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ABSTRACT The ICASSP 2023 Deep Noise Suppression (DNS) Challenge marks the fifth edition of the
DNS challenge series. DNS challenges were organized from 2019 to 2023 to foster research in the field
of DNS. Previous DNS challenges were held at INTERSPEECH 2020, ICASSP 2021, INTERSPEECH
2021, and ICASSP 2022. This challenge aims to advance models capable of jointly addressing denoising,
dereverberation, and interfering talker suppression, with separate tracks focusing on headset and speaker-
phone scenarios. The challenge facilitates personalized deep noise suppression by providing accompanying
enrollment clips for each test clip, each containing the primary talker only, which can be used to compute
a speaker identity feature and disentangle primary and interfering speech. While the majority of models
submitted to the challenge were personalized, the same teams emerged as the winners in both tracks. The best
models demonstrated improvements of 0.145 and 0.141 in the challenge’s score, respectively, when compared
to the noisy blind test set. We present additional analysis and draw comparisons to previous challenges.

INDEX TERMS Deep noise suppression, DNS challenge, perceptual speech quality, personalized deep noise
suppression, personalized P.835, target speech extraction.

I. INTRODUCTION
In recent times, hybrid work has become the new nor-
mal as remote work has significantly increased following
the COVID-19 pandemic. Video and audio calls are often
degraded by various background noises, including munch-
ing sounds, paper shuffling, keyboard typing, mouse clicks,
doors opening/closing, neighboring talkers, pets, babies cry-
ing, kitchen sounds, in-car noises, engine sounds, airport
announcements, doorbells, traffic, and street noises. The pres-
ence of these noises on calls can lead to increased fatigue
for participants. Furthermore, background noise can reduce
participation in meetings. Therefore, achieving high speech
quality in real-time video communication is crucial for inclu-
sive and collaborative hybrid meetings. Solutions are needed
to suppress these ambient noises to provide fatigue-free,
highly intelligible audio during hybrid work video conferenc-
ing. By addressing this issue, we can improve meeting quality
and productivity for the growing remote workforce.

Classic digital signal processing (DSP) techniques laid
the foundation for noise suppression research. Common

DSP-based approaches for noise suppression are mostly based
on spectral suppression rules such as Wiener filtering or log-
short-time spectral amplitude estimators [1], [2] and often
model only stationary background noise [3]. More advanced
techniques include multi-frame filtering [4]. Reverberation
has to be modeled in a separate estimation module and com-
bined suppression is not straightforward [5].

An overview of statistical model-based STFT domain noise
suppression methods is presented in [6]. These approaches
are appealing for real-time applications given their simplicity
and low computational cost, but often struggle with non-
stationary noise and speech distortions due to their simplistic
model assumptions.

A good overview of early Deep Neural Network (DNN)
based speech enhancement methods is given in [7]. The first
main challenge of early works was that most approaches were
not able to operate in real-time and if so, lost large perfor-
mance gains. An important work designing a small DNN able
to run on devices was RNNoise [8], which triggered a plethora
of follow-up work and a series of DNS challenges, with this
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one being the fifth incarnation. The second main challenge
is generalization to in-the-wild data and improving speech
quality, i.e., removing all noise without creating additional
artifacts and distorting the speech.

In recent years, deep learning-based noise suppression, fur-
ther referred to as Deep Noise Suppression (DNS), has shown
promising results with superior speech quality over classical
approaches [9], [10], [11], [12]. The DNS challenges have
been held in INTERSPEECH 2020, ICASSP 2021, INTER-
SPEECH 2021, ICASSP 2022, and ICASSP 2023. The DNS
challenges have accelerated research progress by providing
large training datasets, real recordings as test sets, a train-
ing data synthesizer, accurate objective functions [13], [14],
and subjective evaluation frameworks based on ITU-T P.808
[15] and P.835 [16]. Many recent papers have leveraged these
resources to develop advanced DNS models [12], [17], [18],
[19], [20], [21]. From the second DNS challenge on, we
introduced the task of personalized deep noise suppression
(PDNS) [12], which uses speaker identity features from an
independent speaker enrollment recording to focus only on
the enrolled user speech and remove other interfering talkers.1

While we feel the performance of speaker-independent speech
enhancement, i.e., noise reduction and dereverberation, is
slowly saturating after the large initial gains from previous
challenges, PDNS has still significant room for improvement
to generalize and be robust enough to disentangle primary and
neighbor speakers in real-time. Therefore, PDNS is the focus
of this challenge.

