisms to merge RGB and Thermal fea-
tures. A number of methods also focus on fusing RGB-Lidar
data that include TransFuser [20] that employs Transformer
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FIGURE 1. (a) Overall architecture of MMSFormer model. Each image passes through a modality-specific encoder where we extract hierarchical features.
Then we fuse the extracted features using the proposed fusion block and pass the fused features to the decoder for predicting the segmentation map. (b)
Illustration of the mix transformer [25] block. Each block applies a spatial reduction before applying multi-head attention to reduce computational cost.
(c) Proposed multimodal fusion block. We first concatenate all the features along the channel dimension and pass it through linear fusion layer to fuse
them. Then the feature tensor is fed to linear projection and parallel convolution layers to capture multi-scale features. We use Squeeze and Excitation
block [26] as channel attention in the residual connection to dynamically re-calibrate the features along the channel dimension.

blocks, whereas LIF-Seg [21] relies on coarse feature extrac-
tion, offset learning, and refinement for effective fusion.

While the previously mentioned studies focus on spe-
cific pairs of modalities, some recent research has demon-
strated promising results in the fusion of arbitrary modal-
ities. CMX [22] introduces cross-modal feature rectifica-
tion and fusion modules to merge RGB features with
supplementary modalities. For multimodal material segmen-
tation, MCubeSNet [9] model is proposed, which can seam-
lessly integrate four different modalities to enhance segmen-
tation accuracy. In the context of arbitrary modal semantic
segmentation, CMNeXt [24] introduces Self-Query Hub and
Parallel Pooling Mixer modules, offering a versatile ap-
proach for fusing diverse modalities. Additionally, HRFuser
[23] employs multi-window cross-attention to fuse different
modalities at various resolutions, thereby enriching model
performance.

Though some of these models can fuse different modalities,
they either use very complex fusion strategies [22], [23], [24]
or requires additional information [9] to perform underlying
task. We aim to design a simple fusion module that can handle
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arbitrary number of input modalities and able to effectively
fuse information from diverse modality combinations.

1Il. PROPOSED MODEL

The overall architecture of our proposed MMSFormer model
and the fusion block is shown in Fig. 1. The model has
three modules: (1) Modality specific encoder; (2) Multimodal
fusion block; and (3) Shared MLP decoder. We use mix trans-
former [25] as the encoder of our model. We choose mix
transformer for various reasons. First, it can provide hierar-
chical features without positional encoding. Second, it uses
spatial reduction before attention that reduces the number of
parameters significantly [25], [34]. Third, it also works well
with simple and lightweight MLP decoder [25].

A. OVERALL MODEL ARCHITECTURE

Our overall model architecture is shown in Fig. 1(a). Assume
we have M distinct modalities. Given a set of modalities as
input, each modality-specific encoder captures distinctive fea-
tures from each input modality by mapping the corresponding
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image into modality-specific hierarchical features as
F,, = Encoder,, (1), (D)

where I, € R?*W>3 represents input image for modality
me€ {1,2,...,M} and Encoder,,(-) denotes the encoder for
that modality. The encoder generates four feature maps at
{ %, %, %, %} of the input image resolution. We represent
them as F, = (F!, F2, F>} F}. For simplicity we denote
the shape of the feature map for the ith encoder stage as
(H; x W; x C;) where i € {1, 2, 3, 4}.

We use four separate fusion blocks, one corresponding to
each encoder stage, to fuse the features from each stage of the
encoder. We pass the extracted features F for all modalities
to the ith fusion block as

F' = FusionBlock ({F},»). )

Each fusion block fuses the features extracted from all the
modalities to generate a combined feature representation F' =
{Fl,Fz, F3, F4}, where F' denotes the fused feature at ith
stage. Finally, we pass the combined features F to the MLP
decoder [25] to predict the segmentation labels.

B. MODALITY SPECIFIC ENCODER

We use mix transformer encoder [25] to capture hierarchical
features from the input modalities. Each input image /,, goes
through patch embedding layer where it is divided into 4 x 4
patches following [25] and then fed to the mix transformer
blocks. The design of mix transformer block is shown in Fig.
1(b). We denote the input to any mix transformer block as
Xi, € RH>WixCi that is reshaped to N; x C; (with N; = H;W;)
and used as query Q, key K, and value V.

