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ABSTRACT Speech envelope reconstruction from EEG is shown to bear clinical potential to assess speech
intelligibility. Linear models are commonly used to this end, but they have recently been outperformed in re-
construction scores by non-linear deep neural networks, particularly by dilated convolutional networks. This
study presents Sea-Wave, a WaveNet-based architecture for speech envelope reconstruction that outperforms
the state-of-the-art model. Our model is an extension of our submission for the Auditory EEG Challenge of
the ICASSP Signal Processing Grand Challenge 2023. We improve upon our prior work by evaluating model
components and hyperparameters through an ablation study and hyperparameter search, respectively. Our
best subject-independent model achieves a Pearson correlation of 22.58% on seen and 11.58% on unseen
subjects. After subject-specific fine-tuning, we find an average relative improvement of 30% for the seen
subjects and a Pearson correlation of 56.57% for the best seen subject.Finally, we explore several model
visualizations to obtain a better understanding of the model, the differences across subjects and the EEG
features that relate to auditory perception.

INDEX TERMS Computational neuroscience, EEG, speech envelope, WaveNet.

I. INTRODUCTION
A. BACKGROUND
Listening to continuous speech elicits a corresponding brain
response that can be measured with electroencephalography
(EEG). The reconstruction (or decoding) of the presented
speech stimulus from EEG is a way to quantify neural
tracking, a neural mechanism that supports speech perception
and has been demonstrated for both acoustic and higher order
representations of speech. Reconstructing the speech stimulus
envelope is potentially useful for diagnostic tests, as speech
envelope tracking has been successfully linked to speech
intelligibility [1], [2], [3], [4]. While linear models have been
used extensively to relate EEG to speech (e.g. [2], [5], [6],
[7]), they suffer from low reconstruction scores compared
to deep learning-based non-linear models [8], [9], [10],
especially the subject-independent models. Currently, dilated

convolutional non-linear neural networks have been applied
successfully to auditory decoding, both for direct regression
to a speech feature, such as the speech envelope [10] and
fundamental frequency [11], and for classification [12] in
a “match-mismatch” paradigm [13]. This development is
related to the accessibility of larger datasets, essential for
training models with increased capacity. The 2023 ICASSP
Signal Processing Grand Challenge provides a substantial
dataset that contributes to the further investigation of deep
learning-based decoding approaches. The second sub-task
focuses on reconstructing speech envelopes from EEG
signals to establish correlations between the speech signal
and neural activity. This dataset comprises recordings from
85 subjects, who listened to 108 minutes of single-speaker
stimuli on average, culminating in approximately 157
hours [14], [15].
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B. PROBLEM STATEMENT
In this paper, we focused on the regression subtask of the
Auditory-EEG challenge [16]. The regression task consists
of reconstructing the auditory stimulus envelope from the
recorded 64-channel EEG signal (from R64×t to R1×t ). The
challenge organizers proposed the Pearson correlation (Pear-
son r) for measuring agreement between the predicted and
actual envelopes. Reconstruction scores are computed per
subject s by averaging across stimuli (Pearson rs). The final
model performance (score) is a weighted sum of the Pearson
rs’s averaged over a set of held-out stories (S1) and a set of
held-out subjects (S2), computed as

score = 2

3

∑
s∈S1

Pearson rs

|S1| + 1

3

∑
s∈S2

Pearson rs

|S2| . (1)

C. METHODS
Linear models are commonly applied to reconstruct speech
envelopes [2], [5], [6], [7], but they suffer from low
reconstruction scores, as evidenced by the subject-specific
linear model in [10], which achieves a maximal Pearson
correlation below 0.2. In 2023, researchers proposed a
dilated convolutional network, VLAAI [10], setting the
state-of-the-art performance by improving the performance
of linear models by 52%. During the competition, only 5
out of the 13 teams that participated managed to improve
upon the linear baseline model. Our adapted WaveNet model
ranked second in the challenge, while the best model was
a transformer-based model [17]. In this study, we introduce
a new Sea-Wave model,1 a novel architecture that advances
the performance of our adapted WaveNet model [18]. The
improved model architecture is obtained by introducing
novel model components and evaluating both existing
and novel components through an ablation study. Next, a
hyperparameter search is performed to understand the effect
of hyperparameter choices and related model attributes,
such as receptive field size, on reconstruction performance
and generalization capability to unseen speech stimuli and
subjects. Additionally, the search enables selecting models
with a suitable trade-off between performance and model size
for subsequent experiments, evaluation and visualization.

D. SIGNIFICANCE
This paper proposes a new Sea-Wave model architecture,
setting a new benchmark in speech envelope reconstruc-
tion when evaluated on both the challenge dataset and the
DTU dataset. The model is both compact and computation-
ally efficient, making it well-suited for real-time applications.
Subject-finetuning was confirmed to be an effective way of
improving model performance. Our best subject-independent
model achieves a Pearson r of 22.58% on seen and 11.58%
on unseen subjects, an improvement upon our prior work of
30% for the seen subjects. The topographic maps (or scalp

1Code will made available in the following GitHub repository: https:
//github.com/LiuyinYang1101/Sea-Wave.

plots) depicting model weights and channel importance not
only affirm the importance of the auditory cortex but also un-
derscore the involvement of visual and somatosensory areas,
suggesting a need for additional exploration into their roles in
speech perception.

