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ABSTRACT The diffusion model is capable of generating high-quality data through a probabilistic approach.
However, it suffers from the drawback of slow generation speed due to its requirement for many time steps.
To address this limitation, recent models such as denoising diffusion implicit models (DDIM) focus on
sample generation without explicitly modeling the entire probability distribution, while models like denoising
diffusion generative adversarial networks (GAN) combine diffusion processes with GANs. In the field of
speech synthesis, a recent diffusion speech synthesis model called DiffGAN-TTS, which utilizes the structure
of GANs, has been introduced and demonstrates superior performance in both speech quality and generation
speed. In this paper, to further enhance the performance of DiffGAN-TTS, we propose a speech synthesis
model with two discriminators: a diffusion discriminator to learn the distribution of the reverse process, and
a spectrogram discriminator to learn the distribution of the generated data. Objective metrics such as the
structural similarity index measure (SSIM), mel-cepstral distortion (MCD), F0 root mean squared error (F0-
RMSE), phoneme error rate (PER), word error rate (WER), as well as subjective metrics like mean opinion
score (MOS), are used to evaluate the performance of the proposed model. The evaluation results demonstrate
that our model matches or exceeds recent state-of-the-art models like FastSpeech 2 and DiffGAN-TTS across
various metrics. Our code and audio samples are available on GitHub.

INDEX TERMS Denoising diffusion model, generative adversarial network, mel-spectrogram discriminator,
speech synthesis, text-to-speech.

I. INTRODUCTION
Generative models [1], [2], [3], [4], [5] are artificial intel-
ligence frameworks capable of producing new data types
beyond those seen during training. Applied across domains
such as language processing, creative arts, image creation,
editing, and speech synthesis, they are pivotal in technological
advancement. The variational autoencoder (VAE) [1], one of
the earliest and most representative generative models, en-
codes input data into a latent space before reconstructing it
back into data. The VAE has garnered significant attention and
remains a prominent model in the field. Meanwhile, the gen-
erative adversarial network (GAN) [2], still the most widely
recognized among generative models, generates high-quality
data indistinguishable from real data through an adversarial
training approach involving a discriminator and a generator.

Another type of generative model, the flow-based generative
model [3], explicitly learns the probability distribution of the
latent space and uses inverse transformations to generate data.
However, these representative models still face limitations
such as unstable training, limited diversity in generated results
due to mode collapse, and loss function dependence on model
architecture.

The diffusion model [4], inspired by non-equilibrium ther-
modynamics in physics, reduces noise while preserving im-
portant details by adding and removing noise in the data,
based on the Markov chain principle where each variable’s
value depends on the previous time step. Trained through a
predefined procedure, this model learns a latent space repre-
sentation to restore data, enabling new data point generation
directly from random noise or the encoded information in
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the latent space. Unlike traditional generative models, the
diffusion model boasts high training stability and does not
compress data, allowing the latent space to maintain the same
high dimensionality as the original data. In computer vision,
numerous models have been developed based on the char-
acteristics of the diffusion model, beginning with denoising
diffusion probabilistic models (DDPM) [5].

A speech synthesis system, also known as a text-to-speech
(TTS) system, transforms written scripts into spoken words.
Early TTS systems relied on concatenative synthesis, includ-
ing unit selection [6], stitching together phoneme sounds, and
statistical parametric methods using hidden Markov models
(HMM) [7]. These approaches, however, struggle to produce
lifelike speech. The introduction of neural network mod-
els has significantly enhanced the quality and naturalness of
speech synthesis.

One notable speech synthesis model based on neural net-
works is Tacotron [8]. It utilizes a sequence-to-sequence
architecture [9] and attention mechanism [10] to generate mel-
spectrograms autoregressively. These are then transformed
into linear spectrograms, and the audio waveform is produced
using the Griffin-Lim vocoder [11]. Tacotron 2 [12] addresses
the complex hyperparameter adjustment issues faced by the
previous model and improves audio quality by integrating the
WaveNet vocoder [13]. However, it still contends with slow
generation speeds and potential error accumulation due to
its autoregressive design. Recently, GAN models applied to
vocoders have significantly improved generation speed and
audio quality. FastSpeech 2 [14] and FastPitch [15], leverag-
ing the Transformer architecture, produce mel-spectrograms
non-autoregressively, addressing the slow speeds and error
issues encountered by Tacotron models. FastSpeech 2 incor-
porates a variance adaptor for speech characteristics control.

