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ABSTRACT The primary goal of the L3DAS (Learning 3D Audio Sources) project is to stimulate and
support collaborative research studies concerning machine learning techniques applied to 3D audio signal
processing. To this end, the L3DAS23 Challenge, presented at IEEE ICASSP 2023, focuses on two spatial
audio tasks of paramount interest for practical uses: 3D speech enhancement (3DSE) and 3D sound event
localization and detection (3DSELD). Both tasks are evaluated within augmented reality applications. The
aim of this paper is to describe the main results obtained from this challenge. We provide the L3DAS23
dataset, which comprises a collection of first-order Ambisonics recordings in reverberant simulated envi-
ronments. Indeed, we maintain some general characteristics of the previous L3DAS challenges, featuring
a pair of first-order Ambisonics microphones to capture the audio signals and involving multiple-source
and multiple-perspective Ambisonics recordings. However, in this new edition, we introduce audio-visual
scenarios by including images that depict the frontal view of the environments as captured from the
perspective of the microphones. This addition aims to enrich the challenge experience, giving participants
tools for exploring a combination of audio and images for solving the 3DSE and 3DSELD tasks. In addition
to a brand-new dataset, we provide updated baseline models designed to take advantage of audio-image pairs.
To ensure accessibility and reproducibility, we also supply supporting API for an effortless replication of our
results. Lastly, we present the results achieved by the participants of the L3DAS23 Challenge.

INDEX TERMS 3D audio, ambisonics, data challenge, sound event localization and detection, speech
enhancement.

I. INTRODUCTION
Nowadays, 3D immersive audio is becoming a widespread
reality thanks to new emerging technologies and commercial
devices. The use of spatial audio can benefit a multitude of
applications, including virtual and real conferencing, game
development, music production, augmented reality and im-
mersive technologies in virtual environments, speech commu-
nication, home assistants, multimedia services, audio surveil-
lance in public spaces, and various other potential domains.

The widespread adoption of 3D audio has not only brought
practical benefits but has also fostered intriguing scientific
advancements, particularly regarding deep learning method-
ologies for audio signal processing.

However, the development of efficient deep learning algo-
rithms necessitates a substantial amount of data, which may
not always be accessible for 3D audio applications. Recogniz-
ing this limitation, the L3DAS (Learning 3D Audio Sources)
project aims to fill this gap by facilitating the availability of
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3D audio datasets. Thereby, the primary goal of the project
is to encourage the rise of novel deep learning techniques for
spatial audio applications.

In the first edition of this project, L3DAS21 [1], we pro-
posed a novel multi-channel audio configuration based on
multiple-source, multiple-perspective (MSMP) Ambisonics
recordings made with an array of two first-order Ambisonics
microphones. As far as we know, that was the first time that
a two-microphone Ambisonics configuration has been used
for the tasks of 3D sound event localization and detection
(3DSELD) and 3D speech enhancement (3DSE). The base-
lines used for the 2021 challenge were FaSNet [2] for 3DSE
and SELDnet [3] for 3DSELD. Recordings were made in an
office room with approximate dimensions of 6 × 5 × 3 m. We
placed two first-order A-format Ambisonics microphones in
the center of the room and we moved a speaker reproducing
an analytic signal in 252 fixed spatial positions. The resulting
L3DAS21 dataset contains approximately 65 hours of MSMP
B-format Ambisonics recordings. The winning team for 3DSE
of the L3DAS21 Challenge was 1024 k Team with the work
presented in [4]. While the work with the best results [5]
for 3DSELD was submitted by the EPUSPL Team. Detailed
information can be found on the L3DAS project website for
the 2021 edition.1