As part of the past four DNS challenges, we open-sourced
training and test sets, and a P.835 subjective evaluation
framework [16]. Our GitHub repository2 open-sourced Per-
sonalized and Non-personalized DNSMOS P.835 [14] and
word accuracy (WAcc) APIs to empower iterative model
improvements for teams participating in the challenge. DNS-
MOS P.835 is a no-refernce deep learning model that predicts
MOS (Mean Opinion Scores) for speech signal quality (SIG),
background quality (BAK), and overall audio quality (OVRL)
from a noisy or processed test audio clip. This reduces the
barrier to entry in the field and provides standard tools for
the evaluation of DNS models. Like previous challenges, each
track has two test sets: (i) development (dev) test set which
was released at the beginning of the challenge; (ii) blind test
set released a few days before the final challenge deadline.
While the dev test set enables intermediate model evaluations,
the blind set is used for the final ranking of models based on
challenge metrics.

A. WHAT IS NEW?
The fourth DNS challenge focused on personalized and non-
personalized speech enhancement with fullband data. We have
introduced the following changes in this challenge: (i) There
are two tracks: Headset and Speakerphone, each containing
both desktop and mobile recordings in their test sets; (ii)

1This task is also referred to target speech extraction [22]
2[Online]. Available: https://github.com/microsoft/DNS-Challenge

All test clips in both tracks include 10-30 seconds of en-
rollment speech (primary talker) with or without noise; (iii)
The Personalized P.835 evaluation framework has been im-
proved, now incorporating voice recognition, robust spam
filtering, and more accurate evaluation of enhanced test clips
with noise and neighboring talkers; (iv) The Personalized
P.835 framework employs cleaned enrollment speech, en-
hanced using a non-causal model. We found in preliminary
experiments that cleaned enrollment speech improves the con-
sistency of subjective evaluation; (v) Both personalized and
non-personalized models for a track were jointly subjected to
the same subjective evaluation and ranking. In other words,
personalized and non-personalized models are treated equally
and compared; (vi) Separate subjective evaluations were con-
ducted for both the Headset and Speakerphone tracks; (vii)
The algorithmic plus buffering latency has been reduced from
40 ms to 20 ms to make it meet real-time communication
system requirements. Achieving the same noise suppression
performance with lower latency is a more challenging task.

The development test set, DNSMOS P.835 API, and WAcc
API were provided at the start of the challenge to optimize
models. The blind test set was released near the deadline for
the final model ranking. Submitted models were evaluated on
P.835 MOS scores (SIG, BAK, OVRL), and WAcc. The pre-
diction model DNSMOS P.835, which predicts P.835 scores,
was made freely available for use for development.

In this challenge, participants could use any datasets in-
cluding external corpora and challenge training datasets to
do model training. Participants were required to describe the
datasets used for training their models in sufficient detail in
their extended journal papers and provide a brief coverage
in a 2-page ICASSP grand challenge paper. The challenge
website3 has details of scope and requirements; definitions
of algorithmic latency, processing latency, causal model, real-
time factor (RTF) and associated challenge rules, and name of
winning teams, etc. Previous challenge websites are linked on
the website3 as well.

By introducing a more realistic test set with enrollment
speech, improved P.835 evaluation, and joint assessment of
personalized/non-personalized models, this latest challenge
enables benchmarking on pertinent real-world use cases.
Table 1 demonstrates the opportunity to further improve sub-
jective quality on all dimensions based on the ICASSP 2022
challenge. Note that when given high-quality fullband audio
with no distortions, our P.835 test framework achieved sub-
jective ratings of BAK = 4.88, SIG = 4.96, OVRL = 4.74
[16]; Table 1 shows values far from these measurements.

II. RELATED WORK
An important part of this challenge is how to evaluate the
model performance during development and for model com-
parisons. The gold standard for speech quality assessment is
subjective testing carried out by human test participants who

3[Online]. Available: https://aka.ms/dns-challenge
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TABLE 1. Remaining Headroom in MOS Improvements Needed to Attain
Best Speech Quality (MOS 5) is Applicable to Both Personalized and
Non-Personalized DNS, as Determined From the ICASSP 2022 DNS
Challenge [23]

are either instructed to hold a conversation over a telecom-
munication system under study (conversation test) or listen to
short speech clips (listening opinion tests) and afterward rate
perceived quality on one or several rating scales. Speech calls
can be carried out with various devices in different environ-
ments, commonly with non-optimal acoustic surroundings.
Therefore, speech enhancement algorithms are widely inte-
grated into the communication chain to enhance the quality
of the speech communication system. Those systems are typ-
ically evaluated in laboratory-based listening tests according
to the ITU-T Rec. P.835 [24] in which separate rating scales
are used to independently estimate the BAK, SIG, and OVRL.
Separate scales are used as higher noise suppression often
adversely affects the speech or the signal component, re-
sulting in distortions or artifacts. Consequently, in a regular
listening-only test, with a single-rating scale (i.e., according
to the ITU-T Rec. P.800 [25]), participants can often become
confused as to what they should consider in rating the over-
all “quality.” Accordingly, each individual determines their
overall quality rating by weighting the signal and background
components. Such a process introduces additional errors in the
overall quality ratings and reduces their reliability [24].

