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ABSTRACT This paper presents an overview of the e-Prevention: Person Identification and Relapse Detec-
tion Challenge, which was an open call for researchers at ICASSP-2023. The challenge aimed at the analysis
and processing of long-term continuous recordings of biosignals recorded from wearable sensors, namely
accelerometers, gyroscopes and heart rate monitors embedded in smartwatches, as well as sleep information
and daily step counts, in order to extract high-level representations of the wearer’s activity and behavior,
termed as digital phenotypes. Specifically, with the goal of analyzing the ability of these digital phenotypes
in quantifying behavioral patterns, two tasks were evaluated in two distinct tracks: 1) Identification of the
wearer of the smartwatch, and 2) Detection of psychotic relapses in patients in the psychotic spectrum. The
long-term data that have been used in this challenge have been acquired during the course of the e-Prevention
project (Zlatintsi et al., 2022), an innovative integrated system for medical support that facilitates effective
monitoring and relapse prevention in patients with mental disorders. Two baseline systems, one for each
task, were described and the validation scores for both tasks were provided to the participants. Herein, we
present an overview of the approaches and methods as well as the performance analysis and the results of
the 5-top ranked participating teams, which in track 1 achieved accuracy results between 91%-95%, while in
track 2 mean PR- and ROC-AUC scores between 0.6051 and 0.6489 were obtained. Finally, we also make
the datasets publicly available at https://robotics.ntua.gr/eprevention-sp-challenge/.

INDEX TERMS Person identification, relapse detection, anomaly detection, autoencoder architectures,
biometric indexes, deep learning, digital phenotyping, long-term data, psychotic disorders, wearable tech-
nologies, ICASSP-2023 signal processing grand challenge.

I. INTRODUCTION

14

I

Nowadays wearable technologies offer unique opportunities
to create innovative intelligent electronic services that can
address various well-being issues. The widespread adop-
tion of smartphones, as well as wearable products like

smartwatches and fitness trackers, has given rise to the in-
terdisciplinary field of digital phenotyping, which involves
the quantification of human behavior and traits (the “phe-
notype”) using sensors embedded in these devices. These
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devices collect diverse data through geolocation sensors, ac-
celerometers, gyroscopes, and heart rate monitors, measuring
physical activity, kinetic activity, micro-movements, and auto-
nomic function, opening thus the possibility for non-intrusive
acquisition of activity, social and physiological data. This
abundance of sensory data has facilitated the development of
numerous applications for general user and health monitoring,
as well as predictive analytic tasks such as emotional well-
being [2], [3], sleep tracking [4], eating [5], agitation [6], and
physical activity detection [7].

Over the past six decades, numerous studies have been
conducted in the fields of neurobiology and neurophysiol-
ogy to investigate psychotic conditions, including bipolar
disorder and schizophrenia. Despite these efforts, the exact
causes of these conditions remain elusive. As a result, no
effective biomarkers for the prediction of psychotic symp-
toms have yet been discovered. Identification of early signs
of worsening symptoms in the psychotic process and imple-
mentation of preventive measures have proven to significantly
improve outcomes and mitigate the devastating impact that
relapses can have on patients’ lives [8], [9], [10]. Therefore,
there is a growing emphasis on exploring the potential of
such markers for timely diagnosis and prevention of psy-
chotic relapses [11], [12], [13], [14], [15], [16], [17]. The
current advances in the field of digital phenotyping offer
the potential to support and revolutionize clinical psychiatry
through the identification of biomarkers from passively col-
lected sensory data and their correlation to the appearance
of relapse episodes in patients, with the prospect of both
transforming hospital-centered healthcare practice to proac-
tive, individualized care, and improving the patient’s course of
life.

Several works have tried to tackle this problem offering
promising evidence for using such sensory data from smart-
phones [14], [18], [19], [20] for characterizing the course
of various mental illnesses, or identifying anomalies in pe-
riods before the appearance of relapses. The majority of these
studies lasted up to a few weeks, with some exceptions [21].
Wearable sensors offer an unobtrusive and lightweight alter-
native for the monitoring of daily activities, since they are are
deemed as comfortable by patients with mental disorders, and
as such can be used as low-cost devices [16], [17], [22], [23]
for the collection of physiological signals, such as accelerom-
eter, gyroscope and heart rate measurements.

Supervised learning approaches for correlating the appear-
ance of relapses with physiological data have mostly focused
on either statistical significance testing or classification of
hand-crafted features using traditional machine learning al-
gorithms. Consequently, a variety of feature representations
have been proposed in such medical settings, using data from
wearables [24], [25]. Another approach used for relapse de-
tection is non-supervised sensor-based anomaly detection, the
importance of which has been highlighted during recent years
and the COVID-19 pandemic, through the clinical mass adop-
tion of telehealth [26]. This approach is especially suitable
for mental health monitoring, where the availability of data
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corresponding to relapsing states is scarce, and has been ap-
plied on data collected from various passive sensors [1], [21],
[27], [28], [29], [30]. Finally, with the increase in unlabeled
amounts of data, self-supervised approaches are also emerg-
ing [31].

Regarding person identification from sensors embedded in
smartwatches, kinetic data are mostly being used, in con-
junction with simple statistical features extracted from the
raw signals [32], [33], [34]. More recent approaches utilize
deep learning, an approach that effectively generalizes in user-
diverse datasets, while being able to disentangle the recorded
signals and sensor noise with suitable data augmentation. In
this case, CNN-based architectures are mostly being used, in
either a discriminative fashion [35] or a representation learn-
ing framework [36].