For the second edition of this project, L3DAS22 [6], we
maintained a similar setting to that proposed in L3DAS21 but
with some substantial improvements. Firstly, we generated a
new dataset containing an augmented number of datapoints,
increasing the total length of the dataset from 65 to more than
94 hours. Then, we modified the dataset synthesis pipeline in
order to promote less resource-demanding training and facili-
tate both tasks. In addition, we updated the baseline for 3DSE,
using a beamforming U-Net architecture [4], which provided
the best metrics for the L3DAS21 Challenge on the 3DSE
task. This network uses a convolutional U-Net to estimate
B-format beamforming filters. The winning teams for the
L3DAS22 edition of the Challenge were ESP-SE [7] for 3DSE
and Lab9 DSP411 [8] for 3DSELD. Further information can
be found on the L3DAS website.2

Our latest edition of the L3DAS project, presented as Sig-
nal Processing Grand Challenge at IEEE ICASSP 2023, is
strongly inspired by the growing interest in augmented and
virtual reality (AR & VR). In this context, enhancing speech
and localizing sound events can be fundamental to ensure
credible and safe experiences. The L3DAS23 Challenge, de-
scribed in this paper, uses SoundSpaces 2.0 [9] to integrate
3D sound sources captured by first-order Ambisonics micro-
phones and extended reality environments.

Moreover, it introduces two substantial evolutions from
previous versions: a) the 3D audio recordings were not made
in a physical location, but rather in 68 distinct simulated
environments; b) an additional track was introduced taking
into account the multimodal scenario, where information from

1[Online]. Available: https://www.l3das.com/mlsp2021/results.html
2[Online]. Available: https://www.l3das.com/icassp2022/results

RGB images of simulated acoustic environments can be added
to the audio recordings. As a result, participants had the choice
of either submitting results using only the information from
the 3D audio recordings (named the audio-only track) or tak-
ing up the audio-visual track in which the audio recordings
and images of the environments were made available to them.
This choice was made because visual information proved to
enhance the performance of deep learning models [10] and we
believe it can also improve the results in the proposed 3DSE
and 3DSELD tasks. The decision to participate in the audio-
only track or the audio-visual one was left to the participants.

The use of a very large number of simulated acoustic envi-
ronments allowed us to extend the total duration of the dataset
to approximately 100 hours. We supply baseline models, 3D
audio datasets for each task, and a Python-based API that
facilitates the data download and preprocessing, the baseline
models training and the results submission.

II. BACKGROUND
A. AMBISONICS MICROPHONES
Ambisonics is a multi-channel audio technology first intro-
duced by M. A. Gerzon in [11]. This technology allows audio
signals to be recorded, encoded and reproduced while fully
preserving their spatial information. In fact, through such
technology, the codification of the sound field also includes
its directional characterization. Ambisonics is still one of the
most complete microphone and sound reproduction systems
available since it lets capture all spatial information of a sound
source and permits multiple possible decodings of the sig-
nal based on the number of loudspeakers used during signal
reproduction. Thus, reproduction is stereo compatible, being
able to be performed with either 4 as well as 2 or 3 loud-
speakers depending on specific needs. The microphones used
in the L3DAS project are first-order Ambisonics microphones,
which have four channels. Three of these channels correspond
to three figure-of-eight capsules oriented according to the
three orthogonal Cartesian axis X , Y and Z; a fourth channel
(W ) is associated with an omnidirectional microphone that
assigns equal gain to all directions. The set of these four sig-
nals, WXYZ, recorded by the microphone, is called A-format.
Once processed and mixed together they form the Ambisonics
signal defined as B-format. The polar diagram of a first-order
Ambisonics microphone is shown in Fig. 1.

Through such a structure, Ambisonics microphones allow
sounds to be represented as spherical harmonics, enabling a
spatially coherent representation. For this reason, this type
of signal is extremely beneficial for tasks such as 3DSE and
3DSELD where the objective is to extract or recognize sound
sources placed in noisy environments.