The paper is organized as follows. We start by detailing
our data preprocessing and partitioning. Next, we present the
WaveNet-based model submitted to the challenge [18] and
the improved model architecture of Sea-Wave. The following
sections present the ablation study on the model components,
the hyperparameter search and our subject-specific fine-tuning
strategy. Finally, a number of model visualizations are ex-
plored, yielding insights into the differences between subjects
and the EEG features that relate to auditory perception.

II. DATA PREPROCESSING AND PARTITIONING
We use the preprocessed data provided by the challenge or-
ganizer, constisting of speech envelopes and filtered EEG as
defined in [2] and [16], respectively. The speech envelope
is estimated through a gammatone filter bank [19] compris-
ing 28 subbands, each appropriately spaced by an equivalent
bandwidth and centered at frequencies ranging from 50 Hz to
5 kHz. Subsequently, the absolute value of each sample within
each filter bank is computed, followed by an exponentiation
with a value of 0.6. Finally, all subbands are averaged to
generate a unified speech envelope. The EEG is downsam-
pled from its original sampling rate of 8192 Hz to 1024 Hz.
Next, artifact removal using a multichannel Wiener filter and
common average re-referencing are applied to the EEG. The
obtained speech envelopes and EEG are further downsampled
to 64 Hz.

The challenge training and test set defined by the challenge
organizer are as follows. The challenge training set comprises
EEG responses from 71 subjects listening to various speech
stimuli. In total, it encompasses 508 trials from 71 subjects,
utilizing 57 different stimuli, resulting in 7216 minutes (120
hours) of data. From the challenge training set, three sub-
sets for model development were defined by a recording-wise
stratified split with a ratio of 80/10/10, yielding train, valida-
tion and test subsets. The challenge test set comprises two dis-
tinct parts: “held-out stories”, which contains the recordings
from 70 subjects in the training set (seen subjects) for audio
stimuli not in the training set, and “held-out subjects”, which
contains the recordings from 14 subjects not in the training set
(unseen subjects) for audio stimuli in the training set [16].

Recognizing the potential benefit of additional training
data, we modified the said development subsets as follows.
The train and validation subset are combined into a our “train-
ing set”, while the test subset is repurposed as our “validation
set”. Our “test set” used for model evaluation is the original
challenge test set, containing both held-out subjects and held-
out stories.

III. MODELS
The proposed architecture draws on WaveNet [20] and its sub-
sequent adaptations [21], [22]. While WaveNet was originally
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FIGURE 1. Original model architecture (Sub-Wave) with detail of a
residual layer and the overall architecture, shown for D = 3 and nb = 3.

proposed for speech synthesis, it has since been success-
fully applied to various time series prediction tasks [23],
[24], including the prediction of speech spectrograms from
intracranial EEG [25]. Due to its dilated convolution structure,
the model can effectively process information on a coarser
scale compared to a regular or standard convolution [20]. The
WaveNet architecture can be adapted by incorporating a non-
causal bi-directional dilated convolution, as proposed by [21],
turning Wavenet from a generative and slow model into a dis-
criminative and parallelizable one, as used in DiffWave [22].
This adaptation yields a powerful regression model, that we
utilize and adapt for “speech envelope approximation” (SEA)
from EEG.

This section is further organized as follows. First, we
present our submission to the Auditory-EEG challenge, intro-
ducing its WaveNet-based model architecture and discussing
its shortcomings. Next, we describe the improved model ar-
chitecture of Sea-Wave, highlighting the differences with our
submission.

A. MODEL ARCHITECTURE
The model architecture of the model submitted in the chal-
lenge, referred to as Sub-Wave in the remainder of this paper,
is shown in Fig. 1.

The first layer is a channel-wise 1D convolution (Conv1D)
layer and acts as a spatial filterbank that can compress or
expand the multichannel EEG into nc channels. It is followed
by a ReLU (Rectified Linear Unit) activation unit and, subse-
quently, by a stack of nl residual layers. Within each residual
layer, we first encounter a bi-directional, dilated convolution
(Bi-DilConv) layer, with a kernel of size k and dilation factor
d . The dilation factor d increases exponentially with each
residual layer, where the maximal dilation factor is controlled
with a “dilation cycle” parameter D such that di = 2i mod D

for the i-th residual layer. This naturally organizes the residual
layers into nb residual blocks, each consisting of D layers with
exponentially growing dilation factors. The dilated convolu-
tion is succeeded by a gated activation unit [26], computed
as the product of two non-linear activation units (tanh(·) and
sig(·)). To allow the two activation units to operate indepen-
dently, the Bi-DilConv layer doubles the number of channels
and each unit operates on half of them, yielding the original
nc channels after taking the element-wise product. The gated
activation unit is followed by a dropout layer [27]. Next,

two separate Conv1D layers are applied: one for the residual
connection and another for the skip connection. The output
of the residual connection is summed with the original input
to the residual block and is propagated to the next block.
Finally, all skip connection outputs are summed and scaled
and two final Conv1D layers with a ReLU activation unit in
between are applied. The final (and deepest) convolution layer
combines all channels into a single channel, representing the
reconstructed speech envelope. Weight normalization [28] is
applied to all convolutional layers, except for the final one.

