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ABSTRACT Taking advantage of contextual information can potentially boost the performance of recom-
mender systems. In the era of Big Data, such side information often has several dimensions. Thus, developing
decision-making algorithms to cope with such a high-dimensional context in real time is essential. That is
specifically challenging when the decision-maker has a variety of items to recommend. In addition, changes
in items’ popularity or users’ preferences can hinder the performance of the deployed recommender system
due to a lack of robustness to distribution shifts in the environment. In this paper, we build upon the linear
contextual multi-armed bandit framework to address this problem. We develop a decision-making policy
for a linear bandit problem with high-dimensional feature vectors, a large set of arms, and non-stationary
reward-generating processes. Our Thompson sampling-based policy reduces the dimension of feature vectors
using random projection and uses exponentially increasing weights to decrease the influence of past observa-
tions with time. Our proposed recommender system employs this policy to learn the users’ item preferences
online while minimizing runtime. We prove a regret bound that scales as a factor of the reduced dimension
instead of the original one. To evaluate our proposed recommender system numerically, we apply it to three
real-world datasets. The theoretical and numerical results demonstrate the effectiveness of our proposed
algorithm in making a trade-off between computational complexity and regret performance compared to the
state-of-the-art.

INDEX TERMS Decision-making, multi-armed bandit, non-stationary environment, online learning, recom-
mender systems.

I. INTRODUCTION
Over the past decade, recommender systems have benefited
the economy by guiding decision-makers in different roles,
such as service providers, consumers, and producers, to-
ward cost-effective and time-saving actions while retaining
the constraints, such as safety, privacy, and quality-of-service
satisfaction. Famous examples of success stories include the
recommendation systems deployed in online shopping or
streaming websites that provide personalized suggestions to
the users [1], [2], [3]. A widely-used metric to evaluate a rec-
ommender system is the returned payoff, measured in terms of
the users’ responses to recommended items. One well-known

example is the Click-Through Rate (CTR). Therefore, the
decision-making algorithms driving a recommender system
aim at maximizing the payoffs over time [4], [5], [6].

Due to the growing demand for online services, recom-
mender systems must serve a large and diverse group of
users by providing fast and accurate recommendations from
a vast set of available items. To deliver real-time services
that match the users’ interests, recommender systems take
advantage of side information. Thus, building efficient rec-
ommender systems becomes challenging in a large-scale
scenario with high-dimensional side information and various
items [4]. In addition, online recommender systems often
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face distribution drifts in the environment where they are de-
ployed. For instance, in personalized news recommendations,
customer preferences over news can change over time and ex-
hibit various seasonality patterns [7]. Hence, building robust
recommender systems poses a significant challenge due to
environmental changes. As the user’s interests in items evolve,
a learning agent must constantly adapt its decision-making
strategy to comply faster with the environmental changes
while attempting to keep the runtime as low as possible [8].
Hence, it is imperative to design adaptive and efficient al-
gorithms, in contrast to the traditional offline models where
the recommendation engine has to restart the learning from
scratch regularly [9], [10].

In this paper, we take advantage of an online framework,
namely Multi-Armed Bandit (MAB) [11], to build a rec-
ommender system and address the efficiency and robustness
challenges mentioned above. The seminal MAB problem por-
trays a player who sequentially selects an arm from a finite
set of arms. Upon being pulled, each arm produces an in-
stantaneous reward following a reward-generating process.
The player does not know the reward-generating processes
of arms in advance, which might result in sub-optimal se-
lection of arms, hence, losing rewards. Consequently, the
decision-maker might try to improve his decisions over time
by learning, that is, sampling seemingly sub-optimal arms to
obtain some information that might result in optimal actions
only in the future. A decision-making strategy shall assist the
player in maximizing the cumulative reward by finding a bal-
ance between collecting information (exploration or learning)
and accumulating rewards (exploitation or control).

The multi-armed bandit framework can accommodate dif-
ferent models of the reward-generating process of arms. In the
most basic one, namely, stationary multi-armed bandits, the
reward process follows a stationary distribution. That means
that the expected reward does not change over time. There-
fore, the player tries to find the arm with the highest average
reward as efficiently as possible. Despite being simple, the
stationary model does not suit many real-world applications,
where the environment varies dynamically. To address that
challenge, we resort to piece-wise stationary multi-armed
bandit models, where the reward-generating process of each
arm follows a specific distribution over some intervals and
changes from one interval to another, so that the expected
reward remains constant for some time but then changes at
some unknown point. As a result, the optimal arm in the sense
of highest average reward evolves over time, and the player
must keep track of the changes. This type of multi-armed
bandits is the building block of our contribution.

