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ABSTRACT The ADReSS-M Signal Processing Grand Challenge was held at the 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2023. The challenge targeted difficult
automatic prediction problems of great societal and medical relevance, namely, the detection of Alzheimer’s
Dementia (AD) and the estimation of cognitive test scoress. Participants were invited to create models for
the assessment of cognitive function based on spontaneous speech data. Most of these models employed
signal processing and machine learning methods. The ADReSS-M challenge was designed to assess the
extent to which predictive models built based on speech in one language generalise to another language.
The language data compiled and made available for ADReSS-M comprised English, for model training,
and Greek, for model testing and validation. To the best of our knowledge no previous shared research task
investigated acoustic features of the speech signal or linguistic characteristics in the context of multilingual
AD detection. This paper describes the context of the ADReSS-M challenge, its data sets, its predictive tasks,
the evaluation methodology we employed, our baseline models and results, and the top five submissions. The
paper concludes with a summary discussion of the ADReSS-M results, and our critical assessment of the
future outlook in this field.

INDEX TERMS Biomedical signal processing, medical conditions, Alzheimer’s disease, human disease
biomarkers, speech processing, natural language processing, multilingual Alzheimer’s dementia detection.

I. INTRODUCTION
There has been a great increase in interest in signal pro-
cessing and machine learning methods for the detection of
Alzheimer’s and other forms of dementia through analysis
of speech [1], [2]. While approaches to assessing cognitive
function, including dementia and mild cognitive impair-
ment detection, have increasingly employed deep learning

methods [3], other efforts focus on identifying speech features
that indicate cognitive changes [4].

Machine learning models of disease detection and prognos-
tic assessment have been proposed but often lack standardi-
sation and common benchmarks against which the different
approaches and models could be compared [2]. This situation
has improved somewhat in recent years with the increasing
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availability of speech and language data sets for dementia
research [5], [6], [7], and the advent of machine learning
shared tasks (“grand challenges”) in Alzheimer’s detection
through spontaneous speech [8], [9]. While many of the ap-
proaches proposed in the context of those challenges produced
high accuracy results based on the analysis of spontaneous
speech [10], [11], the data employed were limited to Amer-
ican English data. Moreover, even where classification and
regression methods were based on acoustic, as opposed to
language-dependent features, it was unclear whether such
acoustic analysis approaches would generalise across lan-
guages [12]. In order to investigate this question, we organised
the ADReSS-M Challenge at ICASSP 2023, which targeted
dementia detection across two languages [13].

Alzheimer’s Dementia (AD) is a category of neurodegener-
ative syndromes that entails a long-term and usually gradual
decrease of cognitive functioning. To diagnose and assess
disease progression as well as cognitive decline, biomarkers
are often employed. A biomarker (or biological marker) is, in
the U.S. Food and Drug Administration (FDA) definition, “a
defined characteristic that is measured as an indicator of nor-
mal biological processes, pathogenic processes or responses
to an exposure or intervention” [14]. Unfortunately, most
existing biomarkers for AD are either costly (neuroimaging
methods such as positron emission tomography, PET, or mag-
netic resonance imaging, MRI) or invasive (such as analytes
extracted from cerebrospinal fluid, which involve a lumbar
puncture procedure). Alternative assessment methods, such as
standardised cognitive tests, often suffer from ceiling effects
[15], and are subject to daily fluctuations that affect cognition
and executive function.

As cost-effective and accurate biomarkers of neurodegen-
eration have been sought in the field of dementia research,
speech-based “digital biomarkers” have emerged as a promis-
ing possibility. Speech seems particularly well suited for this
task, as speech and language convey much information about
one’s cognitive function and can be collected in natural set-
tings and over time thus overcoming the daily fluctuations
caused by fatigue, low mood, short-term illnesses and text
anxiety, which tend to affect the reliability of cognitive test
performance. However, as noted, the general applicability of
speech-based digital biomarkers depends on whether they can
be deployed in different linguistic contexts. This question has
been under-researched in this emerging field. The “ADReSS-
M: Multilingual Alzheimer’s Dementia Recognition through
Spontaneous Speech” challenge sought to enable the inves-
tigation of this issue by defining prediction tasks whereby
participants trained their models on English speech data and
assessed those models’ performance on spoken Greek data.
One should note, however, that in contrast to traditional
biomarkers, which have been treated as individual features in
risk models [16], the speech biomarkers investigated in this
challenge are better seen as composite biomarkers, consisting
of the combination of multiple metrics into a single multi-
variate model [17]. The models submitted to the challenge
investigated acoustic and linguistic features of the speech

signal whose predictive power were partially preserved across
these languages.

