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ABSTRACT The electroencephalogram (EEG) offers a non-invasive means by which a listener’s auditory
system may be monitored during continuous speech perception. Reliable auditory-EEG decoders could
facilitate the objective diagnosis of hearing disorders, or find applications in cognitively-steered hearing
aids. Previously, we developed decoders for the ICASSP Auditory EEG Signal Processing Grand Challenge
(SPGC). These decoders placed first in the match-mismatch task: given a short temporal segment of EEG
recordings, and two candidate speech segments, the task is to identify which of the two speech segments is
temporally aligned, or matched, with the EEG segment. The decoders made use of cortical responses to the
speech envelope, as well as speech-related frequency-following responses, to relate the EEG recordings to
the speech stimuli. Here we comprehensively document the methods by which the decoders were developed.
We extend our previous analysis by exploring the association between speaker characteristics (pitch and sex)
and classification accuracy, and provide a full statistical analysis of the final performance of the decoders
as evaluated on a heldout portion of the dataset. Finally, the generalisation capabilities of the decoders are
characterised, by evaluating them using an entirely different dataset which contains EEG recorded under a
variety of speech-listening conditions. The results show that the match-mismatch decoders achieve accurate
and robust classification accuracies, and they can even serve as auditory attention decoders without additional
training.

INDEX TERMS Auditory attention decoding, deep learning, EEG signal processing.

I. INTRODUCTION
The neural processes by which normal-hearing human lis-
teners perceive and understand spoken language are not well
understood. These processes must be executed rapidly enough
for listeners to be able to comprehend speech in real time,
and resilient enough to preserve speech comprehension under
adverse listening conditions. For example, during selective
attention to one of several speech streams, the auditory system
performs processing to enhance the attended speech stream:
this is the famous cocktail-party effect [1].

The auditory system produces electric and magnetic sig-
nals during speech perception. These signals may be recorded
noninvasively and at high sampling rates, offering the op-
portunity to study the rapid nature of continuous speech
processing. Such signals are notoriously noisy, due to artefacts
originating from the activity of participants’ hearts, eyes, and
muscles, as well as external electromagnetic fields. Moreover,
noninvasive recordings of electric and magnetic signals are
inevitably contaminated by background neural activity which
is not related to auditory processing. A significant challenge
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therefore lies in identifying and isolating auditory contribu-
tions to the recorded signals.

Techniques for system identification have facilitated much
of the recent research into electroencephalography (EEG) and
magnetoencephalography (MEG) responses to continuous
speech [2]. The temporal response function (TRF) approach
aims to identify the linear time-invariant system that best de-
scribes M/EEG responses to features of the stimulating speech
stream [2], [3], [4]. This approach has proven particularly
fruitful for characterising M/EEG responses to the temporal
envelope of speech, a feature which primarily captures slow
amplitude fluctuations driven by words and syllables. A num-
ber of studies have now demonstrated that cortical responses
to the speech envelope are modulated by selective auditory
attention [5], [6]. Smart hearing aids which leverage this ef-
fect could one day improve outcomes for hearing-impaired
listeners, by selectively amplifying particular sounds in busy
auditory scenes according to the focus of the user’s auditory
attention [7].

Beyond temporal envelope processing, the TRF method
has been used to explore the neural correlates of a wide
range of cognitive and perceptual factors of speech, including
linguistic surprisal, speech-in-noise clarity, and speech com-
prehension levels, to name but a few examples [8], [9], [10],
[11]. Recently, responses which phase-lock to the fundamen-
tal waveform of continuous speech (F0), as well as to the
envelope modulations of its higher harmonics, have also at-
tracted considerable interest [12], [13], [14]. These responses
are termed speech-related frequency-following responses, or
speech-FFRs. Classical frequency-following responses are
evoked by simple stimuli such as tones or vowels, and are
detected by averaging the M/EEG recordings over many rep-
etitions of the stimulus sound. Aiken and Picton distinguish
between two types of FFR: the spectral FFRs, which phase-
lock to spectral components of the stimulus (such as the
harmonics of a vowel sound) that are resolved by the cochlea;
and the envelope FFR, which phase-locks to high-frequency
periodicity in the envelope of the stimulus (e.g. the glottal
pitch envelope of a vowel sound) [15]. Speech-FFRs which
phase-lock to F0 can be considered direct analogues of the
spectral FFR, and speech-FFRs which phase-lock to the high-
frequency envelope modulations of the speech waveform can
be considered analogous to the envelope FFR.

Speech-FFR waveforms can be obtained through TRFs (i.e.
deconvolution), rather than through averaging. Both show
strong responses at the fundamental frequency of speech, with
envelope-related speech-FFRs exhibiting a much stronger
amplitude than spectral speech-FFRs [14], [16]. The speech-
FFRs have also been shown to be modulated by selective
attention to speech, with attended voices eliciting stronger
responses than unattended voices [17], [18]. Speech-FFRs
are also affected by other speaker characteristics, particu-
larly pitch, but also the speech rate and the variability of the
speaker’s pitch [13], [14], [19].

As an alternative to TRFs (which are linear models), non-
linear methods such as deep neural networks (DNNs) may

be used to relate M/EEG recordings to continuous speech.
The literature concerning the application of DNNs for au-
ditory EEG decoding is growing particularly quickly [20].
Several factors motivate the use of DNNs for decoding EEG
responses to speech. First, DNNs are better suited than TRFs
to capture the inherently nonlinear nature of the auditory
system. Second, the decoding performance of DNNs can
reflect perceptual factors such as speech-in-noise intelligibil-
ity, potentially facilitating the objective diagnosis of hearing
disorders, or the objective evaluation of listening devices
[21]. Finally, DNNs have been shown to possess a remark-
able ability to generalise across individuals, even though the
characteristics of EEG signals are highly individual-specific
[21], [22]. A single linear model cannot usually be used to
accurately decode EEG signals recorded from a cohort of indi-
viduals. For many applications, including cognitively-steered
hearing aids, a decoder which works for unseen individuals in
an ‘out-of-the-box’ fashion would be highly desirable.

In this work, we present and further develop our deep-
learning approach for decoding EEG responses to speech,
originally designed for the ICASSP 2023 Auditory EEG De-
coding Signal Processing Grand Challenge (SPGC) [23], [24].
We focus on the match-mismatch sub-task of the challenge:
given a short temporal segment of multichannel EEG, as well
as two candidate speech segments, the task is to identify which
of the two speech segments is temporally aligned with the
EEG segment (see Fig. 1). This auditory match-mismatch
paradigm was originally proposed by de Cheveigne et al.
and is free from a number of potential confounds which
are present in the more common auditory attention decoding
paradigm; for example, two-talker selective-attention tasks are
more cognitively demanding for participants than are single-
talker active listening tasks, which could lead to decreased
rates of compliance with the experimental protocol [25]. Sub-
sequent work has shown that both acoustic and linguistic
features derived from speech signals carry information which
can be decoded from EEG signals using deep neural networks
in a match-mismatch paradigm. These features include the
temporal envelope of speech, the mel spectrogram, phonetic
features, and word-level features such as word frequency and
word surprisal [26], [27], [28], [29].