Besides the non-stationary model, in this paper, we also
take advantage of the contextual setting. In the Contex-
tual Multi-Armed Bandit (CMAB) problem [12], each arm
associates with a context vector. At each round of decision-
making, the player observes these contexts before selecting
an arm. We consider a CMAB problem with high-dimensional
context vectors and a large number of arms whose associated
rewards follow a non-stationary linear model; the unknown

model parameter can vary in time. The state-of-the-art meth-
ods that address such a problem [13], [14], [15], [16], [17]
either suffer from excessive computational complexity and
weak regret performance, e.g., their regret bound scales as a
factor of the context vectors’ dimension, or do not take into
account the non-stationarity of the environment. To address
these shortcomings, we propose a Thompson sampling (TS)-
based policy that uses Random Projection (RP) to perform
dimensionality reduction. We choose the random projection
method for dimensionality reduction as it is computationally
efficient [18], [19], [20]; for a matrix of size k × n with k
observed data and n features, the time complexity of RP is
O(nkd ) [21], [22], [23], where d is the reduced dimension
size. Therefore, the primary benefit of random projection lies
in accelerating computations, albeit with a potential minor de-
cline in performance, as evident from our numerical results. In
addition, RP is a memory-efficient method as we do not need
to store the past data points to perform projection to a lower
dimensional space. In addition, our algorithm uses weighted
least-squares as an efficient method to estimate the reduced
model parameter while gradually forgetting past interactions.
Our proposed algorithm guarantees an upper regret bound
that depends on the reduced dimension instead of the original
dimension of context vectors. We use three real-world datasets
to evaluate our proposed recommender system. Numerical
results demonstrate the efficacy of our proposed algorithm
in making a trade-off between computational complexity and
regret performance in non-stationary environments compared
to the state-of-the-art.

In the following, we present the problem setting and no-
tations. We then compare our work with state-of-the-art. In
Section II, we propose our decision-making strategy and in-
troduce our algorithm, namely D-LinTS-RP. Section III
includes the theoretical analysis of the regret performance of
D-LinTS-RP. Section IV is dedicated to numerical evaluation.
Section V concludes the paper.

A. PROBLEM SETTING AND NOTATIONS
We denote the set of arms by A = {1, 2, . . . , A}. For each arm
a ∈ A, xa,t ∈ Rn represents its corresponding random context
vector at time t . Let ra,t , ∀a ∈ A,∀t , represent the random
reward corresponding to the arm a at time t . The instantaneous
rewards of each arm a at each time t are independent random
variables drawn from an unknown probability distribution. In
this paper, we consider a non-stationary linear bandit model;
that is, the reward ra,t for each arm a ∈ A is linear with respect
to the context vector xa,t , and there exists an unknown time-
varying parameter vector θ∗t ∈ Rn such that

ra,t = x�
a,tθ

∗
t + ηt (1)

where ηt is a conditionally R-subGaussian zero-mean ran-
dom noise, where R ≥ 0 is a fixed constant. We as-
sume that ‖xa,t‖2 ≤ 1, ∀a ∈ A, and ‖θ∗t ‖2 ≤ 1. Therefore,
|〈θ∗t , xa,t 〉| ≤ 1.

The agent’s goal is to maximize its total accumulated re-
ward over a finite time horizon T . Alternatively, the agent
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aims to minimize the expected dynamic regret, defined as

E [R(T )] = E

[
T∑

t=1

[
x�

a∗
t ,tθ

∗
t − x�

at ,tθ
∗
t

]]
(2)

where a∗
t = arg maxa∈Ax�

a,tθ
∗
t is the optimal arm at time t , and

at denotes the played arm at time t under the applied policy.
By Id×d and 0d , we denote an identity matrix of size d × d

and a zero vector of dimension d , respectively. μmin(Z) rep-
resents the minimum eigenvalue of a positive definite matrix
Z. Moreover, for a positive definite matrix Z ∈ Rd×d and any
vector y ∈ Rd , we define the norm ‖y‖Z =

√
y�Zy.

B. RELATED WORKS
Online methods such as reinforcement learning and multi-
armed bandit algorithms are popular bases to design recom-
mender systems. Some examples include [24], [25], [26],
[27]. The core concept is to design algorithms that balance
exploration and exploitation to maximize the total payoff over
time. In the context of recommender systems, exploration
means learning the payoff of new items by recommending
those items to users. Exploitation involves recommending
the best item to users using the collected data. Besides
exploration-exploitation balance, another important criterion
is to maximize the total reward while keeping the runtime as
low as possible. That results in faster services, and thereby a
higher users’ satisfaction level.