However, the public availability of large user-diverse
datasets of physiological signals is scarce, especially in con-
junction with mental health indicators. As a result, through
the e-Prevention Challenge,l researchers in the field had the
opportunity to work on and draw insights from a large-scale
collection of smartwatch signals (including continuous mea-
surements from accelerometers, gyroscopes and heart rate
monitors, as well as information about the daily step counts
and sleep), collected from patients in the psychotic spectrum
for a monitoring period of up to 2.5 years, and a control
subgroup for a provisional period of 3 months, in two different
tasks:

1) Studying the correlation of the biosignals to user-
specific behavioral patterns via Person Identification
from the recorded signals, and

2) Using these smartwatch signals as biomarkers of psy-
chotic symptomatology for the task of Relapse Detec-
tion in psychotic patients.

Both tasks are of importance to the biomedical signal
processing and psychiatry communities, since through the
identification of digital phenotypes from wearable signals,
useful insights on the distinctive behavioral patterns and re-
lapse course of patients with mental disorders can be derived,
contributing to early symptom identification, and eventually
better outcomes of the disorder. Our teams have already
undertaken extensive work on the full length e-Prevention
dataset, pursuing the ultimate goal of relapse detection
through person identification, either by addressing it as a
misclassification problem [27] or employing a self-supervised
framework combined with survival analysis for revealing the
risk of an oncoming relapse [31]. Our research on relapse
detection indicates that there is ample scope for further explo-
ration, and the initial findings in this direction are promising.
The ability to detect relapsing states from unobtrusive sen-
sors is a first step towards the determination of biomarkers
that correlate with the state of psychotic patients, and could

ISee https://robotics.ntua.gr/eprevention-sp-challenge/ for the full chal-
lenge outcomes as well as the publicly available e-Prevention dataset for both
tasks.
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eventually lead to the prediction and finally the prevention of
these relapses.

Il. CHALLENGE OVERVIEW

A. DATASET

During the course of the e-Prevention project [1]
(https://eprevention.gr/), a total of 60 people (37 patients
in the psychotic spectrum and 23 healthy controls) were
recruited at the University Mental Health, Neurosciences
and Precision Medicine Research Institute “Costas Stefanis”
(UMHRI) in Greece, and the protocol of the project was
approved by the Ethics Committee of the Institution.
All participants were provided with a Samsung Gear S3
smartwatch that monitored the user’s linear acceleration and
angular velocity (m/s®> and deg/s, sampled at 20 Hz), heart
rate variability and RR intervals (sampled at 5 Hz), sleeping
schedule and steps.

This information was continuously collected from the pa-
tients for a monitoring period of up to 2.5 years, while the
same data were collected from the control subgroup for a
provisional period of 3 months. The resulting dataset is one
of the largest of its kind ever recorded, with a total of approxi-
mately 20000 human-days of collected data spread among all
participants. The collected data were anonymized, and each
participant in the study was assigned a unique ID as an iden-
tifier. The clinicians annotated the patients’ relapse periods
according to their monthly assessments and communication
with the attending physician or the family (more information
about the recruitment and the monthly in-person clinical as-
sessment can be found in [1]).

B. TASK DESCRIPTION

The e-Prevention challenge focused on two tasks, chosen as
already mentioned for their significance, since the identifi-
cation of digital phenotypes from wearable sensors provides
valuable insights into the unique behavioral patterns and re-
lapse course of patients with psychiatric disorders. In more
detail, the two tasks were the following:

1) Person Identification: The goal in this task was to
identify the watch wearer by forming and classifying
their digital phenotypes from the recorded biosignals.

2) Relapse Detection: This task was aimed at detecting
the appearance of relapses in the patients, based on the
smartwatch measurements.

C. DATA FORMAT AND STRUCTURE

For the purposes of the e-Prevention Challenge, we provided
two subsets of the collected dataset, one for each challenge
task. For the Person Identification task, we provide a stratified
split of a part of the dataset (including all 46 users, both
patients and controls), consisting of about two and a half
months per person. For the Relapse Detection task, the pro-
vided dataset constitutes again a subset of the full dataset, with
data derived from a subgroup of ten patients corresponding
approximately to six months per person.
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For both tasks, we split the recordings of all users into days
and shuffle them (i.e., there is no temporal continuity over
different days). For each day, the data provided in both tasks
include continuous signals of linear acceleration (from the
accelerometer), angular velocity (from the gyroscope), heart-
rate and RR-interval (from photoplethysmography - PPG).
Before sharing the signals we aggregated the values of each
signal over 5 seconds, resulting in 12 sample points in one
minute. This was also done to mitigate the effect of each
individual sensor noise to the classification task, which was
observed in [35]. Apart from these signals, we also shared the
sleep schedule of the users and walking information, along
with the corresponding timestamps.

For the Person Identification task, each day in the train-
ing and validation split was also accompanied by the ID
of the corresponding user - in the test set the teams were
asked to predict the user ID. For the Relapse Detection part
the training split contains only data acquired while the pa-
tient condition was stable, while the validation and testing
splits span both stable and relapsing periods. The partici-
pants were expected to detect the relapses as anomalies and
tackle this task with an unsupervised learning method, i.e.,
anomaly or novelty detection, using the labeled validation
set to tune their algorithms. Finally, the testing set does
not contain any information pertaining to the appearance of
relapses.