ADReSS-M provided a platform for contributions to the ap-
plication of signal processing and machine learning methods
for two tasks: multilingual Alzheimer’s dementia detection
and cognitive score test prediction. The challenge also stim-
ulated the discussion of machine learning architectures, novel
signal processing features, feature selection and extraction
methods, and other topics of interest to the growing commu-
nity of researchers engaged in investigating the connections
between speech and dementia. A total of 24 research teams
from 14 different countries (Belgium, Canada, China, Den-
mark, India, Finland, Germany, Greece, Poland, Spain, South
Korea, Sweden, U.K. and USA) took part in the challenge,
with the majority (17) creating models and submitting results
for both tasks.

The approaches adopted by the various research groups
that entered the challenge were quite diverse. Feature extrac-
tion approaches ranged from acoustic feature extraction using
standard feature sets such as eGeMAPS [18], to transcript
generation through automatic speech recognition followed
by linguistic feature extraction through pre-trained multi-
lingual word embedding models, to task-specific feature
engineering (representing speech intelligibility and differ-
ent pause features, for instance), and combinations of these
approaches, sometimes followed by further dimensionality
reduction methods. Machine learning approaches included
transfer learning using deep learning architectures, conven-
tional machine learning algorithms such as support vector
machines, logistic regression, random forests, gradient boost-
ing, and late fusion methods involving combinations of these
approaches. Feature fusion combining acoustic, paralinguistic
and linguistic features was also often employed.

In what follows, we describe the ADReSS-M challenge’s
modelling tasks, along with their evaluation metrics and
ranking procedure, present the data sets in detail, describe
our baseline models for the task, present the challenge’s
results, including a ranking table with the five top-scoring
submissions along with brief descriptions of the methods and
approaches used by each of these submissions, present a sum-
mary of their contributions, and discuss future prospects for
this area.

II. RELATED WORK
Early research on language as an indicator of cognitive decline
tended to favour the analysis of characteristics such as infor-
mation content, comprehension of complexity, and semantic
fluency as predictors of disease progression [19]. However,
content-free features have also been explored in early re-
search, such as by Roark et al. [20], who used natural language
processing (NLP) and automatic speech recognition (ASR)
to generate basic paralinguistic features (pause frequency and
duration), and analysed audio recordings of 74 neuropsycho-
logical assessments to classify participants into groups of
people with mild cognitive impairment (MCI) or normal cog-
nition. Their best classifier obtained an area under the receiver
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operating curve (AUC) of 86% by including a combination of
automated speech and language features and cognitive tests
scores. Spontaneous speech has also been investigated, as in
a study that used semi-structured interviews from 9 healthy
participants, 9 with AD, 9 with frontotemporal dementia, 13
with semantic dementia, and 8 with progressive non-fluent
aphasia, extracting 41 features including speech rate, and the
mean and standard deviation of the duration of pauses, vowels,
and consonants to build a classification model that achieved
88% accuracy [21]. In a more recent study [22] graph-based
features encoding turn-taking patterns and speech rate [23]
were extracted from the Carolina Conversations Collection
[24] of spontaneous interviews of AD patients and healthy
controls. This study obtained 85% accuracy in distinguishing
dialogues involving an AD speaker from controls.

Other studies have combined linguistic and paralinguistic
features [25], [26], using signal processing and machine learn-
ing to detect subtle acoustic signs of neurodegeneration which
may be imperceptible to human diagnosticians. While some
studies found that filled pauses (sounds like “hmmm”, etc.)
could not be reliably detected by human annotators, and that
detection improved by using ASR-generated transcriptions
[27], recent work has shown that filled pauses are good pre-
dictors of cognitive difficulties [10]. The use of virtual agents
as a data collection strategy for AD detection has also been
investigated [28], reaching accuracy as high as 83% on dia-
logue, eye-tracking and video data collected from 29 Japanese
participants by a virtual character.