The match-mismatch decoders developed in this work were
evaluated against data from ‘seen’ participants, who already
featured in the training dataset, as well as data recorded from
‘unseen’ participants. Our approach to the match-mismatch
decoding problem is similar to that of Puffay et al. in that
we sought to exploit cortical tracking of the speech temporal
envelope as well as a speech-FFR through deep neural net-
works [30]. However, those authors made use of the spectral
speech-FFR, whereas we decided to use the envelope-related
speech-FFR, which has a stronger magnitude at the fundamen-
tal frequency of speech [14], [16]. Two further approaches for
boosting the accuracy of the decoding system are explored in
this work: fine-tuning of the decoders to individual listeners,
and ensembling a population of distinct decoders by averaging
over their individual predictions. Finally, a comprehensive
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FIGURE 1. Overview of the match-mismatch task. (a) Multi-channel time-series of EEG recordings over a ten-second period. A short temporal segment of
the EEG signals is highlighted in green. (b) The time-aligned speech waveform is shown on the right. A segment which is time-aligned, or matched, with
the EEG segment is highlighted in green. A mismatched segment is highlighted in red. In the match-mismatch task, an auditory EEG decoder must learn to
distinguish between matched and mismatched stimulus segments, given a short temporal segment of EEG recordings.

assessment of the generalisation capabilities of the decoders
is provided, including an investigation into their application
as auditory attention decoders.

II. MATERIALS AND METHODS
A. DATASETS
The authors of the ICASSP 2023 Auditory EEG Decoding
SPGC provided a very large dataset comprising EEG mea-
surements taken from participants who listened to speech
material in their native language (Dutch) [31]. This dataset is
named SparrKULee. A total of 85 young and normal-hearing
participants are included in this dataset. The time-aligned
speech material, which consists of audiobooks and podcasts,
is also included in the dataset. The speech material was pre-
sented by both male and female speakers. Each participant
underwent between four and twelve trials, and one entire
audiobook chapter or podcast was presented per trial (average
trial duration: about fifteen minutes.)

SparrKULee was divided into two parts, termed the de-
velopment dataset and the heldout dataset. We used the
development dataset to experiment with our decoders, and the
accuracy of the final decoding system was evaluated using
the heldout dataset. The development dataset consists of EEG
recordings from 71 participants, and between three and eleven
trials per participant. Each trial in the development dataset was
further split into three non-overlapping portions: the training
portion, consisting of the first 80% of the recorded data; the
validation portion, consisting of the next 10%; and the testing
portion, which consists of the remaining 10% of the data at
the end of the trial. Overall, the three portions of the develop-
ment dataset contained EEG recorded for 94.13 hours, 11.77
hours, and 11.77 hours, respectively. The heldout dataset con-
tained EEG recordings from the same 71 participants whilst
they listened to distinct speech material, as well as EEG
recordings from an additional 14 unseen participants. The

heldout dataset contained between one and seven trials per
participant, totalling almost 40 listening hours (seen partici-
pants: 19.61 hours; unseen participants: 19.34 hours).

The EEG recordings were acquired from 64 channels at a
sampling rate of 8196 Hz using a Biosemi ActiveTwo system
(Biosemi, Netherlands). The electrodes were applied to the
scalp of each participant with conductive gel, and positioned
according to the international 10–20 system using the Biosemi
64-channel electrode cap (Biosemi, Netherlands). Although
the recordings were acquired at 8196 Hz, the public version
of the dataset provides resampled recordings with a sampling
rate of 1024 Hz. The resampled EEG recordings are therefore
used in the present work.

We applied our trained decoders to a second publicly-
available EEG dataset, which will be referred to as the ICL
dataset [32]. Eighteen native-English-speaking participants
listened to audiobooks presented both in quiet and noisy
conditions. The noisy conditions include speech presented in
three levels of background babble noise (with signal-to-noise
ratios (SNRs) of 0.4 dB, −1.4 dB, and −3.2 dB), as well
as two competing-speakers conditions. In the first, each lis-
tener was asked to attend to a male narrator whilst ignoring
a female narrator. In the second condition, the roles of the
two speakers (attended vs ignored) were swapped. Further-
more, in a separate recording session, twelve participants
listened to audiobooks which were presented in a foreign
language that they did not understand (Dutch). Of these par-
ticipants, ten had already taken part in the English recording
session. During the Dutch session, the participants listened
to speech in quiet conditions, as well as in the same three
noisy conditions described above; however, we only used the
foreign-language-in-quiet condition in this work. Therefore,
we applied our already-trained decoders in seven distinct
listening conditions. Each listening condition was split into
four trials, each of approximately 2.5 minutes in duration. The
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EEG signals were acquired at a sampling rate of 1000 Hz
via an ActiCHamp amplifier (BrainProducts, Germany) and
63 active electrodes applied to the scalp with conductive gel.
The electrodes were positioned according to the easycap-M1
electrode cap (BrainProducts, Germany), which conforms to
the international 10–20 system. An additional electrode was
placed on the right earlobe and served as the common refer-
ence electrode. Therefore, this dataset contained 63-channel
EEG recordings.

B. DATA PRE-PROCESSING
1) SPARRKULEE
Representations of the speech envelopes were calculated ac-
cording to a procedure inspired by the auditory system, as
described by Biesmans et al. [33]. Each raw speech waveform
(sampled at 48 kHz) was first passed through a gammatone
filterbank composed of 28 filters spaced equidistantly on an
ERB (equivalent rectangular bandwidth) scale between 50 Hz
and 5 kHz. The resulting sub-band waveforms were subse-
quently full-wave rectified and raised to the power of 0.6 in
order to obtain compressed sub-band envelopes. These were
averaged to produce a single-channel envelope, which was
finally resampled to 64 Hz.

Following previous studies, we used the high-frequency
envelope modulations feature to represent periodicity in the
speech envelopes [13], [14]. The speech waveforms were first
resampled to 16 kHz. A time-frequency representation (au-
ditory spectrogram) of each speech waveform’s power was
then obtained from a publicly-available biophysical model
of the auditory periphery [34], [35]. The auditory spectro-
grams have a reduced sampling rate of 500 Hz. The frequency
bins corresponding to centre frequencies between 300 Hz
and 4 kHz were averaged, and the subsequent waveform was
bandpass filtered in the range of 70 Hz to 220 Hz, which
is approximately the range of the fundamental frequency of
speech (FIR sinc-Hamming functions of order 249 applied
twice via forward and backward passes). The resulting signal
was resampled to 512 Hz.

We produced a pre-processed version of the EEG record-
ings from SparrKULee to accompany the speech envelopes
using the brain_pipe package [36]. The pre-processing
pipeline was developed by the organisers of the SPGC. First,
slow drifts were removed from the EEG recordings using
a highpass infinite impulse response (IIR) filter (first-order
Butterworth filter with −3 dB attenuation at 0.5 Hz, applied
twice via forward and backward passes). Then, a simple
single-channel threshold-and-interpolate procedure was
employed to identify and remove noisy segments in the
recordings. Events with an amplitude exceeding 500 µV were
marked as glitches. Glitchy segments were then replaced
using linear interpolation, where the values were derived by
interpolating between the samples immediately before and
after each glitchy segment.

A second threshold-based artifact suppression routine was
then applied. In this case, the five most frontal channels (the

Fp/AF channels, as well as Fz) were averaged to form a mean
frontal channel. Next, the average power of this mean frontal
channel over the course of each trial was calculated and used
to define a threshold for identifying glitchy segments. Specif-
ically, the threshold power was defined to be five times the
average power of the mean frontal channel; any time instances
at which the instantaneous power of the mean frontal channel
exceeded this threshold power were labelled as glitchy. For
each trial, a multichannel Wiener filter was fitted by using
the segments marked as ‘clean’ and ‘glitchy’ to estimate the
covariance matrices of both the clean EEG signals as well
the (assumed-to-be) superposed artefact signals, respectively.
The filter was then applied to the entire EEG signal in order
to suppress high-power artefacts, for example due to blinks
or movements [37]. The EEG recordings were re-referenced
to the average voltage of all the electrodes and finally re-
sampled to the same sampling frequency as the speech
envelopes (64 Hz.)