D. BASELINES

For the baseline of the Person Identification task we trained
a deep 1D CNN with 5 convolutional layers, including Batch
Normalization and ReLU activations. After the last Batch
Normalization layer we used adaptive average pooling and
a final fully connected layer to predict the logits for the 46
identities. The data were preprocessed by normalizing the
accelerometer, gyroscope and heart rate values into the [0—1]
interval using their provided valid range, which for the tri-
axial linear acceleration from the accelerometer was between
[—19.6, 19,6], and for the tri-axial angular velocity from the
gyroscope was between [—573, 573]. For the heart rate and
the RR Intervals we set the max values as 255 and 2000
respectively.

During training, we sampled randomly 3-hour contigu-
ous segments from the daily recordings, provided that they
included at least 2.5 hours of valid data. Afterwards, any miss-
ing timestamps in the segment were imputed using Nearest
Neighbor Interpolation (NNI), resulting in a sequence of 721
x 8 features (we did not use sleeping or step information). We
fed the segment through the network, predicted the ID of the
user and used Cross Entropy Loss for training. We trained for
300 epochs with a batch size of 64, using Adam with an initial
learning rate of le-4 and reducing it by a factor of 10 at 150
and 225 epochs.

During inference, we selected all contiguous 3-hour seg-
ments of each daily recording with at least 1 h of valid data,
imputed them again with nearest neighbors, and used voting
over all segments in order to select the final predicted user
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ID of the respective recording. Our method’s final validation
score was 62%.

The baseline provided for the Relapse Detection task is
based on an 1-layer linear autoencoder. A total of 10 features
were extracted from 5 minute slices of the original data. In
more detail, the mean norm of the linear (accelerometer) and
radial (gyroscope) measurements were computed to quantify
movements and micro-movements, while cardiac behavior
was estimated by the mean heart rate (bpm), the mean RR
interval (ms), as well as the major axis of the Poincare el-
lipse and the normalized low- and high-frequency powers of
the Lomb-Scargle periodogram as computed from the NNI
series. Finally, daily sinusoidal encoding (sine and cosine val-
ues) was used for the temporal encoding of the timestamps,
whereas the percentage of valid 5 s measurements was also
calculated. Missing features were handled by median interpo-
lation for intervals up to 3 hours; larger intervals of missing
values were discarded. These features were then stacked into
2D tensors of size 48 x 10 (with each row representing a
5-minute slice and each column a feature), thus covering 4
hours each, using a stride of 1 h.

Then, an autoencoder was trained, with a bottleneck dimen-
sion equal to N = 60 and a LeakyReLU activation, using as
input the feature representations mentioned above, after being
standardized per-patient and flattened into a 480 dimensional
vector. The post-normalization statistical properties (i.e., the
mean and covariance matrix) of each (5-minute) feature slice
in the training set were used to compute a multivariate normal
distribution, that the feature vectors follow. During inference,
input tensors, corresponding to 4 h intervals, are standardized
according to the precomputed per-patient transform, and fed
into the autoencoder. The per-feature mean of the autoen-
coder output is then computed, and its Mahalanobis distance
to the assumed feature distribution is calculated and used as
an anomaly score; input tensors corresponding to relapsing
periods are expected to record higher anomaly scores. Since
the evaluation is carried out in a per-day basis, the median
anomaly score over all the 4 h tensors corresponding to each
day was computed to obtain a single anomaly score for each
day. Application of the above methodology in the provided
validation set yielded a PR-AUC score of 0.635, a ROC-AUC
score of 0.578 and a mean score of 0.6065.

E. EVALUATION METRICS

Person Identification: The proposed solution should return
a prediction of the unique patient ID for daily intervals, by
either aggregating predictions over smaller segments, or pro-
cessing data corresponding to one day as a whole. Since
person identification is a multi-class single-label problem,
the weighted per-person identification accuracy is used as a
metric.

Relapse Detection: Similarly to above, the evaluation of
the state of the patient as stable or relapsing is carried out
on a daily basis, either by suitable preprocessing of the in-
put features or via post-hoc aggregation of predictions over
smaller segments. Since this is an anomaly detection task, the
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mean of the PR-AUC (Precision-Recall Area Under Curve)
and ROC-AUC (Receiver Operating Characteristic Area Un-
der Curve) scores over the daily predictions is utilized as the
main evaluation metric.

F. CHALLENGE RULES AND TIMELINE

1) RULES AND REQUIREMENTS

All participants should adhere to the following rules to be
eligible for the challenge:

e All participants had to submit the obtained results for
at least one of the 2 tasks, accompanied with a short
(up to 1 page) description of their proposed system and
methodology.

e Participating teams are allowed to update their submis-
sions and scores multiple (up to 5) times during the
evaluation phase.

e Each individual participant cannot be included in multi-
ple participating teams.

e After the completion of the challenge, the top scoring
teams for each track will be declared as winners of the
respective track and they will be invited to provide a
synopsis of their proposed methodology and results in
a two-page-long paper, and present it in-person to the
Special Session dedicated to the e-Prevention challenge
in the ICASSP-2023 conference.

e Participants can only publish their own results, while a
summary of the challenge results will also be prepared
by the organizers.

e There are no restrictions on the proposed methodologies,
as long as they follow the guidelines for each track, or the
usage of external datasets. However, in case of a tie, the
Challenge Committee will take into account the novelty
and originality of the proposed approach.

® The intellectual property (IP) of all shared/submitted
code, if applicable, remains to the participants and is
not transferred to the challenge organizers. If the code
developed by the participants is made publicly available,
an appropriate license should be added.