As regards data sets, one of the most widely used resources
is the Pitt Corpus [29]. Its picture description task is one of
the few available datasets that contain spontaneous speech
and clinical information. This dataset has been used in several
studies [26], [30], [31]. These studies used different combina-
tions of linguistic and acoustic features, ranging from simple
descriptive statistics to more complex feature embedding rep-
resentations for AD and MCI classification.

Although research on speech as an indicator of cognitive
function has increased in recent years, it remains difficult
to compare the different studies, even when restricted to the
same data sources. The ADReSS challenges [8], [9], [13] were
created to mitigate this problem. In these shared tasks, partic-
ipants used the same datasets, which were balanced for age
and sex and acoustically normalised. The various approaches
proposed to tackle the ADReSS challenges included state-
of-the-art deep learning and word embedding methods, and
focused mainly on linguistic features extracted from the man-
ually generated transcripts. The ADReSS [8] winning team,
for instance, leveraged audio recordings to obtain information
about pauses in speech, encoding them as punctuation [32]
into ensembles built from features extracted from pre-trained
language models (BERT [33] and ERNIE [34]), and obtained
89.58% accuracy.

There are currently very few papers that report investi-
gations involving modelling of AD or MCI across different
languages, and to our knowledge no multilingual bench-
mark data set or shared task in this area existed before

ADReSS-M. Previous research compared the use of monolin-
gual and multilingual pre-trained language models, and found
that multilingual models exhibited better performance across
English-Swedish data sets [35], and in English-Italian data
sets [36]. Similarly, Guo et al. [37] employed cross-lingual
data augmentation based on pre-trained transformer models
to detect AD in English and Mandarin speakers, finding that
a contrastive learning, cross-lingual augmentation approach
outperformed monolingual augmentation. A study by Lind-
say et al. [38] investigated multilingual modelling of AD in
an English-French corpus, attempting to systematically select
the most generalisable features. They found that features de-
rived from semantic processing were the most generalisable
features, while paralinguistic features had low generalisation
potential. Also regarding the use of language-independent
acoustic features, a recent study compared mono- and cross-
lingual features for MCI detection in English and Hungarian,
and found no significant difference in performance [39].

III. THE ADRESS-M TASKS
The ADReSS-M challenge consisted of two prediction tasks
to be attempted by the participants, namely:

1) a classification task (AD detection), where the models
aimed to distinguish speech of participants with normal
cognition (NC, or control condition) from speech of par-
ticipants with AD or mild cognitive impairment (MCI),
and

2) a cognitive test score prediction (regression) task, where
participants were asked to create models for inferring
the speaker’s Mini-Mental State Examination (MMSE)
score based on speech data.

AD and MCI classes were determined according to clini-
cal diagnosis criteria. In the case of probable AD diagnoses,
some were substantiated by neuropathologic examination and
others were confirmed by autopsy, as described by Becker
et al. [29]. The MMSE is a short, psychometrically sound
screening tool for measuring cognitive functioning (e.g., ori-
entation, attention, memory, language, visuospatial abilities)
with a maximum score of 30 points [40].

Both tasks involved processing the raw spontaneous speech
signal, extraction of features, using whatever pre-processing
methods the participant wished to use, and creating the
predictive models. No speech segmentation or transcription
were provided.

Participants could choose to do one or both tasks. They
were provided with a training set and, two weeks prior to the
paper submission deadline, were given access to test sets on
which they could test their models. Up to five sets of results
were allowed for scoring for each task per participant. All
attempts had to be submitted together.

As the broader scientific goal of ADReSS-M was to gain
insight into the nature of the relationship between speech and
cognitive function across different languages, we encouraged
participants to upload papers describing their approaches and
results to a pre-print repository such as arXiv or medRxiv
regardless of their ranking in the challenge, and asked them
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FIGURE 1. Cookie Theft picture from the Boston Diagnostic Aphasia
Examination test, used to elicit connected speech for the English language
data set.

to share their code through a publicly accessible repository, if
possible using a literate programming environment.

IV. THE DATA SETS
The ADReSS-M data sets can be downloaded from Demen-
tiaBank at https://dementia.talkbank.org/ADReSS-M/, upon
agreement with the terms and conditions of data sharing stip-
ulated by that repository. The training data set consists of
spontaneous speech samples corresponding to audio record-
ings of picture descriptions produced by cognitively normal
subjects and patients with a (probable) AD diagnosis, who
were asked to describe the Cookie Theft picture from the
Boston Diagnostic Aphasia Examination test [29]. The par-
ticipants were all native speakers of English, and were asked
to describe the picture shown in Fig. 1.