The ITU-T Rec, P.808 [26] details how to perform sub-
jective speech quality test in crowdsourcing. Crowdsourcing
offers a faster, cheaper, and more scalable approach than tra-
ditional laboratory tests [27]. Crowdsourcing does have its
challenges: the test participants take part in the test in their
working environment using their own hardware without su-
pervision or direct quality control. Previous works showed
that background noise in the participant’s surroundings could
mask the degradation under the test and lead to a significantly
different rating [28], [29]. Different listening devices can also
strongly influence the perceived quality [30]. The ITU-T Rec,
P.808 [26] addresses these challenges and provides methods to
collect reliable and valid data in crowdsourcing practice. The
recommendation addresses different test methods including
the Absolute Category Rating (ACR) test method, Compari-
son Category Rating (CCR), and has recently been extended
to provide test methods for evaluating noise suppression algo-
rithms in crowdsourcing (i.e., the counterpart of P.835).

As we use real test clips in the challenge, we must use a
non-intrusive objective method. There are many non-intrusive
objective metrics for noise suppression. ITU-T Recommen-
dation P.563 is a non-intrusive technique and can directly

TABLE 2. Comparison of Some DNN NI-SQA Methods

operate on the degraded signal [31]. However, it was de-
veloped for narrow-band applications, and works on limited
impairment types, but correlates poorly with human ratings
[32]. More recently, DNN-based approaches have been pro-
posed to estimate the speech quality scores [13], [14], [32],
[33], [34], [35], [36], [37], [38]. Some of these learning-based
approaches use other objective metrics as the ground truth to
train their speech quality predictor. Other methods use MOS
obtained using P.800 as the ground truth to train their models.
In [39], the authors trained the model to identify the Just
Noticeable Difference (JND). DNN-based MOS predictors
learning a mapping between audio and human ratings have
shown better performance than other objective metrics like
PESQ or POLQA [13]. The accuracy and robustness of the
learned models depend on the quality of the human labels and
the quantity and diversity of the audio clips. A comparison
of some common DNN-based non-intrusive speech quality
assessment (NI-SQA) methods is given in Table 2.

The first DNS challenge was at INTERSPEECH 2020 [20]
and had real-time and non-real-time tracks. It included a clean
speech dataset of 441 hours with 2150 speakers, a noise
dataset of 150 classes with 60K clips, and a synthetic data
generator. Two real test sets were included, and submissions
were judged using our P.808 implementation [15]. The second
DNS challenge was at ICASSP 2021 [12] and expanded the
datasets by adding singing, emotion, and non-English lan-
guages. It replaced the non-realtime track with a personalized
deep noise suppression track. The third DNS challenge was
at INTERSPEECH 2021 [21] and used P.835 [16] instead
of P.808, added the objective speech quality assessment tool
DNSMOS [13], and included real-time wideband and fullband
tracks. The fourth DNS challenge was at ICASSP 2022 and
added mobile data and word accuracy as an objective met-
ric, included real-time fullband and real-time personalizing
tracks, and added the DNSMOS P.835 objective tool. A sum-
mary of the five DNS challenges is given in Table 3.

While this challenge focuses on improving speech quality
by reducing background noise (improving BAK) and rever-
beration which improves OVRL, other related challenges
target echo cancellation [41], [42], [43], [44], packet loss
concealment [45], and general speech signal improvements
[46]. The ICASSP 2023 Speech Signal Improvement chal-
lenge [46] provides test sets with various types of SIG
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TABLE 3. Summary of DNS Challenges

regressions such as poor-quality microphones and speech en-
hancement. In particular, the past five DNS challenges did
not improve SIG, whereas the Speech Signal Improvement
challenge significantly improved SIG. That challenge used a
new multidimensional approach to measuring speech quality
described in [47].

III. CHALLENGE TRACKS
The overarching objective of this challenge is to improve the
overall signal quality while preserving the primary talker’s
voice and concurrently suppressing noise, reverberation and
neighboring talkers. We assess this objective for two device
conditions: (i) the user wearing a headset device, i.e., having
a microphone close to the user’s mouth, or (ii) a farfield
scenario, where the device is not directly with the user, e.g.,
a speakerphone or laptop, therefore having potentially larger
source-to-microphone distances. The idea of this division is
that possibly in the headphone scenario, the acoustics give a
more clear distinction between primary talkers and interfer-
ing talkers, therefore making the need for enrollment speech
obsolete. The farfield case may have less clear acoustical dis-
tinction between closer primary talkers and interfering talkers.