The contextual bandit framework serves as a conventional
model to formalize and solve recommendation problems.
Some recent works include [27], [28], [29], [30], [31], [32].
Despite being designed to solve large-scale problems, the
performance of the state-of-the-art methods depends strongly
on the number of items and the dimension of the context
vectors. For instance, in [27], the authors consider the linear
contextual bandit problem and propose the BallExplore
algorithm to model and solve a recommendation problem
with high-dimensional context vectors. They prove a regret
bound that is proportional to the original dimension of context
vectors. Also, the proposed algorithm runs in quadratic time
regarding the original dimension n. As another example, in
[26], the authors propose an algorithm for personalized news
article recommendation that also runs in quadratic time w.r.t
the original dimension n. In contrast, the time complexity
of our proposed algorithm is linear concerning the original
dimension of contextual data.

Other recent works investigate the high-dimensional
CMAB problem. Some of these approaches achieve signif-
icant improvement for the regret bounds; nonetheless, they
require additional knowledge or assumptions about the char-
acteristics of the context vectors. For example, in [33], the
authors consider a sparse linear bandit problem and propose
an Upper Confidence Bound (UCB)-based policy that uses the
algorithm developed in [34] as a subroutine. They establish
an upper regret bound of order Õ(

√
nST ), where S is the

maximum number of non-zero components in the context vec-
tor. Furthermore, the authors in [35] propose a policy which

achieves a regret bound of order O(S
√

T ). The development
and the analysis are based on the assumption that the set of
context vectors is the unit ball in Rn. In comparison with
the research works described above, the authors in [36] make
several additional assumptions, e.g., on the expected covari-
ance matrix of the samples and on the distribution of the
context vectors. In return, their proposed policy achieves a
regret bound of order O(S2[log (T ) + log (n)]2). Besides, in
[37], the authors study the high-dimensional linear contextual
bandit problem assuming that the set of contexts are sparse;
i.e., only a subset of contexts is correlated with the reward.
The proposed algorithm achieves a regret bound that scales
logarithmically with the original dimension n. Further, [38]
uses a combinatorial bandit algorithm as a subroutine to select
d entries of context vectors out of n, thereby reducing the
dimension of each context vector at each decision-making
round. The reduced context vectors are used to update the
posterior distribution on the reward parameter. This work does
not provide any theoretical analysis for the regret bound.

Our work extends the state-of-the-art research in the area of
contextual bandits. In the following, we first review notably-
related research works on stationary bandits and highlight the
novelty of our approach. We then continue with reviewing the
related works on non-stationary bandits. In [14], the authors
study the CMAB problem with linear payoffs. They pro-
pose a UCB-based algorithm, namely LinUCB, that achieves

a regret bound of order O(
√

T n ln3(AT ln(T )
δ

)), δ ∈ (0, 1).
Likewise, in [39], the authors develop the decision-making
policy LinRel that achieves a regret bound similar to that
in [14]. Reference [13] proposes OFUL, a UCB-based algo-
rithm that achieves a regret bound of order O(n log(T )

√
T +√

nT log( T
δ

)). In [15], the authors utilize Thompson sampling
to develop LinTS algorithm with a regret bound of or-

der O(n
√

T (min{√n,
√

ln(A)})(ln (T ) +
√

ln (T ) ln ( 1
δ

))). In
[16], the authors propose a UCB-based algorithm CBRAP by
using the random projection in combination with a UCB-
based algorithm developed in [13]. The aforementioned al-
gorithms either are not suitable for large-scale problems, i.e.,
they show poor regret or runtime performance in large-scale
scenarios, or do not take into account the non-stationarity of
the environment.

Real-world recommender systems often serve users whose
preferences evolve over time. A recent line of research on
linear contextual bandits is devoted to designing algorithms
capable of handling this non-stationarity in the environments
[17], [40], [41], [42]. For example, in [40], the authors
study linear stochastic bandit in a drifting environment. They
propose SW-UCB algorithm that uses a sliding window to esti-
mate the unknown parameter of the linear bandit and achieves
a regret bound of order Õ(n2/3(BT + 1)1/3T 2/3), where BT is
the variation budget on the unknown parameter vector. Refer-
ence [41] examines the same problem in both slowly-varying
and abruptly-changing environments. The authors propose
D-LinUCB, a UCB-based algorithm that uses exponentially
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increasing weights to gradually forget past observations and
achieves a regret bound of order O(n2/3B1/3

T T 2/3). In [42],
the authors show that a simple strategy based on peri-
odically restarting a UCB-style algorithm is sufficient to
achieve the same performance in terms of regret. In [17], two
perturbation approaches based on LinUCB and LinTS algo-
rithms are developed to address the non-stationary stochastic
linear bandit problem. The proposed algorithms, namely
D-RandLinUCB and D-LinTS, achieve regret bounds of
order O(n2/3B1/3

T T 2/3) and O(n2/3(log A)1/3B1/3
T T 2/3), re-

spectively. The aforementioned algorithms rely on the original
context vectors; thus, they suffer high computational costs
in large-scale scenarios. In contrast, our algorithm enjoys a
regret bound that scales as a factor of a reduced dimension
d < n while it adapts to drifts in the environment.