The test set consists of spontaneous (connected) speech
descriptions of a different picture, in Greek. The record-
ings therefore were in one of these languages, and contained
speech produced by native speakers. Participants were ini-
tially allowed access only to the training data (in English)
and some sample Greek data (8 recordings) for develop-
ment purposes.

The Greek recordings assess participants’ verbal fluency
and mood using a picture which the participant describes
while looking at it. The assessor first shows the participant
a picture representing a lion lying with a cub in the desert
while eating, as shown in Fig. 2. The assessor then asks the
participants to give a verbal description of the picture in a few
sentences. The original purpose of this task was to evaluate
the participant’s ability to generate coherent and descriptive
language while also gaining insights into their mood as well
as cognitive and emotional responses. By analysing the lan-
guage used to describe the picture, researchers can assess the
participant’s verbal fluency, vocabulary, syntax, and overall
linguistic capabilities. Additionally, the context in which the
data were collected is crucial to understanding the significance

FIGURE 2. Image used in the Greek language picture description task
(photograph by Luca Galuzzi, converted to grayscale by S Luz with an
average HSI intensity saturation filter; licensed under CC BY-SA 2.5,
https://creativecommons.org/licenses/by-sa/2.5/deed.en).

of the task and its findings. This particular task was conducted
as part of a psychological and linguistic research study car-
ried out to examine language processing, cognitive abilities,
emotional responses and mood-related factors, and to explore
potential connections between language and cognitive states
through this assessment.

The training data set was balanced with respect to age and
sex so as to eliminate potential confounding and bias. As we
employed a propensity score matching approach [41] we did
not need to adjust for education as this variable correlates with
age and sex, which suffice as an admissible adjustment (see
[42, pp 348-352]). Note, however, that the education variable
could still be used for predictive modelling. The data set was
checked for matching according to scores defined in terms
of the probability of an instance being treated as AD given
covariates age and sex estimated through logistic regression,
and matching instances were selected. All standardised mean
differences for the covariates were below 0.1 and all standard-
ised mean differences for squares and two-way interactions
between covariates were below 0.15, indicating adequate bal-
ance for those covariates. The empirical quantile-quantile
(eQQ) plots for the original and balanced data sets [43] are
shown in Fig. 3. The matched data eQQ plots show instances
near the diagonal and clear separation of the nominal vari-
ables, which indicate good balance. The top left plot shows
that the age distribution in the full (non-matched) source data
set had an age distribution skewed towards older ages for the
MCI/AD, showing some level of balance only at the extremes
(youngest and the oldest of the old participants). The top
right plot shows that the matching procedure produced a well
balanced set across all quantiles. The bottom plots show the
distributions of the sex variable. As this is a binary variable,
the data points are concentrated at the extremities of the main
diagonal, with any unmatched data appearing as off diagonal
dots (at the other corners of the plot). As can be seen on the
bottom-left plot, the sex variable was already well balanced
in the source dataset, and the bottom-right plot shows that
balance was preserved by the matching process.
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FIGURE 3. eQQ plots for the original data set and corresponding balanced
training data set.

TABLE 1. Descriptive Statistics for the ADReSS-M Training Set (English) by
Diagnostic Category (Dx) and Sex

TABLE 2. Descriptive Statistics for the ADReSS-M Test Set (Greek) by
Diagnostic Category (Dx) and Sex

The mean age, MMSE, and the numbers of NC to AD
participants in the respective categories are shown in Table
1. The overall ratio of AD to NC for the training data is 22:23.

The test set had similar statistical characteristics, but
slightly higher average ages and MMSE scores for each cate-
gory. The detailed composition of the test set is shown in Table
2. The AD to NC ratio for the test set was 22:24.

The training set audio recordings were distributed in MPEG
audio layer 2/3 format, with a sample rate of 44,100 Hz and

bit rate of 128 kb/s. The test set audio was encoded in 16-bit
Signed Integer PCM format, with a sample rate of 22,050 Hz.

V. EVALUATION METRICS
The classification task is evaluated in terms of accuracy (A),
specificity (Sp), sensitivity (ρ) and F1 scores. These metrics
were computed according to (1)–(5).