Therefore, this challenge is divided into two tracks: Head-
set and Speakerphone. Each track has distinct development
and blind test sets. These test sets were gathered following
a similar procedure, with the key difference being that the
Headset track test sets were collected using headset devices,
while the Speakerphone track test sets were collected using
speakerphone devices.

In both tracks, every test clip is accompanied by an en-
rollment speech lasting 30 seconds. This enrollment speech
can exhibit variations, including being noise-free or noisy,
and with or without reverberation. This setup supports the
incorporation of multi-condition enrollment for primary talk-
ers, which serves as a metric of robustness for personalized
models. These personalized models utilize enrollment speech
as an additional input to enhance the test clips.

Participants had the flexibility to choose whether to work
on models involving speaker enrollment or models without it
for one or both tracks. Each team was allowed to submit 1 to

4 models, depending on their training strategies. For instance,
a participating team could submit one personalized model and
one non-personalized model for the Headset track, but they
could not submit two personalized or two non-personalized
models for the same track. Similarly, another team could sub-
mit a total of 4 models: a personalized and a non-personalized
model for the Headset track, and the same for the Speaker-
phone track. This rule was established to ensure a balanced
representation of personalized and non-personalized models
and to encourage comparable participation in both tracks.

In both tracks, all submitted models were evaluated and
ranked collectively. This means that both personalized and
non-personalized models for the Headset track underwent the
same subjective evaluation. Similarly, for the Speakerphone
track, all models were evaluated together in one subjective
evaluation. While participants were encouraged to conduct
experiments with both personalized and non-personalized
models to uncover the advantages of personalization, it is
worth noting that this was not a mandatory requirement for
the challenge.

Requirements: To ensure the real-time operation of these
models on typical hardware available today, the processing
mode of the models must satisfy the following constraints on
the overall introduced latency being equal to or lower than 20
ms. We define and give examples for algorithmic and buffer-
ing latency on the challenge website.4 The real-time factor,
measured as execution time on an Intel Core i5 Quadcore
clocked at 2.4 GHz using single threading, must be less than
0.5. Additionally, participants are asked to report the number
of multiply-accumulate operations of their models.

IV. CHALLENGE DATASETS
All datasets utilized in this challenge are full bandwidth (48
kHz). In this section, we discuss details of the training, de-
velopment, and test sets. To allow supervised training, the
training data is synthesized from clean speech, room impulse
responses, and noise, while the development and test sets are
real recordings to ensure real-world generalization.

4[Online]. Available: https://aka.ms/dns-challenge

728 VOLUME , 2024



A. TRAINING DATA
The clean speech training set is a total of 760.53 hours of data.
The speech data encompasses various languages, showcasing
a diversity of talkers and devices. The clean speech data is
further categorized into four subsets:
� Read speech recorded under clean conditions (562.72

hours)
� Singing voice (8.80 hours)
� Emotional clean speech (3.6 hours)
� Non-English (German, French, Italian, Mandarin, Rus-

sian, Spanish) clean speech (185.41 hours)
The clean speech data for the Headset track is derived

as a subset of only non-reverberant speech, as we are
targeting headset scenarios, where there is little to no
reverberation present. We employed a DNN-based predictor,
a modified version of [48], to detect clips as having a high
direct-to-reverberation ratio above 40 dB, i.e., assumed to be
near-field recorded or non-reverberant speech. This subset
is subsequently released as the clean speech dataset for the
headset track.

For the Speakerphone track, we utilized the entire clean
speech dataset from the fourth DNS Challenge.

To assist in the development of personalized models for
both tracks, we provided speaker ID information for all clean
speech clips in the training set. Furthermore, we released code
for extracting speaker embeddings based on state-of-the-art
ECAPA-TDNN embeddings, trained on the VoxCeleb dataset
[49], [50], [51].

The noise dataset and impulse responses utilized in this
challenge remain consistent with those used in the fourth
DNS Challenge [23] and is described in the following. The
noise data integrated into the training set is selected from
Audio Set [52], and it mirrors the noise set used in the
fourth DNS Challenge [23]. Audio Set comprises roughly 2
million human-labeled 10-second sound clips extracted from
YouTube videos. Within Audio Set, more than a million clips
encompass audio classes like music and speech, while classes
such as toothbrush or creak are represented by fewer than 200
clips. Around 42% of the clips are associated with a single
class, but the remainder might carry 2 to 15 labels. To rectify
this imbalance, we devised a sampling strategy to ensure that
each class includes a minimum of 500 clips.

To remove any speech from Audio Set noise data, we uti-
lized a speech activity detector to eliminate clips with any
form of speech activity. These clips were sourced from Au-
dio Set and were initially available at a 44.1 kHz sample
rate, which we subsequently upsampled to fullband (48 kHz).
Consequently, the resulting noise dataset encompasses 152
audio classes and 60,000 clips [23]. Altogether, the noise
training data contains a cumulative noise data duration of 181
hours.

