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ABSTRACT Sparse index tracking is a prominent passive portfolio management strategy that constructs
a sparse portfolio to track a financial index. A sparse portfolio is preferable to a full portfolio in terms
of reducing transaction costs and avoiding illiquid assets. To achieve portfolio sparsity, conventional studies
have utilized £,-norm regularizations as a continuous surrogate of the £o-norm regularization. Although these
formulations can construct sparse portfolios, their practical application is challenging due to the intricate and
time-consuming process of tuning parameters to define the precise upper limit of assets in the portfolio. In
this paper, we propose a new problem formulation of sparse index tracking using an {p-norm constraint that
enables easy control of the upper bound on the number of assets in the portfolio. Moreover, our approach
offers a choice between constraints on portfolio and turnover sparsity, further reducing transaction costs by
limiting asset updates at each rebalancing interval. Furthermore, we develop an efficient algorithm for solving
this problem based on a primal-dual splitting method. Finally, we illustrate the effectiveness of the proposed
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method through experiments on the S&P500 and Russell3000 index datasets.

INDEX TERMS {( -norm constraint, primal-dual splitting, sparse index tracking.

I. INTRODUCTION

Investors can follow two basic approaches, namely, active and
passive investment [1], [2]. Active investment strategies seek
to outperform the market through active and strategic trading,
aiming at short-term profits, whereas passive strategies strive
to replicate market index performances, predicated on the
belief that surpassing the market in the long term is unattain-
able [3]. As the stock market has historically grown, one can
expect reasonable returns just by tracking its performance.
This motivates investors to adopt passive over active strate-
gies, considering how active strategies are riskier compared to
passive strategies.

Ideally, trading an index directly would guarantee an in-
vestor returns consistent with that of the index. However,
because a financial index comprises multiple assets (e.g., 500
in the case of the S&P500), direct investment in an index is
not feasible for an investor. An investor is required to invest in
individual assets, which raises two key questions: 1) In which

assets should the investor invest? And 2) How much should
the investor invest in each of the assets?

To answer these questions, index tracking has been re-
searched as one of the prominent passive investment strategies
that tracks the performance of a market index by construct-
ing a portfolio, which determines the target assets and the
investment percentage of the assets. In theory, a portfolio
that allocates appropriate fractions of the capital based on
the benchmark weights that the index sponsor actually uses
should perfectly track the target index. However, this is not
practically feasible since the benchmark weights are not pub-
licly disclosed and are considerably expensive to acquire.
Another straightforward approach is to evenly distribute capi-
tal across all assets composing the index, effectively creating a
fully and uniformly weighted portfolio. However, this strategy
has notable disadvantages: firstly, it necessitates substan-
tial trading with each rebalance, inflating transaction costs;
secondly, it incorporates small and illiquid assets, thereby
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increasing risk. Given these disadvantages, sparse portfolios and
with a limited maximum number of assets in the portfolio are
. . 1 b 2 w >0,
much more desirable than full or dense portfolios. min T [r® — Xw]3, s.t. T ! 3)
w w=1.

A. RELATED WORK

The objective of sparse index tracking [4], [5], [6], [7], [8]
is to construct a sparse portfolio w € R", matching the per-
formance of the benchmark market index, with K(<< N)
nonzero weights out of NV total assets.

The conventional approach to this was to divide the prob-
lem into two phases, namely, asset selection and capital
allocation. Numerous methods for asset selection have been
proposed. A typical approach was to select K largest assets
in terms of market capitalization [9]. Other methods include
selecting assets that exhibit similar performance to the target
index [10], [11] or selection based on the cointegration be-
tween log-prices of the K assets and the index value [12].
However, the impact of the two-step approach on tracking
performance remained uncertain, prompting the development
of one-step methods [5], [6] as alternatives. The LAIT (Linear
Approximation for Index Tracking) algorithm proposed in [5]
confirmed the positive effects of simultaneous asset selection
and capital allocation by solving the following regression
problem:

>0,

1Tw=1.

1
min —[|r® — Xw||3 + AR(W), s.t. (1)
w T

where R(w) is set to an £,-norm regularization (0 < p < D!
to enforce portfolio sparsity>. The benchmark index returns
across T days are denoted by rP = [r}’, e r?]—r e RT and
the asset-wise returns across 7 days are denoted by X =
[r1,....,rp]T € RT*N The nonnegative constraint prohibits
short-selling (negative weights), and the sum-to-one con-
straint is enforced to allocate weights based on a constant
capital.

However, in the formulation of (1), there is no explicit
relationship between the hyperparameter A and the number of
assets in the portfolio, making it difficult to search for a A that
would maintain a certain number of assets. This means that
the investor cannot directly set the desired number of assets,
which hinders actual asset management.

