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ABSTRACT This paper describes the auditory EEG challenge, organized as one of the Signal Processing
Grand Challenges at ICASSP 2023. The challenge provides EEG recordings of 85 subjects who listened
to continuous speech, as audiobooks or podcasts, while their brain activity was recorded. EEG recordings
of 71 subjects were provided as a training set such that challenge participants could train their models on a
relatively large dataset. The remaining 14 subjects were used as held-out subjects in evaluating the challenge.
The challenge consists of two tasks that relate electroencephalogram (EEG) signals to the presented speech
stimulus. The first task, match-mismatch, aims to determine which of two speech segments induced a given
EEG segment. In the second regression task, the goal is to reconstruct the speech envelope from the EEG.
For the match-mismatch task, the performance of different teams was close to the baseline model, and the
models did generalize well to unseen subjects. In contrast, For the regression task, the top teams significantly
improved over the baseline models in the held-out stories test set while failing to generalize to unseen
subjects.

INDEX TERMS Backward modeling, EEG, match-mismatch, neural tracking, speech decoding.

I. INTRODUCTION
To investigate how the brain processes sound, various neu-
roimaging techniques can be used. Electroencephalography
(EEG) is popular because it is relatively easy to conduct and
has a high temporal resolution. Besides fundamental neuro-
science research, EEG-based measures of auditory processing
in the brain are also useful to detect or diagnose a potential
hearing loss [1], [2]. They enable differential diagnosis of
populations that can otherwise not be tested, such as young
children or people with mental disabilities. In addition, there
is a growing field of research in which auditory attention is
decoded from the brain, with potential applications in smart
hearing aids.

An increasingly popular method in these fields is to relate
a person’s electroencephalogram (EEG) to a feature of the
natural speech signal they were listening to. This is typically
done using linear regression to predict the EEG signal from
the stimulus or to decode the stimulus from the EEG [3],
[4], [5]. While these approaches have been widely used in
auditory neuroscience and have successfully been linked to
speech intelligibility, [4], reconstruction scores remain low
and are prone to large inter-subject variability. Given the very
low signal-to-noise ratio of the EEG, auditory decoding is a
challenging problem, and several alternative methods based
on artificial neural networks (ANNs) have been proposed to
improve upon the linear methods [6], [7], [8], [9], [10], [11].
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Instead of directly decoding a speech feature from the EEG,
which is a challenging regression problem, an alternative
classification paradigm, referred to as the match-mismatch
task, has been recently proposed [12]. Given an EEG segment
and two speech segments, the task is to determine which of
the two speech segments corresponds to the EEG segment
[13]. Recently, methods based on deep learning models have
obtained promising results on this task, outperforming the
linear methods [13], [14], [15], [16]. In addition to the above-
mentioned regression and match-mismatch task, deep ANNs
have recently been a popular choice to relate EEG to speech in
various paradigms, such as speech denoising [17], denoising
and normalizing EEG [18], [19] and predicting EEG from
acoustic features [20]. However, a drawback to neural net-
works is that they typically require a large amount of data for
training. Unfortunately, a large public auditory EEG dataset
together with well-defined tasks to relate EEG to speech is not
available, which makes it difficult to compare the performance
of different models as people use different datasets as well as
different metrics to evaluate their models (e.g., see [21]).

In the ICASSP 2023 Auditory-EEG challenge, we provide
a large auditory EEG dataset containing data from 85 subjects
who listen on average to 110 minutes of single-speaker stimuli
for 157 hours of data. Teams compete to build the best model
to relate speech to EEG in two tasks: 1) match-mismatch;
given two segments of speech and a segment of EEG, which
of the speech segments matches the EEG segment? and 2)
regression; reconstruct the speech envelope from the EEG.

II. DATASET
Electroencephalography (EEG) is a non-invasive method to
record electrical activity in the brain, which is generated by
ionic currents that flow within and across neuron cells. When
a large population of thousands or millions of neurons with a
similar orientation in a specific brain region synchronizes its
electrical activity, the produced electrical field is large enough
to be observable on the scalp. When we attach an array of
electrodes on the scalp, these electrical fields can be recorded
by measuring the electrical potential (typically 10–100 µV)
between pairs of electrodes in the array.