An important model attribute is the receptive field size, the
region of the input space that directly influences the output. It
can be computed as

rcsize =
nl−1∑
i=0

(k − 1) · 2i mod D + 1, (2)

with rcsize the receptive field size in time points, nl the number
of residual layers, D the dilation cycle, and k the kernel size.

B. CHALLENGE SUBMISSION
Sub-Wave, as submitted to the challenge, had 32 residual
channels, 40 layers, and a dilation cycle of 7, yielding a
receptive field size of 1333 time points (20.83 s). Despite
its commendable performance, its architecture and training
methodology raise certain concerns. Firstly, the final residual
block does not finish a full dilation cycle, since the num-
ber of layers is not divisible by the dilation cycle. While
mitigated through skip connections from all residual layers,
this discrepancy may impact the model’s performance and
coherence. Secondly, the receptive field size is very large
compared to linear model studies, e.g. 0.4 s in [9]. It thus
appears implausible that such large receptive field size is nec-
essary for obtaining a good performance. Thirdly, the residual
layer components are derived from prior studies, but their
significance in envelope reconstruction from EEG is unclear.
Finally, the fine-tuning process, did not return significant im-
provements in the challenge results, prompting for further
investigation into its effectiveness. Addressing these issues
is critical to refine the model’s architecture and optimize its
training approach in order to further enhance performance in
the Auditory-EEG challenge.

C. IMPROVED MODEL ARCHITECTURE: SEA-WAVE
The model architecture of Sea-Wave, shown in Fig. 2, differs
from Sub-Wave in three aspects. First, each ReLU is replaced
by a Gaussian Error Linear Unit (GELU), an activation unit
that combines properties from dropout and ReLUs and outper-
forms ReLUs on numerous datasets [29]. Second, the separate
residual and skip Conv1D layers in the residual layers, as
used in DiffWave [22], are replaced by a single Conv1D
layer, as used in WaveNet [20]. Third, we add a skip con-
nection that sums the spatially filtered EEG to the first layer
of each residual block. We refer to this skip connection as an
“input-skip” connection.
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FIGURE 2. Improved model architecture (Sea-Wave) with detail of a
residual layer and the overall architecture, shown for D = 3 and nb = 3.

TABLE 1. Description of Model Variations Evaluated in the Ablation Study

We decided on these model adaptations after our ablation
study and hyperparameter tuning experiments.

IV. EXPERIMENTS
A. ABLATION STUDY
To attain a better understanding of the model components and
their effects on performance, an ablation study is conducted
on Sub-Wave, using the subject-independent model submitted
during the challenge and described in [18] as the baseline. To
this end, we make small adaptations to the baseline model by
removing, replacing or introducing model components, while
the remaining components are initialized with the weights
and biases from the baseline. Each model variation underwent
additional training with early stopping on the validation set or
until reaching 20 iterations, and was evaluated on the test set.
For a fair comparison, the baseline model was also subjected
to the same way of using 20 additional iterations of training,
referred to as Sub-Wave+. The description of all model varia-
tions can be found in Table 1. Note the input-skip connection
facilitates the flow of information from the original data to the
deep blocks, encouraging the model to refocus on the local
information. This ensures that the model can still effectively
capture local patterns and contextual information, even in
deep layers with a large receptive field size. Meanwhile, since
Sub-Wave aggregated all skip connection outputs by addition,
we were also interested to see if concatenation could result in
better results.

TABLE 2. Grid Search Hyperparameter Values Per Kernel Size

B. HYPERPARAMETER TUNING
Utilizing Sea-Wave, we embark on a comprehensive hyper-
parameter search experiment through a grid search approach.
During this experiment, we assess the effect of the receptive
field size, the number of residual layers (model depth), and the
number of trainable parameters (model size) on performance,
as they are considered the most meaningful model attributes.
To this end, we systematically varied the number of channels,
dilation cycle, the number of dilation blocks, and kernel size,
as seen in Table 2. To reduce the computational cost of the
analysis, we evaluated k = 5 only for 32 channels.