To solve this, an algorithm named NNOMP-PGD [8]
that combines nonnegative orthogonal matching pursuit [13]
and projected gradient descent [14] has been proposed. The
method separates the sparse index tracking problem into two
stages:

1 wlo <K,
min — r® — Xw||%, s.t. Iwllo = 2)
w T w >0,
! Although || - [l is strictly speaking not a norm when 0 < p < 1, it is

conventionally referred to as the £,-norm.

2To avoid nonconvex optimization, the £1-norm is commonly used as a
surrogate function of the £p-norm. However, due to the short-selling and sum-
to-one constraints, the £;-norm of the portfolio is always a constant (||w|; =
1). Therefore, the £-norm regularization cannot be used in this formulation.
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The first stage solves the asset selection problem with an
£o-norm [15], [16], [17], [18], [19], [20] constraint (i.e., the
number of nonzero entries in w is less than or equal to a
user-set parameter) by NNOMP, and the second stage solves
the capital allocation problem by PGD. By solving a formula-
tion enforced with an £y-norm constraint, investors can easily
control the number of assets that compose the portfolio by the
parameter K.

Although NNOMP-PGD does succeed in directly con-
trolling the sparsity of the portfolio through the fp-norm
constraint, we believe that the tracking performance can be
improved by conducting the asset selection and capital alloca-
tion simultaneously. This is due to the nonnegative orthogonal
matching pursuit algorithm, wherein the value of the nonzero
element added to w per iteration directly influences the selec-
tion of the nonzero element in w for the following iterations.
The nonzero element values do not necessarily satisfy the
sum-to-one constraint or even the upper limit. This leads us
to the question: Can we devise an £y-norm constraint-based
sparse index methodology that method simultaneously han-
dles asset selection and capital allocation, thereby enhancing
tracking performance?

B. CONTRIBUTIONS AND PAPER ORGANIZATION

This paper introduces an algorithm leveraging the primal-dual
splitting method (PDS) [21], designed to approximately solve
sparse index tracking problems that address an £y-norm con-
straint. This approach uniquely integrates asset selection and
capital allocation without dividing them into separate stages.
Moreover, we extend the traditional sparse index tracking
framework to (i) offer a choice between constraints on port-
folio and turnover sparsity?, (ii) incorporate different tracking
error metrics, and (iii) implement a box constraint (replacing
the nonnegative constraint) to establish an upper limit on
investments, mitigating risks associated with extreme capi-
tal distributions. Through experiments on the S&P500 and
Russell3000 index datasets, we demonstrate the advantages
of simultaneous asset selection and capital allocation and the
positive effects of the generalized formulation.

The main contributions of this paper are as follows.

e We develop a PDS-based algorithm that can directly
handle an £p-norm constraint while performing asset se-
lection and capital allocation simultaneously.

® We generalize the conventional sparse index tracking
formulation so that either portfolio or turnover sparsity
can be enforced.

The paper is organized as follows. In Section II, we intro-

duce some basic concepts related to sparse index tracking and

3 A turnover constraint is considered in [5], [6], wherein sparsity is enforced
by an £;-norm regularization. We, on the other hand, impose an £p-norm
constraint for a direct control of the sparsity.
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the mathematical instruments we will utilize in the proposed
method. In Section III, we present the proposed method, along
with its benefits and optimization algorithm. Finally, in Sec-
tion IV, we evaluate our method on real-world datasets.

Il. PRELIMINARY
A. TRACKING ERROR MEASURE
Several measures of tracking error (TE) have been proposed,

the most common measure being the empirical tracking error
(ETE) [5], [22], [23], [24]:

1
ETE(w) := ?Hrb — Xwlj3. 4)

The empirical tracking error is convex and differentiable as
2 T b
VETE(w) = —?X (r” — Xw). @)

The gradient VETE(w) is S-Lipschitz continuous, where =
2/T A1 (XTX) (A1(-) denotes the maximum eigenvalue of -).

Considering the original purpose of index tracking, which
is to make a profit by investing, ETE that penalizes even
when the portfolio beats the benchmark index is not desirable.
Therefore, the measure downside risk (DR) [4], [5] has been
proposed to penalize only when the returns are behind that of
the benchmark index:

1
DR(W) = I — Xw)T 3, (6)

where [(rP — Xw)*]; = max{[r? — Xw];, 0}. The downside
risk is also convex and differentiable. Consider g|(w') =
(W)™ [13/T and g2(w) = r® — Xw so that DR = g (g2(W)).
The derivatives are

(Vg1 (w)]; = {éw/ " i)ftk‘lrvzwsoe
- VgI(w) = 2w/, 7
and
Vga(w) = X", (8)

respectively. Therefore:

VDR(W) = V(g 0 g2)(W)

= ng(W)vgl(g2(W))
= —%XT(rb —Xw)*t. ©)

Furthermore, when comparing ETE and DR, the gradient of
DR clearly does not exceed that of ETE. Therefore, DR can be
considered SB-Lipschitz continuous for at least the same value
of B as ETE.