A. DATA COLLECTION
We measured EEG data in a well-controlled lab environ-
ment (soundproof and electromagnetically shielded booth)
using a high-quality 64-channel Biosemi (Amsterdam, the
Netherlands) ActiveTwo EEG recording system with 64 active
Ag-AgCl electrodes and two extra electrodes, which serve as
the common electrode (CMS) and current return path (DRL).
These two electrodes are responsible for establishing the elec-
trical reference or “ground” for the EEG system. The CMS
is the reference channel against which all EEG channels are
compared. Meanwhile, the DRL’s role is to minimize the sub-
ject’s electrical potential deviation from the system’s “zero”
point. The BioSemi head caps were used, which contain elec-
trode holders placed according to the 10–20 electrode system.
The data was measured at a sampling rate of 8192 Hz. While

the temporal resolution is high, the spatial resolution is low,
with only 64 electrodes. All 64 electrodes were placed accord-
ing to the international 10–20 standard. The dataset contains
data from 85 young, normal-hearing subjects (74 female/11
male, 21.4 ± 1.9 years (sd), all hearing thresholds ≤ 30 dB
SPL), with Dutch/Flemish as their native language. This study
was approved by the Medical Ethics Committee UZ / KU
Leuven (EC Research) with reference S57102. Before com-
mencing the EEG experiments, all subjects read and signed
an informed consent form. All subjects in the dataset gave
explicit consent for their anonymized data to be shared in a
publicly accessible dataset [22]. All identifiable subject infor-
mation has been removed from this dataset.

Before commencing the EEG experiments, subjects com-
pleted a questionnaire requesting general demographic in-
formation (age, sex, education level, handedness [23] and
diagnoses of hearing loss and neurological pathologies. Sub-
jects indicating any neurological or hearing-related diagnosis
were excluded from the study. Then, we measured the air con-
duction threshold using the Hughson-Westlake method [24]
for octave frequencies between 125 and 8000 Hz. Subjects
with hearing thresholds ≥ 30 dB SPL were excluded.

Each subject listened to between 6 and 10 trials, each of
approximately 15 minutes in length. The order of the trials
was randomized between subjects. After each trial, we asked
a question about the stimulus’s content to motivate subjects to
pay attention during the recording. All the stimuli are single-
speaker stories spoken in Flemish (Belgian Dutch) by a native
Flemish speaker. We vary the stimuli between subjects to have
a wide range of unique speech material. The stimuli are either
podcasts(37 in total) or audiobooks (15 in total). As some
audiobooks are longer than 15 minutes, they are split into two
trials presented consecutively to the subject. The stimuli were
presented to the subjects using electromagnetically shielded
Etymotic ER-3 A insert phones, binaurally at 62 dBA for each
ear. Distinct speakers narrate all podcasts. The same speaker
narrated audiobooks 2, 5,6, and 15, and distinct speakers
narrated all other audiobooks. In total, there are 49 distinct
speakers (27 female/22 male).

B. TRAINING SET
Both tasks share the training set. The training set contains
EEG responses from 71 subjects. These subjects are numbered
from sub-001 to sub-071. As shown in Fig. 2, each subject
listens to between 6 and 9 trials, each of around 15 minutes in
length. Due to measuring errors, not all trials for all subjects
have been included in the training set. Subjects are divided
into groups, depending on which stimuli they listen to. Each
such group contains between 2 and 26 subjects. All subjects
of all groups listen to a reference story, Audiobook 1.

The training set contains 508 trials from 71 subjects, using
57 different stimuli. The total data duration amounts to 7216
minutes (120 hours). Data is structured in a folder per subject,
and the trials are named according to the subject and stimulus.
Each EEG trial file contains a pointer to the stimulus used to
generate the specific brain EEG response and a reference to
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FIGURE 1. Figure displays preprocessed and raw EEG signals recorded
from the ’Cz’ channel over a 10-second duration for one of the subjects.

FIGURE 2. Overview of the different stimuli and their division into training
and testing set. Left side: subjects are divided into different groups. Each
group of subjects listens to the same stimuli, which are depicted on the
right side. Each horizontal line defines one group and the corresponding
stimuli. Short names for the stimuli are given, with AB = audiobook and
P = podcast.

the subject identifier. The auditory stimuli are provided in a
separate folder stimuli.

