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ABSTRACT This article considers the context of multiuser massive MIMO downlink precoding with
low-resolution digital-to-analog converters (DACs) at the transmitter. This subject is motivated by the consid-
eration that it is expensive to employ high-resolution DACs for practical massive MIMO implementations.
The challenge with using low-resolution DACs is to overcome the detrimental quantization error effects.
Recently, spatial Sigma-Delta (��) modulation has arisen as a viable way to put quantization errors under
control. This approach takes insight from temporal �� modulation in classical DAC studies. Assuming a
1D uniform linear transmit antenna array, the principle is to shape the quantization errors in space such
that the shaped quantization errors are pushed away from the user-serving angle sector. In the previous
studies, spatial �� modulation was performed by direct application of the basic first- and second-order
modulators from the �� literature. In this paper, we develop a general �� modulator design framework for
any given order, for any given number of quantization levels, and for any given angle sector. We formulate
our design as a problem of maximizing the signal-to-quantization-and-noise ratios (SQNRs) experienced by
the users. The formulated problem is convex and can be efficiently solved by available solvers. Our proposed
framework offers the alternative option of focused quantization error suppression in accordance with channel
state information. Our framework can also be extended to 2D planar transmit antenna arrays. We perform
numerical study under different operating conditions, and the numerical results suggest that, given a moderate
number of quantization levels, say, 5 to 7 levels, our optimization-based �� modulation schemes can lead
to bit error rate performance close to that of the unquantized counterpart.

INDEX TERMS Massive MIMO downlink, coarsely quantized MIMO, precoding, �� modulation, convex
optimization.

I. INTRODUCTION
Physical-layer or signal-level transceiver techniques have
been playing a key part in massive multi-input multi-output
(MIMO) communications. They serve the crucial role of phys-
ically realizing the promise of massive MIMO, such as sub-
stantial gains in spectral efficiency and greatly improved spa-
tial degrees of freedom for serving multiple users [1]. Recent
research has focused on how MIMO transceiver techniques
can allow us to better cope with practical limitations with the
radio frequency (RF) front ends, specifically, issues with the

energy efficiency and hardware cost of power amplifiers and
analog-to-digital/digital-to-analog converters (ADCs/DACs).
Let us narrow down our scope to the ADCs/DACs. We want
fine signal resolution to support currently-used transceiver
techniques. This calls for high resolution ADCs/DACs being
employed at the receiver/transmitter, and a higher resolution
means a higher hardware cost and energy consumption. Em-
ploying high-resolution ADCs/DACs would not be a serious
issue if the MIMO scale (the number of antennas) is small.
But, for massive MIMO, the total hardware cost and energy
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consumption required by the high-resolution ADCs/DACs
will be a burden. One solution is to replace the high-precision
converters with lower precision ones [2], [3], [4], [5], [6], [7],
[8].

The challenge with using low-resolution ADCs/DACs is
that we need to deal with the undesirable error effects caused
by coarse quantization. In this paper we are interested in
the context of multiuser massive MIMO downlink with low-
resolution DACs at the transmitter. It is important to mention
that massive MIMO uplink with low-resolution ADCs at the
receiver is another key topic; the reader is referred to the
literature, such as [2], [3], [4], [5], [9], [10] and the references
therein, for details. In coarsely quantized MIMO downlink
precoding, the existing studies can be taxonomized into two
types, namely, the precode-then-quantize type and the di-
rect signal design type. The precode-then-quantize type takes
a precoding scheme in the unquantized case, such as the
popularly-used zero-forcing scheme, and then quantizes the
precoded signals to produce the few-bit transmitted signals.
This approach is straightforward, but the precoding schemes
are not designed to resist the adverse effects of quantization
errors. Performance analysis for the precode-then-quantize
approach has been a subject of interest, helping us better
understand the nature of coarsely quantized MIMO; see, e.g.,
[6], [11], [12]. The direct signal design type seeks to di-
rectly manipulate the few-bit signals by optimization, with
the aim to optimize some symbol-level performance metric
such as mean square error [8] and symbol error probability
[13], [14]. Doing so requires us to handle a large-scale dis-
crete optimization problem, which may not be easy. Also,
this optimization-oriented approach is, by its nature, unable to
leverage our community’s rich understanding of MIMO pre-
coding in the unquantized case. That being said, direct signal
designs have been empirically found to provide significantly
better performance than the precode-then-quantize methods
[8], [13], [14], [15], [16], [17]. The advances of direct signal
designs are mostly with the one-bit case and with the related
context of constant envelope precoding [14], [17], [18], [19].
So far we have not seen direct signal designs for the general
multi-bit case, due possibly to the difficulty of such optimiza-
tion.

The traditional precode-then-quantize approach, which di-
rectly quantizes the precoded signals, has no control with the
quantization noise. Lately, spatial Sigma-Delta (��) modula-
tion has arisen as a new precode-then-quantize approach that
features quantization noise control or containment [20], [21].
Spatial �� modulation draws inspiration from temporal ��

modulation in the classical ADC/DAC literature [22]. The ba-
sic idea is to add an error feedback loop to the quantizer so that
the quantization noise is shaped toward the high frequency
band. Consequently, given a low-pass temporal signal, we can
convert it to a few-bit signal whose frequency domain sees
the signal and quantization noise well separated. In spatial
�� modulation, we turn such noise shaping idea to space.
To be specific, we consider a uniform linear transmit antenna
array at the base station (BS). We pass the quantization noise

of each antenna to the adjacent antenna, thereby forming a
spatial �� feedback loop. This leads to the quantization noise
being pushed toward high spatial frequencies, or angles. Con-
sequently we can use a low angle sector to serve users, who
will experience reduced quantization noise effects compared
to the direct quantization case. While this means that we
cannot use the high angle sectors, it is common in practice
to consider an angle sector, rather than the full angle range,
due to the directivity of antennas. As a precode-then-quantize
approach, spatial �� modulation allows us to use precoding
techniques established for the unquantized case—which is a
merit. It is worth noting that, recently, spatial �� modulation
has also been considered for MIMO uplink [23], [24], [25],
[26], [27].

In the previous study of �� MIMO downlink [20], [21],
the basic first- and second-order modulators from the temporal
�� literature were directly applied to perform spatial ��

modulation. An interesting question is whether we can build
�� modulators that are general, flexible and specifically de-
signed for the context of multiuser massive MIMO downlink
precoding. In this paper, we develop a �� modulator design
framework for such a purpose. Our framework considers a
general �� error-feedback structure for any given modulator
order and for any given number of quantization levels (or
bits). We design �� modulators by optimization. By char-
acterizing the signal-to-quantization-and-noise ratio (SQNR)
experienced by the users, we formulate the �� modulator
designs as some form of SQNR maximization problems. The
formulated problems are convex and can be conveniently
solved by calling available solvers. Our designs offer two
options with quantization noise suppression, namely, (i) quan-
tization noise suppression over a prescribed angle sector; and
(ii) focused quantization noise suppression at the user angles,
based on the instantaneous channel state information available
at the BS. In particular, option (ii) is a new idea. Our frame-
work can also be extended to the 2D uniform planar antenna
array setting.

We should describe the relationship of this study to the
prior studies in the temporal �� literature. We commonly see
closed-form modulator designs in the temporal �� literature.
While optimization-based modulator designs do not seem to
be commonplace in the ADC/DAC literature, our background
research found that, curiously, optimization-based modulator
designs were considered in the signal processing literature;
see [28] and the references therein. In particular, the work by
Nagahara and Yamamoto [28] is worth noting, as it provides
a convex optimization framework for Chebyshev-type filter
designs for �� noise shaping. As we will elaborate upon in
this paper, our spatial �� modulator designs happen to share
some similarities with the temporal �� modulator designs
by Nagahara and Yamamoto. We should however emphasize
that, to the best of our knowledge, optimization-based designs
have not been previously considered in spatial �� modulation
for coarsely quantized MIMO precoding. Furthermore, our
design philosophy differs in that we aim at maximization
of the SQNRs experienced by the users, with the MIMO
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application aspects taken into consideration, while Nagahara
and Yamamoto consider noise shaping.