B. TRANSACTION COSTS

The typical transaction costs model applied in the U.S. mar-
kets is $0.005 x v with a minimum cost of $1, where v is
the trading volume. When the total capital is sufficiently large

812

(making the volume-wise cost predominant), the total trans-
action cost is not influenced by the number of assets traded.
Conversely, with smaller capital amounts, where the minimum
cost prevails, the number of traded assets directly impacts
transaction costs. Thus, a sparse portfolio is desired.

In the same context, a turnover constraint [5], [6] has been
introduced to cap the number of assets traded during each
rebalancing period, defined as ||[wo — w|og < K, with wq rep-
resenting the portfolio prior to rebalancing. By imposing this
constraint, only a limited number of assets are updated, limit-
ing the number of assets traded, therefore reducing transaction
Costs.

C. PROXIMAL TOOLS
The proximity operator [25] of index y > 0 of a proper lower
semicontinuous convex function f € Co(R™)* is defined as

. 1
prox, (x) := argmin f(y) + 11y ~ x5 (10)

The indicator function of a nonempty closed convex set C,
denoted by (¢, is defined as

0, ifx e C,

00, otherwise.

e(x) = (1D

Since the function returns oo when the input vector is
outside of C, it acts as the hard constraint represented by C
in minimization. The proximity operator of (¢ is the metric
projection onto C, given by

prox,.(x) = Pc(x) := argmin [y — x||>. (12)

yeC

D. PRIMAL-DUAL SPLITTING METHOD
A primal-dual splitting method (PDS) [21], [26]° can solve
optimization problems in the form of

ngnfl (W) + fo(W) + f3(Aw) s.t. Aw = v (13)

where f is a differentiable convex function with the B-
Lipschitzian gradient V f; for some B > 0, the proximity
operators of f> € To(R") and f3 € ['hH(R™) are efficiently
computable (proximable), and A € R™*" is a matrix. The
auxiliary variable v is used for the update in the following
algorithm. The problem (13) is solved by the algorithm:

Wi = prox,, 1, (W — (VAW + ATV,

v = prox,, £ v + 1 AQwHD — Wiy (14)

where f3 is the Fenchel-Rockafellar conjugate function of
/3 and the stepsizes y1, y» > 0 satisfy % — A (ATA) > g
The proximity operator of f* can be stated as the following

4The set of all proper lower semicontinuous convex functions on R” is
denoted by I'y(R").

SThis algorithm is a generalization of the primal-dual hybrid gradient
method [27].
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[28, Remark 14.4]:

prox,, s« xX)=x—y proxyqf()/*lx). (15)

When the optimization problem is convex, the sequence
(wh), .y theoretically converges to a solution of (13) under
some mild conditions on f, f3, and A [21, Theorem 3.1-3.3].

PDS has played a central role in various signal estimation
methods, e.g., [29], [30], [31], [32], [33], [34], [35], [36]. A
comprehensive review on PDS can be found in [37], [38].

1il. PROPOSED METHOD
A. PROBLEM FORMULATION
We formulate a new £yp-norm based index tracking problem
that allows the selection of portfolio and turnover sparsity
constraints.

The formulation is as follows:

w e S,
min TE (w), s.t. yw e S, (16)
w
1Tw=1.

Here, w represents the portfolio weights, Sy embodies the
sparsity constraints, and S;, represents the box constraints.
The tracking error, denoted as TE is either ETE or DR intro-
duced in Section II-A. The sparsity constraint is denoted by
Sg = 8o or §; = Sy, where

So :={we RN | |lwlo <K}

Swo := {w e RY | [w — wyllo < K2} (17

When S; = Sy, the formulation imposes sparsity on the
portfolio in order to output a portfolio of K; sparseness. On
the other hand, when S; = Sy, the sparsity applies to the
turnover, thus producing a portfolio that only requires K;
trades from the previous portfolio (wp). Note that although
So is a special case of Sy, when wy = 0, we distinguish the
two for clarity and to differentiate K| and K>.

The set S;, is a box constraint with a lower bound of /
and an upper bound of u. The lower bound is set to [ =0
to prohibit short selling, and an upper bound is set to avoid
extreme capital allocations, which is often risky in investment.