A second pre-processed version of the same EEG record-
ings was produced to accompany the high-frequency envelope
modulations feature. The EEG recordings were detrended via
the same high-pass IIR filter described above, and the same
initial threshold-and-interpolate procedure was then applied.
Next, the EEG recordings were average-referenced, bandpass
filtered between 70 Hz to 220 Hz (FIR type-I sinc-Hamming
functions with a duration of 1s applied twice via forward and
backward passes), and resampled to 512 Hz (the sampling rate
of the high-frequency envelope-modulations feature.)

2) ICL DATASET
The speech envelopes and the high-frequency envelope mod-
ulations features were extracted from the ICL audiobooks
using the same procedures described above. The EEG pre-
processing pipelines were also similar, except that differences
in the electrode layouts of the two datasets needed to be
accounted for. After applying the aforementioned filtering and
artefact-suppression routines to the ICL EEG signals, five
channels (Fpz, Iz, P9, P10, PO4) which were used in Spar-
rKULee but missing from the ICL dataset were interpolated.
Then, four channels (FT9, FT10, TP9, TP10) which were
not used in SparrKULee were dropped. The common-average
EEG re-referencing procedure was applied after this step.

C. DEEP NEURAL NETWORKS
The deep learning architecture used in this work is based
on the deep neural network (DNN) architecture originally
proposed by Accou et al. [27]. It consists of two modules -
an EEG module, and a stimulus module. These two modules
respectively project the EEG and stimulus segments into a
space where matched segments are maximally similar. This
process is shown diagrammatically in Fig. 2(a). The stimulus
segments are represented by segments of the features of the
speech streams (the envelopes or the high-frequency envelope
modulations feature). Both modules employ one-dimensional
convolutional layers. A convolutional layer implements a set
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FIGURE 2. High-level overview of the deep neural network architecture used in this work. (a) The operation of the EEG module and the stimulus module.
The EEG module accepts a three-second temporal segment of 64-channel EEG recordings as an input, to which a nonlinear transformation fθ is
subsequently applied. The stimulus module accepts a univariate three-second segment of a feature of the stimulus (i.e., the envelope modulations, or the
speech envelope), to which it applies a nonlinear transformation gφ . The EEG and stimulus segments are each transformed into timeseries with L = 16
channels, which are compared through the cosine similarity metric SC . (b) Demonstration of the action of dilated convolutions. Dilated convolutions
employ spaces between the convolutional kernel elements, widening the receptive field of the convolutional layer. Since no padding is applied, the
output channel contains less temporal samples than the input channel(s), as shown. (c) Overview of the output layer of the decoder. Each channel of the
transformed EEG segment is compared against each channel of the transformed stimulus segment through the cosine similarity metric. This results in an
ordered pair 16 × 16 matrices, (one matrix for each of the two candidate stimulus segments). The matrices are subtracted, and a linear combination of
the resulting 256 matrix elements is taken to produce a scalar logit. The probability that the first stimulus segment Y1 is the matched segment is
calculated by applying the sigmoid function to this logit.

of multi-channel matched filters of a fixed length (or kernel
size) [38], [39]. The number of output channels of a convolu-
tional layer is determined by the number of matched filters
that the layer implements. Importantly, each matched filter
is parameterised by a matrix of learnable weights (of shape
C × K , where C is the number of input channels and K is the
kernel size), and can be trained to recognise various patterns
depending on the task at hand. A learnable scalar offset, or
bias term, is applied to the output of each matched filter.

Both modules employ three one-dimensional convolu-
tional layers, which are applied sequentially. Inbetween each
convolutional layer, a nonlinear activation function is applied
to each sample of each channel. The activation function is

chosen to be the Recified Linear Unit, defined as ReLU(x) =
max(0, x). Each convolutional layer has a kernel size of three
temporal samples, and each layer implements 16 matched
filters. Therefore, the projected representation of each tem-
poral segment of the stimulus or the EEG is a 16-channel
time-series. The first convolutional layer of the EEG module
is implemented as a separable convolution, which means that
the weight matrices of the matched filters are constrained
to the space of rank-1 matrices. This reduces the number
of independent parameters required to implement 16 multi-
channel matched filters operating on a 64-channel time-series.
Finally, the convolutional layers employ dilated convolutions.
In a dilated convolution, the kernel elements are not adjacent
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to one another, and there are gaps in between them - this
increases the receptive field of each matched filter without in-
creasing the number of required parameters. The dilation rate
is a hyperparameter which controls the spacing of the kernel
elements. For both modules, the first convolutional layer has
a dilation rate of 1 (no dilation/adjacent kernel elements), the
second has a dilation rate of 3 (there are two temporal samples
between kernel elements), and the third has a dilation rate of
9 (there are eight temporal samples between kernel elements).
The concept of dilated convolutions is illustrated in Fig. 2(b).
These hyperparameters are the same as those originally sug-
gested by Accou et al., and no further hyperparameter tuning
was performed [27]. From the hyperparameters, the width of
the receptive fields of the convolutional modules can be deter-
mined to be 27 temporal samples. Since the envelope-based
and speech-FFR-based decoders operate at different sampling
frequencies (64 Hz and 512 Hz respectively), a width of 27
samples corresponds to timescales of 422 ms for the envelope-
based decoder, and 53 ms for the speech-FFR-based decoder.

In the match-mismatch task, one EEG segment and two
stimulus segments (one matched and one mismatched) are
presented to the DNN. The two stimulus segments are pre-
sented as an ordered pair, and the DNN is trained to recognise
the order of the matched segment and the mismatched seg-
ment within this ordered pair. The match-mismatch task
is therefore a binary classification problem, with the first
class containing all examples for which the matched segment
precedes the mismatched segment, and the second class con-
taining all examples for which the mismatched segment is
positioned first in the ordered pair. The similarity between
the projected EEG segment and each projected stimulus seg-
ment is assessed through a cosine similarity operation. This is
implemented by first normalising each channel of each repre-
sentation to have unit magnitude, and then matrix-multiplying
the two 16-channel time-series together (dot product of nor-
malised vectors). This procedure results in an ordered pair of
16 × 16 matrices of cosine similarity scores.

The DNN is required to make a binary classification deci-
sion based on this ordered pair of matrices. This is achieved by
performing an element-wise subtraction of the second matrix
from the first. The resulting matrix elements are then flattened
and fed into a single output neuron with no bias term. In other
words, a scalar linear combination of those matrix elements
is formed. To obtain the final output of the DNN, a sigmoid
function is applied to the resulting scalar. The sigmoid func-
tion produces a number between 0 and 1 which is taken to
represent the probability that the inputs to the DNN belong to
the first class (the matched stimulus segment precedes the mis-
matched stimulus segment). These operations are represented
graphically in Fig. 2(c).

Our architecture is a modified version of that employed by
Accou et al. and Puffay et al. [21], [30]. Whereas we used a
separable convolutional layer at the start of the EEG module
to handle the large number of input EEG channels, those
authors first took several channel-wise linear combinations
of the EEG signals (spatial filtering) and then proceeded to

use three layers of ordinary, non-separable dilated convolu-
tions. Also, rather than taking an element-wise difference of
the two similarity matrices, those authors fed the (flattened)
elements of both matrices to the output neuron (which had a
bias term). An advantage of our approach is that the predicted
class probabilities become exactly symmetric with respect to
a change in the ordering of the matched and mismatched
stimulus segments. The architecture of Accou et al. and Puffay
et al. must instead learn this symmetry through training.