B. 3D SPEECH ENHANCEMENT
Let us consider a target signal of interest simultaneously
reproduced together with other sound sources in the same
environment. Its rendering will be probably unintelligible.
The case in which the target signal immersed in a noisy en-
vironment is a speech signal is referred to as a cocktail party

VOLUME 5, 2024 633



GRAMACCIONI ET AL.: L3DAS23: LEARNING 3D AUDIO SOURCES FOR AUDIO-VISUAL EXTENDED REALITY

FIGURE 1. Polar diagram of the four microphones W, X, Y, Z of a
first-order Ambisonics microphone in the 3D space.

problem. The objective of speech enhancement methods is
precisely to extract the target speech signal from a sound mix-
ture composed of ambient sounds and speech sounds of other
speakers and make it intelligible. In the case of 3D speech
enhancement (3DSE), the aim is to use the additional spatial
information captured by the Ambisonics microphone in order
to perform a more precise extraction of the target signal from
the sound mixture. More formally, the 3DSE task can be
explained as follows: let us consider the corrupted Ambison-
ics signals xp(n) = ∑M−1

i=0 hp,i(n)s(n − i) + ε(n), resulting
from a clean speech signal s(n) affected by an acoustic im-
pulse response hp(n) ∈ RM of M coefficients, where p =
{W, X,Y, Z} represents the four channel of the Ambisonics
microphone, and additive noise ε(n). We seek a mapping
function f (·) that is able to estimate the speech target signal
s(n) from xp(n), i.e., ŝ(n) = f (xW (n), xX (n), xY (n), xZ (n)). In
L3DAS23, the additional information, provided by an RGB
image of the environment in which the sound mixture is re-
produced, can be used as input to the deep learning models
developed by the challenge participants. Such a situation is
schematized in Fig. 2. One commonly employed strategy for
conducting speech enhancement involves utilizing deep neu-
ral networks (DNNs) to estimate a time-frequency mask in
the Fourier domain. This mask is designed to isolate clean
speech signals from noisy spectra [12]. Cutting-edge results
in Ambisonics-based 3DSE can be achieved through neural
beamforming techniques such as Filter and Sum Networks
(FaSNet), which are particularly well suited for low-latency
scenarios. Additionally, U-Net-based approaches demonstrate
competitive outcomes in both monaural [13], [14] and mul-
tichannel SE tasks [15], albeit with increased computational
requirements. Alternative techniques for the SE task include
recurrent neural networks (RNNs) [16], graph-based spec-
tral subtraction [17], discriminative learning [18] and dilated
convolutions [19], [20]. For the 3DSE task, we use a beam-
forming U-Net architecture, which provided the best metrics
for L3DAS21 on the 3DSE task. In L3DAS23, we consider
monaural speech signal as output.

C. 3D SOUND EVENT LOCALIZATION AND DETECTION
For the 3D Sound Event Localization and Detection
(3DSELD) task, the setting is very similar to that of 3DSE:
some target sounds - in this case, not necessarily speech sig-
nals - are played in a noisy environment in which other sound
sources may be active simultaneously with the target sources.
The goal here is to recognize the target source in the sound
mixture and to be able to detect when and where it is active. In
other words, in addition to correctly labeling the target sound,
a model for 3DSELD must be able to provide temporal and
spatial information about its specific source.

Modern deep learning methods have proven to solve this
task efficiently [21]. The SELDNet [3] used as a baseline for
L3DAS21 and taken up in later editions of the project is based
on a convolutional-recurrent design with two distinct branches
for localization and detection. An alternative version based
on time convolutions has been proposed in [22]. Other solu-
tions for this task include ensemble models [23], multi-stage
training [24] and bespoke augmentation strategies [25], [26].
As a baseline for the current version of the L3DAS project,
we used a variant of the SELDnet architecture, with small
changes. We ported to PyTorch the original Keras implemen-
tation and we modified its structure to make it compatible with
the L3DAS23 dataset. This situation is illustrated in Fig. 3.
To achieve more consistent spatio-temporal descriptions of
the 3D acoustic scene, we modified this network so that it
could accept as additional input an RGB image of the virtual
environment in which the sounds are reproduced, similar to
what was done for 3DSE.