During this experiment, we employed a modified training
and validation split, motivated by two reasons. Firstly, we
aimed to evaluate on both seen and unseen subjects without
using a test set, as to avoid biasing the optimal hyperparame-
ter choice. Secondly, we wanted to reduce the computational
costs of the gird search by considerably reducing the size
of the training set. Since our earlier findings [18] indicated
that the large variability in performance over subjects can be
attributed to the subject rather than to the model architecture,
we constructed the modified split as follows. We ranked all
subjects with Sub-Wave, grouped every 3 consecutive sub-
jects, randomly selected 2 subjects from each group, and
excluded their training data from the training set and included
it in the validation set. Note that for seen subjects (V1), the
validation set was unchanged, while for the unseen subjects
(V2), we evaluated on the combined training and validation
data. The final validation performance (score) was computed
as the weighted sum of the average Pearson correlation for
seen and unseen subjects, similar to (1).

C. SUBJECT-SPECIFIC FINE-TUNING
In our effort to improve performance on the held-out sto-
ries, subject-specific fine-tuning is applied. This approach
leverages subject-specific information to optimize the model
predictions for each individual subject. During fine-tuning, the
subject-independent model is utilized as a starting point, and
further training is performed on a subject-by-subject basis. We
empirically determined a training strategy that is effective in
terms of training time and performance. Our training strategy
consists of three steps:

Subject-independent training: During this initial phase, ex-
amples from the training set were cut using a window size of
5 seconds and a hop size of 0.5 seconds. The mean squared
error (MSE) was used as the loss function for training. The
dropout ratio was set to 0.2, and a learning rate of 0.0001
was chosen to facilitate rapid convergence. A cyclic learning
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rate scheduler [30] with a restart period of 10 iterations was
applied to achieve better generalization performance. It took
approximately 40−50 iterations for the model to reach a vali-
dation Pearson correlation above 0.15.

Subject-specific fine-tuning: In this step, examples from
each subject’s training set were cut using a larger window
size of 8 seconds and a smaller hop size of 0.1 seconds. The
loss function was 0.8 · MSE + 0.2 · Pearson r. A dropout ratio
of 0.65 and a small learning rate of 0.00001 were chosen to
prevent overfitting. Early stopping, based on the validation set,
was used to select the optimal model. Typically, it took ap-
proximately 0−10 iterations for the model to reach the highest
validation Pearson correlation.

Subject-independent fine-tuning: In order to improve model
performance on unseen subjects, a similar fine-tuning ap-
proach as in the subject-specific fine-tuning step was em-
ployed, but now data from all subjects were used. This step
may take up to 30 iterations to achieve the best performance.

In order to prevent overfitting and to ensure the best gener-
alization performance, early stopping was applied during the
fine-tuning step.

D. MODEL PERFORMANCE AND GENERALIZATION
We evaluate the performance of Sea-Wave on the challenge
test set, using subject-specific models for held-out stories
(S1) and the subject-independent model for the held-out
subjects (S2). We compare against the VLAAI model [10],
which was provided as a challenge baseline model, and
the HappyQuokka system [17], which won the Auditory-
EEG challenge and achieved state-of-the-art performance on
speech envelope reconstruction.

Additionally, we evaluate Sea-Wave on a subset of the
publicly available DTU dataset [31]. This dataset is recorded
using a similar EEG system as [14], but in an auditory atten-
tion paradigm. Also the stimulus characteristics differ, most
notably, the language of the stimuli was Danish, rather than
Dutch. We use the single-speaker subset of the recordings,
which contains 18 subjects, each with 10 recordings of 50 s.
From this subset, we select 2 recordings for subject-specific
fine-tuning and keep the remainder as our “DTU test set”.
Note that, the data is preprocessed as described above.

E. MODEL INTERPRETATION
Model interpretability is a crucial aspect of this paper, and
it adds an essential dimension to the evaluation of the pro-
posed Sea-Wave model. Interpretable models provide insights
into how they arrive at their predictions, making it easier
for researchers and practitioners to understand the model’s
decision-making process and trust its outputs. We inspected
our subject-independent model in the following three ways.

We visualize the spatial filters learned by the input Conv1D
layer, we estimate the filter and channel importance to visu-
alize the most salient ones, and we inspect layer activations
during inference on unseen stimuli for each layer.

To estimate filter and channel importance, we performed a
zero-one-out and leave-one-in analysis. During the zero-one-
out analysis, individual filters or channel inputs were zeroed
out, and the resulting performance degradation on the test set
was utilized to rank all filters or channels. For the leave-one-in
analysis, a single filter or channel was utilized, and the result-
ing (residual) performance on the test set was utilized.

When inspecting layer activations, we picked one of the
highest Pearson correlation test files and one of the worst. We
visualize the activations for each layer, yielding insight into
how the model transforms EEG into a speech envelope.

V. RESULTS
A. ABLATION STUDY
The results of the ablation study, evaluated on the held-out
stories and held-out subjects, are depicted in Fig. 3. A paired
t-test with Holm–Bonferroni correction was performed be-
tween the baseline and each model variation to assess whether
the variant performed better or worse (p < 0.05). The asterisk
positioned atop the violin plot signifies statistical significance
(n.s.: p ≥ 0.05, ∗: 0.01 ≤ p ≤ 0.05, ∗∗: 0.05 ≤ p ≤ 0.01, ∗ ∗
∗: 0.01 ≤ p ≤ 0.001, ∗ ∗ ∗∗: p ≤ 0.0001). The > and < atop
the asterisk denote whether the mean performance is above or
below the baseline. Each grey line connects performance of
the different model variations for a single subject.