The organization of this paper is as follows. Section II
reviews the background of spatial �� modulation for coarsely
quantized massive MIMO precoding. Section III presents our
�� modulator design framework. Section IV describes the
extension of our framework to the 2D uniform planar array
case. Section V provides numerical results to show how the
�� modulators designed under our framework perform. Sec-
tion VI concludes this work.

Our notations are as follows. The symbols R, C and N

denote the sets of real numbers, complex numbers and non-
negative integers, respectively. A scalar, a column vector
and a matrix are represented by a lowercase normal letter,
a lowercase boldfaced letter and a capital boldfaced letter,
respectively; e.g., a, a and A, respectively. The real and imag-
inary parts of a given vector a are denoted by �(a) and
�(a), respectively. The transpose of a vector a is denoted
by aT , and the same convention applies to matrices. The
trace, inverse and pseudo-inverse of a matrix A are denoted
by tr(A), A−1 and A†, respectively. Given a vector a, the
notation Diag(a) denotes a diagonal matrix with the (i, i)th
component given by the ith component of a. Given a collec-
tion of scalars a1, . . . , an, the notation (a1, . . . , an) denotes
the concatenation of the ai’s as a vector, i.e., (a1, . . . , an) =
[ a1, . . . , an ]T . The same convention applies when the ai’s
are vectors. We denote j = √−1. Given a sequence {an}n∈N,
where N equals either N or {0, 1, . . . , N − 1} for some pos-
itive integer N , the Fourier transform of {an}n∈N is denoted
by A(ω) = ∑

n∈N ane−jnω. Given a vector a, the notations
‖a‖1, ‖a‖2 and ‖a‖∞ denote the 1-norm, Euclidean norm and
∞-norm of a, respectively. Given a complex vector a, the no-
tations ‖a‖IQ−1 and ‖a‖IQ−∞ denote the 1-norm and ∞-norm
with respect to (�(a),�(a)), respectively; i.e., ‖a‖IQ−1 =
‖(�(a),�(a))‖1 and ‖a‖IQ−∞ = ‖(�(a),�(a))‖∞. The same
conventions apply to matrices.

II. BACKGROUND
This section intends to provide the background of this study.
We review the basics of �� modulation in the first subsection,
give the problem statement of coarsely quantized MIMO pre-
coding in the second subsection, and describe the spatial ��

modulation approach for the precoding problem in the third
subsection.

A. �� MODULATION
We introduce the basics of �� modulation by considering
the one-bit first-order modulator, the most basic scheme in
�� modulation. The system architecture of the modulator
is depicted in Fig. 1. Let {x̄n}n∈N ⊂ R be a real-valued time
sequence. Let sgn : R → {±1} be the signum function. The
modulator takes {x̄n}n∈N as the input and generates a binary
output {xn}n∈N ⊂ {±1} by

xn = sgn(x̄n − qn−1) = x̄n − qn−1 + qn, n ∈ N, (1)

FIGURE 1. One-bit first-order �� modulator.

where qn is the quantization error associated with x̄n − qn−1,
for n ∈ N; and we have q−1 = 0. The rationale of this process
should be described. The input {x̄n}n∈N is a lowpass temporal
signal. We want to coarsely quantize the input in such a way
that the error signal at the output is weak in the low frequency
band. We make the following assumption which is used in
nearly every �� literature.

Assumption 1: Consider the modulator in Fig. 1 or the sys-
tem in (1). Each quantization error qn is [−1, 1]-supported,
uniformly distributed on its support, and independent of any
other random variables.

Let vn = qn − qn−1 be the error at the output xn. The mag-
nitude spectrum of {vn}n∈N equals

|V (ω)|2 = |Q(ω) − e−jωQ(ω)|2 = |1 − e−jω|2|Q(ω)|2,
where |1 − e−jω|2 = 4| sin(ω/2)|2 is a highpass response.
Also, under Assumption 1 we can see |Q(ω)|2 as a flat spec-
trum; more precisely, the power spectral density of {qn}n∈N
is flat. Hence, the modulator can be viewed as a quantizer
that has the ability to shape the quantization error signal as
highpass noise, and by doing so we reduce the undesirable
interference effects of the quantization errors on the lowpass
input signal over the low frequency band.

In Assumption 1 we assume that every quantization error
qn is bounded, lying in [−1, 1]. We want to discuss how this
can be guaranteed. It can be easily shown that if the pre-
quantized signal bn = x̄n − qn−1 has amplitude greater than
2, then the associated quantization error qn will have |qn| >

1—such phenomena are called overloading in the literature.
Overloading can lead to large qn in terms of the amplitude,
and mathematically one can show that there exists an input
{x̄n}n∈N such that |qn| → ∞ as n → ∞ [20]. Overloading can
be prevented by restricting the input to be amplitude limited:

Fact 1: Consider the modulator in Fig. 1 or the system in (1).
Let A > 0 be the maximum input amplitude, i.e., |x̄n| ≤ A for
all n. If A ≤ 1, then |qn| ≤ 1 for all n.

The proof of Fact 1 is simple: Suppose |qn−1| ≤ 1. Then
|x̄n − qn−1| ≤ A + 1 ≤ 2, and we have |qn| ≤ 1. The proof is
complete.

The one-bit first-order �� modulation scheme intro-
duced above is basic. There are many other �� modulation
schemes, as well as a variety of aspects related to the modu-
lator designs. We refer the reader to the literature (e.g., [22],
[29]) for details such as the multi-level and higher-order gen-
eralizations of the above �� modulator; the various ��
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modulator architectures; reasonability of the independent and
identical distributed (i.i.d.) assumption in Assumption 1 in
practice, and the practical trick of dithering to try to make the
quantization error more i.i.d.; and the impact of overloading in
practice. We also refer the reader to the mathematical studies
in [30], [31], which analyze the reconstruction accuracy of
temporal �� modulation schemes without Assumption 1.

Before we finish our review, we should note a basic imple-
mentation aspect. For DACs with �� modulation (the case
of interest here), the modulators appear in digital domain and
can be flexibly implemented by digital signal processing. For
ADCs (outside the scope of this study), �� modulators are
implemented in analog domain and require dedicated analog
and digital hardware to build.

B. COARSELY QUANTIZED MIMO PRECODING
Consider the following multiuser MIMO downlink communi-
cation problem. The base station (BS) serves a number of K
users and has N transmit antennas. The users have a single an-
tenna. Assuming frequency-flat time-invariant channels over a
finite time frame of transmission, the transmit-receive relation
from the BS to the users is modeled as

yi,t = √
ρhT

i xt + ηi,t , t = 1, . . . , T, (2)

where yi,t is the received signal of user i at symbol time t ;√
ρxt ∈ CN is the transmitted signal at symbol time t , with

its nth component
√

ρxn,t being the transmitted signal at the
nth antenna; xt is the transmitted signal before power amplifi-
cation; ρ > 0 is a power scaling factor; ηi,t is i.i.d. circular
complex Gaussian noise with mean zero and variance σ 2

η ;
T is the transmission block length. Assume that the BS is
informed of h1, . . . , hK . The problem, called precoding, is to
design the transmitted signals {xt }T

t=1 such that each user will
receive its own data symbol stream with minimal distortions.
Specifically, we want the noise-free part of yi,t to take the form

hT
i xt ≈ cisi,t , (3)

where {si,t }T
t=1 is the symbol stream for user i; ci represents

the signal gain. For example, the zero-forcing (ZF) scheme
performs precoding by

xt = H†st , t = 1, . . . , T,

where H = [ h1, . . . , hK ]T ; st = (s1,t , . . . , sK,t ). It is easy to
see that the ZF scheme leads to yi,t = √

