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ABSTRACT In this work, we present a causal speech enhancement system that is designed to handle
different types of corruptions. This paper is an extended version of our contribution to the “ICASSP 2023
Speech Signal Improvement Challenge”. The method is based on a generative diffusion model which has
been shown to work well in scenarios beyond speech-in-noise, such as missing data and non-additive
corruptions. We guarantee causal processing with an algorithmic latency of 20 ms by modifying the network
architecture and removing non-causal normalization techniques. To train and test our model, we generate a
new corrupted speech dataset which includes additive background noise, reverberation, clipping, packet loss,
bandwidth reduction, and codec artifacts. We compare the causal and non-causal versions of our method to
investigate the impact of causal processing and we assess the gap between specialized models trained on a
particular corruption type and the generalized model trained on all corruptions. Although specialized models
and non-causal models have a small advantage, we show that the generalized causal approach does not suffer
from a significant performance penalty, while it can be flexibly employed for real-world applications where
different types of distortions may occur.

INDEX TERMS Causal processing, diffusion models, generalized speech enhancement.

I. INTRODUCTION
Speech enhancement algorithms typically address the prob-
lem of recovering clean speech signals from mixtures that
contain speech and additive background noise [1]. Common
approaches estimate the speech signal using a filter in the
time-frequency domain to reduce noise while avoiding speech
distortions [2]. In real-world speech communication, however,
there are numerous other factors besides additive background
noise that can degrade speech signals. These include reverber-
ation, transmission errors, limited bandwidth, codec artifacts,
and non-linearities of recording and playback equipment.
To address this broad range of corruptions, several recent
attempts have been made to find generalized (sometimes
called universal) speech enhancement models [3], [4], [5].

This can be achieved by training a single model on a dataset
comprising multiple corruptions [6], or employing a re-
generation strategy, where a two-step approach is used to first
enhance and then synthesize speech signals [7].

Classical speech processing tasks include denoising and
dereverberation, which can be described as an (approximate)
inversion of an additive or convolutive degradation model.
For this purpose, deep learning-based methods often employ
predictive models to either accomplish regression of clean
waveform samples [8] and/or spectral components [9], or to
estimate a multiplicative mask that is applied to the input
spectrogram [10]. In contrast, tasks such as packet loss con-
cealment or bandwidth extension are missing-data problems,
where regression and masking-based approaches often reach
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their limitations [11]. These missing-data problems can be
interpreted as audio inpainting tasks which require the gener-
ation of new signal content, i.e., filling the gaps of lost packets
or missing frequency bands in a speech signal. Consequently,
the use of generative models is a natural choice for these tasks.
Per definition, generative models aim at learning the prior
distribution of the target data. The learned prior distribution
is then used to estimate clean speech given a corrupted input
that is assumed to lie outside the learned distribution.

Generative and predictive speech enhancement models
have been shown to differ in the type of distortions they in-
troduce into the clean speech estimates [12]. While predictive
methods are prone to noise leakage and speech distortions,
generative models tend to hallucinate when presented with
challenging inputs, resulting in speech-like sounds with poor
articulation and no semantic meaning [13]. However, since
generative models leverage the learned speech prior, the en-
hanced speech will resemble the characteristics of the clean
speech training data which is typically noise-free and of
high quality. Moreover, due to their ability to deal with non-
additive corruption types and missing data problems while
still performing well on denoising and dereverberation tasks
[11], generative speech enhancement models are good candi-
dates for generalized speech enhancement.

Recently, diffusion-based generative models [14], or simply
diffusion models, have been successfully applied to the task
of speech enhancement [13], [15], [16]. Diffusion models
define data recovery and generation problems as an iterative
denoising task, in which a deep neural network (DNN), also
called the score model, learns to remove the Gaussian noise
that was progressively added in a forward diffusion process.
To enable the conditional generation of clean speech given a
corrupted signal, it was proposed to use a task-adapted diffu-
sion process and condition the score model on the corrupted
input [15], [16]. Currently, most diffusion models employ
convolutional-based U-Net architectures as score models [13],
[15]. However, standard U-Net-like architectures do not have
a causal structure, meaning that the network considers infor-
mation from the future to make predictions about the current
time frame. This makes the resulting diffusion model un-
suitable for online (and potentially real-time capable) signal
processing where causality is a critical requirement.