The TTS models are evolving to quickly generate natu-
ral and high-quality speech. Diffusion models are considered
suitable for speech synthesis due to their capability to produce
high-quality data. However, conventional diffusion models
are hindered by slow generation speeds, rendering them un-
suitable for real-time applications commonly used in TTS
systems. The demand for faster synthesis is prevalent not
only in computer vision but also in speech synthesis, spurring
ongoing research to enhance the generation speed of diffu-
sion models [16], [17]. A prominent example is the denoising
diffusion implicit model (DDIM) [16], which builds upon the
structure of the DDPM [5] to improve data generation speed.
DDIM adopts a non-Markovian approach, diverging from the
Markov chain process used in original diffusion models. In
its training phase, DDIM models the reverse process akin to
DDPM, where the process relies on incrementally increasing
time steps. However, during generation, it employs time steps
as conditional inputs, enabling the model to bypass interme-
diate stages, moving from the initial noise xT directly to an
arbitrary time step t state, denoted as xt , through accelerated
sampling. This method significantly reduces the number of
required time steps compared to DDPM. The denoising dif-
fusion GAN model [17] integrates the GAN structure into

diffusion models. The noise added or removed in this process
adheres to a Gaussian distribution. In [17], the slow generation
speed of traditional diffusion models is linked to the use of
a Gaussian distribution for sampling data during the reverse
process. To tackle this, [17] introduces multimodal distribu-
tions for reverse diffusion, hastening the generation speed.
Moreover, this model utilizes an adversarial training approach
characteristic of GANs, enabling it to learn the necessary
noise distribution for the reverse process.

As the generation speed of diffusion models has improved,
research is ongoing to apply these models to acoustic models
and vocoders. A prominent example is Diff-TTS [18], an
acoustic model that employs the accelerated sampling tech-
nique used in DDIM. Diff-TTS exhibits superior audio quality
compared to Tacotron 2 or Glow-TTS [19] when generating
speech without accelerated sampling. However, employing
accelerated sampling increases generation speed at the cost
of reduced audio quality. DiffGAN-TTS [20] is a cutting-
edge acoustic model based on the denoising diffusion GAN
structure. It facilitates text-to-speech synthesis for multiple
speakers, with its generator derived from FastSpeech 2, allow-
ing for controlled speech generation. However, DiffGAN-TTS
may face challenges in effectively learning detailed ele-
ments as it relies on a single discriminator to learn both
the multimodal distribution for the reverse process and the
characteristics of voices from multiple speakers. Huang et al.
[21] analyze the trade-offs between sample diversity, qual-
ity, and computational efficiency in speech synthesis using
combined GAN and DDPM models. They introduce FastD-
iff 2, which merges GANs and DDPMs into two variations:
DiffGAN, utilizing a conditional GAN-based denoising pro-
cess for stable, large-step reverse processing; and GANDiff, a
GAN incorporating diffusion iterations for enhanced sample
diversity. Both variations showcase superior speech synthesis
with high quality and diversity through an efficient four-step
sampling process. Deng et al. [22] introduce MixGAN-TTS,
a non-autoregressive speech synthesis model that merges and
enhances features from PortaSpeech [23] and DiffGAN-TTS
[20]. This model addresses the ambiguity in phoneme bound-
aries, incorporates a mixed alignment mechanism and pitch
and energy predictors for better audio variance handling.
Unlike traditional diffusion models that suffer from slow real-
time performance due to the Gaussian function’s limitations,
MixGAN-TTS employs GAN for modeling the denoising
distribution, enabling the generation of high-quality audio
efficiently with fewer denoising steps.

In this paper, we propose an acoustic model named
SpecDiff-GAN that integrates diffusion models with GANs.
This model adopts the generator from DiffGAN-TTS [20] and
features two discriminators: a diffusion discriminator and a
spectrogram discriminator. This architecture enables separate
and independent training of the features necessary for the re-
verse process and the distinct characteristics of various speak-
ers’ voices. To assess the performance of SpecDiff-GAN, we
conduct experiments in multi-speaker speech synthesis. Ob-
jective evaluations are performed to determine how accurately
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the synthesized speech mirrors speaker characteristics and
the overall speech quality. These evaluations include mea-
surements of the structural similarity index measure (SSIM)
[24], mel-cepstral distortion (MCD) [25], F0 root mean
squared error (F0-RMSE), phoneme error rate (PER), word
error rate (WER) [26], and real-time factor (RTF). Addition-
ally, subjective evaluations are carried out using comparative
mean opinion score (CMOS) and similarity mean opinion
score (SMOS).