A = Tn + Tp

N
(1)

Sp = Tn

Tn + Fp
(2)

F1 = 2
π × ρ

π + ρ
(3)

where N is the number of patients, Tp is the number of true
positives, Tn is the number of true negatives, Fp is the number
of false positives, Fn is the number of false negatives. The
F1 scores is the harmonic mean of sensitivity and positive
predictive value, or precision (noted π ), computed as shown
in (4) and (5).

ρ = Tp

Tp + Fn
(4)

π = Tp

Tp + Fp
(5)

For the regression task (MMSE prediction), the metrics
used are the coefficient of determination and root mean
squared error (RMSE), as set out in (6) and (7), respectively,
where where ŷi is the predicted MMSE score, yi is the
patient’s actual MMSE score, and ȳ is the mean score.

R2 = 1 −
∑N

i=1(ŷi − yi )2∑N
i=1(ŷi − ȳ)2

(6)

RMSE =
√∑N

i=1(ŷi − yi )2

N
(7)

The ranking of submissions was based on accuracy scores
for the classification task (task 1), and on RMSE scores
for the MMSE score regression task (task 2). The top 5
models comprised:

1) The two top performing (most accurate) teams for the
classification task.

2) The two top performing (least RMSE) teams for the
MMSE regression task.

3) The team that performed best on average for the two
tasks, chosen according to the formula set out in (8),
where Ti is the total score of team i and T is the total
number of teams in the challenge. If a team chose not
to submit results for a task, its score for that task was
set to 0.

Ti = Ai∑T
j A j

+ 1 − RMSEi∑T
j RMSE j

(8)
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Ties were broken by averaging performance over all at-
tempts. These criteria were applied so that the rank resulted
in 5 different teams. Thus, if one team was selected as a top
team under one of the criteria, it would not be selected as a top
team in another. In such cases, the next top-performing team
would be selected. This was done in order to avoid a situation
in which the top-5 teams overall happened to have done well
at one task but had mediocre performance at the other, while
a team lower on the overall rank had superior performance at
the latter task.

VI. BASELINE MODELS
We created baseline models for each task to give the partic-
ipants an idea of what the use of standard signal processing
and machine learning methods could achieve for these tasks
on the provided data sets.

In creating these models, we first normalised the volume
of the audio files using FFMPEG’s [44] implementation EBU
R128 scanner filter [45]. A sliding window of 1 s, with
no overlap, was then applied to the audio recordings, and
eGeMAPS features were extracted over these frames. The
eGeMAPS feature set [18] is a basic set of acoustic features
designed to detect physiological changes in voice production.
The minimalistic acoustic parameter set consists of eighteen
low-level descriptors (LLD) arranged according to parameter
groups: pitch, jitter, formant frequency, shimmer, loudness,
harmonics-to-noise ratio, spectral (balance) parameters, har-
monic difference, and energy/amplitude related parameters.
A symmetric moving average filter is used to smooth these
LLDs across time. The arithmetic mean and coefficient of
variation are then taken for these 18 LLDs, resulting in 36
parameters. Pitch and loudness are given additional function-
als (i.e. percentile and rising and falling slopes) yielding a
total of 56 parameters. The extended set includes seven further
LLDs, fourteen additional descriptors, the arithmetic mean of
spectral flux in unvoiced areas, the arithmetic mean of spectral
flux and MFCC 1-4 in voiced parts, and the equivalent sound
level, resulting in the 88 eGeMAPS features, in total.

Given the eGeMAPS features, we applied the active data
representation method (ADR) [26] to generate a frame level
acoustic representation for each audio recording. The ADR
method has been used previously to generate large scale time-
series data representation. It employs self-organising mapping
(SOM) to cluster the original acoustic features into dimen-
sions that represent the number of clusters (“neurons”) in the
map produced by SOM. It then computes histogram represen-
tation of these clusters (as shown in (9) and (10)) for each
audio file (i.e. Ai) and their first-order derivative features
(mean and standard deviation features [26], where the rate of
change is given by an approximation of the derivative ((9),
which are then normalised ((10)) for use in the ADR model
(Fig. 4).

vADRAi = ∂cADRAi

∂t
(9)

FIGURE 4. ADReSS-M baseline system architecture.

nADRAinorm = nADRAi

‖nADRAi‖1
(10)

This method is entirely automatic in that no speech segmen-
tation or diarisation information is provided to the algorithm.