ρsi,t + ηi,t .
In precoding, it is common to assume that the transmitted

signals xn,t ’s are continuous valued. The problem of interest
in this paper is coarsely quantized precoding, wherein the
xn,t ’s are discrete valued. For example, for the one-bit case,
the real and imaginary components of every xn,t are binary.
The motivation, as discussed in the Introduction, is to reduce
massive MIMO hardware costs and power consumption by
replacing high-resolution DACs with low-resolution ones. A
straightforward solution to coarsely quantized precoding is to
directly quantize the precoded signals. For example, we can
directly quantize the ZF scheme by xt = Qc(H†st ), where

Qc denotes the quantization function associated with the low-
resolution DACs. But such a precode-then-quantized scheme
can significantly suffer from quantization error effects. Some
recent studies seek a different approach, namely, by directly
optimizing the discrete variables xn,t ’s to shape symbols at
the user side (cf. (3)) [8], [13], [15], [16], [17]. This direct
design approach was found to be able to provide promising
performance by numerical experiments. It however requires
us to solve a large-scale discrete optimization problem. Also,
its optimization-oriented design principle largely disallows us
from reusing precoding concepts in the unquantized case, such
as the simple ZF scheme.

C. SPATIAL �� MODULATION
We recently proposed a spatial �� modulation approach for
the above stated coarsely quantized precoding problem [20]. It
falls into the precode-then-quantized scope, and the spirit is to
use �� modulation to shape the noise spectrum—spatially—
such that users are less affected by the quantization error
effects. The spatial �� modulation approach is described as
follows. We assume angular channels

hi = αi a(θi ),

where αi ∈ C is a complex channel gain; θi ∈ (−π/2, π/2) is
the user angle;

a(θ ) = (1, e−j 2πd
λ sin(θ ), . . . , e−j(N−1) 2πd

λ sin(θ ) )

is the angular response, with λ being the carrier wave-
length, d ≤ λ/2 being the inter-antenna spacing, and θ ∈
(−π/2, π/2) being the angle. The angular channels are based
on the operating assumptions that the transmit antennas are
arranged as a uniform linear array, and we consider a single-
path far-field channel from the BS to each user; the reader
is referred to the literature (e.g., [32]) for details. Consider,
at each symbol time t , that we apply the �� modulator in
Section II-A to the transmitted signals. To be careful, let x̄t and
xt be the transmitted signals before and after �� modulation,
respectively. Also, as a slight abuse of notations, let x̄n,t and
xn,t denote the (n + 1)th elements of x̄t and xt , respectively.
We apply the one-bit first-order �� modulator in Section II-A
to {�(x̄n,t )}N−1

n=0 to obtain {�(xn,t )}N−1
n=0 , and we apply another

one-bit first-order �� modulator to {�(x̄n,t )}N−1
n=0 to obtain

{�(xn,t )}N−1
n=0 . The appealing result goes as follows: for any

θ ∈ (−π/2, π/2),

a(θ )T xt = a(θ )T x̄t +
N−1∑
n=0

(qn,t − qn−1,t )e−jnω

� a(θ )T x̄t + (1 − ejω )Qt (ω), (4)

where ω = 2πd
λ

sin(θ ); {qn,t }N−1
n=0 ⊂ C is the quantization er-

ror sequence; Qt (ω) is the Fourier transform of {qn,t }N−1
n=0 . In

the second equation in (4), we assume that N is large, and
we will continue to assume this without explicit mentioning.
We observe from (4) that the quantization error term is a
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highpass response—its magnitude is expected to be smaller
if the frequency ω, or its respective angle θ , is closer to 0.

The above observation suggests the following possibility:
Consider a sectored antenna array setting wherein we serve
users within a lowpass angle sector, say, [−30◦, 30◦]. Then,
the spatial �� modulation introduced above can lead to re-
duced quantization error effects on the users. Specifically, by
plugging (4) into the signal model (2), we see that the received
signals can be written as

yi,t = √
ρhT

i x̄t + √
ραi (1 − ejωi )Qt (ωi )︸ ︷︷ ︸

:=vi,t

+ηi,t , (5)

where ωi = 2πd
λ

sin(θi ). By applying Assumption 1 to the real
and imaginary components of qn,t , it can be shown that the
power of the quantization noise term vi,t is

E[|vi,t |2]= |1 − ejωi |2 2 N

3
= 4

∣∣∣∣sin

(
πd

λ
sin(θi )

)∣∣∣∣2 2 N

3
,

which reduces with |θi|. Note that we can also reduce the
quantization noise power by reducing the inter-antenna spac-
ing d , but in practice we cannot make d too small due to
mutual coupling effects; the reader is referred to our previous
work [20] for further discussion.

It is also necessary to describe the precoding part of the spa-
tial �� modulation approach. The idea is nothing more than
treating the second and third term on the right-hand side of the
received signal model (5) as a single noise term, and then de-
signing {x̄t }T

t=1 by an existing unquantized precoding scheme.
But there is a new constraint unique to spatial �� modulation.
To guarantee no overloading with the �� modulator, it is
suggested by Fact 1 that we should limit the amplitude of the
real and imaginary components of x̄t , specifically,

‖x̄t‖IQ−∞ := max{‖�(x̄t )‖∞, ‖�(x̄t )‖∞} ≤ 1, (6)

for all t . Hence, the precoding problem in spatial ��

modulation is an amplitude-limited unquantized precoding
problem, which is still not exactly the same as the popular
unquantized precoding problem which typically considers
average power constraints. But some precoding schemes can
be easily modified to fit into the amplitude-limited case. For
example, for the ZF scheme, we can do normalization

x̄t = H†st

C
, t = 1, . . . , T, (7)

where C = maxt=1,...,T ‖H†st‖IQ−∞, such that the amplitude
constraints ‖x̄t‖IQ−∞ ≤ 1 are satisfied [20]. The reader is
referred to our previous work [20] for more amplitude-limited
precoding designs.

III. GENERAL AND FLEXIBLE DESIGNS FOR SPATIAL ��

MODULATION
In our previous study with the spatial �� modulation ap-
proach, we mainly applied an existing �� modulator; we
used the one-bit first-order modulator in [20], and later
we adopted the two-bit second-order modulator in the ��

FIGURE 2. General �� modulator.

literature [21]. From this section we set our sight on designing
our own �� modulator. The study to be described revolve
around the following questions.

1) Can we have a general and flexible design for ��

modulation of any quantization level number and of any
order?

2) Can we make the designs a better fit to coarsely
quantized MIMO precoding, specifically, by explicitly
working on the signal-to-quantization-and-noise ratios
(SQNRs)?

3) Given an angle sector [θl , θu] ⊂ (−π/2, π/2), a mod-
ulator order L, and a quantization level number M, can
we design a �� modulator that works better than the
standard �� modulators in the �� literature?

4) Can we lift the angle sector restriction and allow users
to freely lie in any angles?