In the following section, we describe our proposed
decision-making strategy to minimize the expected dynamic
regret defined in (2).

II. DECISION-MAKING STRATEGY
As mentioned before, the agent’s goal is to minimize the
expected dynamic regret (2) via learning the unknown
model parameter θ∗t from history up to time t − 1, Ht−1 =
{xaτ ,τ , raτ ,τ }t−1

τ=1. As discussed above, working with high-
dimensional data points affects the runtime and regret perfor-
mance of bandit algorithms. Our proposed decision-making
strategy alleviates this effect by reducing the dimension of
each context vector using the RP method. More specifically,
we project the data points in the original space Rn to a random
lower-dimensional space Rd , d < n, using a randomly de-
signed projection matrix P ∈ Rd×n whose columns are scaled
to have unit length. It is common to design the matrix P
such that each entry of P is a realization of independent
and identically distributed (i.i.d.) zero-mean variables with
Gaussian distribution [21], [23], [43]. Therefore, at time t ,
za,t = Pxa,t ,∀a ∈ A.

As we are now working in the lower-dimensional space Rd ,
the player’s goal is to learn the unknown parameterψ∗

t = Pθ∗t ,
from history up to time t − 1, H′

t−1 = {zaτ ,τ , raτ ,τ }t−1
τ=1. This

means that, based on our model and solution, the player
does not have access to the full context vectors and can only
observe the d-dimensional vectors za,t , ∀a, t . To learn the un-
known parameter ψ∗

t , we rely on the weighted l2-regularized
least-squares estimator with discount factor γ ∈ (0, 1). At
each time step, the old observations are weighted by the dis-
count factor γ < 1, which diminishes the effect of samples
in the least-squares estimation as they become outdated. That
mechanism allows the estimated parameter ψ̂t to track the
changes in the true unknown parameter, enabling the algo-
rithm to adapt to an evolving environment swiftly. Formally,
the estimated parameter ψ̂t at time t is obtained as

ψ̂t =arg min
ψ∈Rd

(
t∑

τ=1

γ t−τ
(
raτ ,τ − ψ�zaτ ,τ

)2 + λ

2
‖ψ‖2

2

)
.

(3)

Algorithm 1: D-LinTS-RP: Discounted Linear Thomp-
son Sampling with Random Projection.

1: Input: Parameters d , κ , λ ≥ 1, ξ > 0, and 0 < γ < 1.
2: Initialize: Z1 = λId×d , Z̃1 = λId×d , and b1 = 0d .
3: for i = 1, . . . , d do
4: for j = 1, . . . , n do
5: Generate gi, j ∼ N (0, κ2) and assign P[i, j] = gi, j .
6: end for
7: end for
8: for t = 1, . . . , T do
9: Calculate ψ̂t = Z−1

t bt .
10: Observe the new context vectors xa,t , ∀a ∈ A.
11: Calculate za,t = Pxa,t , ∀a ∈ A.

12: Calculate ψ̃t = ψ̂t + Z−1
t Z̃1/2

t W , where
W ∼ N (0d , ξ2Id×d ).

13: Select arm at = arg maxa∈Aψ̃
�
t za,t and observe

reward rat ,t .
14: Update Zt+1 = γ Zt + zat ,t z

�
at ,t + (1 − γ )λId×d .

15: Update Z̃t+1 = γ 2Z̃t + zat ,t z
�
at ,t + (1 − γ 2)λId×d .

16: Update bt+1 = γ bt + rat ,t zat ,t .
17: end for

where λ > 0 is a regularization parameter. At each time t , The
closed form of the weighted least-squares estimator can be
calculated as ψ̂t = Z−1

t bt , where Zt = ∑t−1
τ=1 γ −τ zaτ ,τ z�

aτ ,τ +
λγ −(t−1)Id×d and bt = ∑t−1

τ=1 γ −τ raτ ,τ zaτ ,τ . In addition,
at each time t , we define Z̃t = ∑t−1

τ=1 γ −2τ zaτ ,τ z�
aτ ,τ +

λγ −2(t−1)Id×d .
Our proposed decision-making strategy, D-LinTS-RP, is

summarized inAlgorithm 1. As mentioned before, in the initial
phase, D-LinTS-RP constructs the random projection ma-
trix P as a random matrix whose elements are drawn from
a normal distribution N (0, κ2), where κ is a parameter of
the algorithm. At each time t , similar to [17], our algorithm
perturbs the estimated parameter ψ̂t via a multivariate Gaus-
sian perturbation W ∼ N (0d , ξ2Id×d ), with ξ being a tunable
parameter. Afterward, D-LinTS-RP calculates the perturbed
estimate ψ̃t and selects the arm that has the highest value of

r̃a,t = ψ̃
�
t za,t . Finally, it observes the corresponding reward

value and updates the model parameter using the reduced con-
text vector of the selected arm and the corresponding reward.