B. ALGORITHM
We use the primal-dual splitting method (PDS) to solve (16).
We can use indicator functions s, s, and ts,, where

Si={weR"|1Tw=1)}, (18)
to reformulate (16) as
mvin TE (W) + t5,(W) + 5, (W) + 15, (W). (19)

By defining v := [v] v; 1T (vi, v, € RY),and £, f5, f3, A
as

fi(w) :=TE (w),
fo(w) 1= 15,(W),

BV) =1, (Vi) + 15, (v2),
VOLUME 5, 2024

Algorithm 1: PDS-based Algorithm for Solving (16).
Input: rP, X
Output: Output signal w
Initialize w = 0
1: while A stopping criterion is not satisfied do

20 whtD P (w® — 3 (VTE(wW®) + v 4 vy)
30 vi® v ® gy ewktD k)
4: 3P v ® 4y 2wkt — wh))

. (k+1) (k) 1 k)
50 v < Vv — b, (ZVI )

k1 k k

6: V; +h vé ) _ 2 Ps, (%Vg ))
7. k<k+1
8: end while

9: return w*)

A=[ 117, (20)

where I € RV*¥ is an identity matrix, the problem in (19) is
reduced to (13). Note that all of the tracking error measures
introduced are S-Lipschitz continuous, differentiable convex
functions, therefore satisfy the conditions on f; mentioned
in Section II-D. Although the PDS algorithm is guaranteed
to converge when (19) is convex, this is not the case for
our formulation because of the £o-norm constraint. Although
empirically the PDS algorithm converges most of the time,
we gradually restrict the stepsizes y; and y» to stabilize the
algorithm for nonconvex optimization. This is supported by
studies of ADMM and PDS algorithms for nonconvex cases,
where stepsizes are diminished every iteration [15], [16], [17]
or lowered in case of nonconvergence [39].

When S; = S, the proximity operator of f5 : prox,, % isa

projection® onto the set So, which is as follows:

[prox,,,, (@) = [Ps,@)];

2

Nz ifie (D), .. (KDY,
o, ifie (K +1)...(N)},

where we denote the elements of z sorted in descending order
in terms of their absolute values by z(1), .. ., zav), 1.e., [z()| =
|z2)l = ... > |zav)l- In short, a projection onto the set Sy can
be calculated by leaving the K; largest absolute values and
projecting the remaining elements of the vector to 0.
When S; = Sy, the proximity operator (Algorithm 1 line
2) is given by
Prox, s, (2) = P, (z) = Wo + P5,(z — Wo). (22)

For f3, the proximity operator of ¢, (v1) (line 5) is given
by

prox,., () = Py, (z) = [max{l, min{zi, uh}] <izn.  (23)

SStrictly speaking, since Sy is a nonconvex set, the projection onto this
set cannot be defined as a one-to-one mapping, but fortunately, one of the
projected points can be computed analytically as in (21).
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and the proximity operator of (g, (v2) (line 6) is given
by

1-17z

- 24
1113 &4

prowal (z) =Ps,(z) =z +

C. SIMULTANEOUS ASSET SELECTION AND CAPITAL
ALLOCATION

When ETE is chosen as the tracking error measure and
Ss = So, our method essentially solves the same problem as
NNOMP-PGD (given that u is large enough), and the dif-
ference is reduced to the optimization algorithm. We argue
that the inherent ability of our algorithm to perform asset
selection and capital allocation simultaneously endows it with
superior index tracking performance-a claim substantiated in
the experimental section (Section IV-B1). NNOMP-PGD, in
contrast, separates capital allocation into two steps: asset se-
lection and capital allocation. While the impact of such a
process on tracking accuracy is unclear, we suspect that even
if this two-step procedure could, in theory, generate an optimal
portfolio, it might not apply to NNOMP-PGD.

The NNOMP phase (responsible for asset selection) of the
algorithm does not impose the sum-to-one constraint. There-
fore, when a nonzero value is assigned to one of the elements
of the portfolio, the value of the element is not restricted in
any way. The assigned value directly affects the asset selec-
tion in the following iteration, since the updated portfolio is
incorporated into the residual update of the current iteration.
The updated residual is used in the next iteration to select the
asset.

Hence, asset selection may proceed under less-than-ideal
conditions, lacking necessary constraints on values assigned
in each iteration. We hypothesize that this could impair the
tracking performance and that simultaneous asset selection
and capital allocation might prove beneficial.