As in previous challenges, the room impulse responses
(RIRs) are from several data sets; 248 are real and
about 60,000 are simulated RIRs from the openSLR26 and
openSLR28 [53] datasets. These RIRs can be used to gen-
erate reverberant speech data. We provide a training data

synthesizer that convolves speech with RIRs and adds noise
depending on the chosen configuration.

B. DEVELOPMENT TEST SET
Both test sets consist of fullband audio clips recorded in real-
world scenarios, obtained through crowdsourcing. Workers
read provided text prompts and record their voices using desk-
tops, laptops, or mobile devices while contending with ambi-
ent noise and/or neighboring talkers. It should be noted that
no ground truth clean speech data is available for the test sets.

The development test set for the Headset track contained
641 real test clips recorded using a variety of headset devices.
Similarly, the Speakerphone track development set has 600
real test clips recorded on speakerphone devices. This helped
challenge participants to conduct an intermediate evaluation
of their models.

In this challenge, the final ranking of submitted models was
solely done based on subjective and WAcc evaluation of the
blind set. Thus, the development test set and DNSMOS score
were only to be used for aiding the model development.

C. BLIND TEST SET
We have introduced new noise types into the test set, covering
a range of pertinent real-world scenarios, device variations,
and the addition of a paralinguistic test set as a novel category.
The blind test set encompasses genuine test clips that have not
been previously utilized in any challenge and are not other-
wise available to the public. Our test set comprises real-world
test clips recorded by crowdsourced workers.

We executed a stringent quality assurance process to ensure
that the blind set accurately mirrors real-world scenarios. This
encompassed a diversity of speaker profiles, device types,
various acoustic situations, different direct-to-reverberation
ratios (DRR), varying T60 times achieved through stratifying
the collected samples which varied the relative and absolute
positions of primary and interfering talkers, the presence of
noise sources, and the inclusion of reflecting surfaces.

The paralinguistic test clips encompass standard forms of
paralanguage,5 including but not limited to the throat-clear,
“hmm” or “mhm”, “Huh?” or “what?”, gasps, sighs, moans,
groans, deceptive speech, sincere speech, bass-heavy speech,
speech with high and low pitch, confident, tired, persuasive
speech, and voice change mid-clip (i.e., imitating someone
else’s voice in the last 50% of the clip). Emotional speech in-
cludes but is not limited to happiness, sadness, anger, yelling,
crying, and laughter. Furthermore, the blind test set comprises
acoustic conditions characterized by:
� High reverberation
� High reverberation with noise
� Noise in the presence of interfering talkers
There was a variety of noise types in the test set. Fig. 2

shows the distribution of noise types.
In total, the Headset track has 389 real test clips out of

which 220 have interfering talkers, and 51 are leakage clips.

5[Online]. Available: https://en.wikipedia.org/wiki/Paralanguage
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FIGURE. 1. Visualization depicting the distribution of subjective scores
(P.835 MOS) for unprocessed clips within the blind test set.

FIGURE. 2. Distribution of noise types within the blind test set.

Leakage clips have a duration of 6 minutes and were designed
to identify personalized models that may forget the primary
talker when the primary talker goes on a long pause. The
test set was recorded using a variety of wired and wireless
devices. The blind set was collected by four crowdsourcing
data vendors with the following distributions: Vendor_1 (222
test clips), Vendor_2 (77 test clips), Vendor_3(39 test clips),
Vendor_4 (51 test clips).

The blind set for the Speakerphone track has 331 real test
clips out of which 220 have interfering talkers, and 51 are
leakage clips. The leakage clips were common and identical
in both tracks. These clips were recorded using speakerphone
devices. The Speakerphone track blind set was collected by
four vendors with the following distributions: Vendor_1 (221
test clips); Vendor_2 (59 test clips); and Vendor_4 (51 clips).

Fig. 1 shows the distribution of MOS obtained from subjec-
tive evaluation. It shows more variety in SIG values and fewer
variations in BAK and OVRL for blind sets. Most noisy clips
have low values (<2) for BAK and OVRL, thus confirming a
challenging test set.

V. EVALUATION SETUP
A. BASELINE MODELS
Instead of providing a baseline model, we provided the
enhanced blind set clips for both tracks. The personalized
and non-personalized baseline models were derived from the

architecture proposed in [54], adhering to the RTF and looka-
head constraint challenge rules.

B. SUBJECTIVE EVALUATION
This section describes the preparation of enrollment clips,
the conduction of the subjective listening tests, and the re-
producibility study. The subjective evaluation utilized only a
5-second segment of enrollment speech.