A. A GENERAL �� MODULATOR STRUCTURE
We consider a multi-level, higher-order and complex-valued
generalization of the one-bit first-order �� modulator in Sec-
tion II-A. The system architecture is depicted in Fig. 2. It
should be noted that this generalized structure was mentioned
or considered in the literature [22], [28], often for the real-
valued case. The rationale of this modulator is identical to that
of its predecessor in Section II-A, and we shall be concise
with our description. The input {x̄n}n∈N is a complex-valued
sequence. The function Qc applies M-level quantization to the
real and imaginary components. To be specific, let

X =
{{±1,±3, . . . ,±(M − 1)}, M is even
{0,±2, . . . ,±(M − 1)}, M is odd

(8)

be the multi-level signal set, and let Q : R → X be the quan-
tizer associated with X. The quantizer Qc is given by Qc(x) =
Q(�(x)) + jQ(�(x)). The error feedback is given by

(g� q)n =
L∑

l=1

gl qn−l ,

which is the convolution of the quantization error sequence
{qn}n∈N and an impulse response {gl}L

l=1 of a filter. The fil-
ter coefficients g1, . . . , gL are complex-valued and are to be
designed. The input-output relation of the modulator is

xn = Qc(x̄n + (g� q)n) = x̄n + (g� q)n + qn, n ∈ N. (9)

We assume that

Assumption 2: Consider the modulator in Fig. 2 or the system
in (9). Each quantization error component �(qn) or �(qn) is
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[−1, 1]-supported, uniformly distributed on its support, and
independent of any other random variables.

Let vn = (g� q)n + qn be the quantization noise term at
the output. Its magnitude spectrum is

|V (ω)|2 = |1 + G(ω)|2|Q(ω)|2,
where the response 1 + G(ω) plays the key role of shaping the
noise magnitude spectrum.

Furthermore, we are concerned with overloading. We will
adopt the following no-overload condition.

Fact 2: Consider the modulator in Fig. 2 or the system
in (9). Let A > 0 be the maximum input amplitude, specif-
ically, |x̄n|IQ−∞ := max{|�(x̄n)|, |�(x̄n)|} ≤ A for all n. Let
g = (g1, . . . , gL ), and ‖g‖IQ−1 = ∑L

i=1 |�(gi )| + |�(gi )|. If

A + ‖g‖IQ−1 ≤ M,

then |qn|IQ−∞ ≤ 1 for all n.

Fact 2 is the multi-level higher-order complex-valued coun-
terpart of Fact 1. The result is considered known in the
literature; see e.g., [33], [22, Section 4.2.2], [28], [31] for
the real-valued case. We provide the proof of Fact 2 in Ap-
pendix A for the reader’s reference.

To give the reader some insight, we show some examples
covered by the general �� modulator.

Example 1 (first-order modulator): Consider L = 1, g1 =
−1. This is the previously studied first-order modulator, which
has a noise shaping response 1 + G(ω) = 1 − e−jω. Accord-
ing to Fact 2, the modulator is guaranteed to have no overload
if A ≤ M − 1.

Example 2 (second-order modulator): Consider L = 2,
g1 = −2, g2 = 1. This modulator is called the second-order
modulator in the �� literature. It has a shaping response 1 +
G(ω) = (1 − e−jω )2, which is a stronger highpass response
than the first-order. By Fact 2, the modulator has no over-
load if A ≤ M − 3. This further implies that the second-order
modulator requires at least M = 4, or two bits, to achieve the
no-overload condition.

Example 3 (frequency-shifted modulator): Consider L = 1,
g1 = −ejωc for some given frequency ωc. The shaping re-
sponse is 1 + G(ω) = 1 − e−j(ω−ωc ), which is a band-stop
response centered at ωc [20]. By Fact 2, the modulator has
no overload if A ≤ M − | sin(ωc)| − | cos(ωc)|, or, more con-
servatively, if A ≤ M − √

2.

B. SPATIAL �� MODULATION BY THE GENERAL
STRUCTURE
Consider the spatial �� modulation for coarsely quantized
MIMO precoding in Sections II-B and II-C. We want to re-
place the previous one-bit first-order �� modulator by the
general �� modulator in the last subsection, specifically,
by applying the general �� modulator to {x̄n,t }N−1

n=0 to yield
{xn,t }N−1

n=0 . Following the same derivations in Sections II-B and

II-C, we can show that the received signals can be modeled as

yi,t = √
ρhT

i x̄t + √
ραi (1 + G(ωi ))Qt (ωi )︸ ︷︷ ︸

:=vi,t

+ηi,t , (10)

where we recall ωi = 2πd
λ

sin(θi ). Also, by applying Assump-
tion 2 to {qn,t }N−1

n=0 , the quantization noise power is

E[|vi,t |2] = |1 + G(ωi )|2 2 N

3
. (11)

Our problems, to be studied in the subsequent subsections,
is to design the filter coefficients g1, . . . , gL such that the
quantization noise powers of the users are mitigated, while, at
the same time, the no-overload condition in Fact 2 is satisfied.

C. ZERO QUANTIZATION NOISE?
It is natural to question this: Can we have zero quantization
noise for all the users? In raising this question, we allow the
angle θi of each user to lie freely in the admissible angle region
(−π/2, π/2). Achieving zero quantization noise means that
1 + G(ωi ) = 0 for all i, and this can be made possible by
setting the shaping response as

1 + G(ω) =
K∏

k=1

(1 − e−j(ω−ωk ) ). (12)

It should be noted that 1 + G(ω) produces a multiple notch
filter response, with nulls placed at the ωk’s. The above shap-
ing response corresponds to a K-th order �� modulator with
coefficients

gk =
∑

1≤i1<···<ik≤K

(−ejωi1 ) · · · (−ejωik ), (13)

for k = 1, . . . , K . This zero quantization noise design, how-
ever, has a serious limitation.

Proposition 1: Consider the �� modulator with coefficients
given by (13), which achieves zero quantization noise with the
users. We have the following results.

1) It holds that

‖g‖IQ−1 ≤
√

2(2K − 1),

and equality is attained when ω1 = · · · = ωK ∈
{π/4, 3π/4, 5π/4, 7π/4}.

2) As a simplifying assumption, assume each ωi to be i.i.d.
uniformly distributed on (−π, π ). Then,

2(K−1)/2 ≤
√
E[‖g‖2

IQ−1] ≤ 2K .

We show the proof of Proposition 1 in Appendix B. Propo-
sition 1 suggests that ‖g‖IQ−1 may increase exponentially
with K . To give some idea, Table 1 shows some empirical
evaluation results for ‖g‖IQ−1.

We observe that the empirical results are in agreement
with our theoretical prediction. By also considering the
no-overload requirement in Fact 2, we see the following impli-
cation: the quantization level number M may need to increase
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TABLE 1. Minimum, Mean, Root Mean Square (RMS), and Maximum Values of ‖g‖IQ−1
for (13) and for a Number of Randomly Generated ωi ’s. The ωi ’s

are I.i.d. (−π, π)-Uniform Distributed

exponentially with the number of users K to achieve zero
quantization noise at the user side.

D. SQNR MAXIMIZATION IN A USER TARGETED FASHION
Since zero quantization noise is practically infeasible even
for a moderate number of users, we turn to the alternative of
maximizing the SQNRs experienced by the users. Note that,
as in the previous problem, we allow the user angles θi’s to
freely lie in (−π/2, π/2). Our tasks are divided into three
parts: define a suitable SQNR for the problem at hand, prop-
erly formulate the �� modulator design as an optimization
problem, and develop a solution.

We start with the SQNR. From the received signal model
(10), we see that the signal part

√
ρhT

i x̄t scales with
√

ρ|αi|A.
Here, it is important to note that A describes the maximum
input signal amplitude, i.e., ‖x̄t‖IQ−∞ ≤ A for all t . We define
the SQNR of user i as the ratio of the square of the received
signal scale factor

√
ρ|αi|A to the quantization and noise

power, which can be shown to be

SQNRi = ρ|αi|2 A2

2 Nρ|αi|2
3 |1 + G(ωi )|2 + σ 2

η

. (14)

Next, we formulate the �� modulator design. Our underlying
assumption is that the BS is informed of the channels hi’s, or,
the complex gains αi’s and angles θi’s of all the users. The
BS is assumed to know the background noise power σ 2

η , too.
Also, the modulator order L and the quantization level number
M of the �� modulator are prespecified. We design the ��

filter coefficients by the max-min-fair criterion, subject to the
no-overload condition in Fact 2:

max
g∈CL,A∈R

min
i=1,...,K

SQNRi

s.t. A + ‖g‖IQ−1 ≤ M, A > 0. (15)

Here, fairness is achieved by maximizing the weakest user’s
SQNR, thereby sacrificing no one in the interest of others. It is
worth noting that we also optimize the maximum input signal
amplitude A, rather than prefixing it, to give the design more
degrees of freedom.