In this paper, we present a causal speech enhancement
method that is based on generative diffusion models and is
designed to handle different types of corruptions. This is an
extended version of our previous publication [17], which we
contributed to the “ICASSP 2023 Speech Signal Improve-
ment Challenge” (“SIG challenge”) [18]. Compared to our
original work on diffusion-based speech enhancement [13],
we modify the network architecture to meet the causality
requirement and now operate on super-wideband speech (32
kHz). By adjusting the short-time Fourier transform (STFT),
we achieve an algorithmic latency of 20 ms, which we define
as the latency introduced by frame-based processing, i.e., the
latency that remains when using an infinitely fast processing
device. Moreover, we address the more generalized speech

enhancement problem by training the model on different cor-
ruption types. For this purpose, we generate a new dataset that
contains additive background noise, reverberation, clipping,
packet loss, bandwidth reduction, codec artifacts, as well as
different combinations thereof. In the experiments, we evalu-
ate on each individual corruption set and compare the model
trained on all corruptions with specialized models only trained
on the specific corruption type. Furthermore, we compare
the causal approach against the non-causal counterpart. The
results suggest that while specialized models and non-causal
models have certain benefits, the causal model trained on all
corruptions can keep up despite the causality constraint and
provides a single model for generalized speech enhancement.

II. METHOD
In this section, we summarize our contributions to diffusion-
based speech enhancement [13], [16] and highlight all
modifications that were carried out to meet the causality
requirement.

A. DATA REPRESENTATION
We represent all audio signals in the complex-valued STFT
domain. Thus, comparable to complex spectral mapping [19],
the diffusion model aims at estimating the clean real and
imaginary spectrograms from the corrupted ones. Formally,
we operate on complex spectrograms that are elements of
C

K×F , where K denotes the number of time frames depen-
dent on the audio length, and F is the number of frequency
bins. To compensate for the typically heavy-tailed distribu-
tion of STFT speech amplitudes [20], we apply an amplitude
transformation

c̃ = β|c|αei∠(c) (1)

to all complex STFT coefficients c, where ∠(·) represents
the angle of a complex number, α ∈ (0, 1] is a compression
exponent which brings out frequency components with lower
energy (e.g. fricative sounds of unvoiced speech) [21], and
β ∈ R+ is a scaling factor to roughly normalize amplitudes
within [0,1].

Hereafter, we denote clean speech as x0 ∈ C
d and its cor-

rupted version as y ∈ C
d , both of which represent flattened

and amplitude-transformed spectrograms consisting of d =
KF complex coefficients.

B. DIFFUSION MODEL
Following our original approach [13], we use a task-adapted
diffusion process for the conditional generation of clean
speech x0 given a corrupted input y. To this end, we define
a forward stochastic process whose mean interpolates linearly
between x0 and y. Using the continuous-time formulation for
diffusion models [14], the forward process is modeled as the
solution to the stochastic differential equation (SDE)

dxt = γ (y − xt )dt + g(t )dw , (2)

where xt ∈ C
d denotes the process state at time t ∈ [0, T ],

γ ∈ R controls the transition from x0 to y, and g(t ) ∈ R is
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the diffusion coefficient that controls the amount of Gaussian
noise induced by a standard Wiener process w. Note that t is
only used to index the stochastic process and is completely
unrelated to the time dimension of the audio signal.

The forward process can be time-inverted [14], resulting in
a corresponding reverse process

dxt = [−γ (y − xt ) + g(t )2∇xt log pt (xt |y)
]

dt + g(t )dw ,

(3)
where the score function ∇xt log pt (xt |y) is intractable and
therefore approximated by a score model sθ , parameterized
by θ .

To train the score model sθ , we use the denoising score
matching objective [22], which approximates the score func-
tion by estimating the Gaussian noise z ∼ N (0, I) injected by
the Wiener process, resulting in the loss function

arg min
θ

Et,(x0,y),z,xt |(x0,y)

[∥∥∥∥sθ (xt , y, t ) + z
σt

∥∥∥∥2

2

]
, (4)

where the expectation is approximated by sampling all ran-
dom variables at each training step. For a complete derivation
of the loss function, we refer to our previous work [13].