1) CLEANING ENROLLMENT CLIPS
We manually selected the 5-second segment from the en-
hanced enrollment clip, ensuring the removal of all long
pauses (>0.2 s). The resulting 5-second enrollment audio
was loudness normalized to facilitate easier recognition of the
primary talker by human raters. Additionally, enrollment clips
were enhanced using a non-causal non-personalized DNS
model based on the end-to-end enhancement network (E3Net)
architecture [55]. Instead of using the Short-Time Fourier
Transform (STFT) and its inverse (iSTFT), this enhance-
ment model employs learnable encoders and decoders, which
helps mitigate the issue of imperfect phase reconstruction
commonly encountered in most time-frequency-based speech
enhancement methods. The performance was improved by
converting the causal model to non-causal processing by using
a bidirectional Long Short-Term Memory (LSTM) block.

2) PERSONALIZED P.835 FRAMEWORK
This challenge relies on the P.808 Toolkit [16], which is an im-
plementation of the ITU-T Rec. P.808 [26], and its test method
for subjective evaluation of noise suppression algorithms (i.e.
crowdsourcing counterpart of P.835). In this challenge, we
designed a novel personalized version for P.835 test method,
referred to as personalized P.835. The personalized P.835 sub-
jective framework collects three MOS scores for each clip:
SIG, BAK, and OVRL. In this approach, for each test clip,
5 seconds of clean enrollment speech are presented to test
participants to identify the target speaker (see Fig. 4). This
facilitated the human raters to identify the primary talker’s
voice, aiding in the assignment of subjective scores for the
judgment segment of length 7 seconds accordingly.

In a prior training session, raters were instructed to con-
centrate on the quality of the primary speaker’s voice when
assessing the speech quality in the judgment segment (which
may contain neighbor speakers). In addition, the following
specific instructions were provided to workers: If the target
speaker is completely removed from the judgment section
and another person is present, rate BAK = 1 (presence of
high background noise), SIG = 1 (removal of target speaker),
and OVRL = 1 (poor performance of the model). During the
training session a feedback with expected answer and explana-
tions was provided to the participants. We also added two new
qualification tests to ensure 1) participants are able to identify
different talkers and 2) their device can playback audio in
fullband (see Fig. 3). Additionally, we improved the reliability
checks by incorporating gold clips designed for personalized
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FIGURE. 3. User interface showing extended training and qualification tests in Personalized P.835 to ensure (a) person recognition, (b) Bandwidth check.

FIGURE. 4. Personalized P.835 test sound clip structure.

TABLE 4. PCC Between 4 Reproducibility Runs in Amazon Mechanical Turk.

scenario. We also use other reliability check methods provided
in the P.808 Toolkit [15].

3) PERSONALIZED P.835 REPRODUCIBILITY STUDY
Fig. 5 shows the comparison of Pearson correlation coeffi-
cient (PCC), Spearman’s rank correlation coefficient (SRCC),
Kendall’s Tau-B and Tau-B_95 [56] between 4 separate runs
for a reproducibility study on Amazon Mechanical Turk in
model level. Specifically, we did a different run on four differ-
ent days, each with different raters. The dataset used in the test
included 10 models applied on 300 clips. On average we have
collected 5 to 6 ratings for each clip in each run. Table 4 shows
the PCC between MOS scores from these reproducibility runs.

FIGURE. 5. Comparison of Pearson Correlation Coefficient (PCC), SRR,
Tau-B and Tau-B_95 between 4 runs of Amazon Mechanical Turk
reproducibility study.

The high PCC and SRCC show that the personalized P.835
framework is reproducible.

C. WORD ACCURACY
We estimated WAcc using the Microsoft Teams endpoint
speech recognition system. This WAcc computation process
was carried out by the organizers during the final week of the
challenge, ensuring that all models were assessed using the
same methodology. WAcc serves as an objective metric for
evaluating the impact of speech enhancement on speech tran-
scription services. The formula defining WAcc is as follows:

WAcc = 1 − WER, (1)

VOLUME , 2024 731
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TABLE 5. PCC Between WAcc and BAK, SIG, and OVRL for [23] Track 1

where WER represents the word error rate of the speech
recognition system compared to the transcribed speech. As
the ground truth transcripts for WAcc include only words spo-
ken by the primary talker, recognized words from interfering
talkers degrade WAcc, which therefore acts as a very sensitive
metric to neighbor talker leakage.

To derive the ground truth, we transcribed the complete
blind set for both tracks. The development test set was not
transcribed. Distinct from the subjective P.835 framework that
employs a manually selected 7-second segment from either
noisy or enhanced clips, the WAcc is computed for the entire
length of the test clips. As mentioned in Section IV-B, the test
clips within the blind set vary in duration, ranging from 10
seconds to over 6 minutes.