C. TEST SET
The test set consists of two parts: held-out stories and held-out
subjects. These sets are split into two parts, ensuring that the
test sets of the two tasks do not overlap. More details about
the task-specific test sets can be found in the description of
each task (see Section III, Section III-A and III-B).

Held-out stories: contains data from the 71 subjects seen
in the training set. We held out one story for each group of
subjects, which never occurred in the training set, amounting
to 944 minutes in total.

Held-out subjects: contains data for 14 subjects (sub-072
to sub-085) that are not in the training set, further referred to
as held-out subjects, for a total of 1260 minutes. The data for
these subjects were acquired using the same protocol as for
the other 71 subjects.

D. PREPROCESSING
We provide two versions of the dataset. The first data version
is the raw EEG data, downsampled from 8192 Hz to 1024
Hz. In addition to the raw EEG recordings, we also provide

preprocessed EEG and speech stimuli, which have undergone
commonly used preprocessing steps. All steps were conducted
in Python 3.7, and the code for preprocessing is available
on our GitHub repository (https://github.com/exporl/auditory-
eeg-dataset).

First, EEG data was downsampled from 8192 Hz to 1024
H and high-pass filtered, using a 1st-order Butterworth fil-
ter with a cut-off frequency of 0.5 Hz. Zero-phase filtering
was conducted by filtering the data forward and backward.
Subsequently, eyeblink artifact removal was applied to the
EEG, using a multichannel Wiener filter [25]. Afterward, the
EEG was re-referenced to a common average, and finally, the
EEG was downsampled to 64 Hz. Fig. 1 shows 10 seconds of
preprocessed and raw EEG signals for channel ’Cz’ for one of
the subjects in the dataset.

The steps in our preprocessing are commonly used in EEG
signal processing, and the preprocessed version can be used
directly in machine learning models. Challenge participants
are free to perform their preprocessing on both versions of
the datasets. However, since the test set is already split up
into segments of EEG and stimuli (3 seconds for task 1 III-A
match-mismatch, 60 seconds for task 2 III-B regression), per-
forming many preprocessing steps could introduce artificial
edge effects in the data, which could influence performance.

For task 2 III-B: regression, we defined a specific version
of the envelope, which has been defined and validated in [26].
We estimated the envelope using a gammatone filter bank with
28 subbands spaced by one equivalent rectangular bandwidth
with center frequencies from 50 Hz to 5 kHz. Subsequently,
the absolute value of each sample in the filters is taken, fol-
lowed by exponentiation with 0.6. Then, all subbands are
averaged to obtain one speech envelope. Finally, the result-
ing envelope is downsampled to 64 Hz. We provide code to
create these envelope representations, as well as to perform
the described preprocessing steps.

III. AUDITORY EEG DECODING CHALLENGE
A. TASK 1: MATCH-MISMATCH
1) DESCRIPTION
Task 1 is a classification task based on the concept of matched
and mismatched (EEG, speech) pairs [12]. A matched (EEG,
speech) pair means that the EEG segment was recorded while
the speech segment was presented to the subject. A mis-
matched (EEG, speech) pair indicates that the EEG segment
is not a response to the speech segment.

There are many possibilities to define a match-mismatch
task based on the concept of matched/mismatched segments
[14], [27], [28]. For this challenge, we opted for the method
described in [28]. A schematic of the chosen match-mismatch
task is illustrated in the left plot of Fig. 3. The model is
provided with three inputs of length 3 seconds: (1) a seg-
ment of EEG, (2) the time-aligned speech stimulus (match),
and (3) an unaligned stimulus (mismatch). The task of the
model in this paradigm is to determine which of the two
input stimulus segments correspond to the EEG segment.
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FIGURE 3. Schematic Overview of the two tasks. Left: Task 1 (match-mismatch). The model gets three inputs: an EEG segment, the matched (in time)
speech segment, and a mismatched segment. The task is to determine which of the two segments is matched. Right: Task 2 (regression). The task is to
decode the speech envelope from the EEG brain response. Reconstructed and original envelopes will be compared by computing the Pearson correlation.

More specifically, we define the mismatched stimulus as tem-
porally close to the matched one by randomly taking the
segment starting either one second after the end or 4 seconds
before the start of the matched segment. A mismatched seg-
ment close to the matched segment makes the training process
more challenging for the model (see [21], section 3.6).