2) DATA PERMISSION
Regarding the challenge data, permission was granted only if
the participants agreed to the following terms:

1) To include a reference to the e-Prevention 2023 Dataset
in any work that makes use of the dataset. For research
papers, to cite the recommended publications (as listed
on our website (https://robotics.ntua.gr/eprevention-sp-
challenge/)) and the challenge overview paper.

2) To not distribute the dataset or modified versions.

3) To not use the dataset or any derivative work for com-
mercial purposes as, for example, licensing or selling
the data, or using the data with a purpose to procure a
commercial gain.

4) All rights not expressly granted to the participants are
reserved by the e-Prevention SP Grand Challenge 2023
organizers.
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3) SUBMISSION INSTRUCTIONS

The winning teams’ submitted paper had to be prepared ac-
cording to the ICASSP-2023 guidelines (which we mention
here in short for completeness). The 2 pages long paper, which
should be as self-contained as possible, should follow the
template for regular ICASSP papers including title, abstract,
introduction, references and possible figures and tables. The
abstract and introduction must clearly mention that the work
was done in the context of an “ICASSP Signal Processing
Grand Challenge” (including the official challenge name and
the year of the challenge), and cite the selected publications.
Additionally, the introduction should at least contain: a brief
description of the scope of the challenge and a brief descrip-
tion of the participants’ proposed solution and quantitative
results obtained on the challenge’s evaluation metrics. In the
main text, the participating teams should focus on the concep-
tual implementation/innovation, and a high-level description
of the proposed solution, while standard citation rules re-
mained applicable, if as, for instance, the selected solution
was inspired by (or used) existing work.

4) REGISTRATION AND SUPPORT

To register for the challenge, participants were required to
send an e-mail to two organizing members (predefined), men-
tioning their team name, the names and emails of the team
members, as well as their affiliations. The challenge partici-
pants were also encouraged to contact our team for any issue
or clarification about the challenge or the dataset.

5) TIMELINE

e November 28th, 2022: Registration opens

® December 8th, 2022: Dataset Release and starting date

e February Ist, 2023: Deadline for participants to submit
their results

e February 6th, 2023: Notification of the final results

e February 20th, 2023: Deadline for invited paper submis-
sion

e March 7th, 2023: ICASSP 2023 SPGC acceptance noti-
fication

e March 14th, 2023: ICASSP 2023 SPGC camera-ready
papers

IIl. CHALLENGE RESULTS AND DISCUSSION
In total 15 teams successfully participated in the e-Prevention
challenge and specifically 11 in the Person Identification task
and 6 in the Relapse Detection task. Participating teams were
allowed to compete in any, or both, tasks, and they could
freely choose whether to work with data from all modalities,
or specific ones (i.e., heart-rate information only). Two of the
teams competed in both tasks, with one of those (PeRCeiVe)
obtaining results that ranked in the top-3 submissions in both
tasks. Table I shows the ranking with the final top-6 submis-
sions, 3 for each task and the respective top-5 teams.

In general various methodologies were used by the differ-
ent teams. Regarding the Person Identification task, the first
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TABLE 1 Ranking With the Final top-6 Submissions, 3 for Each Task and
the Respective Top-5 Teams.

Team ID Person ID Relapse Detection
Accuracy (%) ROC-AUC | PR-AUC Mean
SRCB-LUL [37] 95.00% - - -
PeRCeiVe [38] 93.85% 0.6469 0.6509 0.6489
Al_Bezzie [39] 91.36% - - -
Emotion [40] 0.6072 0.6347 0.6209
SAlLers [41] 0.5839 0.6263 0.6051

The bold values correspond to the best value for each metric, denoting the best team of
each track of the challenge, as well.

stage included data preprocessing, such as normalization, data
cleaning or even data augmentation. Six (6) out of 11 teams
used deep architectures including 1D CNNs (Convolutional
Neural Networks), combined 1D CNNs-LSTM (Long-Short-
Term-Memory) networks, Transformers or ensemble methods
based on the above architectures. Two teams used classical
machine learning methods such as SVMs (Support Vector
Machines) and GMMs (Gaussian Mixture Models), while the
machine learning method utilized could not be reliably vali-
dated for the rest of the teams, as will be explained later. The
top-3 ranked teams used deep architectures.

Continuing with the Relapse Detection task, the majority of
the teams (5 out of 6 participating teams, including 2 out of the
top-3 submissions) used autoencoder-based methods. 2 out of
5 teams used a Transformer-based autoencoder, 2 teams used
1-layer linear autoencoders - in one case, the autoencoder’s
output was post-processed by an LSTM for temporal feature
aggregation, and 1 experimented with a CNN-based autoen-
coder, a U-Net and a Transformer Encoder-Decoder, yielding
the best results for this task. Notably, the only team not using
an autoencoder-based method (team SAILers), which utilized
a tree-based ensemble method, ranked in the top-3 teams of
the track. Similar to the previous task, all teams followed a
preprocessing procedure including normalization and feature
extraction.

An overview of the proposed methodologies can be found
in Tables II and III for the person identification task and in
Tables IV and V for the relapse detection task. Note that
while it was required by the participants to send an 1-page
description of their proposed methodologies along with their
results, that was not the case for all teams that participated in
task 1; that is why the respective tables present the solutions
of 7 out of 11 participating teams only. Finally, the top-6
submissions by the 5-top ranked teams are discussed in more
detail in the following section.