D. COMPUTATIONAL COMPLEXITY

In this section, we discuss the computational complexity
of the proposed algorithm.The operations in our PDS-based
algorithm (Algorithm 1) that potentially requires complex
computations are the three proximity operations (projections),
namely, Ps, PSz,u and Ps;, and VTE involved in the line
2 of the algorithm. The projection P, is composed of two
steps. The sorting process can be computed in the order
of O(NlogN) (we use the sort() function implemented in
MATLAB, which uses quicksort), and the projection pro-
cess in the order of O(N). For the remaining Ps,, and
Pg,, both can be computed in the order of O(N). Gradient
VTE can be computed in the order of O(NT). Therefore,
the overall computational complexity of the proposed algo-
rithm per iteration can be simplified to O(NT), since T is
generally large enough such that other operations can be
disregarded.
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IV. EXPERIMENTS

A. DATASET AND SETTINGS

To test the performance of the index tracking methods, we
adopt the rolling window scheme [5], [8]. The first Tj;,i, time-
frames are used to design the first portfolio, which will be
used for out-of-sample testing in the next Tis time-frames.
At the end of the testing period, we use the last T, time-
frames to design the next portfolio. We continue the training
and testing cycle n times. Therefore, a total of Tiain + n7Tiest
time-frames are used for each experiment. The parameters are
setto n = 10, Tipain = 200, and Tiee = 100.

We use the S&P500 (September 2012—August 2022) and
Russell3000 (January 2010-December 2019) index datasets,
commonly used datasets for index tracking [5], [8] for the ex-
periments. Assets not covering the entire period are excluded,
resulting in final datasets comprising 463 and 1624 assets
for the S&P500 and Russell3000, respectively. The adjusted
closing prices of the assets are used, and the return of an asset
Jj at time-frame ¢ is given by

price, ; — price,_ ;

X, = (25)

price,_; ;

We split both S&P500 and Russell3000 index datasets into
two, September 2012—October 2017 and November 2017—
August 2022 (S&P500), and January 2010-October 2014
and March 2015-December 2019 (Russell3000), respectively.
Note that each time-frame represents a trading day, and be-
cause the stock exchange is closed on weekends, the dataset
is not sampled regularly in the time direction.

We measure how well the portfolio replicates the bench-
mark index by computing the magnitude of the daily tracking
error (MDTE) defined as

MDTE = | diag(XW) — |5,

(26)

test

where diag(-) indicates a vector consisting of the diagonal
elements of a given matrix. W € RV>*"est is a matrix where
the portfolio designed at the end of a training period is stacked
for the following test period, so that column ¢ contains the
portfolio used in time-frame ¢. Note that the MDTE value is
presented in basis points (1bps = 107%). Since we could not
obtain the asset-wise weights from the index sponsors, we use
a uniform portfolio b as a benchmark index, where all of the
capital is allocated evenly across all N assets. The benchmark
index return is given by r? = Xb.

Furthermore, we conduct a simulation of actual investments
made based on the computed portfolios. We simulate rebal-
ancing based on a new portfolio at the start of every test
period. The acquired returns are reinvested. We apply a trans-
action costs model common in the U.S. markets: the cost per
transaction is $0.005 x v with a minimum cost of $1. The Ret.
columns of Tables 1 and 2 show the normalized accumulated
return at the end of the entire testing period.

VOLUME 5, 2024



ISEEE i 2y IEEE Open Journal of
dcessing  Signal Processing

Processing
i

TABLE 1. The Tracking Performance Measured in MDTE[bps] and Normalized Accumulated Returns (Ret.). Dataset: S&P500, Initial Capital: $10000. Note
That LAIT is Not Included in Tables 1 and 2 Due to the Difficulties Encountered in Adjusting the Sparsity to an Exact Value Using LAIT.

2012 - 2017 2017 - 2022

Method KQ K1:40 K1:60 K1:80 K1i40 K1:60 K1:80
MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret.
ly-ADMM [40] - 1.73 1.68 1.77 1.59 1.82 1.53 3.72 1.28 3.76 1.27 3.74 1.22
NNOMP-PGD (8] - 0.85 1.71 0.79 1.64 0.75 1.60 1.43 1.38 1.21 1.49 1.06 1.50
Proposed[P, ETE] — 0.74 1.75 0.64 1.71 0.48 1.73 1.13 1.43 0.79 1.46 0.68 1.47
K 0.39 1.87 0.33 1.77 0.24 1.72 0.52 1.49 0.42 1.39 0.35 1.34
Proposed[T, ETE] K;/2 0.47 1.93 0.37 1.81 0.31 1.81 0.61 1.62 0.55 1.48 0.41 1.41
K,/3 051 1.89 0.41 1.81 0.32 1.80 0.66 169 059 1.61 046 1.47
Proposed[P, DR] — 0.81 1.83 067 191 0.59 1.95 1.19 1.58 0.95 1.58 0.83 1.55
K 0.42 1.92 0.35 1.76 0.31 1.76 0.64 1.49 0.46 1.36 0.40 1.36
Proposed[T, DR]  K;/2  0.50 1.94 0.41 1.86 0.37 1.77 0.72 1.57 0.57 1.59 0.48 1.48
Ky/3 052 199 044 1.89 0.39 1.86 0.84 1.67 0.59 1.50 0.56 1.57
Benchmark — — 1.38 — 1.38 — 1.38 — 1.02 — 1.02 — 1.02

The best performing method in each column is in bold.