To reduce the computational overhead, spatial reduction is
applied following [34] using a reduction ratio R. K and V are
first reshaped into % x C;R matrices and then mapped to % X
C; matrices via linear projection. A standard multi-head self-
attention (MHSA) maps Q, K, V to intermediate features as

MHSA(Q, K, V) = Concat(head,, ..., headh)WO,

head; = Attention (OW2, KWS, VW), (3)

where & represents the number of attention heads, WJ-Q S
RCiXdK, WjK e RCfXdK, WjV e ]RC,-xdv’ and WO c thvxC,-
are the projection matrices, dk, dy represent dimensions of
K, V, respectively. We can formulate the Attention function
as

Attention(Q, K, V') = Soft (—QKT> V. )
ention(Q, K, V) = Softmax ,
Vdk

where Q, K, and V are the input query, key, and value matri-
ces. MHSA is followed by a mixer layer (with two MLP and
one 3 x 3 convolution layer). The convolution layer provides
sufficient positional encoding into the transformer encoder
for optimal segmentation performance [25]. This layer can be
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written as
Xi;» = MHSA(Q, K, V),
Xour = MLP(GELU(Conv33(MLP(X;))) + Xin,  (5)

Finally, overlap patch merging is applied to X, following
[25] to generate the final output.

C. MULTIMODAL FUSION BLOCK

After extracting hierarchical features, we fuse them using our
proposed fusion block. The fusion block shown in Fig. 1(c) is
responsible for fusing the features extracted from the modality
specific encoders. We have one fusion block for each of the
four encoder stages. For the ith fusion block, let us assume
the input feature maps are given as F/ e RH>WixCi vy ¢
{1,2, ..., M}. First, we concatenate the feature maps from M
modalities along the channel dimension to get the combined
feature map F' e RP>WixMC Then we pass the features
through a linear fusion layer that combines the features and
reduces the channel dimension to C;. Let us denote the result-
ing features as F' € R¥>*WixCi | We represent the operation
as

F' = Linear(F]|| - - - || Fj). (6)

Here || represents concatenation of features along the chan-
nel dimension and the linear layer takes an MC; dimensional
input and generates a C; dimensional output.

After the linear fusion layer, we added a module for captur-
ing and mixing multi-scale features. The module consists of
two linear projection layers having parallel convolution layers
in between them. First we apply a linear transformation on
F along the channel dimension by passing it through the first
linear projection layer. It refines and tunes the features from
different channels. Then we apply 3 x 3, 5x 5,and 7 x 7
convolutions to effectively capture diverse features across
different spatial contexts. By employing convolutions with
different sizes, the fusion block can attend to local patterns
as well as capture larger spatial structures, thereby enhanc-
ing its ability to extract meaningful features from the input
data. Finally we apply another linear transformation along
the channel dimension using the second linear project layer
to consolidate the information captured by the parallel con-
volutions, promoting feature consistency and enhancing the
discriminative power of the fused features. These steps can be
performed as

Fi = Linear (ﬁ’) , (7
F' = Linear | Fi + Z Convy k (151) . (8)
ke(3.5.7)

We found that using 3 parallel convolution layers with
sizes 3 x 3, 5 x 5,and 7 x 7 provide optimal performance.
Increasing the convolution kernel size reduces performance

VOLUME 5, 2024



ISEEE i 2y IEEE Open Journal of
dcessing  Signal Processing

Processing
i

TABLE 1. Performance comparison on Multimodal Material Segmentation
(MCubeS) dataset [9]

Method Modalities % mloU
DRConv [36] RGB-A-D-N 34.63
DDF [37] RGB-A-D-N 36.16
TransFuser [20] RGB-A-D-N 37.66
DeepLabv3+ [32] RGB-A-D-N 38.13
MMTM [38] RGB-A-D-N 39.71
FuseNet [14] RGB-A-D-N 40.58
MCubeSNet [9] RGB-A-D-N 42.46
CBAM [39] RGB-A-D-N 51.32
CMNeXt [24] RGB-A-D-N 51.54
MMSFormer (Ours) RGB-A-D-N 53.11

Here A, D, and N represent angle of linear polarization (AoLP),
degree of linear polarization (DoLP), and near-infrared (NIR)
respectively.

which we show in Table 7. As larger kernels reduce perfor-
mance, we did not add more than 3 parallel convolutions in
our model.We apply Squeeze-and-Excitation block [26] as
channel attention in the residual connection. The final fused
feature can be represented as

F' = ChannelAttention (I‘: i) +Fl. 9)

Channel attention re-calibrates interdependence between
channels and allows the model to select the most relevant
features or channels while suppressing less important ones
[26]. This leads to more effective feature representations and
thus better performance on the underlying task.