A. METHODOLOGY DESCRIPTION OF THE TOP-SIX
SUBMISSIONS

1) PERSON IDENTIFICATION TASK

In [37] team SRCB-LUL developed a system for the person
identification task, taking the first ranking place with an ac-
curacy of 95%. They used eight-channel signals, including
accelerometer, gyroscope, heart rate, and RR intervals, while
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TABLE 2 Person Identification (Task 1) Methodologies Used Regarding the Preprocessing Steps Followed by the Participants and Specifically, the Missing
Value Handling, the Processing Segment Resolution and the Normalization. The Score (Accuracy %) Obtained by the Various Teams is Also Presented.

Team ID H Score ‘ Missing Value Handling ‘ Processing Segment Resolution Normalization
SRCB-LUL [37] 95.00 % | Mean replacement over day 30 min, 5 sec slices Mean-Std norm
PeRCeiVe [38] 93.85 % | NNI, discard if many invalid data 1.5 hour, or 3 hours (5 sec slices) Min-Max norm [0,1]
Al_Bezzie [39] 91.36 % | Development of missingness-aware framework 1 hour, 30 sec slices Yes (type not stated)
SAlILers 82.15 % | Discard missing data Daily, 3 min slices NS
Unipi-CMBL 7543 % | NS Daily, 5 sec slices Min-Max norm [0,255]
CogBCI 2.88 % NS 1 hour, 5 sec slices NS
UOI 2.68 % Discard missing/invalid data 3 hours, 30 min slices None
(NS denotes not stated.)
TABLE 3 Person Identification (Task 1): Features, Modalities, and Model(s) Used by the Participating Teams.
Team ID Acc Gyr HRV Sleep | Step | Feat Aggregation Model Ensemble
Feats
3-axes 3-axes heart yes no no ID-CNNs (mid-depth) yes
SRCB-LUL [37]
rate, RR
. 3-axes 3-axes | heart yes yes no Transformers /1D-CNN fusion yes
PeRCeiVe [38]
rate, RR
. 3-axes 3-axes heart yes yes no 1D-CNN+LSTM no
Al_Bezzie [39]
rate, RR
norm norm heart yes yes yes (mean+std) GMMs (late modality fusion) yes
SAILers
rate, RR
. 3-axes 3-axes heart yes no no 2D-CNN (Imagenet Pretraining) no
Unipi-CMBL
rate, RR
3-axes 3-axes heart no no no CNN+LSTM/CNN fusion yes
CogBCI
rate, RR
3-axes 3-axes heart no no yes (extraction of statisti- DNN (3 layers) no
UOIl rate, RR cal features from all raw
signals + entropies)

the step information was discarded. The outlier values were
filtered out and replaced by the mean value of the day, while
the data were also normalized according to the distribution of
the training data. The valid data were divided into multiple
short-term segments, in order to solve the problem of abnor-
mal values, which were then used to predict the identification
results. Afterwards, multiple base classifiers were trained, by
changing the segment length and the number of the signals,
taking into account the wakefulness state (awake vs. asleep),
and an ensemble model was used to obtain the final results of
the user ID. For the training, they designed a 1D CNN with
multiple convolutional layers according to [42], which were
followed by a batch normalization layer and a ReLU activa-
tion. After concatenating the intermediate features multiple
fully connected (FC) layers followed. Except for the last layer,
each fully connected layer was followed by a ReL.U activation.
Finally, the logits for the 46 identities were output. During
inference, the predicted user ID was obtained by voting over
both sleep and awake segments.

In [38] for the task of person identification the PeRCeiVe
team, which ranked second with an accuracy of 93.85%,
first normalized the data, including accelerometer, gyroscope,
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heart rate, and RR intervals within the range of [0, 1], retaining
the sleep information, while invalid data were imputed with
nearest neighbor interpolation. Three sequences were derived
from step data: the number of steps per time unit, velocity
in m/s, and calories per time unit. To augment the data, a
sliding window approach with non-overlapping windows of
varying widths (1.5 and 3 hours) was employed, resulting in
input sequences of 7 x F, where T denotes the resolution
of each temporal slice and F corresponds to the 12 series
data, including 3 accelerometer, 3 gyroscope, heart rate, RR
intervals, sleeping activity, and the three step series. They
implemented an ensemble model comprising a standard deep
1D CNN and five transformer architectures. The CNN model
also served as the embedding backbone for all the transformer
models. Time2Vec [43] was used as positional embedding,
and a [CLS] token was added to the final sequence. Differ-
ent transformer configurations, involving positional encoding,
model depth, encoding layers, and attention heads, were uti-
lized in the ensemble. During training, only windows with
at least 83% valid data were considered, with invalid data
imputed using NN interpolation. The optimal parameters for
each model were chosen based on the performance on the
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TABLE 4 Relapse Detection (Task 2) Methodologies Used Regarding the Preprocessing Steps Followed by the Participants and Specifically, the Missing
Value Handling, the Processing Segment Resolution and the Normalization. The Score (Mean PR- and ROC-AUC) Obtained by the Various Teams is Also

Presented.
Team ID H Score ‘ Missing Value Handling Processing Segment Resolution ‘ Normalization
PeRCeiVe [38] 0.6489 | NNI, discarding if many invalid data 1.5 hour, 5 sec slices (raw features) Min-Max norm [0,1]
eRCeiVe [38] || = o - — —— = — = — == = = = = — = = — = — — — — — — — — — — — — — — 4~ — - — — — — — — — — — — -
NNI, discarding if many invalid data 4-hours 5 min slices (aggregated features) | Per-Patient Mean+Std norm
0.6209 | Median per-patient replacement 1 day, 4 hour slices Per-Patient Mean+Std norm,
Emotion [40] followed by MinMax across
all patients
SAILers [41] 0.6051 | Remove outliers; Hampel interpolation | Daily (sleep-filter), 5 min slices Unit-norm for each feature per
ers
for small intervals, discard large ones patient
SmartBCI 0.5604 | NS 4 hours, unknown slice length Mean+Std norm
YDH@HEU 0.5401 NS 4 hours, 5 min slices NS
GISP@HEU 0.5229 | NS 4 hours, 5 min slices NS

(NS denotes not stated.)