We implement and suggest the following recommendations
during training to use the data in the classification paradigm.
First, we present each EEG segment twice to the model:
(EEG, matched stimulus, mismatched stimulus, output label
0) and (EEG, mismatched stimulus, matched stimulus, output
label 1). This ensures that matched and mismatched candi-
dates occur equally in both input positions (first or second).
Second, we make sure that a mismatched stimulus segment is
also a matched segment with another EEG segment. A way
to do this is to ensure that the shift when windowing (1 s in
our code) is dividable by the spacing between the matched and
mismatched segment (1 s). Failing to follow these suggestions
will likely result in models simply remembering the training
samples and thus failing to generalize to the test set, as shown
in more detail in [21].

2) BASELINE METHOD
We include a dilated convolutional network [13] as a baseline
for task 1. The dilated convolutional network transforms both
EEG and stimuli to a latent presentation, after which these
latent representations are compared to make a final decision.
There is a separate EEG and stimulus path. For the EEG path,
the EEG channels are first combined, from 64 to 8, using a 1D
convolutional layer with a kernel size of 1 and a filter size of
8. Second, there are three dilated convolutional layers with a
kernel size of 3 and 16 filters. After each convolutional layer,
a rectified linear unit (ReLU) is applied.

Similarly, the stimulus path contains three dilated convo-
lutional layers with a kernel size of 3 and 16 filters. Both
stimulus segments share the weights for the convolutional
layers.

After these non-linear transformations, the latent EEG rep-
resentation is compared to both latent stimuli representations,
using cosine similarity. Finally, the similarity scores are fed
to a single neuron, with sigmoid non-linearity, to create a
prediction of the matching stimulus segment. When applied
to the training and test sets of the challenge, a performance
accuracy of approximately 78% is obtained.

3) EVALUATION CRITERIA
The test set for the match-mismatch task contains the first
half or the second half of each EEG recording from the held-
out stories set and half of the recordings from the held-out
subjects set (in both test sets, the other half is used in the
regression task). It is not possible to use overlapping test sets
as for the regression task, the stimulus is the target of the
regression, whereas, in the match-mismatch task, the stimulus
is one of the inputs.

For both test sets, we provide pairs of (EEG, stimulus 1,
and stimulus 2), with a length of 3 seconds, each with a
unique identifier and a subject identifier. As an output, par-
ticipants had to submit a NumPy dictionary file to an online
form on our https://exporl.github.io/auditory-eeg-challenge-
2023/website, which contains the predicted label for all EEG
segments. Each entry in the submitted dictionary must be
(EEG ID) : (label). In case of absent EEG ID entries, the
sample will be assigned the wrong label. Labels should be
either 0 or 1.

The mean classification accuracy per subject is then calcu-
lated as ACCs = ∑ns

i=0[labelpredicted = labeltrue]/ns. Then,
we calculate the mean accuracy over test subjects set 1 (
S1 = ∑71

s=1 ACCs/71) and test set 2 ( S2 = ∑85
s=72 ACCs/14)

and average them to obtain the final Score, which will serve
as the ranking value Score = 2/3S1 + 1/3S2.

B. TASK 2: REGRESSION
1) DESCRIPTION
Task 2 is a regression problem: reconstructing the EEG speech
envelope. After reconstruction, the Pearson correlation mea-
sures the similarity between the reconstructed and original
stimuli. The right plot in Fig. 3 illustrates the regression task.
The stimulus representation is the envelope, as described in
Section II-D.

2) BASELINE METHOD
We include a simple linear model as well as the Very Large
Augmented Auditory Inference (VLAAI) network [7] as a
baseline for task 2. The linear model is implemented using
a one-dimensional convolutional layer in TensorFlow with
kernel_size of 32 (corresponds to a 500 ms integration win-
dow). The VLAAI network consists of multiple ( N = 4)
blocks with 3 different parts. The first part is a CNN stack,
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a convolutional neural network. This CNN consists of M = 4
convolutional layers. The second part is a simple, fully con-
nected layer of 64 units, which recombines the output filters
of the CNN stack. The last part is the output context layer.
This convolutional layer enhances the predictions made by the
model up until that point by taking the previously predicted
samples into account and combining them with the current
sample. A skip connection is present with the original EEG
input at the end of each block except the last. After the last
block, the linear layer at the top of the VLAAI model com-
bines the filters of the output context layer into a single speech
envelope. When applied to the training and test sets of the
challenge, an average correlation score of 0.136 is obtained.