The transcriptions of the blind test set were gathered
through crowdsourced data collection. Workers were provided
with text prompts to read from, though these prompts did
not necessarily reflect the exact transcriptions due to read-
ing errors, word omissions, and other variations. To establish
accurate ground truth transcriptions for the blind test set, we
followed a five-step methodology:

1) Prompt Collection: In the initial step, we gathered the
text prompts corresponding to each test clip within the
blind set.

2) Speech Recognition Transcription: Using a state-of-
the-art speech recognition engine Whisper [57], we
obtained transcriptions for each test clip in the blind set.

3) Human Listener Transcription: Expert human listeners
then carefully listened to each test clip and generated
corresponding human-generated transcripts. These ex-
pert listeners were instructed to listen to the audio clips
multiple times until they were confident in their tran-
scription.

4) Word Error Rate Computation: We calculated the word
error rate (WER) for each test clip in the blind set. Clips
with WER > 0.5 were identified for further review.

5) Correction and Validation: For the test clips with a
WER > 0.5, a fifth round of listening took place. Hu-
man listeners re-listened to these clips and validated
or corrected the human-generated transcriptions. It is
noteworthy that only a small number of clips required
correction during this stage, underscoring the robustness
of our transcription process.

Clips that were untranscribable even after this five-step
approach were consequently discarded.

The correlation of WAcc and BAK, SIG, and OVRL for the
ICASPP 2022 DNS Challenge Track 1 [23] is given in Table
5, which shows that WAcc is most correlated with SIG and

least with BAK. Therefore, to improve WAcc it would be most
effective to improve SIG.

D. CHALLENGE METRIC
In alignment with previous challenges, the models in both
tracks were ranked using a final score derived from an av-
erage of personalized ITU-T P.835 OVRL and WAcc. The
inclusion of WAcc serves as an objective metric quantify-
ing the impact of speech enhancement on automatic speech
recognition-based transcription services. OVRL and WAcc
were used on the blind test set to rank the models using the
below formula:

Score = 0.5[WAcc + 0.25(OVRL − 1)] (2)

E. CHALLENGE MODE
At the challenge start, the training and development sets
were released. During the development phase, participants
could submit enhanced clips generated by their models on
the development set, which were evaluated by the orga-
nizers and shared with the participating teams. This com-
prehensive approach ensured a thorough assessment of the
submitted models.

VI. RESULTS & ANALYSIS
A. SUBMISSIONS AND RESULTS
Both tracks attracted significant participation, each drawing
in 11 submissions. 10 teams participated in both tracks. The
models submitted across both tracks predominantly consisted
of personalized models.

In the Headset track, there were two baseline models, one
of which was non-personalized (Baseline_nonp). In contrast,
the Speakerphone track’s baseline model was personalized
(Baseline_p). The non-personalized baseline in the Headset
track was trained on extracting only nearfield speech utilizing
the headset scenario acoustic conditions to blend out farfield
speakers, which are more reverberant. This removes the need
for using enrollment data. For reference, we also include two
newer internal personalized models, denoted by MSFT-1 and
MSFT-2, which also conform with the challenge rules, but do
not participate in the challenge. Details about those models
may be released in future papers.

Fig. 6 shows the main results of the challenge in terms of
subjective personalized P.835 scores, WAcc, and the overall
challenge score (2) for all participating teams. The order of
teams is arranged in descending order of the score. In this con-
text, dMOS indicates the difference in SIG, BAK, and OVRL
between the enhanced clip and the corresponding noisy clip.
Similarly, dWAcc represents the difference in WAcc between
the enhanced clip and the noisy clip.

B. COMPARISON OF CHALLENGE MODELS
Table 6 shows the descriptions and additional information
on the models we have obtained from the top five teams.
The table shows RTF, training data and its size, number of
training stages, input type, speaker embedding model and
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TABLE 6. Comparison of the Top Five Teams in ICASSP 2023 DNS Challenge. N/A Means Data Not Available Yet From Participants

FIGURE. 6. Results from the personalized P.835 subjective evaluation,
WAcc, and the Challenge metric (Score) were computed on the blind test
set for all teams in both tracks: (a) Headset, (b) Speakerphone.

FIGURE. 7. Paired t-test for (a) Headset track; (b) Speakerphone track to
test the statistical difference between the top 5 models.

overall challenge score. All models have similar RTF and
most of them used the challenge dataset. The top two models
have a significantly higher number of parameters than others,
which may indicate some correlation. We however do not see
a strong correlation between RTF and ranking. The top three
models trained in several stages which suggests that this may
help achieve better performance. We have a mixed bag of
STFT and time-domain models. Four out of five models are
personalized models. The best and worst models are based
on ECAPA-TDNN speaker embeddings which were provided
as baseline speaker embedding for this challenge while the
second and third-rank teams used ResNet34 for speaker
modeling.