The remainder of this paper is organized as follows: Section
II explains the operational principles of the diffusion model.
Section III provides a detailed description of the proposed
model. Sections IV and V describe the experimental setup
and present the experimental results of the proposed model,
respectively. Finally, Section VI concludes the study and dis-
cusses future research directions.

II. BACKGROUND
In TTS, diffusion models follow a diffusion process where
Gaussian noise is gradually added to the (mel)-spectrogram
through Markov chain transitions, converting it into a latent
vector. They also employ a reverse process (also known as
the denoising process) that removes noise from the latent
vector and reconstructs the spectrogram. Let xt ∈ RL for t =
0, 1, . . . , T be a sequence of corrupted spectrograms with the
same dimension, where t is the index for diffusion time step.
Each diffusion process q(xt|xt−1) follows:

q (xt |xt−1) = 𝒩

(
xt ;

√
1 − βt xt−1, βt I

)
, (1)

where βt ∈ (0, 1) is a hyperparameter predefined ahead of
model training. The whole diffusion process q(x1:T |x0) is
defined by Markov chain transition:

q (x1:T |x0) =
∏
t≥1

q (xt |xt−1) . (2)

The reverse process is the inverse of the diffusion process
and serves as the procedure for generating spectrogram from
Gaussian noise. Each denoising process pθ (xt−1|xt ) follows:

pθ (xt−1|xt ) = 𝒩
(
xt−1;μθ (xt , t ) , σ 2

t I
)
, (3)

where μθ (xt , t) and σ 2
t are the mean and variance for the

denoising model. The whole reverse process parameterized
with θ is defined by:

pθ (x0:T ) = p (xT )
∏
t≥1

pθ (xt−1|xt ) . (4)

The latent vector is gradually restored to a spectrogram
through the reverse transitions pθ (xt−1|xt ). The goal of train-
ing is to maximize the likelihood pθ (x0) = ∫ pθ (x0:T )dx1:T ,
but since it is intractable, the model is trained to maximize the
evidence lower bound (ELBO, ℒ ≤ log pθ (x0)) instead.

The key assumption in the diffusion model is that the noise
levels at each step are small, which allows the diffusion pro-
cess to be stable and the model to be tractable. The number of

denoising steps T is often assumed to be in the order of hun-
dreds to thousands. Therefore, the parameters β1, β2, . . . , βT ,
which determine the amount of noise to be added during
diffusion, are set to be small. As a result, the size of the
diffusion time steps T increases, leading to a significant time
requirement for spectrogram reconstruction.

To reduce the number of denoising steps, Xiao et al. [17]
proposed modeling the denoising distribution with a com-
plex multimodal distribution. They introduced the denoising
diffusion GAN, which models each denoising step using a
multimodal conditional GAN. This approach significantly re-
duced the denoising time steps to a level feasible for real-time
applications. However, due to the reduced number of time
steps, the quality of the generated data may be lower com-
pared to the DDPM, with some features potentially not being
adequately represented during noise removal from the latent
space and data generation.

Research [17] and [20] have combined diffusion models
with GAN architectures to significantly reduce the timesteps
required in diffusion and denoising processes, thereby en-
abling high-quality speech generation. The discriminator in
these models must concurrently learn the characteristics of
data changes during the denoising process and the features of
the mel-spectrogram, crucial for training the acoustic model.
In the case of DiffGAN-TTS [20], a joint conditional and
unconditional (JCU) discriminator, akin to that in VocGAN,
is used to simultaneously learn these two feature types.
Conversely, high-performance voice synthesis models like
HiFi-GAN employ a multi-discriminator structure, facilitat-
ing the learning of diverse vocal characteristics by having
dedicated discriminators for each feature. Drawing inspira-
tion from this structure, our proposed model is designed with
distinct discriminators for learning features in the denoising
process as well as for other voice-related characteristics, such
as the mel-spectrogram or speaker traits, thus enhancing the
model’s performance.