TABLE 2. The Tracking Performance Measured in MDTE[bps] and Normalized Accumulated Returns (Ret.). Dataset: Russell3000, Initial Capital: $40000.
Note That LAIT is Not Included in Tables 1 and 2 Due to the Difficulties Encountered in Adjusting the Sparsity to an Exact Value Using LAIT.

2010 - 2014 2015 - 2019

Method Ky K, =100 K, =150 Ky =200 K; =100 K, =150 K, =200
MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret.
ly-ADMM [40] — 3.21 2.11 3.21 2.01 3.20 1.97 2.44 1.64 248 1.70 249 1.60
NNOMP-PGD [8] — 0.78 1.78 0.75 1.65 1.89 1.69 1.07 1.59 1.03 1.52 1.62 1.48
Proposed[P, ETE] — 0.83 2.28 0.65 220 0.54 1.92 0.88 1.53 0.68 1.47 0.58 1.57
Ky 0.51 1.97 042 1.85 0.33 1.81 055 1.70 0.40 1.56  0.35 1.60
Proposed[T, ETE] K;/2  0.56 1.92 0.47 1.80 0.37 1.79 0.61 1.68 0.46 1.64 0.40 1.60
Ky/3  0.60 1.96 0.51 1.78 0.40 1.76 0.63 1.68 0.48 1.63 0.43 1.67
Proposed([P, DR] — 1.20 2.25 0.99 2.07 0.86 1.96 1.11 1.64 0.84 1.57 0.71 1.43
Ky 0.58 1.99 0.44 2.00 0.36 1.90 0.62 1.55 0.49 1.55 0.41 1.46
Proposed[T, DR] K;/2  0.64 2.04 0.50 2.07 0.41 1.94 0.64 170 0.55 1.63 0.42 1.48
K,/3 0.71 2.02 0.51 2.00 0.44 1.99 0.69 1.60 0.57 1.57 0.44 1.48
Benchmark — — 1.37 — 1.37 — 1.37 — 1.18 — 1.18 — 1.18

The best performing method in each column is in bold.

As for the comparison methods, in addition to the afore-
mentioned NNOMP-PGD [8] and LAIT [5], the state-of-
the-art sparse index tracking methods, we also compare our
method with £p-ADMM (Alternating Direction Method of
Multipliers) [40]. Despite how £o-ADMM focuses on opti-
mizing between return and risk, making it distinct from typical
index tracking approaches, its implementation of an £y-norm
constraint mirrors that of NNOMP-PGD and our proposed
method, warranting its inclusion in our comparison. Regard-
ing our methods, portfolio-sparse methods (Proposed[P, TE])
allocate the capital from scratch every rebalancing, in other
words, Sy = Sp. For turnover-sparse methods (Proposed[T,
TE]), the turnovers are sparsified instead of the portfolio (Sy =
Sw,) with K3 set to various values. Note that turnover-sparse
methods adopt S; = S for the first training period since there
is no previous portfolio to refer to. We also evaluate the per-
formance of different tracking error measures (ETE and DR).

Regarding the other settings of the experiment, the stopping
criterion is set to

Iw® — w b

<1.0x107°.
[wk=Dij, — ~

27)
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For the box constraint in (16), the lower and upper bounds
are setto/ = 0, u = 4/K;. The stepsizes y; and y, of the pro-
posed algorithm are first set to sufficiently meet the conditions
mentioned in Section II-D, and then multiplied by 0.999 every
iteration.

B. RESULTS

1) TRACKING PERFORMANCE

Across all evaluated settings, our proposed method surpassed
both ¢p-ADMM and NNOMP-PGD in performance on the
S&P500 and Russell3000 datasets, as detailed in Tables 1
and 2 (MDTE). This supports our hypothesis that concurrent
asset selection and capital allocation can be advantageous.
Both Proposed[P, ETE] and NNOMP-PGD strategies utilize
similar £p-norm constraints and tracking error measures.
The primary difference between them lies in the algorithms
used for solving these constraints. Note that LAIT is not
included in Tables 1 and 2 due to the difficulties encountered
in adjusting the sparsity to an exact value using LAIT. Re-
garding LAIT (Fig. 1), while the turnover-sparse (Proposed[T,
ETE]) method achieved better tracking performance, the
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FIGURE 1. The graph of MDTE[bps] across different sparsity on S&P500,
2012-2017. The vertical axis indicates MDTE[bps] and the horizontal axis
indicates the sparsity. To avoid parameter tuning on 1 (which controls
sparsity in LAIT), we fixed the value of A per data point. Therefore, the
exact sparsity of per training period differs. The sparsity of Proposed|P,
ETE] (K;), NNOMP-PGD and ¢,-ADMM is adjusted to be the same as that of
LAIT. As for Proposed[T, ETE], K, = K;. Parameter K in the graph indicates
the sparsity of the portfolio at n = 10.