D. SHARED MLP DECODER

The fused features generated from all the 4 fusion blocks are
sent to the shared MLP decoder. We use the deocder design
proposed in [25]. The decoder shown in Fig. 1(a) can be
represented as the following equations:

F! = Linear(F"), Vie{l,2,3,4}
F' = Upsample(F'), Vie{l,2,3,4)}
F = Linear(F'|| - - - [|F*),

P = Linear(F). (10)

The first linear layers take the fused features of different
shapes and generate features having the same channel dimen-
sion. Then the features are up-sampled to %th of the original
input shape, concatenated along the channel dimension and
passed through another linear layer to generate the final fused
feature F'. Finally F is passed through the last linear layer to
generate the predicted segmentation map P.

IV. EXPERIMENTS AND RESULTS

We evaluated our model and proposed fusion block on mul-
tiple datasets and with different modality combinations for
multimodal semantic and material segmentation tasks. We
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TABLE 2. Performance comparison on FBM [27] dataset

Methods Modalities 9% mloU
CBAM [39] RGB-Infrared 50.1
GMNet [40] RGB-Infrared 49.2
LASNet [41] RGB-Infrared 42.5
EGFNet [42] RGB-Infrared 473
FEANet [43] RGB-Infrared 46.8
DIDFuse [44] RGB-Infrared 50.6
ReCoNet [45] RGB-Infrared 50.9
U2Fusion [46] RGB-Infrared 47.9
TarDAL [47] RGB-Infrared 48.1
SegMiF [27] RGB-Infrared 54.8
MMSFormer (Ours) RGB-Infrared 61.7

We show performance for different methods from already
published works.

also compared our methods with existing baseline methods
both qualitatively and quantitatively. We report results from
already published works whenever possible. = indicates that
we have used the code and pretrained models from the papers
to generate the results.

A. DATASETS

Multimodal material segmentation (MCubeS) dataset [9] con-
tains 500 sets of images from 42 street scenes having four
modalities: RGB, angle of linear polarization (AoLP), de-
gree of linear polarization (DoLP), and near-infrared (NIR). It
provides annotated ground truth labels for both material and
semantic segmentation and divided into training set with 302
image sets, validation set with 96 image sets, and test set with
102 image sets. This dataset has 20 class labels corresponding
to different materials.

FMB dataset [27] is a new and challenging dataset with
1500 pairs of calibrated RGB-Infrared image pairs. The
training and test set contains 1220 and 280 image pairs re-
spectively. The dataset covers a wide range of scenes under
different lighting and weather conditions (Tyndall effect, rain,
fog, and strong light). It also provides per pixel ground truth
annotation for 14 different classes.

PST900 dataset [28] contains 894 pairs of synchronized
RGB-Thermal image pairs. The dataset is divided into training
and test sets with per pixel ground truth annotation for five
different classes.

B. IMPLEMENTATION DETAILS

To ensure a fair comparison with prior models, we followed
the same data preprocessing and augmentation strategies
employed in previous studies [9], [24], [27]. We used the
Mix-Transformer (MiT) [25] encoder pretrained on the Im-
ageNet [61] dataset as the backbone for our model to extract
features from different modalities. Each modality has a sep-
arate encoder. We used a shared MLP decoder introduced
in SegFormer [25] and used random initialization for it. We
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RGB Image

i

Ground Truth CMNeXt (RGB)

Ours (RGB) CMNeXt (RGB-A-D-N)  Ours (RGB-A-D-N)

(a) Visualization of predictions on MCubeS dataset

Thermal Image Ground Truth

RTFNet (RGB-T) FDCNet (RGB-T) Ours (RGB-T)