III. L3DAS23 DATASET
A. GENERAL DESCRIPTION
Each of the two tasks is supported by an appropriate dataset.
The L3DAS23 datasets contain multiple-source and multiple-
perspective B-format Ambisonics audio recordings. We sam-
pled the acoustic field of multiple simulated environments,
placing two first-order Ambisonics microphones in random
points of the rooms and capturing up to 737 room impulse
responses in each one. The datasets also contain multiple RGB
pictures showing the frontal view from the main microphone.
We aimed at creating plausible and variegate 3D scenarios to
reflect possible real-life situations in which sound and dis-
parate types of background noises coexist in the same 3D
reverberant environment.

The datasets of both Task 1 (3DSE) and Task 2 (3DSELD)
share a common basis: the techniques adopted for generating
it. Indeed, we used Soundspaces 2.0 [9] to generate Am-
bisonics Room Impulse Responses (ARIRs) and images in a
selection of simulated 3D houses from the Habitat - Matter-
port 3D Research Dataset [27]. Each simulated environment
has a different size and shape, and includes multiple objects
and surfaces characterized by specific acoustic properties (i.e.,
absorption, scattering, transmission, damping).

For the 3DSE task, the computed ARIRs are convolved
with clean sound samples belonging to distinct sound classes
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FIGURE 2. Schematic overview of the 3D speech enhancement task. Ambisonics microphones record the target speech signal along with other noisy
sources in the environment. The 3DSE model recovers this target speech signal from the noisy mixture and produces a clean monaural speech signal.

FIGURE 3. Schematic overview of the 3D sound event localization and detection task. Ambisonics microphones record the sound mixture of the acoustic
environment and the 3DSELD model must be able to estimate the labels of the active sound sources in each time interval for the detection and their DOA
to localize them: In this example, there are two active sound sources and they are identified by the labels telephone and printer.

to generate the spatial sound scenes. The noise sound event
dataset we used for Task 1 is the well-known FSD50 K dataset
[28]. In particular, we have selected 12 transient classes, rep-
resentative of the noise sounds that can be heard in an office:
computer keyboard, drawer open/close, cupboard open/close,
finger-snapping, keys jangling, knock, laughter, scissors, tele-
phone, writing, chink and clink, printer, and 4 continuous
noise classes: alarm, crackle, mechanical fan and microwave
oven. Furthermore, we extracted clean speech signals (with-
out background noise) from Librispeech [29], selecting only
sound files up to 12 seconds.

For the 3DSELD task, the measured ARIRs are convolved
with clean sound samples belonging to distinct sound classes.
Sound events for Task 2 are taken again from the FSD50 K
dataset [28]. We have selected 14 classes, most representative
of the sounds that can be heard in an office: the 12 classes
already used for 3DSE, plus female speech and male speech.

B. RECORDING PROCEDURE
We placed two Ambisonics microphones in 443 random po-
sitions of 68 houses and generated B-Format ACN/SN3D

impulse responses of the rooms by placing the sound sources
in random locations of a cylindrical grid defining all possible
positions. Microphone and sound positions have been selected
according to specific criteria, such as minimum distance from
walls and objects, and minimum distance between mic posi-
tions in the same environment (RT60 between 0.3 and 0.8 s).
One microphone (mic A) lies in the exact selected position,
and the other (mic B) is 20 cm distant towards the x dimension
from mic A. Both are shown as blue and orange dots in the
topdown map in Fig. 4. The two microphones are positioned
at the same height of 1.6 m, which can be considered as the
average ear height of a standing person. The capsules of both
mics have the same orientation.