The max-min-fair design (15) can be converted to a convex
problem and can be efficiently solved. To see how this is done,
we substitute (14) into problem (15) and rewrite the problem

as

min
g∈CL,A∈R

max
i=1,...,K

√
|1 + G(ωi )|2 + γi

A

s.t. A + ‖g‖IQ−1 ≤ M, A > 0, (16)

where γi = 3σ 2
η /(2 Nρ|αi|2). Problem (16) is quasi-convex,

but not convex. Consider the following transformation

ν = g/A, ξ = 1/A, (17)

which is known as the Charnes-Cooper transformation in op-
timization [34]. The transformation (17) is one-to-one if A and
ξ are positive. Using (17), problem (16) can be transformed as

min
ν∈CL,ξ∈R

max
i=1,...,K

√
|ξ + a(ωi )T ν|2 + γiξ2

s.t. 1 + ‖ν‖IQ−1 ≤ Mξ, ξ > 0, (18)

where we redefine a(ω) = (1, e−jω, . . . , e−j(N−1)ω ). More-
over, problem (18) is equivalent to

min
ν∈CL,ξ∈R

max
i=1,...,K

√
|ξ + a(ωi )T ν|2 + γiξ2

s.t. 1 + ‖ν‖IQ−1 ≤ Mξ, ξ ≥ 0, (19)

where we replace ξ > 0 with ξ ≥ 0. This is without loss, be-
cause the first constraint in (19) implies 1 ≤ Mξ , and with the
second constraint ξ ≥ 0 we further get ξ ≥ 1/M > 0. Prob-
lem (19) is convex, and its solution can be conveniently and
efficiently obtained by using a convex optimization software,
such as the widely-used CVX [35].

Let us provide some numerical illustration. Fig. 3 shows the
relative noise shaping responses, defined as

RNSR(θ ) = |1 + G( 2πd
λ

sin(θ ))|2
A2

, (20)

of the user-targeted design (15). The red vertical lines in the
figure indicate the user angles, and the system settings are
N = 1024, K = 6, L = 16, d = λ/4, |αi| = 1 for all i, and
σ 2

η = 0. We see that, as the quantization level number M
increases, the user-targeted design provides sharper notches,
and therefore better quantization noise suppression, at the user
angles.
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FIGURE 3. Illustration of the relative noise-shaping responses of the �� modulators designed by the user-targeted formulation (15). Red line: user
angles.

E. SQNR MAXIMIZATION FOR A FIXED ANGLE SECTOR
The user-targeted SQNR maximization design in the last
subsection assumes that we can change the �� modulator
whenever the user angles θi’s and channel gains |αi|2 change.
Suppose that we are prohibited to do so due to implementa-
tion reasons, and we can only re-design the �� modulator
once in a while. We hence return to the angle sector set-
ting wherein we serve users in a prespecified angle sector
[θl , θu] ⊂ (−π/2, π/2) (which can be lowpass or bandpass).
Our problem is to adapt the preceding �� modulator design
to this fixed sector setting.

We start with off-the-shelf designs from the �� literature.
Consider the following shaping response

1 + G(ω) = (1 − e−j(ω−ωc ) )L (21)

for a given positive integer L, where ωc = (ωl + ωu)/2, ωl =
2πd
λ

sin(θl ), ωu = 2πd
λ

sin(θu). This is a band-stop response
with center frequency ωc. The corresponding coefficients are

gl =
(

L

l

)
(−ejωc )l , l = 1, . . . , L. (22)

This modulator is essentially the combination of the standard
L-th order modulator and the frequency-shifted modulator;
see Examples 2–3. Increasing the order L makes the band-stop
response sharper, but this comes with a limitation.

Proposition 2: Consider the �� modulator with coefficients
given by (22), and with the shaping response given by (21).

We have

2L − 1 ≤ ‖g‖IQ−1 ≤
√

2(2L − 1).

The proof of Proposition 2 is shown in Appendix B. Propo-
sition 2, together with Fact 2, indicate that the quantization
level number M needs to increase exponentially with L to
achieve the no-overload condition.

Alternatively, we can repurpose the SQNR-based design in
Section III-D. Suppose that the channel gains |αi|’s are known
to lie in a range [rmin, rmax]. Our goal is to design the ��

modulator in accordance with the prespecified angle sector
[θl , θu] and the channel gain range [rmin, rmax]. Following the
SQNR definition in (14), a user with angle θ ∈ [θl , θu] and
channel gain |α| ∈ [rmin, rmax] will experience an SQNR

SQNR = ρ|α|2 A2

2 Nρ|α|2
3 |1 + G(ω)|2 + σ 2

η

≥ ρr2
min A2

2 Nρr2
max

3 |1 + G(ω)|2 + σ 2
η

:= S̃QNR(ω),

where ω = 2πd
λ

sin(θ ). With the above expression, we con-
sider the following adaptation of the max-min-fair design in
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FIGURE 4. Illustration of the relative noise-shaping responses of the �� modulators designed by the fixed sector formulation (24). Black line: the
boundary of the angle sector [θl , θu]. ��-FS: the fixed-sector design (24). ��-1st: the standard first-order �� modulator. ��-2nd: the standard
second-order �� modulator.

(15) to the angle sector setting:

max
g∈CL,A∈R

min
ω∈[ωl ,ωu]

S̃QNR(ω)

s.t. A + ‖g‖IQ−1 ≤ M, A > 0, (23)

where we maximize the worst SQNR lower bound over the
angle sector; recall that ωl = 2πd

λ
sin(θl ), ωu = 2πd

λ
sin(θu).

We deal with problem (23) by discretization:

max
g∈CL,A∈R

min
i=1,...,I

S̃QNR(ωi )

s.t. A + ‖g‖IQ−1 ≤ M, A > 0, (24)

where, with an abuse of notations, we redefine ωl ≤ ω1 <

ω2 < · · · < ωI ≤ ωu as sample points of [ωl , ωu] (e.g., by
uniform sampling). Problem (24) takes the same form as prob-
lem (15), and the same method in Section III-D can be used to
solve problem (24). We shall not repeat the details.

We give a numerical illustration by plotting the relative
noise shaping responses of the fixed-sector design (24) in
Fig. 4. To benchmark, we also plot the relative noise shaping
responses of the first-order and second-order �� modulators
in Examples 1 and 2. The settings are N = 1024, L = 16, d =
λ/4, σ 2

η = 0, rmin = rmax = 1, and [θl , θu] = [−30◦, 30◦].
The first- and second-order �� modulators have the max-
imum input amplitude A set to be the largest under the

no-overload condition, i.e. A = M − 1 and A = M − 3, re-
spectively (see Examples 1 and 2). In the plots in Fig. 4,
the vertical black lines indicate the angle sector. The magenta
double-headed arrows indicate the gap between the worst-case
relative noise-shaping response, maxθ∈[θl ,θu] RNSR(θ ), of the
fixed-sector design and the worst-case relative noise-shaping
response of the first-order and second-order �� modulators.
We see that the fixed-sector design provides a uniform quanti-
zation noise suppression over the angle sector of interest. We
also see that, for larger quantization level numbers M’s, the
fixed-sector design provides considerably improved quantiza-
tion noise suppression in an angle-sector uniform sense.