TABLE 5 Relapse Detection (Task 2): Features, Modalities, Models, and Anomaly Measure Used by the Participating Teams.

Team ID H Acc ‘ Gyr ‘ HRV Feats ‘ Sleep ‘ Step ‘ Time H Model Anomaly Measure PM
3-axes 3-axes heart rate, RR yes yes no 1D-CNNs autoencoders reconstruction yes
(raw) (raw) error  distribution
likelihood (CDF)
PeRCeiVe [38] || mean mean mean heart rate & | no no yes 1D-CNN/Transformer reconstruction yes
norm norm RR, Poincare major based autoencoders error  distribution
axis, Lomb-Scargle likelihood (CDF)
LE, HF
. mean mean Mean + Std. rate yes yes no Linear autoencoder (10 | reconstruction no
Emotion [40]
norm norm bottleneck features) error
mean mean mean heart rate, HRV, | yes yes yes Isolation Forest number of splits re- | no
SAlLers [41] norm norm Welch LF, HF (+ frac- quired for sample
tions) isolation
mean mean mean heart rate & | no no no Linear autoencoder (60 | NS no
norm norm RR, HRYV, Lomb- bottleneck features)
SmartBCI
scargle VLF, LF, HF
(+ ratios)
mean mean mean heart rate & RR | no no yes Transformer autoencoder NS no
YDH@HEU
norm norm
mean mean mean heart rate & RR | no no yes Conformer autoencoder NS no
GISP@HEU
norm norm

NS denotes not stated by the authors, while PM denotes personalized models.

validation set, and inference prediction was performed by
summing the prediction logits of each model in the ensemble.

Finally, for the same task the AI_Bezzie team [39] that
ranked third with 91.36% accuracy resampled all data with
a 30 s interval and used a union mechanism to extract inter-
secting time periods. They categorized the time of the day
into four segments and used one-hot-encoding to represent
it as a static feature. Additionally, a missing feature encod-
ing was used to indicate data loss in the heart rate sensor.
All data streams were normalized based on specific sensors’
characteristics. Their architecture utilized a fixed window size
with a 30% overlapping ratio for data slicing during training.
Inference involved predicting labels for all available slices in
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a day and using majority voting to assign the final label. Two
types of feature fusion were also performed: (a) early fusion
for the temporal features and (b) late fusion for the static
features. Early fusion used individual feature encoders [35]
using three 1D-Convolutional layers, while the static features
(i.e., sleep information and time of the day among others)
were combined with the output of the sequence model before
being fed to the next layer. A single-layer LSTM was utilized
to model the temporal relationship between the data and Adam
optimizer was used for the 46-class classification problem
with Cross-Entropy loss, while various ablations studies were
conducted regarding the window length, the features used and
the modifications in the architectures.
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2) RELAPSE DETECTION TASK

Continuing with the second task of the e-Prevention chal-
lenge, PeRCeiVe team [38] participated in the relapse detec-
tion task, as well. In this task, they ranked first with a mean
ROC-AUC and PR-AUC score of 0.6489. An anomaly detec-
tion in a personalized scheme approach was followed utilizing
both raw and aggregated data, where raw data were processed
similarly to the person identification task, while the aggre-
gated approach involved extracting 10 features from 5-minute
slices of the original data. The features included the mean
norm of linear accelerations and radial velocities, mean heart
rate and RR interval, the major axis of the Poincare ellipse,
normalized low and high-frequency powers of the Lomb-
Scargle periodogram from the NNI series, daily sinusoidal
encoding, and percentage of valid samples. Data were stan-
dardized using the per-patient mean and standard deviation as
computed on the training set. Three different architectures —a
CNN-based autoencoder, an autoencoder for time series, and
a Transformer Encoder-Decoder— were employed to create
patient-specific models. These models were trained separately
on both raw and aggregated data using non-relapse data and
the Mean Squared Error (MSE) as a loss function. The model
selection was based on the best accuracy on the validation
set. During inference, the reconstruction error was computed,
and the Cumulative Distribution Function (CDF) of the per-
channel reconstruction error was used as an anomaly score.
The evaluation was carried out using the median anomaly
score over all available windows for each day.

Emotion team [40] that ranked second with a mean ROC-
AUC and PR-AUC score of 0.6209, for the task of relapse
detection, performed data cleaning before feature extraction,
i.e., duplicate time intervals were removed and heart rate
values outside a specific range were discarded. Additionally,
heart rate values deviating more than 20% from the heart
rate calculated using RR intervals were eliminated. Negative
step counts in the physical activity data were also removed.
Missing values were replaced with the median of each fea-
ture for each patient. Features were then computed for each
4-hour period, including mean and standard deviation of the
heart rate, norm of accelerometer and gyroscope coordinates,
percentage of sleeping time, and total number of steps. These
features were concatenated into a single vector for each day.
Standard normalization was applied to each patient’s data,
followed by min-max normalization across all patients’ data.
To predict relapse in patients with psychotic disorders, a sim-
ple auto-encoder (AE) neural network with 1 hidden layer
and 10 neurons was implemented (other anomaly detection
techniques were also evaluated, however showing that they
perform similarly, with the AE achieving the highest overall
score). Their autoencoder architecture was trained using the
Adam optimizer and MSE as the loss function, while the av-
eraged reconstruction error was utilized as an anomaly score
to detect relapses in patients.