portfolio-sparse (Proposed[P, ETE]) method slightly under-
performed LAIT. The superior performance of LAIT likely
stems from its guaranteed convergence to an optimal solution.
The proposed portfolio-sparse method’s slight underperfor-
mance should be considered as a trade-off between its ability
to directly control the sparsity of the portfolio.

Furthermore, comparing the tracking performance of
portfolio-sparse (Proposed[P, ETE]) methods and turnover-
sparse (Proposed[T, ETE]) methods, we can see that turnover-
sparse methods always performed better. We believe this is
because portfolios constructed using turnover-sparse methods
are composed of more nonzero weights compared to those of
portfolio-sparse methods. Because turnover-sparse methods
only enforce the sparseness of the turnover, the sparsity of the
portfolio itself is not considered. Therefore, as the simulation
progresses, the portfolio gradually becomes fuller. A fuller
portfolio can replicate the target index with more nonzero
weights, which should affect the tracking performance pos-
itively. Turnover-sparse methods with K> = K| tracked the
index more effectively than other K, values did, for the same
reason, because larger K values densify the portfolio faster
than smaller K> values. Similarly, a larger K; performed bet-
ter for portfolio-sparse methods, since portfolios constructed
from larger K values have more nonzero weights.

2) RETURN ACCUMULATION

Our proposed methods outperformed the benchmark in-
dex and other comparative methods in terms of return
accumulation across most settings, as detailed in Tables
1 and 2 (Ret.). It is also clear that sparse portfolios are
much more efficient compared to benchmark (full) port-
folios (Fig. 2). However, regarding comparisons between
portfolio-sparse and turnover-sparse methods and the various
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FIGURE 2. The graph of the investment simulation on S&P500, 2012-2017.
The vertical axis indicates the normalized accumulated return and the
horizontal axis indicates the time period. The parameters are set as

Ky, K = 40 and K; = K; /3. The graph indicates an investment simulation
based on one of the data points of Fig. 1. The initial capital is $10000.

tracking measures, we acquired varying results depending on
the dataset and period.

First, when we applied the empirical tracking error (ETE)
as the tracking measure, turnover-sparse methods (Pro-
posed[T, ETE]) generally performed better than portfolio-
sparse methods (Proposed[P, ETE]). This seems intuitive
since turnover-sparse methods sparsify the turnover, which
directly affects the transaction costs. In the worst-case re-
balancing scenario, portfolios constructed by portfolio-sparse
methods sell all assets in possesion and newly buy completely
different assets. In this case, the transaction cost would be
$2K; (assuming the minimum cost is dominant). In compar-
ison, the worst-case scenario for portfolios constructed by
turnover-sparse methods is always K.

However, results became more varied and inconsistent
when applying the downside risk (DR) as the tracking mea-
sure. At present, we lack a definitive explanation for these
inconsistencies, though we speculate they may stem from the
challenges associated with the nonconvex nature of the formu-
lation, a topic we further discuss in Section IV-B3. In addition
to the above behavior, DR-applied methods performed mod-
erately in comparison to ETE-applied methods. We expected
DR to accumulate more returns than ETE, but there are some
results where ETE outperformed the DR counterpart. While
DR is designed to trade tracking accuracy for potentially
higher returns, our results indicate that this trade-off does not
consistently yield the expected benefits.

3) INITIALIZATION

Given the nonconvex nature of our formulation, convergence
cannot be guaranteed by our proposed algorithm. Therefore,
the method of initializing the parameter w may potentially
impact the results. To understand how initialization impacts
our algorithm’s performance, we evaluated three distinct
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TABLE 3 The Comparison Between Different Initialization Methods, Tracking Performance Measured in MDTE[bps] and Normalized Accumulated Returns

(Ret.). Dataset: S&P500, Initial Capital: $10000, K; = 40

S&P500 (2012 - 2017)

Russell3000 (2010 - 2014)