F. COMPARISON WITH EXISTING TEMPORAL ��

MODULATOR DESIGNS
It is interesting to compare our optimization-based spatial ��

modulator designs with relevant designs in the temporal ��

literature. To put this into perspective, let us write down the
user-targeted and fixed-sector designs, shown in (15) and (23),
respectively, as a single formulation:

min
g∈CL,A∈R

max
ω∈�

√
|1 + G(ω)|2 + γi

A

s.t. A + ‖g‖IQ−1 ≤ M, A > 0, (25)
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where � = {ω1, . . . , ωK } for the user-targeted case and � =
[ωl , ωu] for the fixed-sector case; note that the constants γi’s
scale with the background noise power σ 2

η . Suppose we prefix
the maximum input signal amplitude A and set γi = 0 for all
i. The above problem then reduces to

min
g∈CL

max
ω∈�

|1 + G(ω)|

s.t. ‖g‖IQ−1 ≤ M − A (26)

which is a multiple notch filter design for the user-targeted
case, and a band-stop filter design for the fixed-sector case.
In fact, we have seen that in the illustrations in Figs. 3 and
4. In this connection, a formulation similar to (26) was con-
sidered by Nagahara and Yamaoto [28] to design temporal
�� modulators for lowpass or bandpass signals. There are
subtle differences; e.g., Nagahara and Yamaoto do not use
the no-overload constraint in problem (26), and they replace
it with a sufficient condition in the form of a linear matrix
inequality. The distinctive difference with our designs, apart
from being for a different application, is that we also optimize
the input amplitude A to maximize the users’ SQNRs.

IV. TWO-DIMENSIONAL SPATIAL �� MODULATION
The spatial �� modulator designs developed in the preceding
sections can be extended to the case of two-dimensional (2D)
uniform planar arrays. It should be noted that, to the best of
our knowledge, spatial �� modulation for coarsely quantized
MIMO precoding with 2D uniform planar arrays has not been
considered before. In the following subsections we will con-
cisely describe how this is done.

A. A 2D �� MODULATOR
Before we proceed, we should mention that 2D �� mod-
ulation was considered in, and finds important applications
to, image half-toning [36]. Here, we first consider the 2D
extension of the general �� modulator in Section III-A. The
input-output relation of the 2D modulator is

xn1,n2 = Qc(x̄n1,n2 + (g� q)n1,n2 )

= x̄n1,n2 + (g� q)n1,n2 + qn1,n2 ,

(g� q)n1,n2 =
L1∑

l1=0

L2∑
l2=0

gl1,l2 gn1−l1,n2−l2 ,

where {x̄n1,n2}n1,n2∈N ⊂ C is the input; {xn1,n2}n1,n2∈N ⊂
X + jX is the output; each qn1,n2 ∈ C is a quantization
error and is assumed to be follow the i.i.d. assumption in
Assumption 2; the gl1,l2 ’s, l1 = 0, . . . , L1, l2 = 0, . . . , L2,
with g0,0 = 0, are the filter coefficients. The filter plays the
role of shaping the noise magnitude spectrum according to
|1 + G(ω1, ω2)|2, where

G(ω1, ω2) =
L1∑

n1=0

L2∑
n2=0

gn1,n2 e−j(n1ω1+n2ω2)

FIGURE 5. Uniform planar array.

is the 2D Fourier transform of {gl1,l2}. Let G ∈ C(L1+1)×(L2+1)

be a matrix with its (i, j)th element given by gi−1, j−1. As
the 2D extension of the no-overload condition in Fact 2, the
modulator has no overload if

A + ‖G‖IQ−1 ≤ M,

where ‖G‖IQ−1 = ∑L1
l1=0

∑L2
l2=0 |�(gl1,l2 )| + |�(gl1,l2 )|;

A > 0 is the maximum input amplitude, i.e., |xn1,n2 |IQ−∞ ≤ 1
for all n1, n2.

B. UNIFORM PLANAR ARRAY
Second, we review some concepts with the uniform planar
array. As illustrated in Fig. 5, a uniform planar array has the
antennas arranged in a equi-spaced rectangular fashion [37].
It has N1 and N2 antennas in the horizontal and vertical
directions, respectively. Under the same set of operating as-
sumptions as uniform linear arrays, the uniform planar array
has an array response

A(θ, φ) = a1(θ, φ)aT
2 (φ) ∈ CN1×N2 ,

where θ ∈ (−π/2, π/2) and φ ∈ (−π/2, π/2) are the az-
imuth and elevation angles, respectively; we have

a1(θ, φ) = (1, e−jω1 , . . . , e−j(N1−1)ω1 ),

a2(φ) = (1, e−jω2 , . . . , e−j(N2−1)ω2 ),

ω1 = 2πd1

λ
cos(φ) sin(θ ), ω2 = 2πd2

λ
sin(φ);

d1 ≤ λ/2 and d2 ≤ λ/2 are horizontal and vertical inter-
antenna spacings, respectively; λ is the carrier wavelength. Let
xn1,n2 be the transmitted signal from the (n1 + 1, n2 + 1)th
antenna of the array, and let X ∈ CN1×N2 be a matrix with
its (i, j)th element given by xi−1, j−1. The array exhibits a
transmit directional pattern

tr(AT (θ, φ)X ) =
N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 e−j(n1ω1+n2ω2)

= X (ω1, ω2).
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FIGURE 6. Illustration of the relative noise-shaping response in the 2D case.

C. �� MIMO PRECODING FOR UNIFORM PLANAR ARRAYS
Third, we consider spatial �� modulation for coarsely quan-
tized MIMO precoding in Sections II-C and III when the 1D
uniform linear array is replaced by the 2D uniform planar
array. Under the 2D uniform planar array setting, the basic
signal model (2) is modified as

yi,t = √
ρ tr(HT

i X t ) + ηi,t ,

where X t ∈ CN1×N2 is the transmitted signal; H i ∈ CN1×N2 is
the channel of user i and is modeled as

H i = αiA(θi, φi ),

in which αi, θi, φi are the complex channel gain, azimuth
angle and elevation angle of user i, respectively. Also, the ��

modulator is replaced by the 2D modulator in Section IV-A.
Let X̄ t ∈ CN1×N2 be the 2D transmitted signal before ��

modulation. It can be shown that

yi,t �√
ρtr(HT

i X̄ t )+√
ραi(1 + G(ω1, ω2))Qt (ω1, ω2)+ηi,t ,

which, as before, is the sum of signal, quantization noise,
and background noise components; here, Qt (ω1, ω2) is the
2D Fourier transform of the quantization error {qn1,n2,t }n1,n2 .
Subsequently, we can further show that the SQNR, under the
definition in (14), is

SQNRi = ρ|αi|2 A2

2N1N2ρ|αi|2
3 |1 + G(ω1,i, ω2,i )|2 + σ 2

η

.

where ω1,i = 2πd
λ

cos(φi ) sin(θi ), ω2,i = 2πd
λ

sin(φi ).
Let us describe the modulator designs. We can follow

the user-targeted �� modulator design in problem (15) in
Section III-D, which maximizes the users’ SQNRs in the
max-min-fair fashion and in a user targeted fashion. The 2D
extension of the design is

max
G,A∈R

min
i=1,...,K

SQNRi

s.t. A + ‖G‖IQ−1 ≤ M, A > 0,

where the domain of G is C(L1+1)×(L2+1), g0,0 = 0. The above
problem takes the same form as its predecessor, problem (15),
and it can be solved by the exactly same way as in Section II-
I-D. We can also adopt the fixed-sector design in problem (23)
in Section III-E, which designs a fixed modulator for an angle
sector by maximizing the worst SQNR lower bound over that
sector. Let [θl , θu] × [φl , φu] be the angle sector of interest.
The 2D extension of the design is

max
G,A∈R

min
(ω1,ω2)∈�

S̃QNR(ω1, ω2)

s.t. A + ‖G‖IQ−1 ≤ M, A > 0, (27)

where

� =
{[

ω1

ω2

]
=
[ 2πd

λ
cos(φ) sin(θ )

2πd
λ

sin(φ)

]∣∣∣∣ θ ∈ [θl , θu]
φ ∈ [φl , φu]

,

}
;

S̃QNR(ω1, ω2) = ρr2
min A2

2N1N2ρr2
max

3 |1 + G(ω1, ω2)|2 + σ 2
η

.