D. TRAINING PROCEDURE
The performance of a binary classifier can be assessed through
the binary cross-entropy (BCE) loss function, defined as:

L = −[y log(ŷ) + (1 − y) log(1 − ŷ)], (1)

where ŷ is the predicted probability that an input example
belongs to the first of two classes, and y is the true target
label. Classifiers which make confident and accurate predic-
tions achieve low BCE scores. Since the BCE loss function is
differentiable (unlike the classification accuracy metric), it can
be minimised with respect to the parameters of the classifier
using gradient-based optimizers. In fact, it can be shown that
through minimising the binary cross-entropy loss function,
the likelihood function of the class probabilities is maximised
with respect to the classifier’s parameters [40].

We trained the decoders by minimising the BCE loss func-
tion with respect to the decoder parameters. Minimisation of
the loss function was performed using the Adam optimizer,
which is based on the stochastic gradient descent algorithm
[41]. In stochastic gradient descent, small batches of train-
ing examples are fed through the decoder, and the outputs
are used to estimate the gradient of the BCE loss function
with respect to the parameters of the decoder. Then, a small
weight update is added to each parameter: the weight update
is proportional to the magnitude of the estimated gradient,
but it has the opposite sign. The scale of the weight update
is controlled by a multiplicative hyperparameter called the
learning rate. When small batch sizes are used, the gradient
estimates employed in SGD are noisy and the rate of conver-
gence is slow. The Adam optimizer tackles this by employing
an exponentially-weighted moving average of the estimated
gradients. Furthermore, for each parameter, it scales the learn-
ing rate adaptively by a factor which is inversely related to
the variance (noisiness) of the BCE gradient estimate for
that parameter.

Batches of 128 training examples (with balanced target
classes) were presented sequentially to the decoder during
training. A training epoch is said to have occurred once all
possible examples have been presented to the decoder exactly
once. Stochastic gradient-based optimizers do not converge
that quickly, so training is usually required to continue for
many epochs before a low and stable value of the loss func-
tion is achieved. In our experiments with the development
dataset, we found that it was beneficial to employ learning
rate scheduling: every seven epochs, the learning rate hy-
perparameter was reduced by a factor of ten. We also used
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an early stopping protocol with a patience of five epochs:
after each training epoch, we evaluated the average BCE loss
on the validation portion of the development dataset. If the
validation loss had not decreased within five epochs, training
was terminated and the decoder parameters which achieved
the best validation loss were saved.

Usually, EEG decoding accuracies are higher when infor-
mation can be integrated across long temporal segments of
EEG signals [21], [42], [43]. For the Auditory EEG Decoding
Signal Processing Grand Challenge, the organisers selected
a segment length of three seconds in duration: this is long
enough for significant decoding accuracies to be achieved, but
short enough to avoid ceiling effects due to teams achieving
near-perfect classification accuracies. In this work, we also
used segments of 3 s in duration.

Puffay et al. recommend taking care when choosing which
mismatched segments to use during training: ideally, matched
and mismatched segments should be drawn from the same
distribution (i.e. the mismatched segments should be ‘hard
negatives’) [20]. This is intended to promote proper learn-
ing of the association between the speech features and the
EEG signals, rather than learning of the differences between
the characteristics of the matched and mismatched speech
segments. In particular, Puffay et al. suggest selecting each
mismatched segment from the same speech material as the
corresponding matched segment, but at a fixed delay relative
to the matched segment: a spacing of one second between the
end of the matched segment and the onset of the mismatched
segment was demonstrated to work well, and we adopt this
scheme for both training and evaluating our decoders.

There was an overlap of 2 s between consecutive training
examples. One effect of this is that every matched seg-
ment in the training dataset also appears as a mismatched
segment. Puffay et al. noted that this can help to mitigate
overfitting, since the decoder can no longer simply learn
to associate specific pairs of stimulus segments with their
associated labels [20].

E. OVERVIEW OF EXPERIMENTS
We trained two types of decoder to solve the match-mismatch
task. The first type (envelope-based decoders) related the EEG
recordings to the slow amplitude fluctuations in the speech
streams. The second type (FFR-based decoders) related the
EEG recordings to high-frequency periodicity in the speech
envelopes. Various experiments were performed using these
two types of decoders.

1) MODEL AVERAGING AND COMPARISON TO BASELINE
There are two main sources of randomness in the train-
ing procedure. Firstly, the initial parameterisation of the
decoder was random: the weights were drawn from Glorot
uniform distributions and the bias terms were initialised to
zero [44]. Secondly, the order in which training examples
were presented to the decoders was random. Although train-
ing examples from a particular EEG trial were presented in

order, the order in which trials were selected was random and
shuffled after each epoch. We investigated the impact of these
sources of randomness by training 100 distinct instances of
both the envelope-based decoder as well as the FFR-based
decoder. We also studied the benefits of averaging sigmoid
outputs taken from multiple trained decoder instances of the
same type. In our subsequent analyses, we always use the
average of the sigmoid outputs of all 100 trained decoder
instances. We refer to the decoders that use averaged sig-
moid outputs as ‘averaged decoders’. Please note that the
deep learning framework which we employed (PyTorch ver-
sion 2.0.1) is also affected by other sources of randomness
search as non-deterministic algorithms, and these cannot be
controlled by setting the random seed alone [45].

The envelope-based decoder employed in this work is a
modified version of the decoder proposed by Accou et al. [27],
as described in Section II-C of the Materials and Methods
section. Therefore, it is important to establish how our modifi-
cations to the baseline architecture of Accou et al. impacts the
match-mismatch decoding performance. To this end, we used
the same training procedure to train 100 instances of the popu-
lation baseline decoder (i.e. without fine-tuning), which were
compared against the 100 instances of our envelope-based
decoder. Firstly, we performed statistical tests to compare
the performances of the two groups of 100 instances using
the development dataset. Secondly, we evaluated the perfor-
mance of the 100-instance averaged baseline decoder using
each of the datasets considered in this work, and report the
results alongside those obtained with our proposed decoders
in Table 1.

2) EFFECT OF SPEAKER PITCH
The speech-FFR is known to be modulated by speaker pitch
[12], [14]. In particular, the speech-FFR is weaker when
elicited by higher-pitched voices. We expected the accuracy
of the FFR-based decoders to reflect the pitch of the speech
material. To assess this, we estimated the mean pitch of each
audiobook or podcast in the testing portion of the development
dataset using the Praat software [46]. We also calculated the
mean classification accuracy (taken across participants) of the
averaged decoders. The accuracies and pitches were com-
pared using Pearson’s correlation coefficient. We also com-
pared the decoding accuracies achieved for the male-narrated
speech material against those achieved for the female-narrated
speech material.

3) DECODER FINE-TUNING
Electroencephalography signals are highly participant-
specific, since they depend on intrinsic factors such as the
anatomy of the participant in question, as well as extrinsic
factors such as the placement of the electrode cap and the
impedances of the skin-electrode interfaces (which usually
will be session-dependent). Some prior studies have shown
that it can be beneficial to fine-tune a trained instance of
the population decoder to individual participants [21], [42].
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TABLE 1. Comparison Between All Decoders Using the Various Datasets Considered in This Work

Inspired by these studies, for each type of decoder we selected
for fine-tuning the instance which achieved the best accuracy
when evaluated on the testing portion of the development
dataset. Then, for each participant in the development dataset,
we resumed the training of the decoder using data from that
participant only.

4) COMPOSITE DECODER
We combined our averaged envelope-based decoder with the
averaged FFR-based decoder using a linear classifier (linear
discriminant analysis, LDA), which operated on the sigmoid
outputs of both decoders to predict a final class estimate. The
LDA classifier was trained using the testing portion of the
development dataset. For participants in the heldout dataset
who also appeared in the development dataset, we addition-
ally formed a ‘fine-tuned’ composite decoder. This decoder
utilised the same population-based LDA classifier as before
(with the same parameters). However, the sigmoid outputs of
the fine-tuned decoders were used in place of those of the
averaged decoders. Based on our experience gained during the
ICASSP 2023 Auditory EEG Decoding SPGC, we decided
against using participant-specific LDA classifiers, since these
were found to generalise poorly to the heldout dataset.