Once the score model is trained, the reverse process (3) can
be solved by replacing the score function with its approxima-
tion sθ and using a numerical SDE solver. For this purpose, we
use the predictor-corrector sampler [14] with the configuration
described in Section IV-B and initialize the reverse process
with

xT ∼ NC

(
xT ; y, σ 2

T I
)

, (5)

where σ 2
T corresponds to the noise power at time step t = T .

The enhancement process is then based on iterating through
the reverse process starting at t = T and ending at t = 0.

C. NETWORK ARCHITECTURE
As a score model, we use a modified version of the Noise
Conditional Score Network (NCSN++) [14]. The network is
a U-Net-like encoder-decoder architecture based on 2D con-
volutions, which takes complex spectrograms xt and y, and
the process timestep t as input. Real and imaginary parts are
considered as separate channels and the convolutions are per-
formed over time and frequency. For the non-causal baseline,
we use the same network configuration as in SGMSE+ [13],
except that attention is only used in the bottleneck of the
network, resulting in 64.8 M parameters.

To design a causal version of NCSN++, we apply the fol-
lowing modifications to the architecture. First, we modify the
padding in the 2D convolutions and truncate the output such
that the convolution along the time dimension is causal. An
example of this procedure is illustrated in Fig. 1 for a 1D
convolution of kernel size 3. Next, we replace all group nor-
malization layers with cumulative group normalization [23],
aggregating statistics recursively. Downsampling in the time
dimension is performed with strided convolutions and cor-
responding upsampling with transposed strided convolutions.

FIGURE 1. To obtain a causal convolution kernel, zero padding (light grey
elements) is modified and the output is truncated. (a) Regular Conv.
(b) Causal Conv.

Note that the strided and transposed strided convolutions re-
main causal operations with the padding described above. Up-
and downsampling in the frequency dimension are realized
with 1D finite impulse response filters [24]. Finally, all at-
tention layers as well as the progressive growing path are
removed from the network, resulting in 55.7 M parameters
in total. Considering all modifications, we would like to point
out that the comparison between the causal and non-causal
approach is also a comparison of different network architec-
tures, respectively a comparison of the method in [13] with
the proposed causal method.

Contrary to the SIG challenge submission [17], we choose
not to apply an automatic gain control. Instead, we train the
score model on various input gains. For the reverberation
corruption set, however, we noted that the causal diffusion
model had difficulties in estimating the correct output gain,
resulting in enhanced files with monotonically increasing gain
over the whole utterance. We addressed this issue by training
the score model on normalized clean speech targets while
maintaining the varying input level. Thus, the diffusion model
learns to generate normalized clean speech conditioned on
variable input levels which results in learning a simpler target
distribution. This approach has shown improved robustness
for reverberant data.

III. GENERALIZED SPEECH ENHANCEMENT
In this work, we extend the classical speech enhancement task
of removing additive background noise and address a more
generalized class of speech enhancement. More specifically,
we consider the task of reconstructing clean speech that has
been degraded by a set of different signal modifications, which
we will describe in detail below. Besides training the model
on different corruptions, we augment the data during training
with variable input gains to make the model more robust
against loudness variations.

A. BACKGROUND NOISE
To simulate speech recordings that have been degraded by
additive background noise, we assume an additive mixture
model

y = x + n (6)

where the corrupted signal y is the sum of clean speech x and
background noise n.
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B. REVERBERATION
Reverberation is caused by room acoustics and is character-
ized by multiple reflections on the room enclosures [25]. Here,
we assume a convolutive corruption model

y = x ∗ h (7)

where the clean speech x is convolved with a room impulse
response (RIR) h representing the acoustic path between the
source and the listener.

C. CLIPPING
Clipping distortion occurs when the amplitude of a signal
exceeds the maximum range that can be faithfully represented
by, e.g., a fixed precision digital system or an electrodynamic
microphone with limited membrane displacement range. This
is modeled by the corruption model

y = min(max(x, Amin), Amax) (8)

where the speech signal x is clipped between a minimum
amplitude Amin and a maximum amplitude Amax.

D. PACKET LOSS
In digital speech communication, such as voice-over-IP, data
packets can get lost because of different transmission break-
down causes such as software corruption, interference, or
jammed network nodes. Following the work in [26], we as-
sume packets of length 20 ms and replace the signal with zeros
if a packet is lost.