III. MODEL DEVELOPMENT
The overall architecture of the proposed SpecDiff-GAN in
this paper consists of one generator and two discriminators, as
shown in Fig. 1. The DiffGAN-TTS architecture [20] serves
as the underlying base model for generating high-quality syn-
thesized speech.

A. THE GENERATOR OF SPECDIFF-GAN
The generator structure of SpecDiff-GAN, depicted in Fig.
2, is based on the generator structure of DiffGAN-TTS. This
generator is a modified version of the FastSpeech 2 [14] archi-
tecture, comprising four transformer encoders, one variance
adaptor, and one diffusion decoder. The transformer encoder
processes the phoneme embedding sequence as input, con-
verting it into a hidden sequence, akin to the FastSpeech 2
approach. The variance adaptor, consisting of duration, pitch,
and energy predictors, analyzes the hidden sequence from
the encoder to predict appropriate speech length, pitch, and
energy, facilitating the generation of natural-sounding speech.
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FIGURE 1. SpecDiffGAN-TTS architecture.

FIGURE 2. Generator structure of SpecDiff-GAN.

The decoder is designed by replacing the decoder of the Fast-
Speech 2 with a diffusion decoder.

The diffusion decoder in SpecDiff-GAN is inspired by the
structure of WaveNet [13], an autoregressive vocoder model.
However, it differs from WaveNet in certain aspects. While the
WaveNet vocoder utilizes dilated causal convolutions to gen-
erate waveforms, the diffusion decoder in SpecDiff-GAN em-
ploys conventional convolution layers, as mel-spectrograms
do not require as extensive receptive fields as waveforms.
The diffusion decoder of the proposed model accepts speaker

embeddings, which capture each speaker’s unique characteris-
tics, as conditional inputs. This feature enables the generation
of distinct voices for different speakers. Deep Speaker [27]
is used to extract these speaker embeddings. Additionally,
sinusoidal positional encoding [10] is applied to represent the
time step t at each stage, allowing for the accurate modeling
of appropriate distributions for each time step.

The feature map generated by the transformer encoder
and variance adaptor is passed through a 1×1 convolution
layer and then input into each residual block of the diffusion
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FIGURE 3. Diffusion discriminator of SpecDiff-GAN.

decoder, along with the speaker embedding. The hidden fea-
tures output from each residual block are combined using skip
connections and then fed through two 1×1 convolution layers
to generate the mel-spectrogram.

In summary, the acoustic generator that produces the mel-
spectrogram x′

0 can be modeled as G(xt , y, s, t ), where xt

is the corrupted mel-spectrogram, y is the phoneme sequence
input, s represents the speaker ID, and t denotes the diffusion
step index.

B. THE DIFFUSION DISCRIMINATOR
The diffusion discriminator structure of the proposed model,
depicted in Fig. 3, is based on the discriminator structure of
progressive growing of GANs (ProGAN) [28], with a time-
dependent modification. The diffusion discriminator consists
of multiple downsampling convolution blocks, each compris-
ing downsampling layers and 2D convolution layers. Timestep
embeddings are conditionally applied to the input values for
downsampling. The features extracted from both conditioned
and unconditioned downsampling are then combined and fed
into the subsequent block. This process is repeated across
six blocks.

Mel-spectrograms xt−1 and xt are concatenated to overlap
and used as inputs to the diffusion discriminator, which itera-
tively compresses the data and extracts features to determine
whether the reverse process from xt to xt−1 is performed
effectively. In ProGAN, to address the issue of mode col-
lapsing that can often occur in GAN training, the minibatch
discrimination technique [29] was employed, which calculates
the closeness among the data within a batch. This technique
is also applied in the diffusion discriminator to enhance the
stability of the training process.

C. THE SPECTROGRAM DISCRIMINATOR
The structure of the spectrogram discriminator in the proposed
model, as shown in Fig. 4, is inspired by the multi-resolution
spectrogram discriminator of UnivNet [30], a GAN-based

FIGURE 4. Spectrogram discriminator of SpecDiff-GAN.

vocoder model. While UnivNet employs multiple sets of
short-time Fourier transform (STFT) parameters applied to
mel-spectrograms for audio waveform generation, our focus
in this paper is on using mel-spectrograms as an acoustic
model for mel-spectrogram generation, rather than wave-
forms. Consequently, the multi-resolution input is not utilized;
instead, only the hierarchical structure of UnivNet’s discrimi-
nator is adopted.