5) GENERALISATION OF THE DECODERS TO A
DISTINCT DATASET
Finally, we assessed how well both types of averaged
population-based decoder, as well as the composite decoder,
could generalise to the completely distinct dataset of Etard
et al. [32]. This dataset consists of EEG measurements
recorded from native English-speaking participants who lis-
tened to audiobooks in several different listening conditions:
speech in quiet; speech in babble noise; speech in a for-
eign language; and two-talker competing-speakers conditions.
We assessed the match-mismatch classification accuracy of
the decoders in all of the listening conditions, for both
the target speaker and the ignored speaker in the case of

the competing-speakers conditions. We also performed au-
ditory attention decoding with these decoders, by replacing
the mismatched segment with the temporally-aligned seg-
ment of the ignored speech stream. The matched segments
were kept as the temporally-aligned segments of the attended
speech stream.

III. RESULTS
A. RANDOM SEED INITIALISATION AND MODEL
AVERAGING
Various sources of randomness have an impact on the final
state of a trained decoder. We trained 100 instances of both
the envelope-based decoder as well as the FFR-based decoder.
Each instance was trained using data from all participants in
the development dataset. The random number generators used
during decoder training were initialised with a different seed
for each decoder instance.

We evaluated the decoders using the testing portion of the
development dataset. Different decoder instances achieved a
large range of accuracies when evaluated on data from indi-
vidual participants, as shown in Fig. 3. The average range of
accuracies for individual participants is 6.7 percentage points
for the envelope-tracking based decoder, and 7.9 percentage
points for the FFR-based decoder. On average, the standard
deviations of the decoding accuracies were 1.3 and 1.5 (in
percentage points), respectively. For each decoder instance
we also calculated an overall mean classification accuracy, by
taking the mean of the classification accuracies achieved for
all 71 participants in the development dataset. Remarkably,
compared to the accuracies achieved for individual partic-
ipants, the participant-average classification accuracy was
much more narrowly distributed. For the envelope-based de-
coder, the range of the 100 participant-average classification
accuracies was 74.6% to 75.8%; for the FFR-based decoder,
this range was 62.7% to 64.3%.

A simple ensembling procedure was used to take advantage
of the apparent diversity within the two sets of 100 trained
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FIGURE 3. Decoding accuracies for individual participants in the development dataset. Participants are ordered by median classification accuracy. Each
boxplot shows the spread of accuracies achieved by 100 decoder instances, which were trained with different random seeds. The whisker-to-whisker
distance represents the range of the data. The grey region shows the upper limit of the 95% confidence interval of a random binary classifier.
Additionally, for each decoder we also calculated the mean accuracy across all participants. The range of the 100 mean classification accuracies is
indicated by the region highlighted in green. (a) Results for the envelope-based decoders. (b) Results for the FFR-based decoders.

FIGURE 4. Averaging of decoder sigmoid outputs. The bootstrapped mean and range of the participant-average decoding accuracy (as evaluated on the
testing portion of the heldout dataset) is shown against the number of decoders used in the average. (a) Effect of averaging the sigmoid outputs of the
envelope-based decoder. (b) Effect of averaging the sigmoid outputs of the FFR-based decoder. In both cases, the mean decoding accuracy increases with
the number of averaged decoder instances; a plateau is achieved by around ten averaged instances. The dotted lines represent the participant-average
decoding accuracy achieved by the 100-instance-average decoders.

decoder instances. Specifically, we selected a number of de-
coder instances of a particular type at random and without
replacement, and averaged their sigmoid outputs (predicted
class probabilities) for a given input example. By doing so,
we formed ensembled decoders which were more accurate
than any of the constituent decoders. The effect of averaging
different numbers of decoders was assessed using a boot-
strapping procedure; the number of decoder instances (n) to
be averaged was varied, and for each n that was consid-
ered we drew 50 sets of n trained decoder instances. Fig. 4
shows the mean of the classification accuracy, as well as its
range, against the number of averaged instances. By aver-
aging ten instances of the decoders, the participant-average
decoding accuracy could be improved from 75.3% to 76.4%

(1.3 percentage points) for the envelope-tracking based de-
coder, and it was improved from 63.4% to 64.2% (0.8
percentage points) for the FFR-based decoder. On average,
the performance of the decoders does not increase when even
more decoder instances are combined in this way.

B. EFFECT OF SPEAKER PITCH
In order to assess the relationship between speaker pitch
and decoding accuracy, the mean pitch of each audiobook
or podcast in the development dataset was computed. Then,
using the testing portion of the development dataset, the clas-
sification accuracy for each participant who listened to that
audiobook or podcast was determined. The average amongst
those decoding accuracies was then calculated. The set of
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FIGURE 5. Accuracy of the averaged FFR-based decoder varies with speaker pitch and sex. (a) The average accuracy across participants who listened to a
particular audiobook or podcast is plotted against the mean pitch of that audiobook or podcast. A regression line is also shown. Two of the
male-narrated audiobooks were synthetically pitch-shifted into the range of female-narrated speech, and the corresponding scatter points are shaded
grey. (b) Each datapoint represents the classification accuracy of the FFR-based decoder or the envelope-based decoder, as evaluated on the testing
portion of each trial in the development dataset. For the FFR-based decoder, there was a statistically significant difference between the classification
accuracies for male-narrated and female-narrated speech material.

average accuracies was subsequently correlated against the
set of mean speaker pitches (Pearson correlation coefficient).
For the speech-FFR decoder, there was a statistically sig-
nificant correlation of R = −0.34 between the two variables
(p = 0.01, exact single-tailed test using all N = 57 stories
assuming both variates are jointly normal). We also computed
a least-squares linear fit between the two variables, which had
an intercept of 77.63 and a slope of −0.088/Hz−1, as shown
in Fig. 5. For the envelope-based decoder, there was no statis-
tically significant correlation (R = −0.18, with p = 0.18.)

Male-narrated speech typically has a lower pitch than
female-narrated speech. As a second assessment of the re-
lationship between speaker pitch and classification accuracy,
each narrative was labeled as either male-narrated or female-
narrated. Then, for each participant who listened to that
narrative, a classification accuracy was computed (using the
testing portion of the development dataset). The two groups
of classification accuracies (for male- and female-narrated
speech, respectively) were compared via a two-tailed, un-
paired t-test. For the FFR-based decoder, there was a highly
significant statistical difference between the two groups (p =
0.0003), whereas there was no significant difference between
the two groups for the envelope-based decoder (p = 0.94).

C. DECODER FINE-TUNING
One fine-tuned decoder was produced for each of the 71 par-
ticipants who featured in the development dataset. Fine-tuning
was performed by taking the best population decoder from
the set of 100 trained instances (as assessed by its classi-
fication accuracy on the testing portion of the development
dataset), and resuming the training of this decoder using data
from just one participant. The performance of the fine-tuned

FIGURE 6. Comparison between the averaged decoders, which were
trained on all 71 participants in the development dataset, and the
decoders which were fine-tuned to each of those participants. Each
datapoint shows the classification accuracy for a particular participant and
decoder, as evaluated using the testing portion of the development
dataset. Grey lines connect the accuracies achieved for individual subjects.

decoders was compared against the performance of the av-
eraged population decoders using the testing portion of the
development dataset, and the results are shown in Fig. 6. Fine-
tuning offered a highly statistically significant improvement
in decoding accuracy for both the speech-FFR decoder as
well as the envelope-based decoder, when compared against
the respective averaged decoders (P << 0.0001, single-tailed
paired t-tests). The significance of the improvement in de-
coding accuracy was replicated when the decoders were
evaluated using the heldout dataset (Fig. 8). To quantify the
effect size of the fine-tuning, we report the 95 % confidence
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FIGURE 7. Comparison between the decoding accuracies and sigmoid outputs of the two types of decoders. (a) Decoding accuracies for individual
participants, as evaluated on the testing portion of the development dataset. The envelope-based decoders outperform the FFR-based decoders for
almost all participants. (b) Sigmoid outputs of the two averaged decoders, calculated using the same dataset. A linear classifer (LDA) was trained to
predict the true class labels, indicated by the colour of the datapoints, using these sigmoid outputs. The decision boundary of the classifier is designated
by the black dashed line.