For the AD detection task (task 1), we employed a Naïve
Bayes classifier with kernel smoothing estimation. The ADR
for feature extraction was optimised using grid search (C =
5, 10, 15, 20, 25, where C stands for the number of SOM clus-
ters, as described above). In previous work, we used 2(C + 2)
features, which corresponded to two ADR sets (nADR and
dADR, the second of which characterised frame duration),
each ADR consisting of C features and its respective mean
and standard deviation, plus age and sex [26]. However, in the
present study, as the duration is the same for all frames, we
used only C + 2 features (nADR, mean and standard devia-
tion) plus age and sex. Thus the ratio of features to training
audio samples was 19:237. With this data representation we
achieved accuracy of 75.00% and 73.91% on sample and
validation data respectively. On the test set, specificity was
79.2%, precision was 75%, sensitivity was 68.2%, and F1

was 71.4%.
For the MMSE regression task (task 2), we employed

a support vector machine (SVM) regressor model with an
RBF kernel with box constraint set to one, using a se-
quential minimal optimisation solver. The ADR procedure
for feature extraction was optimised using grid search (C =
5, 10, 15, 20, 25). This model achieved an RMSE of 3.887
(r = 0.348) and 4.955 (r = 0.273) on sample and test data
respectively using 25+2 ADR, age and sex features per record-
ing. The ratio of features to training audio samples was
also 29:237.

The source code for the data set generation pro-
cedure and for the baseline system is available at
https://gitlab.com/luzs/madress-2023, with access granted
upon request.
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TABLE 3. Ranking of Teams Results by Overall Composite (T) Scores (Combined Classification and Regression Results)

FIGURE 5. AD detection accuracy results.

VII. RANK OF SUBMISSIONS
The submissions were ranked according to the procedure
described in Section V. The scores for the top-5 teams (ex-
cluding the baseline system) are shown in Table 3.

The top scoring team, from the Dept of Computer Engineer-
ing at Konkuk University and VOINOSIS Inc, South Korea,
employed a novel complementary and simultaneous ensemble
algorithm (CONSEN) on acoustic and disfluency features,
exploring correlations between AD and MMSE predictions
to improve performance [46]. Disfluency, pause and speech
rhythm features have long been used to assess human perfor-
mance [47], and have been recently applied to AD detection
to good effect [10], [48]. The team that came in second place
employed a mixed-batch transfer learning approach for both
tasks, applied to eGeMAPS acoustic features [49]. The third
highest scoring team explored a wider number of acoustic
feature extraction methods, employing an XGBoost classifier
for the classification task and SVM and XGBoost regressors
for MMSE prediction [50]. The fourth ranked team employed
an automatic speech recognition system to derive speech in-
telligibility features based on confidence scores assigned by
the system, which along with word-level duration and pause
features formed the input for logistic regression and SVM re-
gression models for tasks 1 and 2, respectively [51]. The team
the came in fifth place fused linguistic and acoustic features
extracted through speech recognition and pre-trained word

embedding and acoustic embedding models and employed
neural networks consisting of two fully connected layers and
SVMs for classification and regression [52].

The overall accuracy ranking for the participants is shown
in Fig. 5. It can be observed, in this dot chart, that there is a
considerable gap between the two top-scoring teams and the
remaining teams. This reflects their effective use of transfer
learning techniques, as well as the ability to identify language-
independent features.

A similar pattern can be discerned in the chart depicting the
regression results (Fig. 6) where the gap between the top scor-
ing team and the remaining teams is even more pronounced.
This underscores the effectiveness of the approach of using
learning of MMSE scores to leverage classification learning,
employed by the winning team.

VIII. DESCRIPTIONS OF THE TOP-5 SUBMISSIONS
Jin et al. [46] conducted a series of experiments using acous-
tic, disfluency and fusion of acoustic and disfluency features.
They showed that the disfluency feature provides better results
than acoustic features and generalises well across languages.
They proposed an ensemble algorithm (CONSEN) which
achieved the best-performing results using the fusion of dis-
fluency and acoustic features with an accuracy of 87.0% in
AD detection and 3.727 RMSE in MMSE prediction. The
unique feature of this top-scoring approach was its leveraging
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FIGURE 6. MMSE regression results.

of MMSE prediction as a means to improve AD detection
accuracy. While this approach would not be feasible were
training data for cognitive testing not available, it suggests
an interesting way of combining speech-based cognitive as-
sessment with better established tests of cognitive function
currently in clinical use.