Several key observations can be made:
1) The gated activation unit emerges as the most critical

component, as its ablation leads to a significant drop
in performance, particularly for the seen subjects. This
indicates its pivotal role in modeling the envelope and
its relation to the EEG. However, it remains unclear
whether it captures additional information, or whether
its regularizing properties are simply beneficial for mod-
eling acoustic features, as the gated activation unit also
works significantly better than the ReLU for modeling
audio signals [20] in an auto-regressive setting.

2) The single Conv1D, as used in WaveNet, yields signif-
icant improvements compared to two separate Conv1D
operations, as in DiffWave. Hence, Sea-Wave employs
a single Conv1D.

3) The inclusion of an input-skip connection proves bene-
ficial, particularly for unseen subjects. The input-skip
connection enables a better flow of information from
the input data to the deep blocks, contributing to an
improved generalization of the deep residual layers.
Therefore, Sea-Wave employs an input-skip connection.

4) Both addition and concatenation appear effective for
information fusion. This is confirmed by an addi-
tional paired t-test between the “GELU+InSkip” and
“GELU+InSkipConcat” models (p = 0.3196). As con-
catenation requires additional parameters in the last two
convolutional layers, Sea-Wave employs addition.

5) Across the various model adaptations, the subject per-
formances remain quite stable relative to each other.
This indicates most of the subject variability can be
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FIGURE 3. Comparison of performance for model variations evaluated in the ablation study. Performance is evaluated as the Pearson r on the test set for
seen (S1) and unseen (S2) subjects. Asterisks show the significance level of a paired two-sided t-test against the baseline (Sub-Wave), symbols > and <

indicate whether the mean was higher or lower compared to the baseline, respectively.

FIGURE 4. Performance as a function of the receptive field size, the number of residual blocks and the number of trainable parameters, given k = 3,
during hyperparameter tuning of Sea-Wave. Performance is evaluated as the Pearson r on the validation set for seen (V1) and unseen (V2) subjects.

attributed to the subject’s EEG recordings rather than
the model architecture.

B. HYPERPARAMETER TUNING
Fig. 4 shows the performance in function of the receptive field
size, the number of residual layers (model depth), and the
number of trainable parameters (model size), for each combi-
nation of hyperparameters, given kernel size k = 3. A visual
inspection indicates the 32 channel models are superior for
seen subjects, while 128 channel models generalize slightly
better to unseen subjects. It also shows a clear relationship
between receptive field size and performance.

To quantify the relationship between the performance and
these three model attributes, we fitted a sigmoidal curve for
each model parameter, as described in (A1). We estimate a
threshold xth above which performance is stable by calcu-
lating the intercept of the slope at the inflection point of the
sigmoidal curve and its upper asymptote, as described in (A2).
Fig. 5 shows the fitted sigmoidal curves and Table 3 presents
the threshold and the coëfficient of determination (R2) for
each fitted curve. Only for receptive field size, we obtained
a good fit (R2 = 99.81) and thus a reliable threshold estimate.
The threshold is around 100 samples (±1.56 sec), and thus
models with smaller receptive field sizes can be considered
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FIGURE 5. Sigmoidal curve fit for performance (score) with receptive field size, the number of residual blocks and the number of trainable parameters,
given k = 3.

TABLE 3. Threshold and Coëfficient of Determination (R2) for Each
Sigmoidal Curve Fit

TABLE 4. Comparison of Kernel Size 3 and 5, Given nc = 32 and
rcsize ≥ 100

sub-optimal, while those with large receptive fields tend to
be overparameterized.

To assess whether a larger kernel is beneficial, we compare
the performance (score) for models with a kernel size 3 and
5 with a paired t-test, Holm-Bonferroni corrected, given 32
channels and a receptive field size larger than 100. The models
are paired on the remaining hyperparameters, dilation cycle
and number of residual blocks. As this comparison does not
factor in the increased receptive field and model size associ-
ated with a kernel size of 5, we proceed with two additional
comparisons. The first compares only models with equal re-
ceptive field sizes, the second compares only models with
approximately equal model sizes (rounded to 2 significant
numbers). Note that both additional comparisons have a lower
sample size, as unpaired models are discarded. The results of
the paired t-tests, shown in Table 4, indicate a larger kernel
size is not significantly better regardless of the scenario.

However, upon repeating this analysis for seen and unseen
subjects separately, shown in Table 5, we find a kernel size of
5 to be significantly better for unseen subjects. This also holds
for models with equal receptive field sizes. This indicates that
a faster growth of the receptive field, a consequence of the
larger kernel, may be beneficial for generalization.