(b) Visualization of predictions on PST900 dataset

FIGURE 2. Visualization of predictions on MCubeS and PST900 datasets. Fig. 2(a) shows RGB and all modalities (RGB-A-D-N) prediction from CMNeXt
[24] and our model on MCubeS dataset. For brevity, we only show the RGB image and ground truth material segmentation maps along with the
predictions. Fig. 2(b) shows predictions from RTFNet [18], FDCNet [48] and our model for RGB-thermal input modalities on PST900 dataset. Our model
shows better predictions on both of the datasets. (a) Visualization of predictions on MCubeS dataset (b) Visualization of predictions on PST900 dataset.

trained and evaluated all our models using two NVIDIA RTX
2080Ti GPUs and used PyTorch for model development.

We utilized a polynomial learning rate scheduler with a
power of 0.9 to dynamically adjust the learning rate during
training. The first 10 epochs were designated as warm-up
epochs with a learning rate of 0.1 times the original rate. For
loss computation, we used the cross-entropy loss function.
Optimization was performed using the AdamW [62] optimizer
with an epsilon value of 10~® and weight decay set to 0.01.
For CBAM [39], we use the same encoder, decoder and hy-
perparameters used in our experiments and replace our fusion
block with CBAM! module. To be specific, after extracting
the feature maps from each input modality using the modality
specific encoders, we add them (sum them up) and pass the
combined feature map to the CBAM module.

C. PERFORMANCE COMPARISON WITH EXISTING
METHODS

We conducted a rigorous performance evaluation of our model
compared to established baseline models for three datasets.
The comprehensive results are summarized in Tables 1-6. We

![Online]. Available: https://github.com/luuuyi/CBAM.PyTorch
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report results for CBAM from our experiments. Other results
are taken from published literature.

Results on MCubeS Dataset: Table 1 shows the overall
performance comparison between our model and existing
baseline models for MCubeS dataset. Our model achieves a
mean intersection-over-union (mloU) of 53.11%, surpassing
the current state-of-the-art model. It shows 1.57% improve-
ment over CMNeXt [24], 1.79% improvement over CBAM
[39] and 10.65% improvement over MCubeSNet [9] models.
To further analyze the performance of our model, we con-
ducted a per-class IoU analysis and presented in Table 3.
Our model performs better in detecting most of the mate-
rial classes compared to the current state-of-the-art models.
Notably, our model demonstrates a substantial improvement
in the detection of plastic (+3.7%), fabric (+3.1%), asphalt
(+2.3%), and cobblestone (2.3%) classes while maintaining
competitive or better performance in other classes. This led
to the overall better performance and sets new state-of-the-art
for this dataset.

Results on FMB Dataset: Performance Comparison for
FMB dataset is shown on Table 2. Our model shows a sig-
nificant improvement of 6.9% mloU compared to the current
state-of-the-art model. Per-class IoU analysis for this dataset
is shown on Table 4. For a fair comparison, we only compare
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TABLE 3. Per-Class % loU Comparison on Multimodal Material Segmentation (MCubeS) [9] Dataset

20 o
= 2 = "g 2 v 5.2 g8 - O é é A - 5 S =
Methods < ¢ &8 € £ 2 %z z = 5§ 5 & 2 2 £ 8 8 5 E 2|8
7§ 2 g £ % a & & ¢ 0 § £ & S 5 - 5 Z 9|3
g S
a4
MCubeSNet [9] 857 42.6 47.0 59.2 12.5 443 3.0 106 127 66.8 67.1 27.8 658 368 54.8 394 73.0 133 0.0 94.8[429
CBAM [39] 85.7 477 554 704 27.6 547 0.9 309 265 61.6 63.0 28.0 71.1 41.8 586 47.4 767 563 259 96.5|51.3
CMNeXt [24] * 84.3 449 539 745 323 540 0.8 283 29.7 67.7 66.5 27.7 68.5 429 587 49.7 754 557 189 96.5|51.5
MMSFormer (Ours) | 88.0 48.3 56.2 722 35.4 549 0.5 34.6 294 672 69.0 299 734 447 59.5 478 77.1 50.5 26.9 96.6 |53.1

Our proposed MMSFormer model shows better performance in detecting most of the classes compared to the current state-of-the-art models. * indicates that the

models. * indicates that the code and pretrained model from the authors were used to

generate the results.