Method Ky Init. A Init. B Init. C Init. A Init. B Init. C
MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret. MDTE Ret.
Proposed[P, ETE] — 0.74 1.75  0.58 2.03 0.61 1.93 1.13 1.43  0.76 1.65  0.78 1.78
Ky 0.39 1.87  0.37 1.85  0.42 1.83  0.52 1.49  0.46 1.40  0.51 1.63
Proposed[T, ETE] K;/2  0.47 1.93 043 1.93  0.52 1.89  0.61 1.62  0.57 1.46  0.67  1.63
Ki/3 051 1.89  0.46 1.96  0.58 177 0.66 1.69  0.61 1.53  0.73 1.71
Proposed[P, DR] — 0.81 1.83 0.63 208 0.64 2.03 1.19 1.58  0.90 1.68  0.86 1.55
Ky 0.42 1.92  0.35 1.86  0.44 1.88  0.64 1.49  0.50 1.49  0.63 1.56
Proposed[T, DR] K;/2  0.50 1.94 041 1.98  0.50 1.90  0.72 1.57  0.61 1.60  0.78 1.67
Ki/3 052 1.99  0.46 1.95  0.54 1.99  0.84 1.67  0.62 1.65  0.79 1.60
Benchmark — — 1.38 — 1.38 - 1.38 — 1.02 — 1.02 — 1.02

2000 2500
Iteration

| |
1500 3000

L
1000

0 500 3500 4000

FIGURE 3. The graph of the proposed algorithm’s ([P,ETE]) convergence
behavior on the S&P500 (2012-2017) dataset (K; = 40, Init. A). The vertical
k) _ (k=1
axis indicates % and the horizontal axis indicates the number
2
of iterations.

initialization strategies: Init. A: w = 0, the original initializa-
tion adopted in our algorithm (Algorithm 1). Init. B: initialize
all elements of wto 1/N. Init. C: initialize w as w = wy (
w = 0 for the first training period).

The varied outcomes, as detailed in Table 3, underscore the
effect of the chosen initialization method on the algorithm’s
performance. Given the inconsistency of results across differ-
ent datasets, identifying a universally superior initialization
method proved challenging. It is noteworthy, however, that our
method consistently outperformed NNOMP-PGD across the
majority of settings, irrespective of the initialization technique
employed.

Furthermore, we present the convergence behavior of our
algorithm in Fig. 3. Our algorithm converged in a similar man-
ner across all experimental settings. Despite lacking a formal
convergence guarantee, the observed convergence behavior
and compelling tracking performance allow us to conclude
that our method is capable of generating competitive port-
folios, on par with methods like LAIT that do guarantee
convergence.
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4) PRACTICAL APPLICATION

Based on the previous results and discussions, we would
like to discuss the possibility of applying our methods to
real-world investment situations. First, the data and variables
used in our methods to construct the portfolios are available.
Therefore, the main concern would be the choice of portfolio
or turnover sparsity and tracking error measures. Despite the
absence of a universally superior method across datasets, a
feasible strategy for choosing a method in practice involves
selecting the one that yielded the highest returns in the most
recent data analysis. In the same manner, parameters K; and
K> can also be decided.

One of the pros of a sparse portfolio is that it can avoid illig-
uid assets. However, extensive application of turnover-sparse
methods may result in dense or full portfolios, as discussed
in Section IV-B1. In practical scenarios, maintaining an opti-
mally sparse portfolio can involve periodically resetting the
portfolio using the portfolio-sparse method, particularly to
exclude increasingly illiquid assets.

Although we did not explicitly discuss this in our paper,
the length of T, and Tiey are also parameters. The two
should be decided by simulating past data, similar to the other
parameters.

5) SUMMARY OF THE EXPERIMENTAL RESULTS
Through extensive numerical experiments on S&P500 and
Russell3000 datasets, we:
¢ Confirmed our hypothesis that simultaneous asset selec-
tion and capital allocation can be beneficial in terms of
tracking accuracy.
® Presented the merits of turnover sparsity in both index
tracking and wealth accumulation.
® [Investigated the impact of different tracking error mea-
sures and associated parameters on portfolio perfor-
mance.
® Analyzed the convergence behavior and how various
initialization methods influence the effectiveness of the
proposed algorithm.
e Explored the practical applicability of our method in
real-world investment scenarios.
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V. CONCLUDING REMARKS

In this article, we proposed a sparse index tracking method
that addressed both asset selection and capital allocation
simultaneously, enhancing tracking performance compared
to the conventional method that handled these two aspects
separately. Furthermore, the proposed formulation was gen-
eralized to allow the choice between 1) portfolio sparsity and
turnover sparsity constraints, both enforced by an fp-norm
constraint and 2) various tracking error measures aimed at
enhancing return accumulation performance. Superior results
were demonstrated through experiments on the S&P500 and
Russell3000 index datasets, where we achieved state-of-the-
art performance compared to the conventional method that
incorporated an £o-norm constraint. We also examined and
discussed the impacts of different tracking measures and ini-
tializations.
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