In the above comparisons we ensured a receptive field size
larger than 100, excluding many sub-optimal models. Now,
we compare the 3 best models per hyperparameter value, en-
suring only the best models for a given hyperparameter value

FIGURE 6. Evolution of Pearson r during training iterations.

are included. We perform a paired t-test for all combinations
of values per hyperparameter, presented in Table 6. For the
number of channels, we find that nc = 8 is significantly worse
than all other choices. Interestingly, increasing the number of
channels from 32 to 64 significantly worsens performance,
indicating that either 32 or 128 is optimal. For the number of
residual blocks, there is no optimal choice, as differences are
insignificant. For the dilation cycle, we find that D = 4 and
D = 5 are significantly worse than all other choices.

Based on these results, we pick 3 Sea-Wave models for
further experimentation and evaluation, see Table 7. Since in
the challenge evaluation the unseen subjects are weighted less,
we stick to a kernel size of 3 for all three models. To examine
differences in model convergence, we shown the evolution of
the Pearson correlation during training for these three models
in Fig. 6.

C. SUBJECT-SPECIFIC FINE-TUNING
Fig. 7(a) shows the effect of subject-specific fine-tuning on
performance. It is clear the approach yields large perfor-
mance gains, as it raises the mean Pearson r on seen subjects
(S1) from 16.77% to 22.84%, confirming previous studies on
subject-specific fine-tuning, e.g. [10].

D. MODEL PERFORMANCE AND GENERALIZATION
Table 8 presents the performance on the challenge test set of
the VLAAI model [10], the challenge winning model (Hap-
pyQuokka) [17], our runner-up Sub-Wave model, and the
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TABLE 5. Comparison of Performance (score) for Kernel Size 3 and 5, Given rcsize ≥ 100

FIGURE 7. Comparison of performance for Sea-Wave-Small before and after subject-specific fine-tuning. Performance is evaluated as Pearson r on
held-out stories (S1) and held-out stimuli (DTU test set).

TABLE 6. Comparison of Performance (score) for the 3 Best Performing
Models Per Hyperparameter Value

TABLE 7. Hyperparameter Values for Evaluated Models and Corresponding
Receptive Field Size, Number of Trainable Parameters and Computational
Complexity (Expressed in FLOPs)

TABLE 8. Comparison of Performance for Different Models on the
Challenge Test Set

three selected Sea-Wave models (see Table 7). The perfor-
mance for held-out stories (S1) and held-out subjects (S2) is
also included. In Table 10, we report the Pearson correlations
per subject using the subject-independent, subject-specific,
and randomly initialized Sea-Wave-Small models.

We also evaluated the subject-independent Sea-Wave-Small
model on the DTU test set, to test how well the model
generalizes to another dataset. A comparison before and after
subject-specific fine-tuning is shown in Fig. 7(b).

E. MODEL INTERPRETATION
We use a subject-independent Sea-Wave-Small for all visual-
izations, as it is the smallest and best performing model.

Topographic map of spatial patterns: As this model has 32
channels, we can extract 32 spatial filters from the Conv1D
input layer. To find the most important filters, we rank these
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FIGURE 8. Topographic map of the four most important spatial filters and the channel importance estimated with zero-one-out, and leave-one-in
analysis.

FIGURE 9. Topographic map of the spatial filter of a subject-independent
single-channel Sea-Wave-Small.

filters based on a zero-one-out and leave-one-in analysis. Fil-
ters that appear in the top-8 for both analyses are selected
for visualization. Fig. 8(a) shows the resulting 4 filters and
displays their filter weights on a topographic map. A complete
overview of the ranked filters for zero-one-out and leave-one-
in analysis is given in Fig. 12(a) and (b), respectively.

Topographic map of channel importance: Fig. 8 shows
the channel importance, estimated through zero-one-out and
leave-one-in, on a topographic map. In Fig. 8(b), the perfor-
mance drop (� Pearson r) contributed to the zeroed channel
is shown, while Fig. 8(c) shows the residual performance
(Pearson r) when all other channels are zeroed. This analysis
provides insights into the relevance of each input channel and
its contribution to the model’s overall performance.

Layer activation patterns: In Fig. 10(a), the first and last
layer activations for the best performing subject and stim-
ulus pair (subject 44, test file 02, Pearson r of 0.532) are
shown. Conversely, Fig. 10(b) shows these for the worst per-
forming subject and stimulus pair (subject 63, test file 02,
−0.026). Next, we evaluate the contributions of different
skip connections by passing them individually through the

subsequent channel-wise convolution layers, instead of pass-
ing their scaled sum, using the same subjects and test file.
Fig. 11(a) and (b) show the reconstructed envelope for each
skip connection, with layer 0 and layer 19 representing the
first and the last skip connection. The black line represents
the actual speech envelope in both figures.

VI. DISCUSSION
A. ABLATION STUDY
The insights gained from the ablation study have played a
crucial role in the development of the Sea-Wave model. Lever-
aging these findings, specific architectural choices have been
made to optimize the model’s performance in speech envelope
reconstruction from auditory EEG recordings.