E. BANDWIDTH REDUCTION AND CODECS
Bandwidth reduction occurs when an audio signal at a high
sampling rate is converted to a lower rate, e.g., to reduce
the data transmission rate (bitrate) in a telecommunication
system. The corruption process is linear and typically involves
an anti-aliasing low-pass filter followed by a decimation
operation:

y = Resample(x ∗ a, f h
s , f l

s ) (9)

where a is the impulse response of the anti-aliasing filter, f h
s

is the original high sampling rate and f l
s is the lower target

sampling rate.
Modern digital speech communication systems also employ

source coding techniques to reduce the required bitrate. By
considering specific signal characteristics (e.g. speech) and
psychoacoustic models, lossy coding schemes offer a large
reduction in bitrate but generally result in audible distortions
and artifacts in the decoded signal, which become more severe
as the compression ratio increases. In this work, we simulate
the effect of coding by applying a speech or audio encoder,
Enc(·), and the corresponding decoder, Dec(·), subsequently:

y = Codec(x) = Dec (Enc(x)) (10)

TABLE 1. Clean Speech Files Statistics for the MultiCorruption Dataset

F. COMBINATIONS
To simulate the occurrence of multiple corruptions at the same
time, we use the aforementioned signal modifications and ran-
domly select corruption chains among plausible candidates,
e.g. {Reverb → BackgroundNoise → PacketLoss}.

IV. EXPERIMENTAL SETUP
A. DATA
To train and test our model, we generate a new dataset which
we call MultiCorruption consisting of pairs of clean and cor-
rupted speech files. We utilize clean speech data from the DNS
challenge [27]. More specifically, we use a subset of the clean
speech files from the LibriVox recordings [28] (“read_speech”
directory) and the entire VCTK speech data [29]. To select
the subset of the LibriVox recordings, we use speakers who
have between 100 and 140 utterances and make the dataset
gender-balanced by using an open-source gender recognition
method.1 This results in 228 speakers (114 male / 114 female),
of which 220 are used for training and 4 each for validation
and testing. The VCTK corpus contains 110 speakers with
approximately equal numbers of male and female speakers.
Following previous works [13], [15], [30], we are using speak-
ers “p226” and “p287” for validation, speakers “p232” and
“p257” for the test, and the remaining speakers for training.
Table 1 contains further details regarding the clean speech
data.

To generate the corrupted speech files, we define six
corruption datasets (Noise, Reverb, Clipping, PacketLoss,
BWR-Codecs, and Combinations), corresponding to the sig-
nal modifications listed in Section III. Note that we group
bandwidth reduction and codecs into one corruption set as
codecs also often include limited bandwidth. Each corrup-
tion set is generated using all clean speech files. Thus the
total length of training data for the model trained on all cor-
ruptions results in 694.2 h. For additive background noise,
we use noise files from the DNS challenge [27] and mix
clean speech and noise at a segmental signal-to-noise ratio

1[Online]. Available: https://github.com/x4nth055/gender-recognition-by-
voice
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(SNR)2 uniformly sampled in [−10, 15] dB. Reverberant data
is generated using RIRs also taken from the DNS challenge
[27], but cropped such that the direct path occurs at the very
beginning. This helps guide the training process because no
delay is introduced between the reverberant and clean speech
file. For clipping, we define Amin and Amax as percentile
thresholds, such that Amin correspond to the threshold of
the k-th percentile, where k is uniformly sampled between
[0, 30], and Amax corresponds to the threshold of the (100 −
k)-th percentile. For packet loss, we randomly sample the
amounts of consecutive packets lost per drop between [1, 5],
and sample the number of drops per second between [3, 6].
For bandwidth reduction, we pick an anti-aliasing filter type
among Chebyshev, Butterworth, Elliptic, and Bessel and a
filter order among {2,4,8}. Decimating is then realized with a
down-scaling factor sampled in {2,4,8}. The utterance is then
resampled at the original 32 kHz with polyphase filtering. For
the codec corruption, we use the AMR-NB, AMR-WB, and
EVS speech communication codecs, as well as MP3 coding
with bitrates varying between 6.6 kb/s and 64 kb/s. Note that
the AMR-NB and AMR-WB codecs implicitly include band-
width reduction to 8 kHz and 16 kHz, respectively. In addition
to the single corruptions, we also simulate various plausible
combinations, using the same random corruption parameters
as mentioned above.