In every room, the speaker placement is performed accord-
ing to five concentric cylinders centered in mic A, where the
single positions are defined following a grid that guarantees
a minimum Euclidean distance of 50 cm between two sound
sources placed at the same height. The radius of the cylinders
ranges from 1 m to 3 m with a 50 cm step and all have 6
position layers in the height dimension at 0.4 m, 0.8 m, 1.2 m,
1.6 m, 2 m, 2.4 m from the floor, as shown in Fig. 5.
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FIGURE 4. Topdown map showing mic A (blue dot) and mic B (orange dot).
Microphones can only be placed in the gray area (i.e., the area where no
obstacles are located, namely the navigable area). On the contrary, sounds
can be placed also outside the gray area, as long as they do not collide
with objects and remain within the perimeter of the environment.

FIGURE 5. All the concentric cylinders. The partially visible red and blu
dots represent mic A and B.

FIGURE 6. Accepted source positions in green, discarded positions in red
for one height level.

A sound can therefore be reproduced in a room in any of
the 700+ available positions (300 k+ total positions in the se-
lected environments), to which should be subtracted all those
positions that collide with objects or exceed the room space.
Fig. 6 shows an example of source positioning at 0.4 m above

FIGURE 7. (ρ, θ, z) for one speaker position (black dot). Mic A is
represented as an orange dot.

the floor: the green dots represent accepted position (in this
case, all positions within the room that do not collide with a
sofa and two armchairs), while the red dots show discarded
positions. No constraint is placed on the need to have the
sound source in the microphone’s view (and thus a direct
sound). A sound could then be placed behind an obstacle (such
as a column in the center of a room). SoundSpaces natively
supports all these scenarios as it propagates sounds according
to a bidirectional path tracing algorithm. Therefore, sound
sources in SoundSpaces 2.0 are to be considered omnidirec-
tional, meaning that sound can propagate in all directions.

Each speaker position is identified in cylindrical coordi-
nates w.r.t. microphone A by a tuple (ρ, θ, z), where ρ is in
the range [1.0, 3.0] (with a 0.5 step) and z in [−1.2,+0.8]
(with a 0.4 step). θ is in the range [0◦, 360◦), with a step that
depends on the value of ρ and is chosen so as to satisfy the
minimum Euclidean distance between sound sources (θ = 0◦
for frontal sounds). All labels are consistent with this notation;
elevation and azimuth or Euclidean coordinates are however
easily obtainable.

Fig. 7 visually represents the tuple (ρ, θ, z). The orange dot
in the picture is mic A and the black dot is a speaker placed
on one of the concentric cylinders. ρ represents the distance
of a sound source from mic A, θ is the angle from the y-axis,
and z is the height relative to mic A. Mic B is on the x-axis
and thus in position (0.2, 0, 0) of a local coordinate system.
Being frontal to the hearer, sounds placed on the y-axis have θ

= 0 in the dataset. θ is therefore calculated with respect to the
y-axis to comply with this principle. This has a direct impact
on the way in which it is possible to switch from one notation
to another.

The dataset is divided into two main sections, respectively
dedicated to the challenge tasks. We provide normalized raw
waveforms of all Ambisonics channels (8 signals in total) as
predictors data for both sections, the target data varies sig-
nificantly. For 3DSE, the corresponding dataset is composed
of 16 kHz 16-bit AmbiX wav files. For the 3DSELD, the
audio files of the dataset are 32 kHz 16-bit AmbiX wav files.
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FIGURE 8. Example of a simulated view of the environment in front of the
microphone.

Moreover, we created different types of acoustic scenarios,
optimized for each specific task.

We split both dataset sections into: a training set (80 hours
for 3DSE and 5 hours for 3DSELD) and a test set (7 hours
for 3DSE and 2.5 hours for 3DSELD), paying attention to
creating similar distributions. The train set of the 3DSE sec-
tion is divided into two partitions: train360 and train100, and
contains speech samples extracted from the correspondent
partitions of Librispeech [29] (only the sample up to 12 sec-
onds). All sets of the 3DSELD section are divided into: OV1,
OV2, OV3. These partitions refer to the maximum amount of
possible overlapping sounds, which are 1, 2, or 3, respectively.