TABLE 4. Per-Class % loU Comparison on FMB [27] Dataset for Both RGB Only and RGB-Infrared Modalities

Methods Modalities Car Person Truck T-Lamp T-Sign Building Vegetation Pole 9% mloU
SegMiF [27] RGB 783 46.6 434 23.7 64.0 77.8 82.1 41.8 50.5
MMSFormer (Ours) RGB 80.3 56.7 421 31.6 77.8 77.9 85.4 48.1 57.2
CBAM [39] RGB-Infrared 71.9 49.3 20.9 25.8 67.1 75.8 80.9 19.7 50.1
GMNet [40] RGB-Infrared 79.3  60.1 222 21.6 69.0 79.1 83.8 39.8 49.2
LASNet [41] RGB-Infrared 72.6  48.6 14.8 2.9 59.0 75.4 81.6 36.7 425
EGFNet [42] RGB-Infrared 77.4  63.0 17.1 25.2 66.6 77.2 83.5 41.5 473
FEANet [43] RGB-Infrared 73.9  60.7 323 13.5 55.6 79.4 81.2 36.8 46.8
DIDFuse [44] RGB-Infrared 77.7 644  28.8 29.2 64.4 78.4 82.4 41.8 50.6
ReCoNet [45] RGB-Infrared 759  65.8 14.9 34.7 66.6 79.2 81.3 449 50.9
U2Fusion [46] RGB-Infrared 76.6  61.9 14.4 28.3 68.9 78.8 82.2 4222 47.9
TarDAL [47] RGB-Infrared 742  56.0 18.8 29.6 66.5 79.1 81.7 41.9 48.1
SegMiF [27] RGB-Infrared 783 654 473 43.1 74.8 82.0 85.0 49.8 54.8
MMSFormer (Ours) RGB-Infrared 82.6 69.8 44.6 45.2 79.7 83.0 87.3 514 61.7

We show the comparison for 8 classes (out of 14) that are published. T-Lamp and T-Sign stand for Traffic Lamp and Traffic Sign respectively. Our
model outperforms all the methods for all the classes except for the truck class.

the performance on 8 classes (out of 14) that are published
in literature. T-Lamp and T-Sign represent Traffic Lamp
and Traffic Sign, respectively. Our model shows an overall
performance improvement of 6.7% mloU for RGB only pre-
dictions compared to the most recent SegMiF [27] model.
Alongside this, our model also shows superior performance
in detecting all of the classes except for the truck class for
both RGB only and RGB-Infrared semantic segmentation
tasks. Performance on RGB-Infrared input modalities is much
better than RGB only performance for all the classes, which
demonstrates the ability of the fusion block to effectively fuse
information from the input modalities.

Results on PST900 Dataset: We also tested our model on
PST900 [28] dataset and summarized the result in Table 5.
Experiments show that our model outperforms existing base-
line models for RGB-Thermal semantic segmentation on this
dataset. It outperforms the most recent CACFNet [60] model
by 0.89% mloU. Our model also shows better performance in
detecting 3 out of the 5 classes available in the dataset and
competitive performance in other two classes.
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D. PERFORMANCE COMPARISON FOR INCREMENTAL
MODALITY INTEGRATION
A critical aspect of this work involves evaluating the effec-
tiveness of our proposed fusion block in combining valuable
information from diverse modalities. To analyze this effect,
we trained our model with various combinations of modal-
ities on the MCubeS dataset. The results are presented in
Table 6. Our model exclusively trained on RGB data pro-
vided an mloU score of 50.44%, which is 2.28% grater than
the current state-of-the-art model. We observe progressive
improvement in performance as we incorporated additional
modalities: AoLP, DoLP, and NIR. The integration led to in-
cremental performance gains, with the mloU increasing from
50.44% to 51.30%, then to 52.03%, and ultimately reaching to
53.11%. These findings serve as a compelling evidence that
our fusion approach effectively leverages and fuses valuable
information from different combination of modalities, result-
ing in a notable enhancement in segmentation performance.
Furthermore, our model consistently outperforms the
current state-of-the-art benchmark across all modality
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TABLE 5. Performance Comparison on PST900 [28] Dataset