3) EVALUATION CRITERIA
The test set for the regression task contains the first half or the
second half of each EEG recording from the held-out stories
set and half of the recordings from the held-out subject set.
All stimuli are held-out stimuli, i.e., they do not appear in the
training set. We split the stimuli into several smaller segments
of 60 seconds and made these available with a segment ID and
a subject ID for each segment.

For each segment of 60 seconds, we expect a reconstructed
envelope, which is then compared to the original envelope, as
defined in Section II-D, using Pearson correlation. We use the
scipy.stats.pearsonr function to calculate the corre-
lation ci for each segment i. Afterward, the mean correlation
value per subject is calculated as Cs = ∑n

i=1 ci/n. Then, we
calculate the mean correlation values over all subjects for test
set 1 ( S1 = ∑71

s=1 Cs/71) and test set 2 ( S2 = ∑85
s=72 Cs/14)

and average them to obtain the final Score, which will serve
as the ranking value: Score = 2/3S1 + 1/3S2

C. PROVIDED ONLINE CODE
The dataset is available from the KULeuven RDR plat-
form [29]. Detailed information about the dataset can
be found in [22]. For most subjects, the data is pub-
licly accessible. However, due to privacy concerns, there
are some subjects for which the data is restricted to
registered users. Users requesting access should mail
to mailto:sparrkulee@kuleuven.besparrkulee@kuleuven.be,
stating what they want to use the data for. Access will be
granted to non-commercial users, complying with the CC-BY-
NC-4.0 license.

We provided a simple Python codebase in our ExpORL
https://github.com/exporl/auditory-eeg-challenge-2023-code/
tree/mainGithub repository to make it easier for participants
to start with the challenge. The repository contains two top
folders, each associated with one of the tasks defined in the
challenge. Each folder contains code for baseline models and
code to preprocess data, create the test set of the challenge
and train the baseline models. For more information, refer to
the README file of the repository.

IV. RESULTS
There were 21 submissions for the match-mismatch task and
13 for the regression task. Both tracks are separate. In total,
there can be five winners. As a result, the top 3 teams from the
match-mismatch task (the most popular task) and the top 2
teams from the regression task were accepted as the challenge
top 5 teams.

The winner of the match-mismatch task is the team Un-
derDawgs (Thornton, Mandic and Reichenbach), with their
solution “Relating EEG recordings to speech using envelope
tracking and the speech-FFR” [30]. The main idea in their
solution is combining multiple (50) instances of the baseline
dilation model by averaging the outputs of the Sigmoids, the
last layer of the baseline model. The idea is similar to the con-
cept of majority voting in machine learning, in which multiple
outputs of multiple models are summed or counted to make
the final classification decision. They also show that using the
high-frequency envelope modulations, as explained in [35],
as a speech representation along with the speech envelope
improves the baseline model’s performance compared to only
using the envelope. They average multiple (30) instances of
the f0 dilation model. For the within-subject test set, they
further finetuned the subject-independent baseline model on
each subject and achieved higher accuracy. They employ a
composite model for the unseen subjects, which combines the
averaged baseline model with the averaged f0 model via linear
discriminant analysis (LDA).

The second place is won by the team HyperAttention (Bors-
dorf et al.,), with their solution “Multi-head attention and
GRU for improved match-mismatch classification of speech
stimulus and EEG response” [31]. Their proposed solution
is based on the baseline dilation model. However, they use
a multi-head attention block, with two attention heads [36] in
the EEG path just before the dilated convolutions, as well as a
gated recurrent unit (GRU) [37] in the speech path before the
dilated convolutions. Moreover, they use the mel spectrogram
as a speech representation instead of the envelope. The team
MINWPU (Cui et al.,.) gets the third place with their solution
“Relate auditory speech to EEG by shallow-deep attention-
based networks” [32]. In contrast to the baseline model in
which the EEG and speech are only connected in the cosine
similarity layer, their solution uses an attention-based corre-
lation module (ACM) after each layer to connect the EEG to
both speech paths. More specifically, the ACM module tries
to capture the global relationship between speech and EEG
and consists of a residual attention layer and a feed-forward
layer. Finally, a shallow-deep similarity classification module
(SDSCM) classifies the sample based on embeddings from
different model layers.