Our randomized algorithm can be efficiently implemented
when the set of arms is large. Moreover, D-LinTS-RP adapts
to parameter changes by using the discount factor, thereby
reducing the influence of past observations with time. The
computational complexity of D-LinTS-RP is polynomial w.r.t.
the lower dimension d . We observe that for a fixed d , the com-
putational complexity of D-LinTS-RP scales linearly w.r.t.
the original dimension n. This is an improvement over the
previous methods, such as the works proposed in [13], [14],
[15], and [27].
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III. THEORETICAL ANALYSIS
The following theorem states an upper bound on the expected
dynamic regret of the decision policy D-LinTS-RP, summa-
rized in Algorithm 1.

Theorem 1: Let κ2 = 1
d and BT = ∑T −1

t=1 ‖θ∗t − θ∗t+1‖2.
For any ε ∈ (0, 1) and λ ≥ 1, with probability at least
1 − 2 exp(− dε2

8 ), the expected dynamic regret of D-LinTS-
RP is upper bounded as

E[R(T )] =

O

(
log(T )BT

1 − γ
+T

(
exp (−dε2) + ε

(
1 +

√
d

T
log(A)

)))
.

(4)

Proof: See Section III-A of supplementary material.�
The original dimension n does not appear in our regret

bound, which is an improvement over the previous works that
directly scale with n. Note that although the regret bound
(4) depends on the reduced dimension d , choosing a small
d does not necessarily reduce the regret as, in this case, the
obtained regret bound holds with a low probability. Indeed,
choosing d to be too small might even increase the regret due
to the excessive information loss. Also, as mentioned before,
choosing a smaller value of d improves the running time of
our proposed algorithm. Therefore, selecting a suitable value
for the reduced parameter d is crucial for achieving a low
computational complexity while ensuring negligible regret.
We elaborate on this trade-off in our numerical analysis in the
next section. Our algorithm does not require the knowledge of
the total variation budget BT . However, as we will see in our
numerical analysis, it requires a suitable reduced dimension
and a tuned discount factor as the input to achieve efficient
runtime and regret performance.

IV. NUMERICAL ANALYSIS
In this section, we provide more insights into the effects of
high-dimensional features and environmental changes on the
performance of learning algorithms. Besides, we clarify how
our proposed algorithm mitigates the adverse effects on run-
time and regret performance by reducing the feature dimen-
sions and adapting to drifts, respectively. We also compare the
performance of our algorithm with conventional benchmarks
using three real-world datasets. In particular, we study the
following issues through numerical experiments: (i) The per-
formance of our proposed decision-making policy compared
to benchmark algorithms in terms of runtime, Click-Through-
Rate (CTR), and Normalized Discounted Cumulative Gain
(NDCG); (ii) the effect of the reduced dimension d on the
performance of our algorithm; (iii) the trade-off between
computational complexity and regret bound together with the
balance found by our algorithm, in particular, in comparison
with the theoretical results. The source code for our algorithm
and experiments in this paper are publicly available.1

1Source code: https://github.com/saeedghoorchian/D-LinTS-RP.git

TABLE 1. Summary of Datasets’ Characteristics

Baselines: We compare our algorithm with state-of-the-
art context-aware and context-agnostic algorithms. Context-
aware benchmarks in our experiment can be divided into four
categories. First, we consider D-LinTS [17], which is de-
signed for non-stationary environments and uses the original
context vector with dimension n to select arms. Second, we
consider CBRAP [16], which is designed for bandit problems
with high dimensions in stationary environments. Similar to
our algorithm, CBRAP can reduce the dimension of original
features at each time of play. As a result, we expect that they
enjoy lower computational costs compared to other bench-
marks. Third, we consider LinTS [15] that is neither designed
for changing environments nor high-dimensional features. It
utilizes the original context vectors with dimension n to select
arms in stationary environments and has a Bayesian approach
similar to our algorithm. As the last context-aware bench-
mark, we consider DeepFM [10], which is a state-of-the-art
algorithm designed for CTR prediction, a technique widely
employed when designing offline recommender systems. This
is in contrast to the online nature of our proposed algorithm.

As the context-agnostic benchmark, we choose ε-Greedy
[44], which is a standard method despite its weakness due
to being blind to contextual information. It does not incur a
high computational cost as it does not rely on feature observa-
tions and works only based on collected rewards. In contrast,
LinTS, D-LinTS, and DeepFM always observe all features.
Hence, they incur a higher computational cost compared to
other benchmarks. We also consider a random policy that
selects an action uniformly at random at each time.