The above problem can be handled by the same way as in
Section III-E.

As an illustration, Fig. 6(a) plots the relative noise
shaping response of the fixed-sector design (27). The
settings are (N1, N2) = (60, 60), d1 = d2 = λ/4, (L1, L2) =
(4, 4), rmax = rmin = 1, σ 2

η = 0, [θl , θu] × [φl , φu] =
[−30◦, 30◦] ×[−30◦, 30◦], M = 4. To benchmark, we also
consider a 2D first-order �� modulator whose shaping re-
sponse is

1 + G(ω1, ω2) = (1 − e−jω1 )(1 − e−jω2 ), (28)

and whose coefficients are (g01, g10, g11) = (−1,−1, 1); we
set A = M − 3, the maximum under the no-overload condi-
tion. The relative noise shaping response of this first-order
modulator is plotted in Fig. 6(b). Comparing Fig. 6(a) and (b),
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FIGURE 7. BER performance of the fixed-sector optimized �� modulation scheme for various settings of the angle sector [θl , θu]. N = 1024, d = λ/4,
K = 8, L = 16, |θ| ≤ ϑ means that the angle sector is [θl , θu] = [−ϑ, ϑ]. ��-FS: the fixed-sector �� modulation scheme, ��-1st: the first-order ��

modulation scheme, ��-2nd: the second-order �� modulation scheme, direct quant.: the direct quantization scheme, unquant.: the unquantized
performance baseline.

the fixed-sector design (27) appears to provide better quanti-
zation noise suppression over the given angle sector than the
first-order modulator.

V. NUMERICAL RESULTS
In this section we provide numerical results. We simulate both
spatial �� modulation and precoding at the signal level, and
we evaluate users’ bit error rates (BERs) as our way to assess
the performance of our method. The symbol stream {si,t }T

t=1
of each user is drawn from the 64-QAM constellation, with
symbol stream length T = 500. The precoding scheme is the
ZF scheme. To be specific, for a given spatial �� modulator,
the ZF precoded signals are given by

x̄t = A

C
H†Dst , t = 1, . . . , T, (29)

where C = maxt=1,...,T ‖H†Dst‖IQ−∞, D = Diag(σw,1, . . .,
σw,K ), σ 2

w,i = ρ|αi|2E[|vi,t |2] + σ 2
η , and E[|vi,t |2] = 2 N |1 +

G(ωi )|2/3; see [20]. Note that we scale the symbol streams
such that the post-precoding SNRs of all the users are equal,
and that the normalization with C is to enforce the peak signal
amplitude constraint ‖x̄t‖IQ−∞ ≤ A for all t . For each symbol
time t , the precoded signal x̄t is fed to the �� modulator
to generate the transmitted signal xt . Our �� modulation
scheme is designed either by the fixed-sector design in Sec-
tion III-E or by the user-targeted design in Section III-D.
As benchmarks, we also consider the first- and second-order
�� modulation schemes in Examples 1 and 2, respectively,
which are standard modulators in the �� literature. The max-
imum input signal amplitude A of the first- and second-order
modulators is set to be the largest under the no-overload con-
dition, which are A = M − 1 and A = M − 3 for the first-
and second-order modulators, respectively. In addition we
benchmark the direct quantization method. We employ the
ZF precoding scheme, to be consistent with our benchmark-
ing, and the transmitted signals for the directly quantized ZF
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FIGURE 8. BER performance of the fixed-sector optimized �� modulation scheme for various values of the user number K. N = 1024, d = λ/4, L = 16,
[θl , θu] = [−30◦, 30◦]. See the caption of Fig. 7 for a description of the legend labels.

scheme are given by

xt = Qc

(
M

1

C
H†st

)
, t = 1, . . . , T,

where C = maxt=1,...,T ‖H†Dst‖IQ−∞. Furthermore we pro-
vide a performance baseline by evaluating the BER perfor-
mance of the following unquantized ZF scheme:

xt = M − 1

C
H†st , t = 1, . . . , T, (30)

where C = maxt=1,...,T ‖H†st‖IQ−∞. Note that this unquan-
tized scheme satisfies ‖xt‖IQ−∞ ≤ M − 1 for all t , which
complies with the peak signal amplitude constraint for the
coarsely quantized case. We define the SNR as SNR = (M −
1)2ρ/σ 2

η , which is the ratio of the per-antenna peak power to
the background noise power.

The BER performance to be reported was obtained by
Monte-Carlo simulations with 1,000 trials. At each trial, the
user angles θi’s and the complex channnel gains αi’s are gen-
erated by the following way. The user angles θi’s are randomly

drawn from a prespecified angle sector [θl , θu], and they are
separated by no less than 1◦. The phases of αi’s are uniformly
drawn from [−π, π ]. The amplitudes of αi’s are generated by
|αi| = r0/r1, where r0 = 30 and r1 is randomly drawn from
[20, 100].

A. FIXED-SECTOR DESIGN
We consider the fixed-sector design in Section III-E. Here are
the settings: The number of transmit antennas is N = 1024;
the inter-antenna spacing is d = λ/4 (we remind the reader
that a small d leads to a small quantization noise power, as
described in Section II-C); the number of users is K = 8;
the filter order of our fixed-sector optimized �� modulator
is L = 16. Fig. 7 shows the BER-versus-SNR plots of our
scheme and the benchmarked schemes for various settings of
the quantization level number M and the angle sector [θl , θu].
In particular, Fig. 7(a)–(d) consider [θl , θu] = [−30◦, 30◦],
Fig. 7(e)–(h) consider [θl , θu] = [−45◦, 45◦], and Fig. 7(i)–(l)
consider [θl , θu] = [−60◦, 60◦]. We see that our fixed-sector
optimized �� modulation scheme generally leads to better
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FIGURE 9. BER performance of the fixed-sector optimized �� modulation scheme for various values of the inter-antenna spacing d . N = 1024, K = 8,
L = 16, [θl , θu] = [−75◦, 75◦]. See the caption of Fig. 7 for a description of the legend labels.

BER performance than the benchmarked schemes. We also
see that, as the width of the angle sector increases, we need
a larger quantization level number M to provide the same or
similar BER performance level.

The next simulation result has the challenge raised by
increasing the user number K . Fig. 8 displays a set of BER-
versus-SNR plots for various values of K , wherein we fix
the angle sector as [θl , θu] = [−30◦, 30◦]. Once again, the
fixed-sector optimized �� modulation scheme is seen to lead
to better BER performance than the benchmarked schemes.
It is also noticed that, as the user number K increases, we
need a larger quantization level number M to get close to the
unquantized performance baseline.

We are also interested in how the performance changes
with the inter-antenna spacing d . As discussed, the �� notion
suggests that we want d to be as small as possible, but physical
limitations disallow us from making d too small. Fig. 9 shows
the results for various values of d , wherein we set the angle
sector as [θl , θu] = [−75◦, 75◦] which is relatively wide. We
see that a smaller d leads to better performance for all the ��

schemes, while a larger d requires us to use a larger quanti-
zation level number M to get reasonable performance. This
simulation result, together with the previous results, indicate
a tradeoff—if we want to have a wider angle sector and/or a
larger inter-antenna spacing, the �� noise shaping problem
becomes harder and we need a greater number of quantization
levels to meet the challenge.