In particular, the Sea-Wave model excludes the separate
skip Conv1D operation within the residual layer, as this
component was found to have a limited impact on model
performance. Instead, the model incorporates the new skip
connection with GELU activation units, which were identified
as critical components in achieving better results.

Regarding information fusion, the model uses addition as
the preferred method due to its ability to yield a smaller num-
ber of trainable parameters while still maintaining competitive
performance.

B. HYPERPARAMETER TUNING
Our results suggest that receptive field size is the most im-
portant model attribute to consider. This is indicated by the
high coëfficient of determination of the sigmoidal curve fit.
Surprisingly, good performance can be reached for nearly all
model depths and sizes, given an appropriate receptive field
size. For the other model attributes, the inferior sigmoid curve
fit prevents drawing strong conclusions. Note that the apparent
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FIGURE 10. Activation patterns from the first and last layer for a good and bad performing subject.

FIGURE 11. Outputs using a single layer for a good and bad performing subject. The color scheme completes one cycle for each residual block.
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FIGURE 12. Ranked 32 spatial patterns using zero-one-out and and leave-one-in analysis.

threshold of 12 residual layers may be better explained in
terms of receptive field size, as shallower models have smaller
receptive field sizes. With regard to kernel sizes 3 and 5,
they appear equivalent for seen subjects, but the latter can be
beneficial for generalizing to unseen subjects.

For all models, a single iteration yields a model perfor-
mance on par with that of linear models, with subsequent
iterations slowly improving it further. However, some ar-
chitectures would benefit from tuning the learning rate and
number of training iterations. This is evidenced by Sea-Wave-
Medium, which overfitted faster than the other two models,
arguably because of its depth (40 layers), as shown in Fig. 6.
Furthermore, we also found that the models with 8 channels
had not converged fully, potentially contributing to the low
performance compared to models with more channels.

C. SUBJECT-SPECIFIC FINE-TUNING
For a few subjects, performance did not improve. This phe-
nomenon may be attributed to overfitting, where the model
becomes too tailored to the specific characteristics of listening
to certain training speech audio files during the fine-tuning
process. Consequently, when evaluated on unseen data or
held-out stories, these subjects’ performance may not gener-
alize as effectively.

D. MODEL PERFORMANCE AND GENERALIZATION
From Table 8, we observe all three Sea-Wave models out-
performed the state-of-art HappyQuokka model, especially in
terms of held-out stories. The effectiveness of the subject-
specific fine-tuning strategy is evident in the improved perfor-
mance of all three Sea-Wave models. Interestingly, the small
model with fewer parameters, achieved the best performance
among the Sea-Wave variants. This observation aligns with
the idea that wider (128-channel) and deeper models may be
more prone to overfitting. The smaller model strikes a better
balance between model complexity and the available data,
allowing it to generalize more effectively and avoid overfitting
issues that may be encountered with larger and more complex
architectures. Furthermore, it proves that having a more fo-
cused view of local patterns is more helpful, instead of having

TABLE 9. Sigmoidal Curve Fit: Parameter Values

a large receptive field, when models attempt to incorporate
information from distant points.

The model also performs well on the DTU test set
and outperforms the performance reported in [10]. Through
subject-specific fine-tuning, significant improvement could be
achieved by using very few training examples (2 files corre-
sponding to 100 s of speech).

E. MODEL INTERPRETATION
The foremost four spatial patterns along with the single-
channel pattern exhibit notable similarities. Specifically, post-
training, these patterns display clustered positive and negative
weights in regions corresponding to the auditory cortex, the
vision cortex (Oz), and somatic sensory associated areas (P3
and P5). Filter 1 manifests a symmetric pattern, while Filters
2 and 3 demonstrate prominent negativity in the left auditory
cortex. Conversely, Filter 4 exhibits positivity in the left au-
ditory cortex. Consequently, we postulate that these distinct
filters capture and model diverse interactions among areas,
collectively contributing to the final predictions.

A similar pattern emerges for both zero-one-out and leave-
one-out channel-importance analysis, where the auditory
cortex area is most important. This is consistent with prior
studies [32], as well as the spatial patterns, conforming the
importance of the audio cortex in auditory EEG decoding.
Meanwhile, we also found some positively correlated chan-
nels around the vision cortex and somatic sensory-associated
areas. The presence of positively correlated channels in the
vision cortex and somatic sensory associated areas indicates
a potential cross-modal interaction between auditory, so-
matosensory processing, and visual processing. In previous
studies, cross-modal interactions between different sensory
modalities have been observed. For instance, researchers
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TABLE 10. Performance (score) on the Test Set for Each Subject, Using a Subject-Independent, a Subject-Specific, and a Randomly Initialized
Sea-Wave-Small

in [33] discovered that listening to sounds can influence the
visual dorsal pathway, enhancing attention and memory for
objects’ locations. Similarly, in another study [34], an inter-
action between auditory and somatosensory processing was
reported. This audio-tactile cross-modal interaction was found
to expedite initial cortical activity in the human somatosen-
sory cortex, indicating that such interactions occur during
the early stages of cortical processing. This faster processing
in the sensory cortex could potentially contribute to shorter
reaction times under multisensory integration. These findings
highlight the intricate connections between different sensory
systems and how they mutually influence each other to en-
hance cognitive processing.