Besides using the MultiCorruption dataset, we train and test
our model on a 32 kHz version of the publically available
Voicebank-Demand dataset [30]. This dataset is often used as
a benchmark for single-channel speech enhancement. The ut-
terances are artificially contaminated with eight real-recorded
noise samples from the DEMAND database [31] and two ar-
tificially generated noise samples (babble and speech shaped)
at SNRs of 0, 5, 10, and 15 dB. The test utterances are mixed
with different noise samples at SNR levels of 2.5, 7.5, 12.5,
and 17.5 dB.

B. HYPERPARAMETER SETTINGS
All processing is performed at a sampling frequency of 32
kHz. We use an STFT with a 638-point Hann window and
160-point hop, which results in an algorithmic latency of
20 ms, as we use purely causal processing. The diffusion
process hyperparameters are identical to those in [13]. We
use 30 diffusion steps for the reverse diffusion and adopt
the predictor-corrector-scheme [14] with one step of annealed
Langevin dynamics correction and a step size of 0.5. Please
note that we have not optimized the sampler configuration
for the individual corruption types, which could potentially
improve the performance, as it was the case for dereverbera-
tion in [13]. We train the score model sθ with the denoising
score matching objective [14] using the Adam optimizer with
a learning rate of 10−4. We train each model on two NVIDIA
RTX A6000 GPUs using an effective batch size of 2 × 8 = 16
and an exponential moving average over the parameters with

2For the computation of the segmental SNR, we use the script from the
DNS challenge [27].

a factor of 0.999. To allow a fair comparison between the
specialized and generalized models, we train all models for
300 k training steps which takes around three days. Different
from all other conducted experiments, the training for the
Voicebank-Demand dataset is trained on four NVIDIA RTX
A5000 GPUs with an effective batch size of 4 × 4 = 16 last-
ing for about two days.

C. EVALUATION METRICS
We describe here the standard speech enhancement metrics
we used to assess the performance of the proposed method.
A distinction is made between intrusive metrics computed
by algorithms rating the processed signal in relation to the
clean reference signal, and non-intrusive metrics which can be
employed to evaluate real recordings when no clean reference
is available.

Intrusive metrics include POLQA [32] for predicting
speech quality which takes values from 1 (poor) to 5 (ex-
cellent) as usual for mean opinion scores (MOS). We also
report PESQ [33], which is the predecessor of POLQA and
is still widely used in the research community. The PESQ
score lies between 1 (poor) and 4.5 (excellent). We further use
ESTOI [34] as an intrusive measure of speech intelligibility.
This metric yields values between 0 and 1, with higher values
indicating better intelligibility. We report the speech mode
of ViSQOL [35], a full-reference metric for perceived audio
quality that is based on a model trained with data from sub-
jective tests. Moreover, we calculate standard energy-based
metrics including the Scale-Invariant Signal-to-Distortion Ra-
tio (SI-SDR) [36], and the log spectral distance (LSD). Both
are measured in dB, with higher values for SI-SDR and lower
values for LSD indicating better performance.

For non-intrusive speech quality assessment, we use the
model DNSMOS P.835 [37] which is based on a listening
experiment according to ITU-T P.835 [38] and provides three
MOS scores: speech quality (SIG), background noise quality
(BAK), and the overall quality (OVRL) of the audio. Fur-
thermore, we use Wav-to-Vec MOS (WVMOS) [39] which
is a non-intrusive MOS prediction method for speech quality
evaluation using a fine-tuned wav2vec2.0 model [40].

V. RESULTS
In this section, we present the results of the proposed
causal speech enhancement method and compare its perfor-
mance against the non-causal counterpart. First, we present
results for background noise removal using the standard-
ized Voicebank-Demand dataset. Then, we investigate the
method’s generalization capability on different corruption
types using the MultiCorruption dataset. Finally, we report the
results evaluating on the SIG challenge blind set.