B. USER-TARGETED DESIGN
We turn our interest to the user-targeted design in Section II-
I-D. The settings are identical to those in the last subsection,
except that the filter order of our optimization-based ��

modulator is L = 24. Fig. 10 displays a set of BER-versus-
SNR plots when the user number is K = 9. We see that the
user-targeted �� modulation scheme can improve upon the
fixed-sector optimized �� modulation scheme, and the im-
provement is significant for larger values of the quantization
level number M. For instance, for d = λ/2 and [θl , θu] =
[−80◦, 80◦], which is a challenging setting, Fig. 10(l) shows
that the user-targeted �� modulation scheme can lead to BER
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FIGURE 10. BER performance of the user-targeted �� modulation scheme for K = 9. N = 1024, L = 24, |θ| ≤ ϑ means that the angle sector is
[θl , θu] = [−ϑ, ϑ]. ��-UT: the user-targeted �� modulation scheme. See the caption of Fig. 7 for a description of the other legend labels.

performance close to the unquantized performance baseline.
Also we see that if d is larger and/or the angle sector width
is larger, the user-targeted �� modulation scheme requires a
larger M to provide good performance. This is in agreement
with our observation with the fixed-sector �� modulation
scheme in the last subsection.

Fig. 11 shows another set of plots wherein we increase
the user number to K = 18. Comparing this result with the

previous result (K = 9), we observe that (i) the performance
behaviors of the current result appears to be consistent with
those of the previous; (ii) the performance sees degradation as
the user number increases. We argue that the second observa-
tion is an inevitable limitation, as alluded to by Proposition 1
which suggests that achieving zero quantization noise would
require the quantization level number M to increase exponen-
tially with the user number K .
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FIGURE 11. BER performance of the user-targeted �� modulation scheme for K = 18. The settings are identical to those in Fig. 10.

C. 2D SPATIAL �� MODULATION FOR UNIFORM PLANAR
ARRAYS
We consider the 2D spatial �� modulation schemes for uni-
form planar arrays, described in Section IV. The simulation
workflow is identical to the above. The simulation settings
are as follows: the user number is K = 8; the inter-antenna
spacings are d1 = d2 = λ/4; the angle sector is [θl , θu] ×
[φl , φu] = [−30◦, 30◦] × [0◦, 20◦]; the filter order of our op-
timized �� modulator is (L1, L2) = (5, 5). We consider the

fixed-sector design, and we use the 2D first-order �� mod-
ulator (cf. (28)) as our main benchmark. Fig. 12 shows the
results for two different settings of the transmit antenna size
(N1, N2). The results demonstrate that the 2D spatial ��

modulation schemes are viable. We should remark that, to the
best of our knowledge, 2D spatial �� modulation for coarsely
quantized MIMO precoding with uniform planar arrays was
not attempted before; even the 2D first-order �� modulation
scheme is a new attempt.
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FIGURE 12. BER performance of the 2D fixed-sector optimized �� modulation scheme. d1 = d2 = λ/4, K = 8, L1 = L2 = 5, [θl , θu] × [φl , φu] = [−30◦,
30◦] × [0, 20◦]. See the caption of Fig. 7 for a description of the legend labels.

VI. CONCLUSION
To summarize, we developed a spatial �� modulator design
framework for coarsely quantized massive MIMO downlink
precoding. Our framework is flexible. It can handle any ��

filter order and any number of quantization levels. It can
deal with various SQNR requirements, such as max-min-fair
SQNR enhancement over a prescribed angle sector, or SQNR
enhancement in accordance with the user angles in an instan-
taneous fashion. It can also be extended to 2D uniform planar
arrays. Our design framework is based on convex optimiza-
tion. Numerical results showed that �� modulators designed
under our framework outperform the existing �� modulators,
and may lead to near-ideal (unquantized) performance under
certain operating conditions.

APPENDIX A
A. PROOF OF FACT 2
Suppose |qn−l |IQ−∞ ≤ 1 for all l ≥ 1. For convenience, let
bn = x̄n + (g� q)n. We have

|�(bn)| ≤ |�(x̄n)| +
∣∣∣∣∣�
(

L∑
l=1

gl qn−l

)∣∣∣∣∣
≤ |�(x̄n)| +

L∑
l=1

(|�(g)l ||�(qn−l )| + |�(g)l ||�(qn−l )|)

≤ A + ‖g‖IQ−1.

Recall that Q is the quantizer associated with X in (8),
and note �(qn) = Q(�(bn)) − �(bn). It can be verified that
|Q(y) − y| ≤ 1 if |y| ≤ M. Hence, if A + ‖g‖IQ−1 ≤ M holds,

we have |�(qn)| ≤ 1. Similarly, one can show that if A +
‖g‖IQ−1 ≤ M, then |�(qn)| ≤ 1. The proof is done.

B. PROOF OF PROPOSITIONS 1 AND 2
First we show Proposition 1.(a) and Proposition 2. For conve-
nience, rewrite the coefficients gk’s in (13) as

gk =
∑

1≤i1<···<ik≤K

βi1 · · · βik ,

where βi = −ejωi . Note that the coefficients gk’s in (22) is a
special case of the above where β1 = · · · = βK = ejωc , K =
L. It can be shown that, for x ∈ C,

|x|IQ−1 := |�(x)| + |�(x)| ≥ |x|, (31)

|x|IQ−1 ≤
√

2|x|, (32)

where equality in (32) is attained if x takes the form x =
|x|e jω, ω ∈ {π/4, 3π/4, 5π/4, 7π/4}. This leads to

|gk|IQ−1 ≤
√

2

∣∣∣∣∣∣
∑

1≤i1<···<ik≤K

βi1 · · ·βik

∣∣∣∣∣∣
≤

√
2

∑
1≤i1<···<ik≤K

|βi1 · · ·βik |

=
√

2

(
K

k

)
,
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where equality above is attained if β1 = · · · = βK = ejω, ω ∈
{π/4, 3π/4, 5π/4, 7π/4}. Hence we have

‖g‖IQ−1 ≤
√

2
K∑

k=1

(
K

k

)
=

√
2(2K − 1),

which is the inequality in Proposition 1.(a) and the upper
bound inequality in Proposition 2. Furthermore, for the case
of β1 = · · · = βK := β, we use (31) to obtain

|gk|IQ−1 ≥
∣∣∣∣∣∣

∑
1≤i1<···<ik≤K

βk

∣∣∣∣∣∣ =
(

K

k

)
.

Consequently we have ‖g‖IQ−1 ≥ 2K − 1, the lower bound
inequality in Proposition 2.

Second we show Proposition 1.(b). If ω1, . . . , ωK are i.i.d.
and (−π, π )-uniform distributed, one can show the following:
given 1 ≤ i1 < · · · < ik ≤ K , 1 ≤ j1 < · · · < jk ≤ K ,

E[βi1 · · · βik β
∗
j1 · · · β∗

jk
] =

{
1, il = jl for all l
0, otherwise

Subsequently we have

E[|gk|2] =∑
1≤i1<···<ik≤K

∑
1≤ j1<···< jk≤K E[βi1 · · ·βik β

∗
j1

· · · β∗
jk

]

= ∑
1≤i1<···<ik≤K 1

= (K
k

)
.

Also, it can be shown that, for x ∈ CK , ‖x‖2 ≤ ‖x‖IQ−1 ≤√
2 K‖x‖2. This leads to

2K − 1 ≤ E[‖g‖2
IQ−1] ≤ 2 K (2K − 1). (33)

Our final step is to polish the above bounds to a simpler form.
Consider the inequalities below:

2 K = 2log(K )+log(2) ≤ 2K−1+log(2) ≤ 2K

2K − 1 ≤ 2K

2K − 1 ≥ 2K − 2K−1 = 2K−1

where, in the first equation, we have used log(x) ≤ x − 1 for
x > 0. Applying the above inequalities to (33) gives the result
in Proposition 1.(b).
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