Comparing the activations of the first and last layers for
both subject 44 and subject 63, several observations can
be made:

1) The activations in the first layer displayed character-
istics resembling raw EEG signals, with prominent
high-frequency components. However, as the signal
propagated through the subsequent layers, the activa-
tions appeared much smoother. This suggests that the
model acts as a low-pass filter, similar to findings in
linear model studies.

2) The observation that many residual channels share sim-
ilar activations or exhibit counter-phase information
suggests that redundant information is present across
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multiple channels, and the use of a small number of
channels may suffice to capture the essential features for
auditory EEG decoding.

3) From the model predictions using single-layer outputs,
it is clear that the deep layer’s activations contribute
more to the final envelope prediction. As shallow layers
feature smaller amplitudes and shared little envelope-
like features, while the deep layers, especially the last
layer, captured the dynamics of the envelopes.

4) Comparing the two single-layer output plots, we ob-
serve that the model seems to be good at modeling the
silence periods. This is evident from the clear drops in
outputs observed in the deep layers during these periods.
The model’s ability to accurately capture and monitor
the periods of silence or low activity reflects its profi-
ciency in detecting and representing calm or non-speech
segments. On the other hand, in Fig. 11(b), the subject
for which the Pearson correlation was the worst. The
model struggles to accurately capture rapid changes in
the envelope, leading to discrepancies between its pre-
dictions and the ground truth. This finding indicates
that the model might encounter challenges when dealing
with complex and rapidly fluctuating speech envelopes.

F. SIGNIFICANCE AND FUTURE WORK
Our study yielded several key findings. Firstly, we determined
the optimal receptive field size for the reconstruction task to
be around 1.56 seconds, offering valuable insights for future
application design and research. Secondly, we verified the
effectiveness of the fine-tuning strategy to leverage the per-
formance. Thirdly, the proposed Sea-Wave model achieved
a new state-of-the-art performance on both the competition
dataset and the DTU dataset. In this study, the top-performing
Sea-Wave-Small is both compact and computationally effi-
cient, paving the way for real-time applications. Lastly, the
topoplots not only highlight the importance of the auditory
cortex but also the contribution of visual and somatosensory
areas, suggesting further investigation of their roles in speech
intelligence. However, certain challenges persist. Firstly, no-
table subject variability was observed, with the best subject
achieving a Pearson score above 0.5 but the worst subject be-
low 0.1. Determining whether this variability originates from
neurological differences among subjects or model-related fac-
tors remains uncertain. Secondly, enhancing the population
model’s performance would be a significant stride towards
real-world applications, as developing subject-specific mod-
els demands data and time resources. Lastly, there is room
for further enhancements in terms of model architecture.
Given the constraints of time and computation resources, the
grid search conducted in this study may not have uncov-
ered the most optimal hyperparameters, suggesting potential
for improvement. Additionally, exploring the integration of
conditioner modules, as demonstrated in Wavenet [20] and
HappyQuokka [17], to address subject-specific features ap-
pears to be a promising avenue for future research. Instead

of training individual models for each subject, training a com-
pact conditioner module that captures inter-subject variability
could offer a more practical solution.

VII. CONCLUSION
This study presents Sea-Wave, a novel WaveNet-based model
for speech envelope decoding from EEG. We show that it
outperforms state-of-the-art models and boasts increased in-
terpretability. On average, the best model achieves a Pearson
correlation of 0.2258 on the held-out stories and 0.1158
on the held-out subjects. Using an ablation study, we iden-
tify the gated activation unit and input-skip connections as
critical model components. Furthermore, our model visual-
izations show evidence for cross-modal interactions between
auditory, visual, and somatosensory processing. In addition,
they show the model excels in predicting the silences. Im-
proving the generalization to unseen subjects and stimuli
remains challenging. Examining the subject-specific models
and their differences, could provide a better insight into in-
dividuals differences in auditory EEG responses and inform
personalized approaches for decoding auditory processes.
Lastly, improving reconstruction of the speech envelope in-
creases the potential utility in diagnostic tests assessing
speech intelligibility.

APPENDIX A
A. SIGMOIDAL CURVE FIT
A sigmoidal curve parameterized as

f (xlog) = L

1 + exp (−k · (xlog − x0))
+ b, (A1)

is fitted per model attribute xlog on a logarithmic scale. The
threshold xth

log is calculated as the intercept between the slope
at the inflection point of the sigmoidal curve and its upper
asymptote as follows:

xth
log = df

dx
(x0)−1 ∗ (ymax − f (x0)) + x0,

= k · L

4
·
(

L

2
+ b

)
+ x0, (A2)

since

f (x0) = L

2
+ b,

df

dx
(x0) = k · L

4
, and ymax = L + b.
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