The team named HappyQuoka (Piao et al.,) won the
regression task of the challenge with their solution titled ’Hap-
pyQuoka system for ICASSP 2023 auditory EEG challenge’
[33]. The authors propose a model based on feed-forward
transformer (FFT) architecture, which uses pre-layer nor-
malization [38]. Furthermore, they use an auxiliary global
conditioner [39] that integrates the subject information in the
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TABLE 1 Summary Table of the Top 5 Teams

FIGURE 4. Match-mismatch accuracy of top models per stimuli and sex of
the speaker of the stimuli. Each point in the violin plots corresponds to the
average value of one team over all subjects. Violin plots are shown over
teams. Left: Average accuracy per unique stimulus. Stimuli are ordered
based on increasing mean accuracy. Right: Average accuracy per sex of the
speaker of stimuli, averaged over stimuli and subjects.

model. Note that this global conditioner could only be used in
the within-subject test set and not in the held-out-subjects test
set. Their ablation study shows that using subject information
increases the correlation values by 13%.

The team named The brainwave bandits (Van Dyck et al.,)
got second place in the regression task with their solution
titled ’Decoding auditory EEG responses using an adapted
wavenet’ [34]. Their proposed solution is based on WaveNet
[39]. This model has been adapted to use a non-causal dilated
1D convolution and a channel-wise 1D convolution as the first
layer that compresses the multichannel EEG input. For the
within-subject test set, they further finetuned the model on
each subject for better performance.

Since there are only five winners of the challenge, the
team that obtained third place in the regression challenge and
fourth place in the match-mismatch challenge does not win.
However, as mentioned below, their solution for the regression
task significantly outperforms both the linear and the VLAAI
baseline. The team is called black box, and their solution
is named “Eeg2vec: Self-Supervised Electroencephalographic
Representation Learning” [40]. In their solution, they first use

FIGURE 5. Comparing the match-mismatch accuracy of different teams on
the test sets. The violin plots are shown per team over subjects. Each point
in the violin plots corresponds to one team’s average accuracy for one
subject. Green: seen subjects, held-out stories. Blue: held-out subjects,
seen stories.

a self-supervised model, inspired by wav2vec 2.0 [41], based
on a contrastive loss combined with a reconstruction loss to
learn EEG representations. Secondly, the pre-trained model is
used as a feature extractor for the downstream tasks (either
task 1 or task 2).

V. SUMMARY OF RESULTS
A. TASK 1: MATCH-MISMATCH
The baseline dilation model obtained a total score of ≈ 78%.
The scores of the teams who submitted to the match-mismatch
task ranged from 53 % to 82 %, with an average of ≈ 75.23%
± 6.55 (std). Fig. 5 overviews the competing teams’ final
scores for both test sets. Of the 21 submitted teams, ten scored
higher than the baseline. We tested the significance of the
results of these ten teams with respect to the baseline, using a
two-sided Wilcoxon signed-rank test using Bonferroni-holm
corrections and an alpha value of 0.05. Only the top two
teams, Underdawgs and Hyperattention have a score that
differs significantly from the baseline (p-values of 1.45 ∗
10−9 and 0.047, respectively).

VOLUME 5, 2024 657



MONESI ET AL.: AUDITORY EEG DECODING CHALLENGE FOR ICASSP 2023

Some trends were observed amongst most of the sub-
missions. Most of the models performed equally well on
the held-out subjects as they did on held-out stories. This
indicates that the models generalize well to new, unseen
subjects and might suggest that the models can extract a
subject-independent representation of the stimuli from the
EEG signals. Another observation is that the sex of the speaker
seems to affect the match-mismatch accuracy of the models.
As shown in Fig. 4, models obtain higher accuracy on male-
spoken stories compared to female-spoken stories, consistent
with results obtained using either the fundamental frequency
f0 or linguistics features for neural tracking [21], [42], [43].

We also grouped the results of the different teams per stim-
ulus type (i.e., audiobook vs. podcast) to see if the stimulus
type affects the match-mismatch accuracy of the models. To
this end, we ordered the performance of the different stimuli
based on the mean accuracy of all the teams. As seen in Fig. 4,
there is no significant difference in the type of stimulus used
as the ordering alternates between audiobooks and podcasts.