Fig. 7 shows paired t-tests for both tracks. It shows that
in the Headset track, no statistical difference was observed
between performance of the top three models (orange). For
the Speakerphone track, the best two models are statistically
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FIGURE. 8. Visualized distribution of clip-level subjective scores for SIG,
BAK, and OVRL for all models including challenge participants and
Microsoft.

FIGURE. 9. Heatmap of Pearson correlation between SIG, BAK, and OVRL
from Personalized P.835 subjective evaluation. This includes all challenge
models and internal Microsoft models.

FIGURE. 10. Visualization of subjective ratings (P.835 MOS) distribution for
the noisy blind test set (X-axis) and the challenge winner model (Y-axis).

different while teams TencentASSP, TSpeech-AI, and Ten-
centVPPaaS are statistically similar.

C. SCORE DISTRIBUTIONS
Fig. 8 shows the distribution of SIG vs OVRL and BAK vs
OVRL for all models including challenge entries and Mi-
crosoft internal models. Each point in Fig. 8 corresponds to
one MOS-rated clip. Both graphs show a positive correlation
between SIG and OVRL, and BAK and OVRL. Interestingly,
we observe a strong trend that almost always we obtain ratings
with SIG ≥ OVRL. BAK and OVRL seem to have a more
linear relation than SIG and OVRL. This is further analyzed
in Fig. 9, showing the Pearson correlation between SIG, BAK,
and OVRL scores for all models including challenge entries
and Microsoft internal models. We can observe that BAK and
OVRL have a very strong correlation of 0.95, whereas other
pairs have only a moderate correlation.

Fig. 10 shows the subjective score data points of the top
model on the Y axis compared to the corresponding score of
noisy on the X axis. We can see that the noisy BAK and OVRL

TABLE 7. Remaining Headroom in MOS Improvements Needed to Attain
Excellent Speech Quality (MOS 5) for Both Tracks, as Determined From the
ICASSP 2023 DNS Challenge

values, which reside largely in the lower MOS regions (see
also Fig. 1) are getting shifted up by the winner’s processing
system and become distributed over the whole MOS range.
This means that BAK and OVRL are largely improved on
average. However, for SIG, the already higher SIG distribu-
tion is not significantly shifted up. On the contrary, we can
observe severe SIG degradations for a significant portion of
the clips, which results in minor degradation on the mean
score as shown in Fig. 6.

D. COMPARISON TO PREVIOUS CHALLENGES
Table 7 shows the remaining headroom in SIG, BAK, and
OVRL for headsets and speakerphones. The headroom for
all metrics here are significantly larger than those in Table
1 for the previous DNS challenge at ICASSP 2022. Possi-
ble reasons for this are: (i) the test set is more challenging,
and (ii) the addition of the personalization task, i.e., speaker
identity-informed target speaker extraction makes the problem
more challenging.

VII. LIMITATIONS
The primary limitation of this challenge is the potential lack of
representative samples in the test set. An ideal methodology
would be to sample audio clips from a real-time communi-
cation system in production and stratify these clips to cover
all significant scenarios. However, doing so would have many
privacy issues both in content discussed as well as biometric
identity. The scenarios included in this challenge are the top
ones we see in Microsoft Teams and Microsoft Skype, which
may not be representative to all real-time communication
systems.

VIII. CONCLUSION
This paper describes the fifth incarnation of the Deep Noise
Suppression Challenge, evaluating state-of-the-art DNN sys-
tems on the task of personalized speech enhancement. The
challenge rules set constraints on model runtime and look-
ahead, enforcing models that can practically be used for
on-device real-time communication pipelines. The test sets
and evaluation metrics are designed to generalize in the
best possible way to realistic performance by evaluating real
recordings, collected from a variety of devices and acoustic
settings, including paralinguistic and leakage test clips, and
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using directly relevant metrics such as subjective human MOS
ratings and automatic speech recognition performance.

The top models improve overall quality and suppress back-
ground noise and interfering talkers impressively, however at
the cost of degrading SIG compared to the unprocessed signal.
Additionally, personalized models are more prone to inadver-
tently suppress the primary talker’s speech due to confusion
with interfering speech, which creates more speech distortions
and degrades robustness significantly for practical use.

Looking forward, there are exciting emerging research
areas in speech enhancement and processing. One is self-
supervised training for DNS models [18] which enables the
use of real-world data for training. Another is to have a uni-
fied model for both personalized and non-personalized speech
enhancement [17]. These two approaches could potentially be
combined into a single self-supervised DNS model which can
perform personalized and non-personalized DNS.

Future challenges could also relax the real-time require-
ments, which would allow much more complex models to be
applied, e.g., multi-modal large language models [66], [67],
[68]. In addition, we could also relax the latency requirements,
which would be useful for non-real-time scenarios such as
offline speech enhancement of recorded meetings.
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