FIGURE 8. Evaluation of the decoders using the heldout dataset. (a) Comparison between the performances of all of the considered decoders.
Datapoints represent the classification accuracy for individual participants. The fine-tuned decoders could only be applied to participants who had
already been seen in the development dataset, and hence there are no boxplots corresponding to the application of fine-tuned decoders to unseen
participants. All reported p-values were calculated through t-tests and have been FDR-corrected for multiple comparisons. For comparisons between the
seen participants and the unseen participants, two-tailed unpaired t-tests were used. Otherwise, all of the tests were single-tailed paired t-tests.
(b) Comparison between the composite decoder and the envelope-based decoder, for individual participants. For the population decoders, accuracies for
seen and unseen participants are grouped together and shown in blue. The orange datapoints represent accuracies for the finetuned decoders, which
could only be evaluated for seen participants.

interval on the mean of the paired differences for each type of
decoder. For the envelope-based decoder, this was the interval
0.0% to 7.9%, and for the speech-FFR decoder this was the
interval 0.0% to 5.8%.

D. COMPOSITE DECODER
For almost all participants, the envelope-based decoders
achieved higher classification accuracies than the FFR-based
decoders when evaluated using the testing portion of the

development dataset (see Fig. 7(a)). The classification accu-
racies of the two averaged decoders were not that correlated
(R = 0.286, Pearson’s correlation coefficient), and nor were
their sigmoid outputs (R = 0.233). We decided to combine
the two averaged decoders via a linear classifier (LDA), which
was trained on the testing portion of the development dataset
to predict the true class label from the sigmoid outputs of both
decoders. As shown in Fig. 7(b), the decision boundary of the
linear classifier is defined by the contour 0.39p f + 0.61pe =
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FIGURE 9. Performance of the averaged decoders when applied to the ICL dataset. The grey region indicates the 95% confidence interval of a random
classifer. (a) Evaluation on speech-in-quiet and speech-in-noise data. Each datapoint represents the decoding accuracy for an individual participant. The
envelope-based decoder generalises extremely well to the speech-in-quiet data. (b) Evaluation on competing-speakers data. The match-mismatch
classification accuracies of the decoders are reported in the first two pairs of boxes - in the first, stimulus segments are drawn from the attended
speaker; in the second, they are drawn from the ignored speaker. In the third group, the trained decoders were used as auditory attention decoders.

0.5, where p f and pe are the sigmoid outputs of the aver-
aged FFR-based and envelope-based decoders respectively.
Therefore, the linear classifier assigns weights of 39% and
61% to these respective decoders. Fig. 8(b) shows that the
composite decoder provides a reliable improvement over the
averaged envelope-based decoder when evaluated on the held-
out dataset.

A fine-tuned composite decoder was formed by using the
same linear classifier (retaining its parameters), but using as
inputs the sigmoid outputs of the fine-tuned decoders rather
than the averaged decoders. Fig. 8 shows that the popula-
tion and fine-tuned composite decoders achieved the highest
classification accuracies (for seen and unseen participants
respectively) of any decoders considered in this work. This
result is also summarised in Table 1.

E. EVALUATION OF ALL DECODERS ON THE
HELDOUT DATASET
We evaluated all of the decoders using the heldout dataset,
which was completely unseen during the development of the
decoders (aside from the results of our four submissions to
the Auditory EEG SPGC [23], [24]). This dataset consisted
of data from participants who had already been seen in the
development dataset, as well as data from completely un-
seen participants. The results are presented in Fig. 8, and
summarised in Table 1. Overall, the population decoders gen-
eralised to unseen participants extremely well. Composite
decoders performed better than their constituent decoders, and
fine-tuned decoders performed better than averaged popula-
tion decoders. The fine-tuned composite decoder achieved a
particularly high mean accuracy of 83.79%, calculated across
seen participants.

F. GENERALISATION TO OTHER DATASETS
As shown in Section III-D, the population decoders gener-
alised remarkably well to participants who were not repre-
sented in the development dataset. We assessed the gener-
alisation capabilities of the population decoders further by
evaluating them to the ICL dataset, which was completely un-
seen during the training and development of the decoders [32].
The EEG electrodes were placed slightly differently in this
dataset as compared with SparrKULee. The ICL dataset also
contains EEG recorded under several listening conditions:
speech in quiet, speech in noise, foreign-language speech,
and competing-speakers. For the speech-in-noise and speech-
in-quiet conditions, audiobooks were narrated by a female
speaker with a mean pitch of 182 Hz. The foreign-language
speech material was narrated by another female speaker with
the same mean pitch.

For our first case study, the decoders were evaluated on the
speech-in-quiet and the speech-in-noise data. The results are
shown in Fig. 9(a). The envelope-based decoder generalised
remarkably well to the speech-in-quiet data, achieving a mean
classification accuracy of 81.27%. The statistical difference
between this decoding accuracy and the mean decoding accu-
racy taken over unseen participants in the heldout dataset was
borderline significant (p = 0.05, single-tailed unpaired t-test).
Similarly, the mean accuracy of the FFR-based decoder was
similar to the accuracy that would be expected for a speaker
with a mean pitch of 182 Hz based on the least-squares
fit reported in Section III-B (expected accuracy using linear
fit: 61.6%; actual 95% CI on the mean: [58.75%, 63.13%]).
The mean accuracy of the composite decoder was 81.86%,
which was not statistically greater than that of the averaged
envelope-based decoder (p = 0.07, single-tailed paired t-test.)

The classification accuracy of the envelope-based de-
coder was considerably degraded when background bab-
ble noise was played during presentation of the speech
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material. Moreover, the mean accuracy of the envelope-
based decoder decreased with a decrease in SNR (compar-
ison between high-SNR and medium-SNR conditions: p =
0.0084; comparison between medium-SNR and low-SNR
conditions: p = 0.0006, single-tailed paired t-tests). The per-
formance of the averaged FFR-based decoder was more robust
against the SNR of the speech material (comparison between
speech-in-quiet and high-SNR conditions: p = 0.1663; com-
parison between high-SNR and medium-SNR conditions: p =
0.0183; comparison between medium-SNR and low-SNR
conditions: p = 0.8131.)

For our second case study, we applied the same decoders
to the competing-speakers data. The match-mismatch clas-
sification accuracy of the decoders was assessed, first by
taking both stimulus segments from the attended speech
stream, and then by using the ignored speech stream instead.
There was a stark decrease in the classification accuracies
of both the averaged envelope-based decoder as well as
the composite decoder when the ignored speech stream was
used instead of the attended speech stream. As shown in
Fig. 9(b), the averaged FFR-based decoder achieved similar
match-mismatch decoding accuracies for both the attended
speaker as well as the unattended speaker. In fact, for this
decoder there was no statistical difference between the decod-
ing accuracies for the two speakers (p = 0.1081, two-tailed
paired t-test). We also performed an auditory attention decod-
ing experiment. Temporally-aligned segments of the attended
speech stream served as the ‘matched’ segments. For the
‘mismatched segments’, temporally-aligned segments of the
ignored speech stream were used. All three auditory attention
decoders achieved attention decoding accuracies which were
significantly greater than 50% in this experiment (95% con-
fidence intervals on the mean attention decoding accuracy:
averaged FFR-based decoder - [50.72%, 53.44%]; averaged
envelope-based decoder - [60.61%, 65.11%]; composite de-
coder - [60.16%, 65.05%]). Evidently, the composite decoder
did not outperform the envelope-based decoder in the auditory
attention decoding experiment.