A common theme across teams is to employ finetuning
strategies for the seen subjects, which improves classifica-
tion accuracy, consistent with the previously published results
[14], [28], [44]. Among the top teams, the chosen stimulus
representation differs from the speech envelope, as the mel
spectrogram and the fundamental frequency (f0) representa-
tions were also successfully used.

Most of the teams have relatively similar match-mismatch
accuracy of around 78%. This might be due to several reasons.
First, most models were based on the baseline model, which
already works well ( ≈ 78%) on the match-mismatch task. It
makes sense to see similar results from all these models as
they made some adjustments to improve the baseline model.
Another possible explanation is that the proposed match-
mismatch task is not difficult enough since it is a relative
decision between two segments of speech, which might not
entice the model to develop very robust latent speech and
EEG representations. Hence, the models perform relatively
well using simple speech representations such as the envelope.
There might also be a ceiling effect on the performance which
can be obtained. In other words, the SNR of the recorded EEG
is very low, rendering it impossible to achieve higher accuracy
than a certain point. However, more research is needed before
any conclusions can be drawn.

The baseline linear, backward model obtained a total score
of 0.102 on the regression task, whereas the baseline VLAAI
model obtained a total score of 0.136. The scores of the
teams that submitted ranged from 0.097 to 0.159, with an
average Pearson correlation of 0.126 ± 0.025 (std). Fig. 7
overviews the competing teams’ final scores. Of the 13 teams,
nine scored higher than the linear baseline, and 4 outper-
formed the VLAAI baseline. We tested the significance of
the results of these four teams with respect to the VLAAI
baseline, using a two-sided Wilcoxon signed-rank test using
Bonferroni-holm corrections and an alpha value of 0.05. Only
the top 3 teams have a total score that differs significantly from

FIGURE 6. Correlation scores of top models per stimuli and sex of the
speaker of the stimuli. Each point in the violin plots corresponds to the
average value of one team over all subjects. Left: Average correlation per
unique stimulus. Stimuli are ordered based on increasing mean
correlation. Right: Average correlation per sex of the speaker of stimuli,
averaged over stimuli and subjects.

FIGURE 7. Comparing the final correlation scores of different teams on
the test sets. Each point in the violin plot corresponds to the average
correlation of one subject for one team. Green: seen subjects, held-out
stories. Blue: held-out subjects and stories.

the VLAAI baseline (p-values of respectively 3.273 ∗ 10−8,
1.490 ∗ 10−7 and 5.964 ∗ 10−4).

One notable observation is the substantial difference in the
models’ performance between the within-subject test set and
the test set comprising held-out subjects. While the top three
teams achieved significantly higher scores than both baseline
models on the within-subject test set, none outperformed the
two baseline models on the held-out subject test set. While
this might suggest that the models fail to generalize to unseen
subjects, it is worth looking at these results in more detail.

Therefore, we performed the same analysis that we did for
the match-mismatch task. More specifically, we grouped the
results of the different teams according to the type of stimulus
and the sex of the speaker. Similarly to task 1, we observe
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a significant effect based on the sex of the story’s speaker,
with models performing better on male-spoken stimuli than
female-spoken stimuli (see Fig. 6). When we compare the
performance of the models on stimulus type (audiobook vs.
podcast), we observe that models perform significantly better
on audiobooks than podcasts. A possible explanation for this
might be that the podcasts are recorded using compression
techniques, which are employed to generate an evenly loud
signal. It might be that the models fail to generalize to dif-
ferent compression techniques rather than to different unseen
subjects.

VI. DISCUSSION
The results of the Auditory EEG Decoding Challenge
provided valuable insights into various aspects of match-
mismatch and regression tasks. Most top teams used a dif-
ferent speech representation, such as the mel spectrogram,
instead of the speech envelope. This appears to provide an
advantage to only using the speech envelope as previously
shown in a similar study [15]. Therefore, future work should
use richer, more complex speech representations. In addition,
finetuning the models for the within-subject test set provides
extra accuracy, which is consistent with prior studies [7],
[14], [44]. Two of the five teams incorporated an attention
mechanism in their solution, achieving good performances.
Given the recent success of attention and transformer-like
architectures [36], this is not surprising. However, the per-
formance of the attention-based approaches, especially in
the match-mismatch task, is not significantly better than
other approaches. More research is needed to investigate
whether using even larger EEG datasets will eventually make
transformer-like architectures superior to others. We encour-
age researchers to explore this avenue.