Finally, for the task of relapse detection in [41] team
SAlLers, who ranked third with a mean ROC-AUC and
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PR-AUC score of 0.6051, removed outliers and applied the
Hampel method [44] to impute missing values within a 1-hour
range. Feature extraction involved deriving various features
from 5 m intervals of the processed time-series, which were
then aggregated at different resolutions. In more detail, the
normalized energy of accelerometer and gyroscope data was
calculated from the tri-axial measurements, the mean heart
rate and heart rate variability (HRV) were extracted from RR
intervals, and their power spectral density was estimated using
Welch’s method to isolate low- and high-frequency bands,
along with their respective fractions. Timestamps were en-
coded using daily sinusoidal encoding. Regarding the step
count data, they integrated the provided features and calcu-
lated additional step size and speed by converting the start
and end times of steps into seconds. The data was then dis-
tributed over 5 m intervals by summing up the step counts
and taking the mean of distance, calories, step size, and speed.
After feature extraction for each patient, they standardized the
features to unit norm and concatenated them in a daily basis
to create subject-agnostic trials, approaching the problem as a
novelty detection task, where the goal was to identify outliers
without any outlier data in the training set. Towards this end,
they selected the Isolation Forest [45], a tree-based ensemble
method, where features were randomly selected and split be-
tween extreme values. The number of splits required to isolate
a sample served as a measure of normality, since anomalies
are likely to have shorter paths due to random partitioning.
This measure is averaged over a forest of such random trees
to assess outlier detection performance. In their work, the use
of sleep activity, step count and heart rate features were also
investigated evaluating various combinations of features and
time resolutions.

B. DISCUSSION: TRENDS, CHALLENGES AND
ADVANCEMENTS

Some of the key trends across the 3-top submissions regarding
the Person Identification task included addressing abnormal
sensor data through segmentation, thus creating segments
varying in length in order to solve the problem of both abnor-
mal and missing values, while generally using voting over all
segments in order to obtain the final prediction results. Addi-
tionally, the different teams, apart from the main eight-channel
signals (including accelerometer (3-axis), gyroscope (3-axis),
heart rate and RR intervals), leveraged the additional signal
modalities. Regarding the step information provided, some
used all provided signals, even the information of calories
[39], while others discarded completely the step counts [37];
on the other hand, all teams retained the wake vs. asleep
information. Moreover, they employed ensemble models (ei-
ther unimodal or multimodal), and utilized normalization and
various imputation techniques, showcasing the significance of
preprocessing, model architecture modifications and hyper-
parameter tuning to achieve higher accuracy. In addition, a
necessary “good practice”, since it was adopted by all three
leading teams, involves addressing missing data through their
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replacement or some kind of “coding”, rather than discard-
ing them outright. Among the proposed methodologies the
introduction of a missing feature encoding method to indicate
data loss showed promising results compared to statistical
imputation techniques [39]. Moreover, as also observed in
Table III, 1D CNN-based architectures constitute a part of all
top-3 submissions. The focus on temporal and static feature
fusion, such as early and late fusion strategies, highlighted
the importance of optimizing the feature integration. Finally,
through ablation studies that were conducted, one team [39]
concluded that in their case the kinetic features from the ac-
celerometer contained the most discriminative features, while
the modality of gyroscope had the least impact. This behavior
of the gyroscope-derived features was also observed in [31],
for the task of relapse prediction.

Continuing with the second task of Relapse Detection,
some of the trends among the 3-top submissions include
the use of anomaly detection methodologies, leveraging var-
ious physiological signal features, and employing diverse
machine learning techniques such as autoencoders [38], [40]
and in one case a tree-based ensemble method [41] (see also
Tables IV and V). The 2-top submissions [38], [40] utilized
autoencoders, indicating that they can achieve better results in
the task. The various strategies focused on data preprocess-
ing and feature engineering, demonstrating the importance of
addressing missing values, abnormal data, and — with a larger
emphasis compared to the person identification task, and some
variability among the top teams — identifying the most infor-
mative features, or even modalities across the ones provided in
the e-Prevention dataset. In addition, we hypothesize that deep
and complex architectures require targeted pre-processing and
normalization procedures in order to unlock their full poten-
tial, since as can be also seen by the results in Tables [ and IV,
even the non-deep tree-based Isolation Forest method used in
[41] obtains rather good results, outperforming submissions
that utilized Transformer-based architectures without targeted
pre-processing. In this task as well, the various teams used
different segment lengths for their experimentation, however
compared to the person identification task the temporal win-
dows used are larger, with two out of three top teams using
a daily resolution. Furthermore, in [41], the authors inves-
tigated the use of sleep activity, step count and heart rate
features and evaluated various combinations of features and
time resolutions, showing that short-time sleep behavior fea-
tures outperformed their awake counterparts as well as the
larger time intervals. Finally, a valuable practice for good
performance in the relapse detection task is the use of some
degree of personalization strategies, as also seen in [14], [28],
either by using outright personalized models or per-patient
normalization techniques, while utilizing global models.