A. RESULTS ON VOICEBANK-DEMAND
In Table 2, we report speech enhancement results on the
standardized Voicebank-Demand dataset. First, we discuss
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TABLE 2. Results Obtained for the Voicebank-Demand. Values Indicate Mean and Standard Deviation

TABLE 3. Results Obtained for the Noise Test Set. Values Indicate Mean and Standard Deviation

ablations using different normalization techniques. The non-
causal model does not use any normalization before pro-
cessing, whereas the method Non-causal (norm. noisy) is
normalized based on the noisy mixture. We observe that
these two methods differ only in a small amount in all re-
ported metrics with a slight advantage for the model without
normalization. Second, we show that changing the up- and
downsampling in the NCSN++ architecture to non-causal
strided and transposed strided convolutions results in a perfor-
mance reduction mostly audible in the amount of background
noise reduction. This is also reflected in the metrics as Non-
causal (strided convs) shows a 0.19 lower performance in
BAK compared to the non-causal method using the original
FIR filter as in [13]. Last, we see that enforcing the strided
convolution to be causal as shown in Fig. 1 has no negative
impact on performance (see last row in Table 2). In summary,
when accumulating the ablations we observe that the proposed
causal configuration performs on par with the original non-
causal NCSN++.

B. RESULTS ON MULTIPLE CORRUPTIONS
To systematically analyze how well the proposed method per-
forms on different corruption types, we test the model on the
individual corruption sets described in Section III. For both
causal and non-causal settings, we compare the generalized
model trained on the entire dataset (denoted as All) with spe-
cialized models only trained on the respective corruption set.
Listening examples can be found online.3

We start by looking at the evaluation on the Noise corrup-
tion set which contains additive background noise (see Table
3). It can be seen that the non-causal method performs gener-
ally better than the causal method. This behavior is expected:

3[Online]. Available: https://uhh.de/inf-sp-causal-diffusion

FIGURE 2. Training convergence on the Noise corruption set for the causal
and the non-causal model.

due to speech being more temporally correlated than noise,
the non-causal model can effectively use future information
to disentangle speech and noise. However, the performance
difference between the causal and non-causal variants is not
significant for the generalized models trained on all data,
where the non-causal model leads by a margin of only 0.08
in POLQA, 0.04 in PESQ, and 0.6 dB in SI-SDR. Listening
to the enhanced files confirms that both methods sound com-
parable. For the specialized models, however, this difference
is somewhat more pronounced, which can also be confirmed
by informal listening, with fewer speech distortions for the
non-causal model for challenging input.

Interestingly, we have noted different convergence behavior
during training for the causal and the non-causal models. Fig.
2 shows the speech enhancement performance in PESQ eval-
uated on 20 randomly selected utterances from the validation
set after each epoch. While the causal model converges faster,
the non-causal model eventually surpasses the causal model.
This different behavior is potentially due to the modified
network architecture and may result from different up- and
downsampling with strided and transposed strided convolu-
tions as opposed to regular convolutions with FIR filters (see
Section II-C).
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TABLE 4. Results Obtained for the Reverb Test Set. Values Indicate Mean and Standard Deviation

TABLE 5. Results Obtained for the Clipping Test Set. Values Indicate Mean and Standard Deviation

TABLE 6. Results Obtained for the PacketLoss Test Set. Values Indicate Mean and Standard Deviation

Next, in Table 4 we compare the results on the Reverb cor-
ruption set, which contains noiseless reverberant speech data.
We note that the specialized models have an advantage over
the generalized models for the intrusive metrics (except for
ViSQOL, which seems to be insensitive to reverberation). This
reveals that task-specific training on dereverberation helps
to improve the performance compared to multi-task training.
Furthermore, we observe that non-causal models have a con-
sistent improvement over the causal models, which shows that
future information can be effectively leveraged for derever-
beration. Nevertheless, the performance of the causal models
remains competitive and shows significant improvements with
respect to the unprocessed files.

In Table 5, we report the results on the Clipping corruption
set. For the intrusive metrics, we observe a rather large per-
formance difference between the specialized models and the
generalized models trained on all data. In the causal setup, the
generalized model sees a drop of 0.57 in POLQA and PESQ,
0.06 in ESTOI, and 3.2 dB in SI-SDR. A possible cause for
this is the inclusion of combinations such as clipping followed
by bandwidth reduction in the All dataset. This leads to ut-
terances where the resulting corruption is relatively different
from that of pure clipping since clipping mainly introduces
high frequencies that are subsequently removed by bandwidth

reduction. Interestingly, we note that the SIG metric for the
unprocessed data (i.e. the clipped signals) shows a high value
which does not reflect our listening experience, indicating that
this metric is not particularly suitable for assessing clipping
artifacts.