We also evaluated the trained decoders using EEG collected
in the foreign-language speech listening condition, in which
the speech material was presented in quiet. As in the English
conditions, the speaker had a mean pitch of 182 Hz. The
population decoders generalised very well to this data, with
the averaged FFR-based decoder achieving a mean accuracy
of 61.49%, the averaged envelope-based decoder achieving
79.13%, and the composite decoder achieving 80.39%.

We performed two types of statistical tests to compare
these decoding accuracies to those achieved in the English
speech-in-quiet listening condition. Firstly, we used single-
tailed, unpaired t-tests to compare the two groups of decoding
accuracies. Next, we considered only the participants in the
ICL dataset who took part in both the English and Dutch EEG
sessions, and performed paired single-tailed t-tests to com-
pare the two groups of decoding accuracies. We performed
these tests for each of the averaged FFR-based decoder, the
envelope-based decoder, and the composite decoder. None of

TABLE 2. Effect of Segment Length on Decoding Accuracy

the tests returned a positive results (all p values were larger
than 0.1.)

Finally, we used the ICL dataset to assess how the decod-
ing accuracies are impacted by the length of the EEG and
speech-feature segments. So far, only results for segments of
3 s in duration have been reported in this work. It is well-
established, however, that by using longer segment lengths,
higher decoding accuracies may be achieved [7], [21]. The
decoders which were trained using a segment duration of 3 s
using the development dataset can be evaluated using longer
segment lengths - here, we considered lengths corresponding
to durations of 5 s and 10 s. The results for the English speech-
in-quiet condition, as well as the auditory attention decoding
conditions, are shown in Table 2. In line with previous studies,
the participant-average decoding accuracies increase reliably
with increasing segment duration, except for those of the
averaged speech-FFR decoder when applied to the auditory
attention decoding task (one-way repeated measures ANOVA:
p = 0.3019.)

G. COMPARISON BETWEEN THE BASELINE DECODER AND
THE ENVELOPE-BASED DECODER
The envelope-based decoder used in this work is a modified
version of the baseline decoder proposed by Accou et al.:
the spatial filter layer of the baseline decoder was subsumed
into the first layer of the EEG module in the envelope-based
decoder, which implements a separable convolution. Also, the
output layer is modified so that the predicted class probabili-
ties of the candidate speech segments swap when the order of
the segments is swapped. To evaluate how the changes to the
baseline decoder architecture affect the final decoding accura-
cies, we first compared 100 trained instances of the baseline
decoder against 100 trained instances of the envelope-based
decoder using the development dataset. The 95% confidence

712 VOLUME 5, 2024



intervals on the participant-average classification accuracies
were [72.95%, 76.04%] and [73.66%, 76.83%], respectively,
meaning that on average the envelope-based decoder out-
performed the baseline decoder by a small margin of 0.75
percentage points when evaluated against the development
dataset. Although this margin is small, the improvement
for individual participants was highly statistically significant
(95% confidence interval on the paired differences of the av-
erage decoding accuracies, where the average was taken over
the 100 decoder instances: [0.65%, 0.86%].

We also investigated the accuracy of the 100-instance-
averaged baseline decoder (Table 1). For individual partic-
ipants, the averaged envelope-based decoder continued to
outperform the averaged baseline decoder for all three subsets
of SparrKULee (statistical tests for the development, held-
out (seen), and heldout (unseen) datasets, respectively: p =
0.006, p < 0.001, p < 0.001; single-tailed paired t-tests).
For the ICL dataset, there was no such statistical differ-
ence between the accuracies of the baseline decoder and the
envelope-based decoder for neither the speech-in-quiet task,
nor the attention decoding task (p = 0.455 and p = 0.244,
respectively. Single-tailed paired t-tests). There was a statis-
tically significant difference between the performance of the
two decoders for the foreign-language speech condition, with
the averaged envelope-based decoder outperforming the aver-
aged baseline decoder (p = 0.032, single-tailed paired t-test.)

IV. DISCUSSION
We have described and developed our auditory EEG decoders
which were the winners of the match-mismatch sub-task of
the ICASSP Auditory EEG Signal Processing Grand Chal-
lenge [23]. Two types of decoders, which leveraged cortical
responses to the speech envelope as well as the envelope-
related speech-FFR respectively, were developed. Decoders
which were trained with different random seeds exhibited con-
siderable diversity, and we capitalised on this by employing
a simple ensembling procedure whereby the sigmoid out-
puts of distinct decoder instances were averaged together. We
have also fine-tuned the decoders to individual participants,
further improving their match-mismatch classification accu-
racies. However, the best performance was achieved when the
two different types of decoders were combined into a single
composite decoder. Finally, we have demonstrated that the
decoders can generalise extremely well to entirely distinct
datasets, and can even serve as auditory attention decoders in
competing-speakers conditions.

A. DIFFERENCES BETWEEN TRAINED DECODER
INSTANCES, DECODER AVERAGING
Sources of randomness in the training procedure were shown
to affect the classification accuracies of the trained decoders.
We explored this effect by training 100 instances of both the
envelope-based decoder as well as the FFR-based decoder.
For individual participants, a marked variability in the clas-
sification accuracy was observed in the two groups of decoder

instances. The participant-average classification accuracy was
shown to vary across the various trained decoder instances
by a much smaller margin. Clearly, a considerable degree
of diversity is exhibited by both groups of decoders, with
some instances achieving higher classification accuracies for
particular participants at the expense of other participants.

We exploited the diversity between the different trained
decoder instances through averaging of their sigmoid outputs.
This improved the decoding accuracy of each type of de-
coder by approximately 1 percentage point (when evaluated
on the testing portion of the development dataset). The aver-
aging method was useful for the Auditory EEG SPGC, since
most submissions to the challenge were separated by only a
fine margin.

B. COMPARISON OF THE ENVELOPE-BASED DECODER
AND THE FFR-BASED DECODER
Overall, envelope-based decoders achieved much higher clas-
sification accuracies than FFR-based decoders. This is due to
the fact that speech-FFRs are not that strongly represented in
EEG signals, in part due to the low SNR of EEG signals at
high frequencies. The accuracies of the two averaged decoders
were not that correlated (R = 0.286), nor were their sigmoid
outputs (R = 0.233). We therefore hypothesised that through
combining the two decoders, we could produce a composite
decoder which performs better than its constituent parts.

The composite decoder did in fact achieve higher classifi-
cation accuracies than either of the two averaged decoders,
suggesting that the underlying EEG responses capture differ-
ent information which is relevant to the match-mismatch task.
It is certainly the case that the neural processes which generate
the two EEG responses expose different aspects of neural
speech tracking, and the speech-FFR is relatively more robust
against changes in cognitive factors such as attention. Aside
from neurophysiological differences, the two responses occur
at vastly different frequency scales and are most likely not
affected in a similar manner by the same sources of artefacts.