In multi-speaker speech synthesis models, learning dis-
tinctive features for individual speakers is crucial. In our
approach, speaker embeddings are used as conditional inputs
to the discriminator. The speaker embedding passes through a
linear layer, while the mel-spectrogram is processed through
a 2D convolution layer. This is followed by broadcasting and
addition operations. The spectrogram discriminator then re-
peats the convolution layers depicted in Fig. 4, enabling it
to discern the unique characteristics of each speaker’s voice
within the mel-spectrograms.

In [20], the primary focus of a single diffusion discrimi-
nator is on the diffusion properties of the input spectrogram.
While adding a spectrogram discriminator introduces ad-
ditional costs, including increased model complexity and
training time, it offers several advantages:
� Enhanced modeling of spectral features: While the dif-

fusion discriminator concentrates on the temporal evo-
lution of the spectrogram during the diffusion process,
a spectrogram discriminator can specifically focus on
capturing spectral features, including frequency compo-
nents and patterns. These may be missed or inadequately
represented by the diffusion discriminator alone.

� Improved frequency and time detail handling: A spec-
trogram discriminator excels at capturing fine-grained
details in both frequency and time domains. This is
crucial for handling high-frequency components and
capturing subtle temporal variations in the input spec-
trogram. The addition of a spectrogram discriminator
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allows the model to better capture nuances in the
spectral content.

� Diversity in discriminative aspects: Utilizing both a dif-
fusion and spectrogram discriminator allows the model
to consider different aspects. The diffusion discrimi-
nator focuses on dynamic evolution, while the spec-
trogram discriminator provides insights into detailed
spectral characteristics, fostering a more comprehensive
understanding.

� Enhanced discrimination in both time and frequency
domains: The spectrogram discriminator treats the spec-
trogram as a 2D image, allowing it to exploit correlations
among different components in both the time and fre-
quency domains. This enables the model to discriminate
not only based on temporal changes but also on specific
frequency components, providing a more comprehensive
discriminative capability.

D. LOSS FUNCTIONS
In this paper, the least squares GAN (LSGAN) [31] loss
function is employed to train two discriminators. This loss
function is utilized to prevent gradient vanishing and has al-
ready been proven to be effective when applied to the field
of audio and speech synthesis. The diffusion discriminator,
denoted as Dd (xt−1, xt , t ), is trained to minimize the loss:

ℒdi f f =
T∑

t=1

Eq(xt )q(xt−1|xt )
[
(Dd (xt−1, xt , t ) − 1)2]

+ Epθ (xt−1|xt )

[(
Dd

(
x′

t−1, xt , t
))2

]
, (5)

where t denotes diffusion time step index. Equation (5) is the
same loss function used in [20], but the speaker ID is not used
as an argument. The spectrogram discriminator, denoted as
Ds(x0, s), is trained to minimize the loss:

ℒspec = Ex0∼pdata(x0 )
[
(Ds (x0, s) − 1)2]

+ Ex′
0∼pθ (x0:T )

[(
Ds

(
x′

0, s
))2

]
, (6)

where s denotes the speaker ID.
In the SpecDiff-GAN generator, three loss functions are

used. The feature matching loss is employed to ensure that the
distribution of the generated data matches the distribution of
the real data and to prevent the discriminator from overfitting.
Feature matching loss ℒ f m is calculated by summing the l1
distance between all discriminator feature maps of the gen-
erated and real data: where Di

d (·) represents the i-th hidden
layer of the diffusion discriminator, and Di

s(·) represents the
i-th hidden layer of the spectrogram discriminator. N and M

denote the number of hidden layers in the diffusion discrimi-
nator and spectrogram discriminator, respectively. The mixing
ratio λ is a hyperparameter that controls the sum of two expec-
tation values.

In addition to the feature matching loss ℒ f m, the variance
adaptor is trained using the acoustic reconstruction loss ℒrecon

following [20] to accurately predict key characteristics of the
speech, such as duration, pitch, and energy. Finally, based on
[20], we train the generator to minimize the adversarial loss:

ℒadv =
T∑

t=1

Eq(xt )

[
Epθ (xt−1|xt )

[
(Dd (xt−1, xt , t ) − 1)2]]

+ Ex′
0∼pθ (x0:T )

[(
Ds

(
x′

0, s
) − 1

)2
]
. (8)

In total, the generator is trained by minimizing ℒG =
ℒadv + ℒrecon + λ f mℒ f m,where λ f m is a dynamically scaled
scalar computed as λ f m = ℒrecon/ℒ f m at each training step,
following [32]. Therefore, at each step, the feature matching
loss is adjusted according to the ratio of the reconstruction
loss to the feature matching loss.