Table 6 reports the results using the PacketLoss corruption
set. We can observe a clear improvement in all metrics with
respect to the unprocessed files with benefits for the special-
ized models. This advantage of the specialized model seems
to be more pronounced for the causal case, which is also
confirmed by informal listening. However, for this typical in-
painting task, we actually assumed that the non-causal model
would perform significantly better than the causal model since
future information should be heavily used by the non-causal
model. This is, however, only the case for POLQA and is not
reflected in the other metrics. We argue that the causal model
still performs comparably well, because the gaps are relatively
short (20-100 ms), and the past temporal context given by the
receptive field of the causal model still covers enough speech
parts to draw inferences to fill the gaps.

In Table 7, we show the results for the BWR-Codecs corrup-
tion set, which contains bandwidth-reduced audio and codec
artifacts. We notice that the unprocessed files already yield
good values for speech quality and intelligibility measures.
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TABLE 7. Results Obtained for the BWR-Codecs Test Set. Values Indicate Mean and Standard Deviation

TABLE 8. Results Obtained for the All Test Set. Values Indicate Mean and Standard Deviation

While the specialized models further improve these metrics,
the generalized models slightly reduce them, although they
still turn out to be quite high (PESQ and POLQA > 3.5) in
absolute terms. It should, however, be noted that PESQ and
POLQA have been reported to correlate poorly with listen-
ing experiments for bandwidth reduction [11]. We thus also
include the log spectral distance (LSD) as a common metric
used for bandwidth extension and observe that the causal
models perform slightly better in it than the non-causal model.
Note that for brevity, we omit SIG, BAK, and OVRL as they
have not shown any difference on this corruption set.

Finally, Table 8 shows the average performance using all
corruption sets, including different combinations of corrup-
tions. It can be seen, that the non-causal model has a slight
advantage over the causal approach but does not suffer from
a significant performance penalty except a drop of 0.22 in
POLQA.

In summary, we find that task-specific models trained on
a specific corruption type typically outperform generalized
models using multi-task training. This follows the intuitive
explanation that a more complex task leads to worse overall
performance for the same network capacity. Similar behavior
has also been reported for image restoration tasks [41]. In ad-
dition, we observe that the modification to causal processing
slightly degrades the performance. This is consistent with the
intuition that the causal model can only use information from
the past, while the non-causal model can also leverage future
information for the estimation.

C. RESULTS ON THE SIG CHALLENGE BLIND SET
In Table 9, we present the results when evaluating the causal
and non-causal model on the 500 files from the 2023 SIG
challenge’s blind test set [18]. Since there is no reference sig-
nal available, we can only report non-intrusive metrics. While
both models improve all metrics, there is a small advantage
for the non-causal model.

TABLE 9. Results Obtained for the Blind Set of the SIG Challenge

D. COMPUTATIONAL COMPLEXITY
With the given reverse sampler configuration, the proposed
method requires calling the score model 60 times to process
an utterance. While designed to run on a GPU, this currently
poses a practical limitation in real-time applications on a CPU.
Processing a file of 10 s requires 236 TMACs and takes 30.5 s
on a GPU and 30 minutes on a CPU.4 However, since the
method performs strictly causal signal processing, real-time
operation is still theoretically possible, assuming that the com-
putational complexity can be decreased in the future. One
possible avenue towards decreased complexity is reducing the
number of diffusion steps, e.g., as in [42]. This is an active
area of research which we plan to focus on in future work.

VI. CONCLUSION
In this work, we have presented a causal speech enhancement
method with an algorithmic latency of 20 ms that is based on
generative diffusion models. To guarantee causal processing,
we have modified the network architecture and removed all
non-causal normalization techniques. We addressed a more
generalized speech enhancement scenario beyond speech-in-
noise by training and testing the model on multiple corruption
types. For this purpose, we generated a new corrupted speech
dataset which includes additive background noise, reverber-
ation, clipping, packet loss, bandwidth reduction, and codec
artifacts. In the experiments, we have conducted evaluations

4Average processing time for 10 audio files on an NVIDIA GeForce RTX
2080 Ti GPU, in a machine with an Intel Core i7-7800X CPU @ 3.50 GHz.
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on the individual corruption sets and compared the gener-
alized model trained on all data with specialized models
trained solely on each specific corruption type. Moreover, we
compared the causal diffusion model against the non-causal
baseline. Our findings revealed that, although specialized
models and non-causal models have a small advantage, the
generalized causal approach does not suffer from a significant
performance penalty, while being more practicable for real-
world applications.
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