Methods Modalities Background = Fire-Extinguisher Backpack Hand-Drill Survivor % mloU
ACNet [15] RGB-Thermal 99.25 59.95 83.19 51.46 65.19 71.81
CCNet [49] RGB-Thermal 99.05 51.84 66.42 32.27 57.50 61.42
Efficient FCN [50] RGB-Thermal 98.63 39.96 58.15 30.12 28.00 50.98
RTFNet [18] RGB-Thermal 99.02 51.93 74.17 7.07 70.11 60.46
PSTNet [28] RGB-Thermal 98.85 70.12 69.20 53.60 50.03 68.36
EGFNet [51] RGB-Thermal 99.26 71.29 83.05 64.67 74.30 78.51
MTANet [52] RGB-Thermal 99.33 64.95 87.50 62.05 79.14 78.60
MFFENet [53] RGB-Thermal 99.40 66.38 81.02 72.50 75.60 78.98
GMNet [40] RGB-Thermal 99.44 73.79 83.82 85.17 78.36 84.12
CGFNet [54] RGB-Thermal 99.30 71.71 82.00 59.72 77.42 78.03
GCNet [55] RGB-Thermal 99.35 77.68 79.37 82.92 73.58 82.58
GEBNet [56] RGB-Thermal 99.39 73.07 85.93 67.14 80.21 81.15
GCGLNet [57] RGB-Thermal 99.39 77.57 81.01 81.90 76.31 83.24
DHFNet [58] RGB-Thermal 99.44 78.15 87.38 71.18 74.81 82.19
MDRNet+ [59] RGB-Thermal 99.07 63.04 76.27 63.47 71.26 74.62
FDCNet [48] RGB-Thermal 99.15 71.52 72.17 70.36 72.36 77.11
CBAM [39] RGB-Thermal 99.43 73.81 82.75 80.00 69.60 81.12
EGFNet [42] RGB-Thermal 99.55 79.97 90.62 76.08 80.88 85.42
CACFNet [60] RGB-Thermal 99.57 82.08 89.49 80.90 80.76 86.56
MMSFormer (Ours) RGB-Thermal 99.60 81.45 89.86 89.65 76.68 87.45

We show per-class % IoU as well as % mloU for all the classes.

TABLE 6. Performance Comparison (% mloU) on Multimodal Material
Segmentation (MCubeS) [9] Dataset for Different Modality Combinations

Modalities MCubeSNet [9] CMNeXt [24] MMSFormer (Ours)
RGB 33.70 48.16 50.44
RGB-A 39.10 48.42 51.30
RGB-A-D 42.00 49.48 52.03
RGB-A-D-N 42.86 51.54 53.11

Here A, D, and N represent angle of linear polarization (AoLP), degree of linear
polarization (DoLP), and near-infrared (NIR) respectively.

combinations. This consistent superiority underscores the ro-
bustness and versatility of our fusion block, demonstrating its
ability to adapt and excel regardless of the specific modality
combination provided.

E. QUALITATIVE ANALYSIS OF THE PREDICTIONS

Apart from quantitative analysis, we also perform qualita-
tive analysis of the predicted segmentation maps. We show
material segmentation results predicted by CMNeXt [24]
model and our proposed MMSFormer model in Fig. 2(a). For
brevity, we only show RGB images and ground truth mate-
rial segmentation maps in the illustrations. We show RGB
only predictions and all modalities (RGB-A-D-N) predictions
for both of the models. As highlighted in the rectangular
bounding boxes, our proposed MMSFormer model identifies
asphalt, sand and water with greater accuracy than CMNeXt
[24] model for both RGB only and all modalities (RGB-A-D-
N) predictions.
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We also compare our prediction on PST900 [28] dataset
with RTFNet [18] and FDCNet [48] on Fig. 2(b). We show the
input RGB image, thermal images, ground truth segmentation
maps and prediction form the models. As highlighted by the
rectangular bounding boxes, our model shows better accuracy
in detecting objects with more precise contours compared to
the other two methods.