Tamm et al. [49] created models using a sequence of acous-
tic features and covariates (age, sex, and education). The
models were first trained on English data, and then transferred
to Greek using mixed-language batches and parameter aver-
aging. Results yielded 82% accuracy for AD detection and an
RMSE of 4.345 for MMSE score prediction on the test set. For
the classification task, the best model had 91.7% specificity,
88.9% precision, 72.7% sensitivity and an F1-score of 80.0%.
The distinguishing characteristic of Tamm et al.’s approach
is their use of the same deep learning architecture for both
tasks. Their network architecture consisted of batch normal-
isation of input features, attention weights computed by two
feed-forward layers with dropout and ReLU activation.

Mei et al. [50] provide insights into the methodologies,
techniques, and algorithms employed by the USTC team to
tackle the ADReSS-M Challenge. They discuss their system’s
architecture, data preprocessing, feature extraction methods,
and machine learning or deep learning models used for emo-
tion recognition in speech. The unique characteristics of the
approach described are the use of a 10-dimensional feature
set for distinguishing among pauses, following the method
proposed in a previous AD detection challenge [48], the fu-
sion of several low-level paralinguistic descriptors used for
extraction and fine-tuning of a pre-trained wav2vec2 model
[53]. The XGBoost classifier [54] achieved 73.9% accuracy,
and the pre-trained bilingual model achieved up to 87.5%
in validation against the Greek language samples provided
for training. The results indicate that using balanced, low-
pass filtered, bilingual speech data in fine-tuning pre-trained

models and classifier training could be beneficial to multilin-
gual AD detection.

Shah et al. [51] investigated language-agnostic speech
representations, which are speech features or characteristics
that can be effectively applied across different languages,
without requiring language-specific adaptations [55]. The re-
searchers focused on using domain knowledge, likely related
to the specific characteristics of AD, to develop and evalu-
ate these speech representations for the purpose of detecting
the early cognitive changes across the AD spectrum. The
study explored various machine learning techniques to learn
meaningful representations from speech data, considering
language-agnostic aspects to ensure the model’s generalisa-
tion across multiple languages. The findings of this research
could contribute to the development of robust and language-
independent diagnostic tools for AD, making it easier to
identify potential patients regardless of their native language.
The paper presents a concise overview of the researchers’
methodology, experimental results, and implications for fu-
ture research directions in the domain of speech-based
AD detection.

Chen et al. [52] made use of three processing streams in
their approach to the ADReSS-M tasks. For the extraction of
paralinguistic features, they used three different feature sets
extracted through the openSMILE toolkit [56] and pre-trained
models. They applied SVM to each separately to perform
classification and prediction. The best F1 score for these
three analyses was 0.72 for the IS10-Paralinguistics feature set
[57]. For an analysis based on pre-trained acoustic features,
they used the XLSR-53 model [58]. Although that model
has been trained on 53 languages, it does not include Greek
and this could have led to a weaker performance for this
method. Using the Whisper speech recognition model, they
produced English texts from the Greek audio which they used
to train a RoBERTa model. This method produced a lower
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F1 score of 0.55 due to inconsistencies between the pictures
described in Greek and those for English. Features from both
the XLSR-53 model and the RoBERTa model used a two level
fully connected network to generate values for classification
and regression.

IX. DISCUSSION
ADReSS-M attracted the participation of a large number of
teams from leading research labs from across the world, ev-
idencing the relevance of the emerging field of research on
speech-based digital biomarkers for AD in general, and on
methods that generalise across languages in particular. The
diversity of approaches presented by the participating teams,
including proposals for novel acoustic feature sets, the use
of pre-trained models, the combination of automatic speech
recognition and multilingual embedding models, the use of
transfer learning, and a novel ensemble learning method that
combines the diagnosis and the cognitive score prediction
learning tasks will hopefully open new avenues for further
explorations in this area.