A. SETTINGS AND DATA PREPARATION
We evaluate the performance of our algorithm using three
real-world datasets. In the following, we introduce each
dataset individually and explain the data preparation steps for
our experiments. Table 1 presents a summary of the datasets
used in our experiment.

MovieLens 10M: This dataset contains users’ ratings and
tag applications applied to a set of movies from the Movie-
Lens website [45]. The ratings have a 5-star scale, with
half-star increments. Thus, the possible values for rating are
0.5, 1, 1.5, . . . , 5. In our experiment, we select the top A =
1000 movies based on the number of ratings given by the
users. We form the context vector for each user by using
the movies that the user has watched together with the tags
he applied to those movies. Tags in the MovieLens dataset
correspond to movie genres. There are 20 possible tags in
total. For example, the movie “Toy Story (1995)” has the
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following tags: “Adventure | Animation | Children | Comedy
| Fantasy”. As each movie can have multiple genres, we enu-
merate the genre tags and turn them into multi-hot vectors.
To achieve contextual attributes for each user, we average the
multi-hot vectors corresponding to all the movies the user has
watched that fall outside the top 1000 ones considered in the
experiment. That way, each column in the user’s contextual in-
formation corresponds to the estimated probability with which
the user watches movies of a particular genre. Afterward, we
extract latent context vectors for each arm (movie), using a
low-rank matrix factorization with 100 latent contexts. Then,
we represent the context vector of the movie-user pair by
concatenating the user and the movie context vectors. The
dimension of the final context vectors is n = 120. We generate
a user stream by considering only the users that have rated
any of the A = 1000 movies. We take the users in the order
of their appearances in the data. Hence, it is possible that a
specific user appears more than once in our experiment. In this
case, we sort the appearances of this specific user according
to the timestamps. Our experiment with MovieLens dataset
contains 2,885 unique users. At each time, one user from the
user stream arrives, the environment reveals the context vec-
tors, and the algorithm needs to recommend one of A = 1000
movies to the user. We employ the implicit feedback model
to generate rewards for the benchmark algorithms; if there is
a rating present in the dataset, this indicates user interest, and
we assign a reward equal to 1. Otherwise, the reward is 0.
Hence, the reward is 0 for an unwatched movie.

Jester: It consists of more than 1.7 million joke ratings
on a continuous scale from −10 to 10 for A = 140 jokes
[46]. We extract latent contexts for representing the users and
arms (jokes), using a low-rank matrix factorization with 150
latent contexts. We then concatenate these context vectors
to create the context vector of each joke-user pair. Hence,
the dimension of the final context vectors is n = 300. In the
Jester dataset, the time of user-item interaction is unavailable.
Hence, to create a user stream, we sample users from the
original dataset uniformly at random with replacement. This
procedure results in 59,132 unique users in our experiment.
The algorithm recommends a joke to an incoming user and
receives a reward of 1 if the corresponding rating is greater
than 0. If the rating is less than 0 or no rating for a joke by
a user exists, then the algorithm collects a reward equal to 0.
This pre-processing step rests on an assumption that a missing
rating corresponds to a user not being interested in a joke.
During the creation of the Jester dataset, the jokes were shown
to users sequentially. A user not rating a joke means they
stopped using the Jester website before seeing it. We interpret
this as the user losing interest; thereby, we disincentivize the
algorithm from recommending such jokes to the user.

Amazon Books: This dataset is a subset of the 2018 Amazon
Review Data [47] that contains 51,311,621 book ratings on a
discrete scale from 0 to 5. The original data spans a period
from May 1996 to October 2018. As the ratings in the original
data are highly sparse, we use a subset of the original rating
data from 15 December 2012 to 15 June 2013 to form a user

stream for our experiment. From this subset of ratings, we
extract A = 400 items that have the most reviews. Then, we
pick the 7,000 most active users (with the most number of
rated books) amongst those users that have rated the 400 items
in the experiment. We sample users from this set uniformly at
random with replacement to form the final user stream. We
extract latent contexts for representing the users and books
using a low-rank matrix factorization with latent space di-
mension 100. We concatenate these latent vectors to create
the final context vector of each book-user pair with dimension
n = 200. Similar to Movielens 10 M dataset, we consider an
implicit feedback recommendation system model. When the
algorithm recommends an item to a user, if the rating for this
user-item pair is present in the original data, the reward is 1.
Otherwise, the reward is 0.