The classification accuracy of the averaged FFR-based
decoder varied significantly with the pitch of the speech mate-
rial. This effect was smaller than expected based on the works
of Kulasingham et al. and Puffay et al. [14], [30]. Kulasing-
ham et al. found that the transfer function of the speech-FFR
TRF had almost no power above around 130 Hz; it is possible
that the nonlinear nature of our decoding approach allows
for the retrieval of higher-frequency responses. Puffay et al.
found that a spectral speech-FFR decoder, very similar to the
FFR-based decoder used in this work, could not achieve sta-
tistically significant decoding accuracies for female-narrated
speech material at all. Perhaps our decoder benefits from
the stronger nature of the envelope-related speech-FFR. Fu-
ture work should investigate what precisely is encoded by
both the EEG module and the stimulus module of the
FFR-based decoder.
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C. COMPOSITE DECODERS
We combined the averaged envelope-based and FFR-based
decoders using a linear classifier, LDA. The decision bound-
ary of this classifier is overlaid on the data that was used to
train it in Fig. 7(b). Clearly, the classifier assigns more weight
to the predictions of the envelope-based decoder, which was
the most accurate decoder. In fact, from the equation of the
decision boundary, the exact weights which the classifier as-
signs to the sigmoid outputs of the two decoders were derived:
these are 0.61 for the envelope-based decoder, and 0.39 for the
FFR-based decoder, respectively. Despite achieving a consid-
erably worse performance than the envelope-based decoder,
the FFR-based decoder must carry a considerable amount of
complementary information in order to be assigned such a
high weight.

When evaluated on the heldout dataset, the composite
decoder significantly outperformed the next best population-
based decoder, which was the averaged envelope-based de-
coder. The significance of this result was not replicated for
the speech-in-quiet condition of the ICL dataset: this could
be due to the lower performance of the constituent FFR-based
decoder on this dataset, which was presumably due to the high
average pitch of the speech material (182 Hz).

Puffay et al. also combined spectral FFR-based decoders
with envelope-based decoders to solve the match-mismatch
task [30]. In that study, the authors trained the two constituent
decoders jointly, whereas we applied the LDA classifer post-
hoc. By jointly training the decoders in the manner of Puffay
et al., it is possible that the composite decoder may have
achieved even higher classification accuracies.

D. DECODER FINE TUNING
Different individuals produce EEG signals with very dif-
ferent characteristics. Monesi et al. have shown that by
fine-tuning population-based decoders to individual partici-
pants, improved match-mismatch decoding accuracies can be
achieved. In fact, this method may yield better results than
would be achieved by training participant-specific models
from scratch [42]. In our results, a statistically significant
decoding improvement was achieved by fine-tuning the pop-
ulation decoders to individual participants. When evaluated
on the testing portion of the development dataset, the mean
improvement in the decoding accuracy (taken across partic-
ipants) due to fine-tuning was 4.0% for the envelope-based
decoder, and 2.9% for the FFR-based decoder, when com-
pared with the respective averaged decoders. The significance
of this improvement was also replicated using the heldout
dataset, although the effect size was somewhat smaller for the
FFR-based decoder.

For the ICASSP Auditory EEG Decoding SPGC, we at-
tempted to form fully-fine-tuned composite decoders, by
combining the sigmoid outputs of the fine-tuned decoders
using a linear classifier which was personalised to every
participant. However, that submission achieved poorer re-
sults than those achieved by the fine-tuned envelope-based

decoders alone; the LDA classifiers were overfitted to the
small amount of data available per participant in the testing
portion of the development dataset. In this work, we formed
partially individualised composite decoders, by combining the
sigmoid outputs of the fine-tuned decoders using the same
population-based LDA classifier that was trained using the
entire testing portion of the development dataset. This decoder
achieved a particularly high decoding accuracy of 83.79%.

The improvement offered by fine-tuning the decoders to
individual participants was not exceedingly large. In other
words, the population-based decoders demonstrated a re-
markable ability to generalise between participants whilst
maintaining high classification accuracies. Accou et al. re-
ported that the classification accuracy (as evaluated on a
population of participants) of their envelope-based match-
mismatch classifier reached a plateau when 28 participants
were included in the training dataset, and did not increase
with an increasing number of training participants [21]. Since
our decoder architecture was based on that of Accou et al.,
it is unlikely that the gap between the performance of our
population and fine-tuned decoders can be closed by using a
larger training dataset which includes even more participants.

E. GENERALISATION OF DECODERS TO DISTINCT DATASET
Finally, we evaluated our already-trained decoders on the ICL
dataset, which is entirely independent of SparrKULee. The
ICL dataset was completely unseen during the development
and training of the decoders. All three decoders generalised
remarkably well to the EEG data recorded under speech-in-
quiet conditions in this dataset, even when the speech was in
a language that the participants did not understand.

When speech was played in the presence of background
noise, the match-mismatch classification accuracy of the
envelope-based decoder deteriorated. This is to be expected,
since cortical envelope tracking is known to change during
speech-in-noise perception, and moreover such low-SNR lis-
tening conditions were not represented in the training dataset.
The fact that the performance of the envelope-based decoder
did not deteriorate in the foreign-language speech-in-quiet
condition suggests that the performance of the envelope-based
decoder is predominantly affected by speech clarity, rather
than by speech comprehension. Etard et al. have previously
shown that both the clarity and comprehension of speech
may be differentially decoded from EEG recordings, by us-
ing linear models to assess neural envelope tracking [8]. The
performance of the FFR-based decoder was rather consistent
across all of the listening conditions, dropping only slightly in
the lowest-SNR conditions.

The ICL dataset also included EEG recorded under
competing-speakers conditions. When applied in the usual
match-mismatch setting, the envelope-based decoder per-
formed better for the attended speaker than the ignored
speaker, presumably reflecting how cortical responses to the
speech envelope are modulated by selective auditory atten-
tion. Indeed, by drawing matched segments from the attended
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speech stream, and temporally aligned ‘mismatched’ seg-
ments from the ignored speech stream, we showed that the
envelope-based decoder can be used as an auditory attention
decoder which achieved a mean accuracy of 62.86%. When
using the FFR-based decoder, there was no significant dif-
ference between the match-mismatch decoding accuracies of
the attended speaker and the ignored speaker. This decoder
achieved a mean attention decoding accuracy of 52.08%,
which was significantly greater than 50%, suggesting a subtle
attentional effect. Since the effect was not strong, the decoding
accuracies for individuals fell mostly within the 95% confi-
dence interval of a random binary classifier, and the composite
decoder did not outperform the envelope-based decoder at the
auditory attention decoding task.

We also used the ICL dataset to investigate how the length
of the EEG and speech-feature segments affects the decoding
accuracy. Although the decoders were trained using segments
of 3 s in duration, they can be evaluated using segments of
any duration. It is shown in Table 2 that the match-mismatch
decoding accuracy reliably increases for all decoders when the
segment length is increased to 5 s or 10 s. For the FFR-based
decoder, the attention decoding accuracy did not increase
when the segment length increased.

There were some differences between the experimental se-
tups of the ICL dataset and SparrKULee, and several EEG
channels which were present in SparrKULee were missing
from the ICL dataset and required interpolation. For these
reasons, the finding that the decoders generalised so well
between the two datasets is particularly remarkable. That the
match-mismatch decoders could also serve as auditory atten-
tion decoders was also an important finding. Usually, attention
decoders are developed using relatively small EEG datasets
consisting of data from participants who listened to competing
speakers. Our results show that these datasets may be sup-
plemented by other datasets in which participants listened to
speech material under various other listening conditions; these
other datasets are more numerous and, typically, contain more
data than the competing-speakers datasets. The finding that
these datasets are compatible therefore opens new avenues for
learning from vast amounts of auditory EEG data.

Code availability: Supporting Python code is available
at https://github.com/Mike-boop/match-mismatch-decoders-
ojsp-2023. This package contains all the functions used for
data preprocessing, model training, and analysis.
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