In the match-mismatch task, most models generalized well
on unseen subjects, which makes the match-mismatch task
attractive for relating EEG to speech, as one would not need
to train the models on new subjects. Another observation was
that most teams had similar results to the provided baseline
model. This raises questions about the task’s difficulty and
potential modifications that could be explored to make it more
challenging. For instance, evaluating models on different win-
dow lengths and using multiple mismatch candidates could
make the task harder, forcing the model to learn better la-
tent representations. Additionally, it is important to consider
whether a ceiling effect has been reached, as the accuracy
levels achieved by the teams may be limited by the quality
of the ground truth data (e.g., the SNR of the recorded data or
the attention levels of the subjects during the experiment).

In the regression task, two out of three teams used an at-
tention mechanism in their solution. Finetuning the models
or otherwise incorporating subject information is also used
to improve the correlations further. Regarding the regression
task, it was observed that the models did not perform well
on held-out subjects. However, the held-out subjects in the
regression task all listened to podcasts. This discrepancy in

performance might be attributed to the compression tech-
niques used in podcast audio production, resulting in a more
uniform loudness profile, which results in a slightly different,
more uniform envelope representation. It is worth investigat-
ing whether this compression-induced uniformity challenges
the models in reconstructing the envelope. Additionally, one
can question whether this difference in correlation may stem
from a) compression techniques influencing speech features,
particularly the speech envelope, or b) the compressed audio
inducing altered neural responses. Understanding the factors
contributing to the performance drop on podcast stimuli can
provide valuable insights for future improvements in the re-
gression models. In the context of the match-mismatch task,
no divergence in accuracy emerges between podcasts and
audiobooks. Given the relative nature of the match-mismatch
model’s decision-making, which may hinge on the presence or
absence of specific responses rather than the exact magnitude,
the primary concern appears to be a speech feature represen-
tation issue. However, further investigation is warranted to
elucidate the specific features or cues the models exploit in
the speech envelope when confronted with different types of
stimuli.

Considering the current dataset size of approximately 150
hours of data, the question arises as to whether increasing the
data would lead to better results. With a larger dataset, larger
and more complex models could capture more diverse patterns
and achieve improved generalization. Investigating the impact
of dataset size on model performance and the potential bene-
fits of using larger models could provide valuable insights into
the scalability and limits of the current approaches.

In summary, the discussions surrounding the match-
mismatch and regression tasks of the Auditory EEG Decoding
Challenge highlight the potential avenues for further research.
Exploring modifications to the tasks, investigating the impact
of compression techniques on model performance, and con-
sidering the benefits of larger datasets and models are crucial
steps toward advancing auditory EEG decoding techniques
and improving the accuracy and generalization capabilities of
the models.

VII. CONCLUSION
In conclusion, the Auditory EEG Decoding Challenge en-
compassed two tasks: a classification task (match-mismatch)
and a regression task (speech envelope reconstruction). The
participation of numerous teams in each task highlighted the
significance of the challenge in evaluating different models
and establishing a benchmark for performance compari-
son. The challenge provided a comprehensive auditory EEG
dataset, facilitating research in the field. Findings from the
classification task indicated that various deep learning models,
such as CNNs and self-attention models, exhibited compara-
ble performances and demonstrated promising generalization
capabilities to unseen subjects. Some new architectures were
proposed, increasing accuracy for the state-of-the-art models
and bringing innovation to the field. Additionally, the task
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establishes a benchmark to compare future models. Con-
versely, the regression task revealed the limitations of current
models in generalizing to unseen subjects and their depen-
dency on the type of stimuli, specifically Audiobooks versus
Podcasts. These outcomes underscore the necessity for further
advancements in regression models to enhance generalization
and address the complexities associated with reconstructing
speech envelopes from EEG signals. Nevertheless, some new
ANN models significantly outperform the baseline model.
The challenge serves as a platform for model evaluation and
fosters future research and advancements in auditory EEG
decoding techniques.
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