C. AUDIO-VISUAL TRACKS
In addition to Ambisonics recordings, the dataset provides,
for each microphone position in the rooms, an image of size
512 × 512, representing the environment in front of the main
microphone (mic A). We derived these images by virtually
placing a RGB sensor at the same height and orientation as
mic A, and with a 90-degree field of view. An example is
shown in Fig. 8. Since the microphone is placed in multiple
different environments, the models will have to perform the
tasks by adapting to different reverberation conditions.

Both the audio-only track and the audio-visual track were
composed of two subtracks, namely 1-mic configuration and
2-mic configuration. In fact, participants could choose to use
recordings from only one microphone or both of them.

IV. BASELINES
A. METRICS
For 3DSE, we adopted a metric M3DSE that is the combination
of two distinct metrics. This evaluation metric is the combina-
tion of the short-time objective intelligibility (STOI), which
estimates the intelligibility of the output speech signal, and
word error rate (WER), which indicates the ratio of error in
a speech-to-text transposition, computed to assess the effects
of the enhancement for speech recognition purposes. We use
a Wav2Vec [30] architecture pre-trained on Librispeech 960 h
to compute the WER. The final metric for this task is given

by:

M3DSE = STOI + (1 − WER)

2
, (1)

which lies in the [0,1] range, where the higher the better.
For 3DSELD, we use a joint metric for localization and de-

tection: F-score based on the location-sensitive detection [31].
The F-score allows combining precision and recall of a model,
where the precision is the number of true positives predicted
by the model divided by the number of false positives plus
true positives and the recall is the number of true positives
divided by the number of true positives plus false negatives.
The F-score is given by:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
= 2 ∗ T P

2 ∗ T P + FP + FN
, (2)

where T P is the number of true positives classified by the
model, FP and FN are respectively the numbers of false pos-
itives and false negatives classified by the model. This metric
considers a true positive only if a sound class is correctly
predicted in a temporal frame and if its predicted location lies
within a Cartesian distance from the true position of at most
1.75 m.

B. 3DSE BASELINE
For Task 1 (3DSE), we use a beamforming U-Net architecture
[4], which provided the best metrics for the L3DAS21 Chal-
lenge on the 3DSE task. This network uses a convolutional
U-Net [32] to estimate B-format beamforming filters. It is
composed of three main modules: 1) an encoder path for
extracting high-level features gradually, 2) the corresponding
decoder for the reconstruction of the original size of input
features from the output of the encoder, and 3) skip con-
nections for concatenating each layer in the encoder with its
corresponding layer in the decoder. The input of the model is
the B-format audio signals, of dimension RC×(T ×S), where
C is the channel number and is equal to 4 in the case of
1-mic configuration and 8 in the case of 2-mic configuration,
T is the duration in seconds of the audio signal and S is
the sample rate. These signals are first transported into the
time-frequency domain via an STFT, resulting in a represen-
tation of dimension CC×(L×F ), where L = 600 is the number
of frames and F = 256 is the first 256 frequency bins of the
complex spectrogram. The enhancement process is performed
as that of the traditional signal beamforming: we multiply the
complex spectrogram of B-format noisy signal with the filters
estimated by U-Net, W ∈ CC×(L×F ), through element-wise
multiplication, and then sum the result over the channel axis
to estimate a single-channel enhanced complex spectrogram,
Ŝ ∈ CL×F . In the end, the iSTFT is performed to obtain the
enhanced time-domain signal.

With this baseline model, we obtained a baseline test met-
ric for Task 1 of 0.557, with a WER of 0.57 and an STOI
of 0.68. We adapted this model to the audiovisual task by
using a CNN-based extension part whose output features are
concatenated along the filter dimension with those generated
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by the encoder part of the U-Net. The visual features allow a
sensible decrease in the number of epochs required to achieve
results comparable to those of the audio-only track.