Using the aforementioned setup, we create two user
streams for each dataset as the validation and evaluation
data with 30,000 and 100,000 time steps, respectively. We
use the validation data to tune the hyperparameters of each
benchmark algorithm by performing a grid search. In Section
IV of the supplementary material, we present a detailed
explanation of tuning the parameters and their corresponding
grids. Table 3 lists the tuned parameters of algorithms used
in our experiments. We use the training data to evaluate the
algorithms on T = 100, 000 user appearances in each user
stream. In order to simulate a non-stationary environment
during evaluation, we introduce change points at times
{5000, 10000, 20000, 35000, 50000, 65000, 80000, 90000}.
At every change point, we cyclically shift the arms backward
by one-third of the size of the arms’ set. For example, for
MovieLens 10 M dataset, we shift the arm indices by 333
at each change point. This means if the algorithm chooses
arm k after a change point, it receives the reward it would
get from arm (k + 333 mod 1000) before the change point.
This ensures a piece-wise stationary expected reward for
each arm throughout the experiment. This way of introducing
non-stationarity can correspond to a shift in users’ preferences
or in items’ popularity.

Remark 1: Assuming abrupt changes is common in the lit-
erature concerning piece-wise stationary multi-armed bandits;
nonetheless, it is necessary to mention that in most real-world
applications, the environment evolves gradually. Although the
state-of-the-art algorithms, including ours, work also in case
of gradual changes, their performance degrades as naturally,
detecting small changes is more troublesome and associated
with frequent false alarms and missed detections. Still, note
that in some applications, detecting small changes is not es-
sential, because they degrade the performance only slightly.
As such, the system would intentionally ignore small changes
to maintain efficiency, leading to a model similar to the one
considered here, i.e., abrupt changes.

To deploy the DeepFM in an online recommender system
setting, we proceed as follows. During an initial exploration
phase of length 1000, arms are chosen uniformly at ran-
dom. After the exploration phase, we re-train the model from
scratch every 1000 time steps on all the already observed
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TABLE 2. Comparison of Cumulative Reward, Cumulative NDCG@5, and Time Consumption of Different Policies Corresponding to Different Datasets and
Context Dimensions

context-reward pairs. After that, we use the DeepFM model
to estimate the expected reward of each user-item pair using
the given context vector and then choose the arm with the
highest estimated reward. After the reward is revealed by the
environment, it is saved in the model memory to be used
later for re-training the model. This way, we deploy a CTR
prediction model in our experiments such that it can make use
of newly gathered data over time.

We run the algorithms on the evaluation data for each
dataset using the aforementioned setup for 5 repetitions and
report the results by averaging over the repetitions. Random
projection matrix, if used, stays the same for each repetition.
We report the average runtime, the average cumulative reward,
and the average cumulative NDCG@5 of each policy. For
D-LinTS-RP and CBRAP, we reduce the context dimension
to 5%, 10%, 20%, and 50% of the original context dimension
to analyze the effect of the reduced dimension d on the algo-
rithms’ performance. For the sake of presentation, in Table 2,
we list some selected results corresponding to context-aware
benchmarks and reduced dimensions equal to 20% and 50% of
the original dimension, and defer the full results to Section V
of the supplementary material. All the policies are evaluated
on a single compute node with 64 Intel Xeon Gold 6226R
CPUs and 64 G of RAM. To simplify the presentation, we

show the best results for each dataset with bold numbers
and the results for our proposed algorithm with underlined
numbers.

CTR and NDCG Comparison: We depict the average CTR
and the average cumulative NDCG@5 of different policies
for the MovieLens 10 M, Jester, and Amazon Books datasets
in Fig. 1(a)–(c), respectively. The results show the impor-
tance of adapting to a non-stationary environment; algorithms
that adapt to changes in the reward-generating processes, i.e.,
D-LinTS and D-LinTS-RP, achieve higher CTR and NDCG
than policies that do not recommend items adaptively. As
we see, D-LinTS and D-LinTS-RP achieve comparable re-
sults; however, D-LinTS-RP uses the reduced context vectors,
performing more efficiently in terms of runtime compared
to D-LinTS. Note that, DeepFM performs poorly in terms
of achieved reward in our experiments. This is due to the
fact that DeepFM policy chooses arms based on estimated
rewards, effectively doing only exploitation and no explo-
ration. In addition, re-training the model from scratch with
newly collected data does not help the DeepFM to improve its
performance compared to other online benchmark methods.