F. ABLATION STUDY ON THE FUSION BLOCK

We conducted a number of ablation studies aimed at investi-
gating the contributions of individual components within the
fusion block to the overall model performance. The findings,
as detailed in Table 7, shed light on the critical importance of
these components. We used both RGB and infrared modalities
of the FMB dataset during training and testing in these experi-
ments. First, we observed that the absence of channel attention
in the residual connection had a negative impact, resulting in a
reduction in performance by 3.36%. This indicates that feature
calibration along channel dimension plays an important role
in capturing and leveraging crucial information effectively.
Additionally, while comparing larger convolution kernel sizes
(3x3, 7x7,and 11 x 11) to the originally employed (
3x3, 5x5,and 7 x7), we noted a decrease in perfor-
mance by 5.36%. This result underscores the significance of
the carefully chosen convolution kernel sizes within the fusion
block.

Furthermore, completely removing the parallel convolu-
tions from the block led to a performance decline of 4.51%,
emphasizing their substantial contribution in capturing multi-
scale features and overall model performance. Finally, if we
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FIGURE 3. Visualization of predicted segmentation maps for different modality combinations on MCubeS [9] and FMB [27] datasets. Both figures show
that prediction accuracy increases as we incrementally add new modalities. They also illustrate the fusion block’s ability to effectively combine
information from different modality combinations. (a) Visualization of predictions on MCubeS dataset for different modality combinations (b)
Visualization of predictions on FMB dataset for different modality combinations.

only use the linear fusion layer to fuse the features and re-
move the parallel convolutions and channel attention from
the fusion block, performance drop significantly by 9.25%.
These studies demonstrate that multi-scale feature capturing
via parallel convolutions and channel-wise feature calibration
using channel attention is extremely important in learning
better feature representation and thus crucial to overall model
performance. These comprehensive ablation studies collec-
tively underscore the significance of every component within
the fusion block, revealing that each module plays a distinct
and vital role in achieving the overall performance of our
model.

G. ABLATION STUDY ON DIFFERENT MODALITY
COMBINATIONS

To analyze the contributions of different modalities in the
identification of distinct materials, we conducted a series
of ablation studies, focusing on per-class IoU for differ-
ent modality combinations. The insights are summarized in
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Table 8. As we progressively integrate new modalities, perfor-
mance gradually increases for specific classes, which include
grass, leaf, asphalt, cobblestone and plastic classes. Particu-
larly noteworthy is the assistance provided by NIR data in
classifying asphalt, concrete, plastic, cobblestone, and human
categories, leading to significant performance gains in these
classes as NIR was added as an additional modality.
Conversely, certain classes such as water and brick ex-
hibited a gradual performance decline as we introduced
additional modalities. This suggests that RGB data alone
suffices for accurately identifying these classes, and the in-
clusion of more modalities potentially introduces noise or
redundancy that negatively impacts performance. Moreover,
AoLP appears to be helpful in enhancing the recognition
of materials like road markings, glass and wood. Similarly,
DoLP improved performance for classes like plaster, rubber,
sand, gravel and ceramic. These findings underscore the rela-
tionship between different imaging modalities and the unique
characteristics of different types of materials, demonstrating
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TABLE 7. Ablation Study of the Fusion Block on FMB [27] Dataset

Structure Parameter Count (M) % mloU (Change)
MMSFormer 61.26 61.68
- without channel attention 61.21 58.32 (-3.36)
- without parallel convolutions 61.17 57.17 (-4.51)
- with 3x3, 7x7 and 11x11 convolutions 61.36 56.32 (-5.36)
- only linear fusion 59.57 52.43 (-9.25)

Both RGB and infrared input modalities were used during training and testing. The table shows the contribution of
different modules in fusion block in overall model performance.