C. 3DSELD BASELINE
For Task 2 (3DSELD), instead, we used a variant of the
SELDnet architecture [3], with small changes with respect to
the one used in the L3DAS22 Challenge. We ported to the
PyTorch language the original Keras implementation and we
modified its structure in order to make it compatible with
the L3DAS23 dataset. The objective of this network is to
output a continuous estimation (within a fixed temporal grid)
of the sounds present in the environment and their respective
location. The original SELDNet architecture is conceived for
processing sound spectrograms (including both magnitudes
and phase information) and uses a convolutional-recurrent
feature extractor based on 3 convolution layers followed by
a bidirectional GRU layer. In the end, the network is split into
two separate branches that predict the detection (which classes
are active) and location (where the sounds are) information for
each target time step.

We augmented the capacity of the network by increasing
the number of channels and layers, while maintaining the
original data flow. Moreover, we discard the phase informa-
tion and we perform max-pooling on both the time and the
frequency dimensions, as opposed to the original implementa-
tion, where only frequency-wise max-pooling is performed. In
addition, we added the ability to detect multiple sound sources
of the same class that may be active at the same time (3 at
maximum in our case). To obtain this behavior we tripled
the size of the network’s output matrix, in order to predict
separate location and detection information for all possible
simultaneous sounds of the same class.

This network obtains a baseline test F-score of 0.147, with
a precision of 0.176 and a recall of 0.126. We adapted this
model to the audiovisual task by using a CNN-based exten-
sion part whose output features are concatenated to the ones
of our augmented 3DSELD just before passing them to the
two separate branches. This simple change resulted in a 7%
improvement in the F-score (0.158), with a precision of 0.182
and a recall of 0.140.

V. CHALLENGE RESULTS
Among the challenge participants, those who presented mod-
els capable of beating the proposed baselines were: SEU
Speech, JLESS, CCA Speech for the 3DSE and JLESS
and NERCSLIP-USTC for the 3DSELD. The fifth best-
performing team, although below the baseline, is Speech-
Lab410 with a model for 3DSE. The main contributions of
these teams are briefly summarised below:

1) SEU Speech proposed a dual-path convolutional recur-
rent network with group attention for 3DSE [33]. The
model is structured as a convolutional encoder-decoder
with frequency-time blocks based on group attention
introduced in the middle. The encoder extracts the lo-
cal representation from the spectrogram, the correlation

between frequency and time axes are captured through
groups of time-frequency processing modules, and the
key information in the feature flow is extracted by the
group attention.

2) JLESS team proposed a two-stage system based on
DPRNN and U-Net for the 3DSE task and a Conformer-
based system for the 3DSELD task [34]. This is the only
team to have participated in both tasks of the challenge
and also to have developed a model for the audio-visual
track as part of the 3DSELD. In the two-stage U-Net for
the audio-only 3DSE, the amplitude of the STFT is fed
into the network for estimating the mask, and the phase
of the mixed signal is used for speech reconstruction.
They add 4 DPRNN modules between the encoder and
decoder of U-Net for transient modeling and extrac-
tion of dynamic voice information. The STFTs of the
multi-channel speech signals are first fed into the U-Net
with DPRNN, and the estimated STFT is formed using
beamforming. Then, the estimated STFT is sent into
the second U-Net without DPRNN for the estimating
finer mask. Sigmoid is used to activate the mask of the
output layer; after that, the masked estimation results
of the first level are connected with the masked estima-
tion results of the second level by residual. Regarding
the Conformer-based SELD system, the log-Mel and
intensity vectors are calculated for both mic-A and mic-
B audio signals. Then, the time difference of arrival
(TDOA) of 2 mics is computed using kernel density es-
timator (KDE) theory [35]. For the visual signal, images
are resized into 224 × 224 px and normalized for fine-
tuning the pretrained model. A Res-Conformer-based
SELD model is adapted in the audio-visual scene. Audio
features are fed into four residual convolution blocks
following two Conformer encoder blocks. Images are
fed into Resnet18 with pre-trained weights. The embed-
ding of images is then concatenated with audio features
before the last output layer. The authors applied some
data augmentation methods, such as cutout, frequency
shift, time shift, mixing, brightness, hue, saturation, and
contrast jitter.