IV. MODEL TRAINING AND EVALUATION
To validate the proposed SpecDiff-GAN model, we con-
ducted multi-speaker speech synthesis experiments. In these
experiments, we compared the proposed model with state-of-
the-art alternatives to assess its ability to accurately capture
speaker characteristics, generate smooth and natural pronun-
ciation, and produce speech that closely resembles human-
like sounds. The mel-spectrograms generated by SpecDiff-
GAN were compared not only with the ground-truth mel-
spectrograms but also with those generated by FastSpeech 2
[14] and DiffGAN-TTS [20]. To ensure a fair evaluation, all
mel-spectrograms were converted into audio waveforms (i.e.,
speech) using the HiFi-GAN vocoder [33].

A. DATASET
The multi-speaker speech dataset used in this experiment is
the voice cloning toolkit (VCTK) corpus [34]. The VCTK
corpus, an open dataset created by the University of Edin-
burgh in Scotland, includes approximately 44 hours of English
speech from 110 English-speaking speakers. Each speaker
read 400 selected sentences from newspapers. All voices in
the dataset were recorded in a non-reverberant indoor studio
using high-performance microphones. The original recordings
were made at a sampling rate of 96 kHz and in 24-bit audio
format. They were subsequently downsampled to a sampling
rate of 48 kHz and provided in 16-bit audio format. For the
experiment, out of the total 44000 voice samples available,

ℒ f m = λ

T∑
t=1

Eq(xt )

[
N∑

i=1

‖Di
d (xt−1, xt , t ) − Di

d

(
x′

t−1, xt , t
) ‖1

]

+ (1 − λ) Ex0∼pdata(x0 ),x′
0∼pθ (x0:T )

[
M∑

i=1

‖Di
s (x0, s) − Di

s

(
x

′
0, s

)
‖1

]
, (7)
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512 were allocated as the validation set, while the remainder
were used for training. Prior to being used in the experiments,
all the data was further downsampled to a sampling rate of
22.05 kHz.

B. MODEL SETUP AND TRAINING
The proposed SpecDiff-GAN model was implemented using
the PyTorch framework. The librosa library was utilized for
loading audio files, while the audio library was employed
for extracting mel-spectrograms and energy from the audio.
Additionally, the parselmouth library was used to extract the
fundamental frequency F0. In the conversion of audio to mel-
spectrograms, we set the number of mel channels to 80, the
hop size to 256, the window size to 1024, and the frequency
range from 0 to 8000 Hz. The Adam optimizer was chosen
for training.

Each transformer encoder in the generator has a hidden
neuron count of 256. With four encoders, this configuration
forms a feature space of 1024 dimensions. The encoder uses a
convolution kernel size of 9. The variance adaptor comprises a
duration predictor, pitch predictor, and energy predictor, each
consisting of two convolution blocks. The padding sizes for
each predictor are set to (1, 1), (2, 2), and (3, 3), respectively,
and the kernel sizes are (3, 3), (5, 5), and (5, 5).

In the spectrogram discriminator, a zero-padding height of
size 1 and a zero-padding width of size 4 are applied before
performing convolution with a 3 × 9 kernel. Only the second
convolutional layer applies a horizontal stride of 2. The main
hyperparameters used in SpecDiff-GAN are summarized
in Table 1.

The workstation used for training has the Ubuntu 20.04 LTS
operating system, and software dependencies are managed
using Docker. Training of the proposed model was conducted
on four Nvidia A100 GPUs, each with 80 GB of memory.
We utilized publicly available codes for FastSpeech 2 and
DiffGAN-TTS, accessible via [35] and [36], respectively. All
mel-spectrograms were converted into speech using a pre-
trained HiFi-GAN vocoder. Our implementation and the audio
samples used for evaluation are available on GitHub [37].

C. PERFORMANCE METRICS
The performance evaluation metrics used are SSIM [24],
MCD [25], F0-RMSE, PER, WER, and RTF. While SSIM
is a metric used in computer vision to measure the similarity
of images, in this paper, it is used to compare the similarity
between the real mel-spectrogram and the generated mel-
spectrogram by considering spectrograms as images.