TABLE 8. Per Class % loU Comparison on Multimodal Material Segmentation (MCubeS) [9] Dataset for Different Modality Combinations

e o
s 3 5 o 5 ¢ 5 % 3 £ 2 % 2z 3 < 5 8 <
.. E = s g = 2 2 Z © 2 2 S 2 3 =] Q B > 5]
Modalities < S T £ £ = Z 27 S ] s 2 F s < SRR E Z ]
I 5 = ¢ £ © E & 2 9 3 3 3 & & B 2 B £ ©|=
] @]
o~
RGB 83.2 442 52.1 704 31.0 51.6 1.3 262 21.8 65.0 61.8 31.3 72.5 45.0 554 46.0 74.7 56.0 22.7 96.4|50.4
RGB-A 86.5 46.5 559 73.0 353 56.0 0.8 27.3 278 66.2 67.0 28.6 69.6 43.0 57.6 49.6 764 538 84 96.6|51.3
RGB-A-D 86.0 44.0 555 68.1 31.9 54.8 2.3 30.0 29.7 694 73.7 322 694 414 59.2 48.3 76.6 50.6 20.9 96.7 | 52.0
RGB-A-D-N | 88.0 48.3 56.2 72.2 354 549 0.5 34.6 294 67.2 69.0 299 734 447 59.5 47.8 77.1 50.5 26.9 96.6|53.1

As we add modalities incrementally, overall performance increases gradually. This table also shows that specific modality combinations assist in identifying specific

types of materials better.

that specific modalities excel in detecting particular classes
based on their distinctive traits.

In Fig. 3(a), we presents some examples to show how
adding different modalities help improve performance of seg-
mentation. We show predictions for RGB, RGB-A, RGB-A-D
and RGB-A-D-N inputs from our proposed MMSFormer
model. As we add new modalities, the predictions become
more accurate as shown in the bounding boxes. The illus-
trations show that the identification of concrete and gravel
becomes more accurate with additional modalities. Fig. 3(b)
shows predictions for RGB and RGB-Infrared from FMB
dataset. As highlighted by the bounding boxes, adding new
modality helps improve performance in detecting building,
road and sidewalks. This also illustrates the capability of the
fusion block to effectively fuse information from different
modality combinations.

H. COMPUTATIONAL COMPLEXITY OF THE FUSION BLOCK
In addition to better performance, our fusion block is also
computationally efficient compared to most of the fusion
blocks proposed for these datasets. We show a comparison in
terms of the number of parameters in the fusion block and
GFLOPs for some recent models on Table 9 for MCubeS
dataset having 4 input modalities with an input shape of
(3 x 512 x 512) for each modality. As observed from the
table, our proposed fusion strategy demonstrates significantly
lower complexity in terms of both the number of parameters
and GFLOPs compared to existing methods. HRFuser [23]
has a lower parameter count than ours but it requires more
than 7x GFLOPs. Other methods require significantly more
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TABLE 9. Comparison of Number of Parameters in the Fusion Block and
GFLOPs for MCubeS Dataset Having 4 Input Modalities With an Input
Shape of (3 x 512 x 512) for Each Modality. Our Fusion Block Shows
Significantly Lower Complexity Compared to Existing Methods

Methods Fusion Block Parameters (M) GFLOPs
CMNeXt [24] 16.63 6.47
MCubeSNet [9] 7.41 12.10
HRFuser [23] 1.72 17.50
CMX [22] 16.59 6.41
DDF (Resnet-101) [37] 28.10 4.10
MMSFormer (Ours) 3.23 2.47

Our fusion block shows significantly lower complexity compared to existing methods.

parameters (2.3 x —8.7x) and GFLOPs (1.6 x —7x) com-
pared to our fusion strategy. Our comparison only includes
models for which these results are available in the published
literature.

V. CONCLUSION

In this article, we introduce a novel fusion module designed
to combine useful information from various modality com-
binations. We also propose a new model called MMSFormer
that integrates the proposed fusion block to accomplish multi-
modal material and semantic segmentation tasks. Experimen-
tal results illustrate the model’s capability to efficiently fuse
information from different combination of modalities, leading
to new state-of-the-art performance on three different datasets.
Experiments also show that the fusion block can extract useful
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information from different modality combinations that helps
the model to consistently outperform current state-of-the-art
models. Starting from only one input modality, performance
increases gradually as we add new modalities. Several ab-
lation studies further highlight how different components of
the fusion block contribute to the overall model performance.
Ablation studies also reveal that different modalities assist
in identifying different types of material classes. However,
one limitation of the proposed model is the use of modality
specific encoders and the number of encoders grows with
number of modalities. Future work will include exploring the
possibility and effectiveness of using a shared encoder for
all the modalities, investigating and extending the model’s
capability with other modalities and multimodal tasks.
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