3) CCA Speech team developed a stream attention-based
U-Net to remove background noise and reverberation
for 3DSE [36]. Their model consists of three parts,
encoder, decoder, and channel fusion module. They pro-
posed stream attention to fuse various channels in order
to fully use the information between channels and this is
done also in the encoder stage. Key, query, and value are
generated by three convolutional networks. A softmax
function is applied to the last dimension of the product
of the key and query. The decoder part is composed of
only convolutional blocks, while an LSTM block is used
in the encoder part.

4) NERCSLIP-USTC proposed a method based on the
combinations of ResNet and Conformer architectures
to model both local and global patterns [37]. ResNet
blocks are used to extract high-dimension feature
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TABLE 1 Results of Task 1 Participants

TABLE 2 Results of Task 2 Participants

representation from the input features, while Conformer
blocks are effective to extract local fine-grained features
and long-range global information, respectively. The au-
thors also adopted several data augmentation techniques
(SpecAugment, Mixup and ACS) to expand the official
dataset.

5) SpeechLab410 proposed a refine-beamfomer system to
enhance 3D speech signals. The beamforming network
consists of two U-Net beamforming networks. In the
first stage, they employed a neural beamforming net-
work to initially enhance the 3D speech signal. Then
the generation characteristics of a diffusion model were
utilized to further enhance the speech signal. The two
stages of this enhancement model were trained sepa-
rately.

Tables 1 and 2 show the results obtained by the participants
on the test set. For Task 1 (3DSE) the models had to predict
monaural sound waveforms, containing the enhanced speech
signals extracted from the multichannel noisy mixtures, with
a sampling rate of 16 kHz. For Task 2 (3DSELD) the models
were expected to predict the spatial coordinates and class of
the sound events active in a multichannel audio mixture. Such
information had to be generated for each frame in a discrete
temporal grid with 100-millisecond non-overlapping frames.
Each submitted file for this task was a csv table listing, for
every time frame, the class and spatial coordinates of each
predicted sound event. All participants worked with the 2-mic
configuration, so the results shown in Tables 1 and 2 refer to
the 2-mic configuration.

Participants had to submit the only results obtained for
the blind test. The submission had to contain up to two zip
archives, one for the audio-only track and one for the audio-
visual track, enclosing two separate folders for the challenge
tasks, named task1 and task2. From these results, we derived
an overall ranking of the participants as reported in Table 3.
All these teams were allowed to submit their work as a 2-page
paper to ICASSP 2023.

TABLE 3 Final Rankings of the L3DAS23 Challenge

VI. CONCLUSION
This paper presented the details of the L3DAS23 Signal Pro-
cessing Grand Challenge at ICASSP 2023, including: the
L3DAS23 dataset, the challenge tasks, the baseline models
and the results obtained by the winning participants. The cur-
rent version of the L3DAS project introduces the use of visual
information for 3DSE and 3DSELD tasks, given the growing
and stimulating interest in AR & VR. The introduction of
visual input extracted from analyzed acoustic environments,
whether simulated or not, can drastically benefit the research
in the field of 3D audio signal processing. For this reason,
future work of the L3DAS team will primarily involve the
study of new methods to improve the interaction of visual
information with Ambisonics audio signals, in order to fur-
ther improve the results obtained with this challenge. Then,
we plan to incorporate new 3D acoustic scenarios, diverse
microphone configurations, and novel tasks that could be of
great relevance in the context of augmented and virtual re-
ality applications. Moreover, different tasks than 3DSE and
3DSELD will be definitely taken into account, together with
the collection of real-recorded data.
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