MCD is a metric used to measure the difference between
the mel-cepstral coefficients of real and generated speech, ex-
pressing it in [dB], which indicates the quality of the speech.
MCD is given by:

MCD
(
x, x′) = 10

ln (10)

√
2

∑N

i=1
‖xi − x′

i‖2, (9)

where x and x′ are mel-cepstrum of original and synthetic
speeches, respectively, and N is the total number of frames

TABLE 1. Considered Hyperparameters for SpecDiff-GAN

of speeches. A lower value indicates a higher similarity to the
real speech.

F0-RMSE measures the difference between the ground-
truth values and the generated values of the fundamental
frequency F0. It is used to assess the accuracy of pitch in
speech. A lower value indicates a better match between the
ground-truth speech and the generated speech in terms of
pitch. It is defined as:

F0 RMSE =
√

1

N

∑N

i=1

(
Fi − F ′

i

)2
, (10)

where N is the total number of frames of speeches, Fi is the F0
of the ground-truth speech, and F ′

i is the F0 of the generated
speech. A lower value indicates better performance in terms of
F0 similarity between the ground-truth and generated speech.

PER and WER, assessing phoneme and word recognition
accuracy respectively, are evaluated using the same methods
as HierSpeech [26]. RTF represents the ratio of the total pro-
cessing time of the synthesized speech to the duration of the
synthesized speech. If the RTF is less than 1.0, it indicates
that the system can generate speech in real-time. A lower
RTF value means that the system’s speech generation speed
is faster.

V. RESULTS
The test set comprises voice recordings from English-
speaking individuals, with each person speaking one of 512
sentences. The duration of each voice sample ranges from
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FIGURE 5. Visualization of the denoising process during inference of the proposed model, x′
0 is the generated mel-spectrogram, GT is the ground-truth

mel-spectrogram.

TABLE 2. Objective Performance Evaluation of Speech Synthesis

FIGURE 6. Comparison of mel-spectrogram with F0. (a) Ground Truth,
(b) SpecDiff-GAN, (c) DiffGAN-TTS, and (d) FastSpeech 2.

approximately 1 second to 9 seconds. For comparison pur-
poses, DiffGAN-TTS and FastSpeech 2 were also trained
under identical conditions. The proposed model underwent
training for 300000 steps, taking approximately 49.2 hours
in total. To observe the data generation process during the
denoising phase in inference, we visualized the output at
each timestep, as shown in Fig. 5. This visualization al-
lows us to confirm that the generated output increasingly
resembles the ground-truth mel-spectrogram as the denoising
process progresses.

A. OBJECTIVE PERFORMANCE EVALUATION
Table 2 presents the evaluation of the performance of the
models in generating mel-spectrograms. The time step for

TABLE 3. Subjective Performance Evaluation of Speech Synthesis

the diffusion model was set to 4 for all cases. As shown
in Table 2, the proposed model demonstrates overall su-
perior performance compared to the comparative models,
especially in terms of MCD and F0-RMSE. These two metrics
are indicators of comparing the characteristics and intona-
tion of the speaker, making it evident that the spectrogram
discriminator proposed in this paper effectively aids in gener-
ating mel-spectrograms that well learn the speaker and voice
characteristics.

A high SSIM indicates that the mel-spectrograms generated
by the proposed model closely resemble the ground-truth mel-
spectrograms. Fig. 6 displays the mel-spectrograms and fun-
damental frequency (F0) of both real and generated speech.
While it may be difficult to visually perceive differences be-
tween the generated mel-spectrograms, the F0 of the proposed

584 VOLUME 5, 2024



TABLE 4. Ablation Study Results

model is observed to closely approximate the ground truth
compared to the F0 of the comparative models.

In terms of PER and WER, the proposed model either
shows slightly better or similar performance compared to
DiffGAN-TTS [20], but these metrics are lower than those for
FastSpeech 2 [14]. This discrepancy could be attributed to the
use of separate discriminators for learning vocal features in
DiffGAN-TTS, which more accurately replicate the pronun-
ciation of the original speech. However, the limited number
of timesteps in the denoising process might lead to some
pronunciations being missed or inaccurately represented. In
the case of the RTF metric, FastSpeech 2 achieved the highest
measurement. The RTF of the proposed model, measured
at 0.0063, indicates that it can generate speech much faster
than human speech production speeds. This confirms that the
proposed model is capable of maintaining a sufficiently fast
generation speed while producing high-quality speech, mak-
ing it well-suited for real-time applications.