Despite the fact that ADReSS-M focused on a multilin-
gual or cross-lingual learning setting, the submissions to the
challenge tended to follow the trends set in previous shared
tasks aimed at assessing cognitive function through analysis of
speech [8], [9], [12] as regards feature engineering and feature
extraction. Considering the small size of the ADReSS-M data
set and the fact that the picture descriptions were different
in the training and test sets (not only in language but also
in content, as the pictures were different), we expected that
the proposed models would rely on more abstract acoustic
features rather than on lexical or structural linguistic features,
as the former are presumably less language-dependent than
the latter [26], [59], [60]. Indeed this was the case for most
submissions, as four of the top-scoring teams [46], [49], [50],
[51] employed acoustic features exclusively (even though in
some cases ASR output was employed to derive dysfluency
and pause features). However, some of the submitted models,
including one of the top-5 [52] employed linguistic features,
either by themselves or in combination with acoustic and
paralinguistic features.

Among the proposed acoustic models, the majority em-
ployed pre-trained models such as wav2vec2 [61] and Whis-
per [62] as a means of extracting acoustic features. Such
approaches have been employed successfully in AD detection
tasks, from the first ADReSS challenge, where transformer-
based language models were widely used in combination
with paralinguistic information [10], [63], [64] to recent work
presented at ICASSP 2023 [65] which compared several
large-scale, pre-trained acoustic and language models for the
original (monolingual) ADReSS classification task. Acoustic
features derived through feature engineering, notably some
commonly used openSMILE-generated feature sets were also
used, and achieved good results [49], in combination with
demographic information. It is noteworthy that the use of
features that characterise speech dysfluency proved effective
in several models, confirming the findings of models trained

and tested on monolingual data (e.g. [10], [66]) in previous
challenges. Therefore it seems fair to conclude that these
features are both effective and generalisable across languages.

As regards the classification and regression algorithms em-
ployed by the participating teams, both conventional machine
learning algorithms — such as classifier ensembles (includ-
ing Random Forests), gradient boosting (including XGBoost),
SVM, SVR, and logistic regression — and deep neural net-
works. In some cases [51], [65], these methods were used for
feature selection in addition to classification and regression.

While we believe ADReSS-M provides a useful standard
benchmark for assessment of cognition across the two lan-
guages in our data set, we acknowledge that it also has
limitations. As with all shared machine learning tasks, fo-
cusing the attention of a large community on a single task
and data set poses the risks associated with “over testing”
at the community level, namely, that results might be due to
particular choices of parameters rather than to general char-
acteristics of language and their relation with cognition. More
research is needed on the mechanisms underlying cognitive
decline in Alzheimer’s disease and how these mechanisms
might translate to linguistic and phonological behaviour. This
is a complex undertaking, which we hope ADReSS-M and
similar task might contribute to facilitating. Within the task
itself, comparability of results is somewhat problematic due to
the fact that many different approaches were employed, some
of which leveraged information that was available for both
tasks (classification and regression) rather than the individual
task in question. Prediction of MMSE scores can obviously
help prediction of AD, and the fact that MMSE scores were
available benefited those teams that chose to exploit them.
While the challenge’s rules did not preclude the use of such
strategies, and in fact their use illustrates interesting possibili-
ties for ensemble learning which we had not foreseen, MMSE
information may not always be available in practical situa-
tions. Finally, we believe the ICASSP regulations regarding
accepting only papers from the five top-scoring teams risked
excluding interesting approaches which, while not scoring
well in the tasks, might have provided interesting insights into
the problem of cognitive assessment across languages. This is
an issue future challenge organising committees might wish
to consider.

X. CONCLUSION
Computational analysis of spontaneous connected speech has
the potential to enable novel applications for speech tech-
nology in longitudinal, unobtrusive monitoring of cognitive
health. By focusing on AD recognition using spontaneous
speech, the ADReSS-M signal processing grand challenge
provided a platform for the investigation of alternative to
neuropsychological and clinical evaluation approaches to AD
detection and cognitive assessment. Furthermore, we ex-
pect that the multilingual resources and models provided by
ADReSS-M will allow the investigation of features that might
generalise across languages, extending the applicability of
these models in future. In keeping with the objectives of AD
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prediction evaluation, the ADReSS-M challenge provided a
statistically balanced data set to mitigate common biases often
overlooked in evaluations of AD detection methods, including
repeated occurrences of speech from the same participant,
variations in audio quality, and imbalances of sex, age and
educational level. We hope this might serve as a benchmark
for future research on multilingual AD assessment.
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