The figures depicting the cumulative NDCG@5 provide
additional insight into the relative performance of the al-
gorithms. The NDCG metric assesses the ability of the
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FIGURE 1. CTR and NDCG@5 of different policies over time. Vertical lines show the change points.

evaluated policies to rank the items. NDCG@5 is defined
as DCG@5

IDCG@5 where DCG@5 = ∑5
i=1

reli
log2 i+1 and IDCG@5 is

Ideal DCG@5, or the highest achievable DCG@5 for the
given collection of items. Moreover, reli denotes the true
relevance of the item at position i, and the items’ positions
are obtained by sorting the items according to the predicted
relevance. In words, NDCG quantifies how well an algorithm
can predict the relevance of each item. In our experiments, in-
stantaneous arm rewards are used as true relevance scores for
NDCG computation. We adapt the bandit policies to output

the best arm and a score for each arm at each decision-making
round. The scores are defined based on the decision-making
strategy used by an algorithm and lead to a natural ranking of
arms induced by that policy. Therefore, we use these scores as
predicted relevance. For D-LinTS, LinTS, and D-LinTS-RP,
the score of each arm a ∈ A is the estimated expected reward

r̃a,t = ψ̃
�
t za,t . For CBRAP, the upper confidence bound is

used as the predicted relevance. For DeepFM and ε-Greedy,
estimated rewards are used as the predicted relevance. For
the random policy, the predicted relevance values are sampled
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FIGURE 2. CTR and NDCG@5 of D-LinTS and D-LinTS-RP policies over time. Vertical lines show the change points.

uniformly at random from the [0, 1] interval. This approach
allows us to assess the ability of the evaluated policies to not
only identify the best item to recommend to a user but also to
rank a set of relevant items in a manner that accurately reflects
their relevance. As can be seen from the figures, D-LinTS-RP,
with 50% and 80% reduction in context dimension, exhibits a
performance close to that of D-LinTS and outperforms all the
other benchmark policies on this ranking metric. As expected,

the ability to rank the items gradually diminishes as we con-
sider smaller values for the reduced context dimension.

Effect of Reduced Dimension d: To further elaborate on the
impact of the reduced dimension d , we compare the CTR
and NDCG performance of the D-LinTS-RP with various
reduced dimensions to those of the D-LinTS algorithm. In Fig.
2(a)–(c), we depict the results for MovieLens 10 M, Jester,
and Amazon Books datasets, respectively. When we increase

556 VOLUME 5, 2024



the reduced dimension d , the performance of D-LinTS-RP
approaches that of D-LinTS in terms of CTR and NDCG,
with D-LinTS-RP matching D-LinTS eventually by using d
equal to the original context dimension. Therefore, for large-
scale recommender systems with changing users’ interests,
D-LinTS-RP is a better choice than D-LinTS, provided that
we use a suitable reduced dimension as the input to the algo-
rithm.

As evident from the theoretical and numerical results, the
choice of the reduced dimension d impacts the performance
of the D-LinTS-RP algorithm. When we increase the reduced
dimension d , the regret of D-LinTS-RP decreases, and the
performance of D-LinTS-RP approaches that of D-LinTS in
terms of both runtime and reward. Although larger values of
d expand the regret bound, this does not necessarily mean that
the achieved cumulative reward will be different in practice.
That is the case for our experiment on the Jester dataset, where
the cumulative reward is not affected much as we decrease the
value of reduced dimension d .

Trade-off between Computational Complexity and Regret
Bound: The discussion above suggests that the reduced di-
mension d makes a trade-off between the computational
complexity of our algorithm and its regret performance. As
expected, large d increases the runtime, while choosing a
small d might yield information loss, thereby harming the
performance w.r.t. the accumulated rewards. However, the
results show that there are reduced dimensions using which
D-LinTS-RP’s runtime drops significantly while the algorithm
continues to enjoy a high cumulative reward (See Tables 4,
5, and 6 in the supplementary material for the full results).
For example, for the MovieLens dataset, reducing the context
dimension to 50% results in just a 0.1% drop in achieved
reward while reducing the runtime by 29.7%. For the Jester
dataset, reducing the context dimension to 20% results in
only a 0.8% drop in accumulated reward, while the runtime
of the algorithm decreases significantly by 90%. Finally, for
the Amazon Books dataset, reducing the context dimension
to 20% results in a 2% reduction in accumulated reward but
leads to a 77% decrease in the runtime.

V. CONCLUSION
We developed a decision-making policy, namely D-LinTS-
RP, for the linear CMAB problem that is implementable in
recommender systems. D-LinTS-RP is specifically suitable
for scenarios with a large set of items, high-dimensional side
information, and non-stationary environments. The policy uti-
lizes a weighted least-squares estimator and takes advantage
of random projection and exponentially increasing weights
to reduce the dimension of the context vectors and the in-
fluence of past observations, respectively. We theoretically
analyzed D-LinTS-RP and proved an upper regret bound that
depends on the reduced dimension of the context vector. For
numerical evaluation, we apply D-LinTS-RP on real-world
datasets for content recommendation. The results demonstrate
its effectiveness in making a trade-off between computational

complexity and regret performance in non-stationary envi-
ronments. Besides developing online content recommender
systems, our work fits several real-world application domains,
such as edge computing, medical applications, and stock
trading.
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