B. SUBJECTIVE PERFORMANCE EVALUATION
Since all the mel-spectrograms were converted into speech
using the same HiFi-GAN vocoder, this approach allows for a
fair assessment of the quality of mel-spectrograms generated
by the comparative models. Table 3 presents the evaluation
results for the SMOS and CMOS, comparing the proposed
model with the comparison models. We have invited 26 listen-
ers to participate as evaluators for CMOS and SMOS. Among
the evaluators, 17 are fluent English speakers, and the remain-
ing participants are second-language users. SMOS is a method
used to evaluate the quality of generated speech by presenting
it to evaluators, who then rate its quality on a scale from 1
(worst) to 5 (best). A score of 1 indicates that the generated
speech is severely degraded and almost unintelligible, while
a score of 5 signifies speech that is noise-free, free from
awkwardness, and has accurate pronunciation.

In the CMOS, with the proposed model serving as the ref-
erence, up to +3 points are assigned if the comparative model
better represents the characteristics of the actual speech, and
up to −3 points are awarded if it falls short in represent-
ing those characteristics. A score of 0 is given if there is

no discernible difference between the proposed model and
the reference speech. The original speech (i.e., ground truth)
and the proposed model, which serves as the baseline, are
not subject to CMOS evaluation. The evaluation was con-
ducted using a diverse set of 30 speakers’ voices, comprising
a total of 150 audio clips provided to the evaluators. These
audio clips consisted of unseen data, not used during the
model training.

The SMOS scores reveal that the actual recorded voice ob-
tained the highest rating, followed by the reconstructed speech
using the mel-spectrogram from the original speech processed
through a vocoder. Among the models generating speech from
text, the proposed model outperformed FastSpeech 2 and
DiffGAN-TTS, achieving higher scores. Therefore, it is evi-
dent that the proposed model generates more natural-sounding
speech from text compared to the comparative models. This
outcome demonstrates that the spectrogram discriminator in
the proposed model positively impacts speech quality and the
representation of speaker characteristics. The audio clips used
for the subjective evaluation are available at [37].

C. ABLATION STUDY
Table 4 presents the results of an ablation study conducted to
examine the impact of the spectrogram discriminator on the
model’s performance. Two experiments were conducted: the
first involved completely removing the spectrogram discrim-
inator, while the second entailed removing the spectrogram
discriminator but connecting the speaker embedding, which
was previously linked to the spectrogram discriminator, di-
rectly to the diffusion discriminator.

The experimental results confirmed that both models with-
out the spectrogram discriminator exhibited a decrease in
performance. Particularly, the model with the speaker em-
bedding connected to the diffusion discriminator experienced
even greater performance degradation. This observation sug-
gests that learning both speaker information and multimodal
distributions for the reverse process in a single discrimina-
tor adversely affects the model’s performance. These results
confirm that the presence of the spectrogram discriminator
contributes to the improvement of the model’s performance.
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VI. CONCLUSION
In this paper, we proposed the SpecDiff-GAN model, a novel
approach that combines a diffusion model with a GAN to
enhance the quality of generated speech while maintaining ef-
ficient generation speeds. The proposed model features a dual
discriminator structure, consisting of a diffusion discriminator
and a spectrogram discriminator. The diffusion discriminator
is responsible for modeling the multimodal distribution of the
reverse process, thereby expediting the generation process of
the diffusion model. In contrast, the spectrogram discrimina-
tor is specifically designed to discern between the original
and generated mel-spectrograms. This enables the generator
to produce high-quality speech that closely replicates the orig-
inal. To evaluate the model’s performance, we utilized five
objective evaluation metrics alongside two subjective evalu-
ation metrics. In the comparative analysis with FastSpeech
2 and DiffGAN-TTS, the proposed SpecDiff-GAN model
demonstrated performance that was similar to or surpassed
these models. Furthermore, the results of our ablation study
confirmed the efficacy of the proposed techniques in enhanc-
ing the model’s performance. The implementation of the dual
discriminator structure has shown promising results in terms
of performance improvement. Continuing research is under-
way to further refine the discriminator’s performance.
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