The results of the challenge indicate an advancement of the
state-of-the-art in both the person identification task and the
psychotic relapse detection task. With regards to the person
identification task, novel solutions have been developed for
the handling of missing features, such as employing a sep-
arate encoding for replacing them [39], whereas ensemble
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models, trained in separate modalities and/or with diverse
training settings, yielded better results than the commonly
employed end-to-end models [35], [36]. The main advance-
ment, however, concerns the swing at the direction of raw
sensorial data instead of aggregated feature representations;
the top-performing teams either utilized directly the provided
data at the 5-sec resolution [37], [38], or downsampled them,
with the final sampling rate remaining less than 1 minute
[39]. This contrasts with the state-of-the-art in the task, where
mostly spectral features [36] have been employed, and a larger
(minute-scale) temporal slice has been used for feature aggre-
gation [27], [31] (with a few exceptions [46]), and implies
the potential of achieving further gains with the utilization of
raw recordings. On the other hand, for the relapse detection
task, the main advancement concerns successful adaptation
of Transformer-based architectures [38], in contrast to DNN
or CNN ones that reached the best performance in previ-
ous works [21], [28]. Another direction that, based on the
results of the challenge, merits further exploration regards em-
phasizing the behavior of the patients while asleep; features
extracted from biosignals acquired during sleep resulted in
higher relapse detection rates compared to their awake coun-
terparts [41], which is in agreement with psychiatric findings
in the cases of both bipolar disorder [47] and schizophrenia
[48].

Finally, regarding the scores obtained in the two distinct
tracks (see also Table I); in the person identification task,
we may see that the 3-top teams, all utilizing deep architec-
tures, obtained accuracy results between 91%—-95%. The next
best submissions, with accuracy results between 75%—-83%,
utilized either deep or traditional machine learning methods,
while a number of submissions performed close to random
chance for the task. This both highlights the superiority of
deep learning based methodologies for the task and the ne-
cessity for efficient data preprocessing schemes, as described
previously. Regarding the relapse detection task, the results,
which are over or comparable to the baseline (with mean PR-
and ROC-AUC scores between 0.6051 and 0.6489), showed
that the specific task is indeed a difficult task to solve, espe-
cially in comparison to the (multi-label) person identification
task. Since nowadays the detection or even the prediction
of relapses is considered of major importance in the field
of psychiatry, the results imply that more sophisticated data
preprocessing schemes, more powerful network architectures,
additional modalities, or external information such as demo-
graphics [31] should be explored towards this goal.

IV. CONCLUSION

In this paper, we provide an overview of ICASSP-2023 e-
Prevention challenge, conducted with the goal of analyzing
the ability of digital phenotypes in quantifying behavioral pat-
terns tackling two different but very important tasks; the task
of Person Identification and Relapse Detection. To this end,
long-term continuous recordings of the e-Prevention project,
collected from unobtrusive smartwatches, were provided to
the participants. The top participating approaches, for both
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tasks, yielded notable performance, acquiring an accuracy of
95% in the Person Identification task and a mean PR- and
ROC-AUC score of 0.6489 in the Relapse Detection task. The
participants explored a variety of methodologies, ways of han-
dling missing and abnormal data, while other team-specific
approaches, regarding either the selection of the modalities, or
the length of the segments or the specific architectures used,
contributed to this boost in performance.

Overall, we believe that the e-Prevention dataset holds a
lot of promise for hosting future e-Prevention challenges and
incentivising further research. As a result, we plan to organize
more challenges with additional tracks that include depressive
relapses, apart from psychotic ones. Two limitations of the
presented challenge was the fact that the shared signals were
aggregated over 5 seconds and that there was no temporal
continuity over different days —in the future we plan to both
release raw data and share larger sequences that will allow
for architectures that can leverage large temporal windows.
Finally, apart from sleeping and wakefulness information it
would be interesting to see if there are any correlations behind
our collected demographic data of the patients (which were
not given at this challenge) and see if they can be leveraged to
predict relapses.

In this direction, we are currently organizing the 2nd
e-Prevention challenge: Psychotic and Non-Psychotic Re-
lapse Detection using Wearable-Based Digital Phenotyping®
for ICASSP-2024. The objective is to stimulate innovative
research across two distinct tasks: 1) Detection of non-
psychotic relapses, and 2) Detection of psychotic relapses,
both in patients within the psychotic spectrum; hereby push-
ing boundaries in this important area of mental health care.

IV.NOTE ON ETHICAL CONSIDERATIONS AND PRIVACY
While the development of personalized and adaptive health-
care has benefited from the upsurge in the amount of passively
collected and transmitted data from non-invasive sensors,
numerous concerns are being raised about both the confiden-
tiality of the collected data and the privacy of the participants
in such studies [49]. This is especially true for the case of per-
son identification, where systems trained to identify specific
individuals can have potentially malicious use cases. In the e-
Prevention project personal information about the participants
is protected through assigning a unique ID to each partici-
pant, with the correspondence available only to the clinical
team, as well as using a secure cloud server for data storage.
Additionally, the person identification problem is faced as
a classification problem of the signals to each participant’s
encoded ID, while it does not expose any further information
about the users’ identity. In general, researchers in the field
should apply strict data security and privacy protocols, while
at the same time apply data anonymization algorithms [50]
when applicable, in order to mitigate those risks.

2More information about the 2nd e-Prevention challenge can be
found at:  https://robotics.ntua.gr/icassp2024-eprevention-spge/  and
https://2024.ieeeicassp.org/sp-grand-challenges/
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